blob: 8b211faa0e4293c5e7ce02339ab485baa6cfea9b [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001/* SPDX-License-Identifier: GPL-2.0-or-later */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * Copyright 2016,2017 IBM Corporation.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004 */
5#ifndef _ASM_POWERPC_XIVE_REGS_H
6#define _ASM_POWERPC_XIVE_REGS_H
7
8/*
9 * "magic" Event State Buffer (ESB) MMIO offsets.
10 *
11 * Each interrupt source has a 2-bit state machine called ESB
12 * which can be controlled by MMIO. It's made of 2 bits, P and
13 * Q. P indicates that an interrupt is pending (has been sent
14 * to a queue and is waiting for an EOI). Q indicates that the
15 * interrupt has been triggered while pending.
16 *
17 * This acts as a coalescing mechanism in order to guarantee
18 * that a given interrupt only occurs at most once in a queue.
19 *
20 * When doing an EOI, the Q bit will indicate if the interrupt
21 * needs to be re-triggered.
22 *
23 * The following offsets into the ESB MMIO allow to read or
24 * manipulate the PQ bits. They must be used with an 8-bytes
25 * load instruction. They all return the previous state of the
26 * interrupt (atomically).
27 *
28 * Additionally, some ESB pages support doing an EOI via a
29 * store at 0 and some ESBs support doing a trigger via a
30 * separate trigger page.
31 */
32#define XIVE_ESB_STORE_EOI 0x400 /* Store */
33#define XIVE_ESB_LOAD_EOI 0x000 /* Load */
34#define XIVE_ESB_GET 0x800 /* Load */
35#define XIVE_ESB_SET_PQ_00 0xc00 /* Load */
36#define XIVE_ESB_SET_PQ_01 0xd00 /* Load */
37#define XIVE_ESB_SET_PQ_10 0xe00 /* Load */
38#define XIVE_ESB_SET_PQ_11 0xf00 /* Load */
39
Olivier Deprez157378f2022-04-04 15:47:50 +020040/*
41 * Load-after-store ordering
42 *
43 * Adding this offset to the load address will enforce
44 * load-after-store ordering. This is required to use StoreEOI.
45 */
46#define XIVE_ESB_LD_ST_MO 0x40 /* Load-after-store ordering */
47
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000048#define XIVE_ESB_VAL_P 0x2
49#define XIVE_ESB_VAL_Q 0x1
Olivier Deprez0e641232021-09-23 10:07:05 +020050#define XIVE_ESB_INVALID 0xFF
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000051
52/*
53 * Thread Management (aka "TM") registers
54 */
55
56/* TM register offsets */
57#define TM_QW0_USER 0x000 /* All rings */
58#define TM_QW1_OS 0x010 /* Ring 0..2 */
59#define TM_QW2_HV_POOL 0x020 /* Ring 0..1 */
60#define TM_QW3_HV_PHYS 0x030 /* Ring 0..1 */
61
62/* Byte offsets inside a QW QW0 QW1 QW2 QW3 */
63#define TM_NSR 0x0 /* + + - + */
64#define TM_CPPR 0x1 /* - + - + */
65#define TM_IPB 0x2 /* - + + + */
66#define TM_LSMFB 0x3 /* - + + + */
67#define TM_ACK_CNT 0x4 /* - + - - */
68#define TM_INC 0x5 /* - + - + */
69#define TM_AGE 0x6 /* - + - + */
70#define TM_PIPR 0x7 /* - + - + */
71
72#define TM_WORD0 0x0
73#define TM_WORD1 0x4
74
75/*
76 * QW word 2 contains the valid bit at the top and other fields
77 * depending on the QW.
78 */
79#define TM_WORD2 0x8
80#define TM_QW0W2_VU PPC_BIT32(0)
81#define TM_QW0W2_LOGIC_SERV PPC_BITMASK32(1,31) // XX 2,31 ?
82#define TM_QW1W2_VO PPC_BIT32(0)
83#define TM_QW1W2_OS_CAM PPC_BITMASK32(8,31)
84#define TM_QW2W2_VP PPC_BIT32(0)
85#define TM_QW2W2_POOL_CAM PPC_BITMASK32(8,31)
86#define TM_QW3W2_VT PPC_BIT32(0)
87#define TM_QW3W2_LP PPC_BIT32(6)
88#define TM_QW3W2_LE PPC_BIT32(7)
89#define TM_QW3W2_T PPC_BIT32(31)
90
91/*
92 * In addition to normal loads to "peek" and writes (only when invalid)
93 * using 4 and 8 bytes accesses, the above registers support these
94 * "special" byte operations:
95 *
96 * - Byte load from QW0[NSR] - User level NSR (EBB)
97 * - Byte store to QW0[NSR] - User level NSR (EBB)
98 * - Byte load/store to QW1[CPPR] and QW3[CPPR] - CPPR access
99 * - Byte load from QW3[TM_WORD2] - Read VT||00000||LP||LE on thrd 0
100 * otherwise VT||0000000
101 * - Byte store to QW3[TM_WORD2] - Set VT bit (and LP/LE if present)
102 *
103 * Then we have all these "special" CI ops at these offset that trigger
104 * all sorts of side effects:
105 */
106#define TM_SPC_ACK_EBB 0x800 /* Load8 ack EBB to reg*/
107#define TM_SPC_ACK_OS_REG 0x810 /* Load16 ack OS irq to reg */
108#define TM_SPC_PUSH_USR_CTX 0x808 /* Store32 Push/Validate user context */
109#define TM_SPC_PULL_USR_CTX 0x808 /* Load32 Pull/Invalidate user context */
110#define TM_SPC_SET_OS_PENDING 0x812 /* Store8 Set OS irq pending bit */
111#define TM_SPC_PULL_OS_CTX 0x818 /* Load32/Load64 Pull/Invalidate OS context to reg */
112#define TM_SPC_PULL_POOL_CTX 0x828 /* Load32/Load64 Pull/Invalidate Pool context to reg*/
113#define TM_SPC_ACK_HV_REG 0x830 /* Load16 ack HV irq to reg */
114#define TM_SPC_PULL_USR_CTX_OL 0xc08 /* Store8 Pull/Inval usr ctx to odd line */
115#define TM_SPC_ACK_OS_EL 0xc10 /* Store8 ack OS irq to even line */
116#define TM_SPC_ACK_HV_POOL_EL 0xc20 /* Store8 ack HV evt pool to even line */
117#define TM_SPC_ACK_HV_EL 0xc30 /* Store8 ack HV irq to even line */
118/* XXX more... */
119
120/* NSR fields for the various QW ack types */
121#define TM_QW0_NSR_EB PPC_BIT8(0)
122#define TM_QW1_NSR_EO PPC_BIT8(0)
123#define TM_QW3_NSR_HE PPC_BITMASK8(0,1)
124#define TM_QW3_NSR_HE_NONE 0
125#define TM_QW3_NSR_HE_POOL 1
126#define TM_QW3_NSR_HE_PHYS 2
127#define TM_QW3_NSR_HE_LSI 3
128#define TM_QW3_NSR_I PPC_BIT8(2)
129#define TM_QW3_NSR_GRP_LVL PPC_BIT8(3,7)
130
131#endif /* _ASM_POWERPC_XIVE_REGS_H */