Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | |
| 3 | #include <linux/kprobes.h> |
| 4 | #include <linux/extable.h> |
| 5 | #include <linux/slab.h> |
| 6 | #include <linux/stop_machine.h> |
| 7 | #include <asm/ptrace.h> |
| 8 | #include <linux/uaccess.h> |
| 9 | #include <asm/sections.h> |
| 10 | #include <asm/cacheflush.h> |
| 11 | |
| 12 | #include "decode-insn.h" |
| 13 | |
| 14 | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; |
| 15 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| 16 | |
| 17 | static void __kprobes |
| 18 | post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *); |
| 19 | |
| 20 | struct csky_insn_patch { |
| 21 | kprobe_opcode_t *addr; |
| 22 | u32 opcode; |
| 23 | atomic_t cpu_count; |
| 24 | }; |
| 25 | |
| 26 | static int __kprobes patch_text_cb(void *priv) |
| 27 | { |
| 28 | struct csky_insn_patch *param = priv; |
| 29 | unsigned int addr = (unsigned int)param->addr; |
| 30 | |
| 31 | if (atomic_inc_return(¶m->cpu_count) == 1) { |
| 32 | *(u16 *) addr = cpu_to_le16(param->opcode); |
| 33 | dcache_wb_range(addr, addr + 2); |
| 34 | atomic_inc(¶m->cpu_count); |
| 35 | } else { |
| 36 | while (atomic_read(¶m->cpu_count) <= num_online_cpus()) |
| 37 | cpu_relax(); |
| 38 | } |
| 39 | |
| 40 | icache_inv_range(addr, addr + 2); |
| 41 | |
| 42 | return 0; |
| 43 | } |
| 44 | |
| 45 | static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode) |
| 46 | { |
| 47 | struct csky_insn_patch param = { addr, opcode, ATOMIC_INIT(0) }; |
| 48 | |
| 49 | return stop_machine_cpuslocked(patch_text_cb, ¶m, cpu_online_mask); |
| 50 | } |
| 51 | |
| 52 | static void __kprobes arch_prepare_ss_slot(struct kprobe *p) |
| 53 | { |
| 54 | unsigned long offset = is_insn32(p->opcode) ? 4 : 2; |
| 55 | |
| 56 | p->ainsn.api.restore = (unsigned long)p->addr + offset; |
| 57 | |
| 58 | patch_text(p->ainsn.api.insn, p->opcode); |
| 59 | } |
| 60 | |
| 61 | static void __kprobes arch_prepare_simulate(struct kprobe *p) |
| 62 | { |
| 63 | p->ainsn.api.restore = 0; |
| 64 | } |
| 65 | |
| 66 | static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs) |
| 67 | { |
| 68 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| 69 | |
| 70 | if (p->ainsn.api.handler) |
| 71 | p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs); |
| 72 | |
| 73 | post_kprobe_handler(kcb, regs); |
| 74 | } |
| 75 | |
| 76 | int __kprobes arch_prepare_kprobe(struct kprobe *p) |
| 77 | { |
| 78 | unsigned long probe_addr = (unsigned long)p->addr; |
| 79 | |
| 80 | if (probe_addr & 0x1) { |
| 81 | pr_warn("Address not aligned.\n"); |
| 82 | return -EINVAL; |
| 83 | } |
| 84 | |
| 85 | /* copy instruction */ |
| 86 | p->opcode = le32_to_cpu(*p->addr); |
| 87 | |
| 88 | /* decode instruction */ |
| 89 | switch (csky_probe_decode_insn(p->addr, &p->ainsn.api)) { |
| 90 | case INSN_REJECTED: /* insn not supported */ |
| 91 | return -EINVAL; |
| 92 | |
| 93 | case INSN_GOOD_NO_SLOT: /* insn need simulation */ |
| 94 | p->ainsn.api.insn = NULL; |
| 95 | break; |
| 96 | |
| 97 | case INSN_GOOD: /* instruction uses slot */ |
| 98 | p->ainsn.api.insn = get_insn_slot(); |
| 99 | if (!p->ainsn.api.insn) |
| 100 | return -ENOMEM; |
| 101 | break; |
| 102 | } |
| 103 | |
| 104 | /* prepare the instruction */ |
| 105 | if (p->ainsn.api.insn) |
| 106 | arch_prepare_ss_slot(p); |
| 107 | else |
| 108 | arch_prepare_simulate(p); |
| 109 | |
| 110 | return 0; |
| 111 | } |
| 112 | |
| 113 | /* install breakpoint in text */ |
| 114 | void __kprobes arch_arm_kprobe(struct kprobe *p) |
| 115 | { |
| 116 | patch_text(p->addr, USR_BKPT); |
| 117 | } |
| 118 | |
| 119 | /* remove breakpoint from text */ |
| 120 | void __kprobes arch_disarm_kprobe(struct kprobe *p) |
| 121 | { |
| 122 | patch_text(p->addr, p->opcode); |
| 123 | } |
| 124 | |
| 125 | void __kprobes arch_remove_kprobe(struct kprobe *p) |
| 126 | { |
| 127 | } |
| 128 | |
| 129 | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| 130 | { |
| 131 | kcb->prev_kprobe.kp = kprobe_running(); |
| 132 | kcb->prev_kprobe.status = kcb->kprobe_status; |
| 133 | } |
| 134 | |
| 135 | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| 136 | { |
| 137 | __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); |
| 138 | kcb->kprobe_status = kcb->prev_kprobe.status; |
| 139 | } |
| 140 | |
| 141 | static void __kprobes set_current_kprobe(struct kprobe *p) |
| 142 | { |
| 143 | __this_cpu_write(current_kprobe, p); |
| 144 | } |
| 145 | |
| 146 | /* |
| 147 | * Interrupts need to be disabled before single-step mode is set, and not |
| 148 | * reenabled until after single-step mode ends. |
| 149 | * Without disabling interrupt on local CPU, there is a chance of |
| 150 | * interrupt occurrence in the period of exception return and start of |
| 151 | * out-of-line single-step, that result in wrongly single stepping |
| 152 | * into the interrupt handler. |
| 153 | */ |
| 154 | static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb, |
| 155 | struct pt_regs *regs) |
| 156 | { |
| 157 | kcb->saved_sr = regs->sr; |
| 158 | regs->sr &= ~BIT(6); |
| 159 | } |
| 160 | |
| 161 | static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb, |
| 162 | struct pt_regs *regs) |
| 163 | { |
| 164 | regs->sr = kcb->saved_sr; |
| 165 | } |
| 166 | |
| 167 | static void __kprobes |
| 168 | set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr, struct kprobe *p) |
| 169 | { |
| 170 | unsigned long offset = is_insn32(p->opcode) ? 4 : 2; |
| 171 | |
| 172 | kcb->ss_ctx.ss_pending = true; |
| 173 | kcb->ss_ctx.match_addr = addr + offset; |
| 174 | } |
| 175 | |
| 176 | static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb) |
| 177 | { |
| 178 | kcb->ss_ctx.ss_pending = false; |
| 179 | kcb->ss_ctx.match_addr = 0; |
| 180 | } |
| 181 | |
| 182 | #define TRACE_MODE_SI BIT(14) |
| 183 | #define TRACE_MODE_MASK ~(0x3 << 14) |
| 184 | #define TRACE_MODE_RUN 0 |
| 185 | |
| 186 | static void __kprobes setup_singlestep(struct kprobe *p, |
| 187 | struct pt_regs *regs, |
| 188 | struct kprobe_ctlblk *kcb, int reenter) |
| 189 | { |
| 190 | unsigned long slot; |
| 191 | |
| 192 | if (reenter) { |
| 193 | save_previous_kprobe(kcb); |
| 194 | set_current_kprobe(p); |
| 195 | kcb->kprobe_status = KPROBE_REENTER; |
| 196 | } else { |
| 197 | kcb->kprobe_status = KPROBE_HIT_SS; |
| 198 | } |
| 199 | |
| 200 | if (p->ainsn.api.insn) { |
| 201 | /* prepare for single stepping */ |
| 202 | slot = (unsigned long)p->ainsn.api.insn; |
| 203 | |
| 204 | set_ss_context(kcb, slot, p); /* mark pending ss */ |
| 205 | |
| 206 | /* IRQs and single stepping do not mix well. */ |
| 207 | kprobes_save_local_irqflag(kcb, regs); |
| 208 | regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI; |
| 209 | instruction_pointer_set(regs, slot); |
| 210 | } else { |
| 211 | /* insn simulation */ |
| 212 | arch_simulate_insn(p, regs); |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | static int __kprobes reenter_kprobe(struct kprobe *p, |
| 217 | struct pt_regs *regs, |
| 218 | struct kprobe_ctlblk *kcb) |
| 219 | { |
| 220 | switch (kcb->kprobe_status) { |
| 221 | case KPROBE_HIT_SSDONE: |
| 222 | case KPROBE_HIT_ACTIVE: |
| 223 | kprobes_inc_nmissed_count(p); |
| 224 | setup_singlestep(p, regs, kcb, 1); |
| 225 | break; |
| 226 | case KPROBE_HIT_SS: |
| 227 | case KPROBE_REENTER: |
| 228 | pr_warn("Unrecoverable kprobe detected.\n"); |
| 229 | dump_kprobe(p); |
| 230 | BUG(); |
| 231 | break; |
| 232 | default: |
| 233 | WARN_ON(1); |
| 234 | return 0; |
| 235 | } |
| 236 | |
| 237 | return 1; |
| 238 | } |
| 239 | |
| 240 | static void __kprobes |
| 241 | post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs) |
| 242 | { |
| 243 | struct kprobe *cur = kprobe_running(); |
| 244 | |
| 245 | if (!cur) |
| 246 | return; |
| 247 | |
| 248 | /* return addr restore if non-branching insn */ |
| 249 | if (cur->ainsn.api.restore != 0) |
| 250 | regs->pc = cur->ainsn.api.restore; |
| 251 | |
| 252 | /* restore back original saved kprobe variables and continue */ |
| 253 | if (kcb->kprobe_status == KPROBE_REENTER) { |
| 254 | restore_previous_kprobe(kcb); |
| 255 | return; |
| 256 | } |
| 257 | |
| 258 | /* call post handler */ |
| 259 | kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| 260 | if (cur->post_handler) { |
| 261 | /* post_handler can hit breakpoint and single step |
| 262 | * again, so we enable D-flag for recursive exception. |
| 263 | */ |
| 264 | cur->post_handler(cur, regs, 0); |
| 265 | } |
| 266 | |
| 267 | reset_current_kprobe(); |
| 268 | } |
| 269 | |
| 270 | int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr) |
| 271 | { |
| 272 | struct kprobe *cur = kprobe_running(); |
| 273 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| 274 | |
| 275 | switch (kcb->kprobe_status) { |
| 276 | case KPROBE_HIT_SS: |
| 277 | case KPROBE_REENTER: |
| 278 | /* |
| 279 | * We are here because the instruction being single |
| 280 | * stepped caused a page fault. We reset the current |
| 281 | * kprobe and the ip points back to the probe address |
| 282 | * and allow the page fault handler to continue as a |
| 283 | * normal page fault. |
| 284 | */ |
| 285 | regs->pc = (unsigned long) cur->addr; |
| 286 | if (!instruction_pointer(regs)) |
| 287 | BUG(); |
| 288 | |
| 289 | if (kcb->kprobe_status == KPROBE_REENTER) |
| 290 | restore_previous_kprobe(kcb); |
| 291 | else |
| 292 | reset_current_kprobe(); |
| 293 | |
| 294 | break; |
| 295 | case KPROBE_HIT_ACTIVE: |
| 296 | case KPROBE_HIT_SSDONE: |
| 297 | /* |
| 298 | * We increment the nmissed count for accounting, |
| 299 | * we can also use npre/npostfault count for accounting |
| 300 | * these specific fault cases. |
| 301 | */ |
| 302 | kprobes_inc_nmissed_count(cur); |
| 303 | |
| 304 | /* |
| 305 | * We come here because instructions in the pre/post |
| 306 | * handler caused the page_fault, this could happen |
| 307 | * if handler tries to access user space by |
| 308 | * copy_from_user(), get_user() etc. Let the |
| 309 | * user-specified handler try to fix it first. |
| 310 | */ |
| 311 | if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) |
| 312 | return 1; |
| 313 | |
| 314 | /* |
| 315 | * In case the user-specified fault handler returned |
| 316 | * zero, try to fix up. |
| 317 | */ |
| 318 | if (fixup_exception(regs)) |
| 319 | return 1; |
| 320 | } |
| 321 | return 0; |
| 322 | } |
| 323 | |
| 324 | int __kprobes |
| 325 | kprobe_breakpoint_handler(struct pt_regs *regs) |
| 326 | { |
| 327 | struct kprobe *p, *cur_kprobe; |
| 328 | struct kprobe_ctlblk *kcb; |
| 329 | unsigned long addr = instruction_pointer(regs); |
| 330 | |
| 331 | kcb = get_kprobe_ctlblk(); |
| 332 | cur_kprobe = kprobe_running(); |
| 333 | |
| 334 | p = get_kprobe((kprobe_opcode_t *) addr); |
| 335 | |
| 336 | if (p) { |
| 337 | if (cur_kprobe) { |
| 338 | if (reenter_kprobe(p, regs, kcb)) |
| 339 | return 1; |
| 340 | } else { |
| 341 | /* Probe hit */ |
| 342 | set_current_kprobe(p); |
| 343 | kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| 344 | |
| 345 | /* |
| 346 | * If we have no pre-handler or it returned 0, we |
| 347 | * continue with normal processing. If we have a |
| 348 | * pre-handler and it returned non-zero, it will |
| 349 | * modify the execution path and no need to single |
| 350 | * stepping. Let's just reset current kprobe and exit. |
| 351 | * |
| 352 | * pre_handler can hit a breakpoint and can step thru |
| 353 | * before return. |
| 354 | */ |
| 355 | if (!p->pre_handler || !p->pre_handler(p, regs)) |
| 356 | setup_singlestep(p, regs, kcb, 0); |
| 357 | else |
| 358 | reset_current_kprobe(); |
| 359 | } |
| 360 | return 1; |
| 361 | } |
| 362 | |
| 363 | /* |
| 364 | * The breakpoint instruction was removed right |
| 365 | * after we hit it. Another cpu has removed |
| 366 | * either a probepoint or a debugger breakpoint |
| 367 | * at this address. In either case, no further |
| 368 | * handling of this interrupt is appropriate. |
| 369 | * Return back to original instruction, and continue. |
| 370 | */ |
| 371 | return 0; |
| 372 | } |
| 373 | |
| 374 | int __kprobes |
| 375 | kprobe_single_step_handler(struct pt_regs *regs) |
| 376 | { |
| 377 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| 378 | |
| 379 | if ((kcb->ss_ctx.ss_pending) |
| 380 | && (kcb->ss_ctx.match_addr == instruction_pointer(regs))) { |
| 381 | clear_ss_context(kcb); /* clear pending ss */ |
| 382 | |
| 383 | kprobes_restore_local_irqflag(kcb, regs); |
| 384 | regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN; |
| 385 | |
| 386 | post_kprobe_handler(kcb, regs); |
| 387 | return 1; |
| 388 | } |
| 389 | return 0; |
| 390 | } |
| 391 | |
| 392 | /* |
| 393 | * Provide a blacklist of symbols identifying ranges which cannot be kprobed. |
| 394 | * This blacklist is exposed to userspace via debugfs (kprobes/blacklist). |
| 395 | */ |
| 396 | int __init arch_populate_kprobe_blacklist(void) |
| 397 | { |
| 398 | int ret; |
| 399 | |
| 400 | ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, |
| 401 | (unsigned long)__irqentry_text_end); |
| 402 | return ret; |
| 403 | } |
| 404 | |
| 405 | void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs) |
| 406 | { |
| 407 | return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL); |
| 408 | } |
| 409 | |
| 410 | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, |
| 411 | struct pt_regs *regs) |
| 412 | { |
| 413 | ri->ret_addr = (kprobe_opcode_t *)regs->lr; |
| 414 | ri->fp = NULL; |
| 415 | regs->lr = (unsigned long) &kretprobe_trampoline; |
| 416 | } |
| 417 | |
| 418 | int __kprobes arch_trampoline_kprobe(struct kprobe *p) |
| 419 | { |
| 420 | return 0; |
| 421 | } |
| 422 | |
| 423 | int __init arch_init_kprobes(void) |
| 424 | { |
| 425 | return 0; |
| 426 | } |