blob: 73e8b5e5bb6544e6c59684106f15146cf6b0fdac [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001/* SPDX-License-Identifier: GPL-2.0-only */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * Copyright (C) 2012 Regents of the University of California
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004 */
5
6#ifndef _ASM_RISCV_PGTABLE_H
7#define _ASM_RISCV_PGTABLE_H
8
9#include <linux/mmzone.h>
David Brazdil0f672f62019-12-10 10:32:29 +000010#include <linux/sizes.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011
12#include <asm/pgtable-bits.h>
13
14#ifndef __ASSEMBLY__
15
16/* Page Upper Directory not used in RISC-V */
17#include <asm-generic/pgtable-nopud.h>
18#include <asm/page.h>
19#include <asm/tlbflush.h>
20#include <linux/mm_types.h>
21
Olivier Deprez157378f2022-04-04 15:47:50 +020022#ifdef CONFIG_MMU
23
24#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
25#define VMALLOC_END (PAGE_OFFSET - 1)
26#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
27
28#define BPF_JIT_REGION_SIZE (SZ_128M)
29#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
30#define BPF_JIT_REGION_END (VMALLOC_END)
31
32/*
33 * Roughly size the vmemmap space to be large enough to fit enough
34 * struct pages to map half the virtual address space. Then
35 * position vmemmap directly below the VMALLOC region.
36 */
37#define VMEMMAP_SHIFT \
38 (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
39#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
40#define VMEMMAP_END (VMALLOC_START - 1)
41#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
42
43/*
44 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
45 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
46 */
47#define vmemmap ((struct page *)VMEMMAP_START)
48
49#define PCI_IO_SIZE SZ_16M
50#define PCI_IO_END VMEMMAP_START
51#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
52
53#define FIXADDR_TOP PCI_IO_START
54#ifdef CONFIG_64BIT
55#define FIXADDR_SIZE PMD_SIZE
56#else
57#define FIXADDR_SIZE PGDIR_SIZE
58#endif
59#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
60
61#endif
62
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000063#ifdef CONFIG_64BIT
64#include <asm/pgtable-64.h>
65#else
66#include <asm/pgtable-32.h>
67#endif /* CONFIG_64BIT */
68
Olivier Deprez157378f2022-04-04 15:47:50 +020069#ifdef CONFIG_MMU
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000070/* Number of entries in the page global directory */
71#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
72/* Number of entries in the page table */
73#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
74
75/* Number of PGD entries that a user-mode program can use */
76#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000077
78/* Page protection bits */
79#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
80
David Brazdil0f672f62019-12-10 10:32:29 +000081#define PAGE_NONE __pgprot(_PAGE_PROT_NONE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000082#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
83#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
84#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
85#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
86#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
87 _PAGE_EXEC | _PAGE_WRITE)
88
89#define PAGE_COPY PAGE_READ
90#define PAGE_COPY_EXEC PAGE_EXEC
91#define PAGE_COPY_READ_EXEC PAGE_READ_EXEC
92#define PAGE_SHARED PAGE_WRITE
93#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
94
95#define _PAGE_KERNEL (_PAGE_READ \
96 | _PAGE_WRITE \
97 | _PAGE_PRESENT \
98 | _PAGE_ACCESSED \
99 | _PAGE_DIRTY)
100
101#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
Olivier Deprez157378f2022-04-04 15:47:50 +0200102#define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000103#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
Olivier Deprez157378f2022-04-04 15:47:50 +0200104#define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
105 | _PAGE_EXEC)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000106
David Brazdil0f672f62019-12-10 10:32:29 +0000107#define PAGE_TABLE __pgprot(_PAGE_TABLE)
108
Olivier Deprez157378f2022-04-04 15:47:50 +0200109/*
110 * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
111 * change the properties of memory regions.
112 */
113#define _PAGE_IOREMAP _PAGE_KERNEL
114
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000115extern pgd_t swapper_pg_dir[];
116
117/* MAP_PRIVATE permissions: xwr (copy-on-write) */
118#define __P000 PAGE_NONE
119#define __P001 PAGE_READ
120#define __P010 PAGE_COPY
121#define __P011 PAGE_COPY
122#define __P100 PAGE_EXEC
123#define __P101 PAGE_READ_EXEC
124#define __P110 PAGE_COPY_EXEC
125#define __P111 PAGE_COPY_READ_EXEC
126
127/* MAP_SHARED permissions: xwr */
128#define __S000 PAGE_NONE
129#define __S001 PAGE_READ
130#define __S010 PAGE_SHARED
131#define __S011 PAGE_SHARED
132#define __S100 PAGE_EXEC
133#define __S101 PAGE_READ_EXEC
134#define __S110 PAGE_SHARED_EXEC
135#define __S111 PAGE_SHARED_EXEC
136
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000137static inline int pmd_present(pmd_t pmd)
138{
David Brazdil0f672f62019-12-10 10:32:29 +0000139 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000140}
141
142static inline int pmd_none(pmd_t pmd)
143{
144 return (pmd_val(pmd) == 0);
145}
146
147static inline int pmd_bad(pmd_t pmd)
148{
149 return !pmd_present(pmd);
150}
151
Olivier Deprez157378f2022-04-04 15:47:50 +0200152#define pmd_leaf pmd_leaf
153static inline int pmd_leaf(pmd_t pmd)
154{
155 return pmd_present(pmd) &&
156 (pmd_val(pmd) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
157}
158
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000159static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
160{
161 *pmdp = pmd;
162}
163
164static inline void pmd_clear(pmd_t *pmdp)
165{
166 set_pmd(pmdp, __pmd(0));
167}
168
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000169static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
170{
171 return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
172}
173
David Brazdil0f672f62019-12-10 10:32:29 +0000174static inline unsigned long _pgd_pfn(pgd_t pgd)
175{
176 return pgd_val(pgd) >> _PAGE_PFN_SHIFT;
177}
178
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000179static inline struct page *pmd_page(pmd_t pmd)
180{
181 return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
182}
183
184static inline unsigned long pmd_page_vaddr(pmd_t pmd)
185{
186 return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
187}
188
189/* Yields the page frame number (PFN) of a page table entry */
190static inline unsigned long pte_pfn(pte_t pte)
191{
192 return (pte_val(pte) >> _PAGE_PFN_SHIFT);
193}
194
195#define pte_page(x) pfn_to_page(pte_pfn(x))
196
197/* Constructs a page table entry */
198static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
199{
200 return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
201}
202
David Brazdil0f672f62019-12-10 10:32:29 +0000203#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000204
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000205static inline int pte_present(pte_t pte)
206{
David Brazdil0f672f62019-12-10 10:32:29 +0000207 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000208}
209
210static inline int pte_none(pte_t pte)
211{
212 return (pte_val(pte) == 0);
213}
214
215static inline int pte_write(pte_t pte)
216{
217 return pte_val(pte) & _PAGE_WRITE;
218}
219
220static inline int pte_exec(pte_t pte)
221{
222 return pte_val(pte) & _PAGE_EXEC;
223}
224
225static inline int pte_huge(pte_t pte)
226{
227 return pte_present(pte)
228 && (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
229}
230
231static inline int pte_dirty(pte_t pte)
232{
233 return pte_val(pte) & _PAGE_DIRTY;
234}
235
236static inline int pte_young(pte_t pte)
237{
238 return pte_val(pte) & _PAGE_ACCESSED;
239}
240
241static inline int pte_special(pte_t pte)
242{
243 return pte_val(pte) & _PAGE_SPECIAL;
244}
245
246/* static inline pte_t pte_rdprotect(pte_t pte) */
247
248static inline pte_t pte_wrprotect(pte_t pte)
249{
250 return __pte(pte_val(pte) & ~(_PAGE_WRITE));
251}
252
253/* static inline pte_t pte_mkread(pte_t pte) */
254
255static inline pte_t pte_mkwrite(pte_t pte)
256{
257 return __pte(pte_val(pte) | _PAGE_WRITE);
258}
259
260/* static inline pte_t pte_mkexec(pte_t pte) */
261
262static inline pte_t pte_mkdirty(pte_t pte)
263{
264 return __pte(pte_val(pte) | _PAGE_DIRTY);
265}
266
267static inline pte_t pte_mkclean(pte_t pte)
268{
269 return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
270}
271
272static inline pte_t pte_mkyoung(pte_t pte)
273{
274 return __pte(pte_val(pte) | _PAGE_ACCESSED);
275}
276
277static inline pte_t pte_mkold(pte_t pte)
278{
279 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
280}
281
282static inline pte_t pte_mkspecial(pte_t pte)
283{
284 return __pte(pte_val(pte) | _PAGE_SPECIAL);
285}
286
David Brazdil0f672f62019-12-10 10:32:29 +0000287static inline pte_t pte_mkhuge(pte_t pte)
288{
289 return pte;
290}
291
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000292/* Modify page protection bits */
293static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
294{
295 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
296}
297
298#define pgd_ERROR(e) \
299 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
300
301
302/* Commit new configuration to MMU hardware */
303static inline void update_mmu_cache(struct vm_area_struct *vma,
304 unsigned long address, pte_t *ptep)
305{
306 /*
307 * The kernel assumes that TLBs don't cache invalid entries, but
308 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
309 * cache flush; it is necessary even after writing invalid entries.
310 * Relying on flush_tlb_fix_spurious_fault would suffice, but
311 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
312 */
313 local_flush_tlb_page(address);
314}
315
316#define __HAVE_ARCH_PTE_SAME
317static inline int pte_same(pte_t pte_a, pte_t pte_b)
318{
319 return pte_val(pte_a) == pte_val(pte_b);
320}
321
322/*
323 * Certain architectures need to do special things when PTEs within
324 * a page table are directly modified. Thus, the following hook is
325 * made available.
326 */
327static inline void set_pte(pte_t *ptep, pte_t pteval)
328{
329 *ptep = pteval;
330}
331
332void flush_icache_pte(pte_t pte);
333
334static inline void set_pte_at(struct mm_struct *mm,
335 unsigned long addr, pte_t *ptep, pte_t pteval)
336{
337 if (pte_present(pteval) && pte_exec(pteval))
338 flush_icache_pte(pteval);
339
340 set_pte(ptep, pteval);
341}
342
343static inline void pte_clear(struct mm_struct *mm,
344 unsigned long addr, pte_t *ptep)
345{
346 set_pte_at(mm, addr, ptep, __pte(0));
347}
348
349#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
350static inline int ptep_set_access_flags(struct vm_area_struct *vma,
351 unsigned long address, pte_t *ptep,
352 pte_t entry, int dirty)
353{
354 if (!pte_same(*ptep, entry))
355 set_pte_at(vma->vm_mm, address, ptep, entry);
356 /*
357 * update_mmu_cache will unconditionally execute, handling both
358 * the case that the PTE changed and the spurious fault case.
359 */
360 return true;
361}
362
363#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
364static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
365 unsigned long address, pte_t *ptep)
366{
367 return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
368}
369
370#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
371static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
372 unsigned long address,
373 pte_t *ptep)
374{
375 if (!pte_young(*ptep))
376 return 0;
377 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
378}
379
380#define __HAVE_ARCH_PTEP_SET_WRPROTECT
381static inline void ptep_set_wrprotect(struct mm_struct *mm,
382 unsigned long address, pte_t *ptep)
383{
384 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
385}
386
387#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
388static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
389 unsigned long address, pte_t *ptep)
390{
391 /*
392 * This comment is borrowed from x86, but applies equally to RISC-V:
393 *
394 * Clearing the accessed bit without a TLB flush
395 * doesn't cause data corruption. [ It could cause incorrect
396 * page aging and the (mistaken) reclaim of hot pages, but the
397 * chance of that should be relatively low. ]
398 *
399 * So as a performance optimization don't flush the TLB when
400 * clearing the accessed bit, it will eventually be flushed by
401 * a context switch or a VM operation anyway. [ In the rare
402 * event of it not getting flushed for a long time the delay
403 * shouldn't really matter because there's no real memory
404 * pressure for swapout to react to. ]
405 */
406 return ptep_test_and_clear_young(vma, address, ptep);
407}
408
409/*
410 * Encode and decode a swap entry
411 *
412 * Format of swap PTE:
413 * bit 0: _PAGE_PRESENT (zero)
David Brazdil0f672f62019-12-10 10:32:29 +0000414 * bit 1: _PAGE_PROT_NONE (zero)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000415 * bits 2 to 6: swap type
416 * bits 7 to XLEN-1: swap offset
417 */
418#define __SWP_TYPE_SHIFT 2
419#define __SWP_TYPE_BITS 5
420#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
421#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
422
423#define MAX_SWAPFILES_CHECK() \
424 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
425
426#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
427#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
428#define __swp_entry(type, offset) ((swp_entry_t) \
429 { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
430
431#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
432#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
433
Olivier Deprez157378f2022-04-04 15:47:50 +0200434/*
435 * In the RV64 Linux scheme, we give the user half of the virtual-address space
436 * and give the kernel the other (upper) half.
437 */
438#ifdef CONFIG_64BIT
439#define KERN_VIRT_START (-(BIT(CONFIG_VA_BITS)) + TASK_SIZE)
440#else
441#define KERN_VIRT_START FIXADDR_START
442#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000443
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000444/*
David Brazdil0f672f62019-12-10 10:32:29 +0000445 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000446 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
447 */
448#ifdef CONFIG_64BIT
449#define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
450#else
David Brazdil0f672f62019-12-10 10:32:29 +0000451#define TASK_SIZE FIXADDR_START
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000452#endif
453
Olivier Deprez157378f2022-04-04 15:47:50 +0200454#else /* CONFIG_MMU */
455
456#define PAGE_SHARED __pgprot(0)
457#define PAGE_KERNEL __pgprot(0)
458#define swapper_pg_dir NULL
459#define TASK_SIZE 0xffffffffUL
460#define VMALLOC_START 0
461#define VMALLOC_END TASK_SIZE
462
463static inline void __kernel_map_pages(struct page *page, int numpages, int enable) {}
464
465#endif /* !CONFIG_MMU */
466
467#define kern_addr_valid(addr) (1) /* FIXME */
468
469extern void *dtb_early_va;
470extern uintptr_t dtb_early_pa;
471void setup_bootmem(void);
472void paging_init(void);
473
474#define FIRST_USER_ADDRESS 0
475
476/*
477 * ZERO_PAGE is a global shared page that is always zero,
478 * used for zero-mapped memory areas, etc.
479 */
480extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
481#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000482
483#endif /* !__ASSEMBLY__ */
484
485#endif /* _ASM_RISCV_PGTABLE_H */