Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 2012 - ARM Ltd |
| 4 | * Author: Marc Zyngier <marc.zyngier@arm.com> |
| 5 | */ |
| 6 | |
| 7 | #include <linux/arm-smccc.h> |
| 8 | #include <linux/preempt.h> |
| 9 | #include <linux/kvm_host.h> |
| 10 | #include <linux/uaccess.h> |
| 11 | #include <linux/wait.h> |
| 12 | |
| 13 | #include <asm/cputype.h> |
| 14 | #include <asm/kvm_emulate.h> |
| 15 | |
| 16 | #include <kvm/arm_psci.h> |
| 17 | #include <kvm/arm_hypercalls.h> |
| 18 | |
| 19 | /* |
| 20 | * This is an implementation of the Power State Coordination Interface |
| 21 | * as described in ARM document number ARM DEN 0022A. |
| 22 | */ |
| 23 | |
| 24 | #define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1) |
| 25 | |
| 26 | static unsigned long psci_affinity_mask(unsigned long affinity_level) |
| 27 | { |
| 28 | if (affinity_level <= 3) |
| 29 | return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level); |
| 30 | |
| 31 | return 0; |
| 32 | } |
| 33 | |
| 34 | static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu) |
| 35 | { |
| 36 | /* |
| 37 | * NOTE: For simplicity, we make VCPU suspend emulation to be |
| 38 | * same-as WFI (Wait-for-interrupt) emulation. |
| 39 | * |
| 40 | * This means for KVM the wakeup events are interrupts and |
| 41 | * this is consistent with intended use of StateID as described |
| 42 | * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A). |
| 43 | * |
| 44 | * Further, we also treat power-down request to be same as |
| 45 | * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2 |
| 46 | * specification (ARM DEN 0022A). This means all suspend states |
| 47 | * for KVM will preserve the register state. |
| 48 | */ |
| 49 | kvm_vcpu_block(vcpu); |
| 50 | kvm_clear_request(KVM_REQ_UNHALT, vcpu); |
| 51 | |
| 52 | return PSCI_RET_SUCCESS; |
| 53 | } |
| 54 | |
| 55 | static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu) |
| 56 | { |
| 57 | vcpu->arch.power_off = true; |
| 58 | kvm_make_request(KVM_REQ_SLEEP, vcpu); |
| 59 | kvm_vcpu_kick(vcpu); |
| 60 | } |
| 61 | |
| 62 | static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu) |
| 63 | { |
| 64 | struct vcpu_reset_state *reset_state; |
| 65 | struct kvm *kvm = source_vcpu->kvm; |
| 66 | struct kvm_vcpu *vcpu = NULL; |
| 67 | unsigned long cpu_id; |
| 68 | |
| 69 | cpu_id = smccc_get_arg1(source_vcpu) & MPIDR_HWID_BITMASK; |
| 70 | if (vcpu_mode_is_32bit(source_vcpu)) |
| 71 | cpu_id &= ~((u32) 0); |
| 72 | |
| 73 | vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id); |
| 74 | |
| 75 | /* |
| 76 | * Make sure the caller requested a valid CPU and that the CPU is |
| 77 | * turned off. |
| 78 | */ |
| 79 | if (!vcpu) |
| 80 | return PSCI_RET_INVALID_PARAMS; |
| 81 | if (!vcpu->arch.power_off) { |
| 82 | if (kvm_psci_version(source_vcpu, kvm) != KVM_ARM_PSCI_0_1) |
| 83 | return PSCI_RET_ALREADY_ON; |
| 84 | else |
| 85 | return PSCI_RET_INVALID_PARAMS; |
| 86 | } |
| 87 | |
| 88 | reset_state = &vcpu->arch.reset_state; |
| 89 | |
| 90 | reset_state->pc = smccc_get_arg2(source_vcpu); |
| 91 | |
| 92 | /* Propagate caller endianness */ |
| 93 | reset_state->be = kvm_vcpu_is_be(source_vcpu); |
| 94 | |
| 95 | /* |
| 96 | * NOTE: We always update r0 (or x0) because for PSCI v0.1 |
| 97 | * the general purpose registers are undefined upon CPU_ON. |
| 98 | */ |
| 99 | reset_state->r0 = smccc_get_arg3(source_vcpu); |
| 100 | |
| 101 | WRITE_ONCE(reset_state->reset, true); |
| 102 | kvm_make_request(KVM_REQ_VCPU_RESET, vcpu); |
| 103 | |
| 104 | /* |
| 105 | * Make sure the reset request is observed if the change to |
| 106 | * power_state is observed. |
| 107 | */ |
| 108 | smp_wmb(); |
| 109 | |
| 110 | vcpu->arch.power_off = false; |
| 111 | kvm_vcpu_wake_up(vcpu); |
| 112 | |
| 113 | return PSCI_RET_SUCCESS; |
| 114 | } |
| 115 | |
| 116 | static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu) |
| 117 | { |
| 118 | int i, matching_cpus = 0; |
| 119 | unsigned long mpidr; |
| 120 | unsigned long target_affinity; |
| 121 | unsigned long target_affinity_mask; |
| 122 | unsigned long lowest_affinity_level; |
| 123 | struct kvm *kvm = vcpu->kvm; |
| 124 | struct kvm_vcpu *tmp; |
| 125 | |
| 126 | target_affinity = smccc_get_arg1(vcpu); |
| 127 | lowest_affinity_level = smccc_get_arg2(vcpu); |
| 128 | |
| 129 | /* Determine target affinity mask */ |
| 130 | target_affinity_mask = psci_affinity_mask(lowest_affinity_level); |
| 131 | if (!target_affinity_mask) |
| 132 | return PSCI_RET_INVALID_PARAMS; |
| 133 | |
| 134 | /* Ignore other bits of target affinity */ |
| 135 | target_affinity &= target_affinity_mask; |
| 136 | |
| 137 | /* |
| 138 | * If one or more VCPU matching target affinity are running |
| 139 | * then ON else OFF |
| 140 | */ |
| 141 | kvm_for_each_vcpu(i, tmp, kvm) { |
| 142 | mpidr = kvm_vcpu_get_mpidr_aff(tmp); |
| 143 | if ((mpidr & target_affinity_mask) == target_affinity) { |
| 144 | matching_cpus++; |
| 145 | if (!tmp->arch.power_off) |
| 146 | return PSCI_0_2_AFFINITY_LEVEL_ON; |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | if (!matching_cpus) |
| 151 | return PSCI_RET_INVALID_PARAMS; |
| 152 | |
| 153 | return PSCI_0_2_AFFINITY_LEVEL_OFF; |
| 154 | } |
| 155 | |
| 156 | static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type) |
| 157 | { |
| 158 | int i; |
| 159 | struct kvm_vcpu *tmp; |
| 160 | |
| 161 | /* |
| 162 | * The KVM ABI specifies that a system event exit may call KVM_RUN |
| 163 | * again and may perform shutdown/reboot at a later time that when the |
| 164 | * actual request is made. Since we are implementing PSCI and a |
| 165 | * caller of PSCI reboot and shutdown expects that the system shuts |
| 166 | * down or reboots immediately, let's make sure that VCPUs are not run |
| 167 | * after this call is handled and before the VCPUs have been |
| 168 | * re-initialized. |
| 169 | */ |
| 170 | kvm_for_each_vcpu(i, tmp, vcpu->kvm) |
| 171 | tmp->arch.power_off = true; |
| 172 | kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP); |
| 173 | |
| 174 | memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); |
| 175 | vcpu->run->system_event.type = type; |
| 176 | vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; |
| 177 | } |
| 178 | |
| 179 | static void kvm_psci_system_off(struct kvm_vcpu *vcpu) |
| 180 | { |
| 181 | kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN); |
| 182 | } |
| 183 | |
| 184 | static void kvm_psci_system_reset(struct kvm_vcpu *vcpu) |
| 185 | { |
| 186 | kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET); |
| 187 | } |
| 188 | |
| 189 | static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu) |
| 190 | { |
| 191 | int i; |
| 192 | |
| 193 | /* |
| 194 | * Zero the input registers' upper 32 bits. They will be fully |
| 195 | * zeroed on exit, so we're fine changing them in place. |
| 196 | */ |
| 197 | for (i = 1; i < 4; i++) |
| 198 | vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i))); |
| 199 | } |
| 200 | |
| 201 | static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn) |
| 202 | { |
| 203 | switch(fn) { |
| 204 | case PSCI_0_2_FN64_CPU_SUSPEND: |
| 205 | case PSCI_0_2_FN64_CPU_ON: |
| 206 | case PSCI_0_2_FN64_AFFINITY_INFO: |
| 207 | /* Disallow these functions for 32bit guests */ |
| 208 | if (vcpu_mode_is_32bit(vcpu)) |
| 209 | return PSCI_RET_NOT_SUPPORTED; |
| 210 | break; |
| 211 | } |
| 212 | |
| 213 | return 0; |
| 214 | } |
| 215 | |
| 216 | static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu) |
| 217 | { |
| 218 | struct kvm *kvm = vcpu->kvm; |
| 219 | u32 psci_fn = smccc_get_function(vcpu); |
| 220 | unsigned long val; |
| 221 | int ret = 1; |
| 222 | |
| 223 | val = kvm_psci_check_allowed_function(vcpu, psci_fn); |
| 224 | if (val) |
| 225 | goto out; |
| 226 | |
| 227 | switch (psci_fn) { |
| 228 | case PSCI_0_2_FN_PSCI_VERSION: |
| 229 | /* |
| 230 | * Bits[31:16] = Major Version = 0 |
| 231 | * Bits[15:0] = Minor Version = 2 |
| 232 | */ |
| 233 | val = KVM_ARM_PSCI_0_2; |
| 234 | break; |
| 235 | case PSCI_0_2_FN_CPU_SUSPEND: |
| 236 | case PSCI_0_2_FN64_CPU_SUSPEND: |
| 237 | val = kvm_psci_vcpu_suspend(vcpu); |
| 238 | break; |
| 239 | case PSCI_0_2_FN_CPU_OFF: |
| 240 | kvm_psci_vcpu_off(vcpu); |
| 241 | val = PSCI_RET_SUCCESS; |
| 242 | break; |
| 243 | case PSCI_0_2_FN_CPU_ON: |
| 244 | kvm_psci_narrow_to_32bit(vcpu); |
| 245 | fallthrough; |
| 246 | case PSCI_0_2_FN64_CPU_ON: |
| 247 | mutex_lock(&kvm->lock); |
| 248 | val = kvm_psci_vcpu_on(vcpu); |
| 249 | mutex_unlock(&kvm->lock); |
| 250 | break; |
| 251 | case PSCI_0_2_FN_AFFINITY_INFO: |
| 252 | kvm_psci_narrow_to_32bit(vcpu); |
| 253 | fallthrough; |
| 254 | case PSCI_0_2_FN64_AFFINITY_INFO: |
| 255 | val = kvm_psci_vcpu_affinity_info(vcpu); |
| 256 | break; |
| 257 | case PSCI_0_2_FN_MIGRATE_INFO_TYPE: |
| 258 | /* |
| 259 | * Trusted OS is MP hence does not require migration |
| 260 | * or |
| 261 | * Trusted OS is not present |
| 262 | */ |
| 263 | val = PSCI_0_2_TOS_MP; |
| 264 | break; |
| 265 | case PSCI_0_2_FN_SYSTEM_OFF: |
| 266 | kvm_psci_system_off(vcpu); |
| 267 | /* |
| 268 | * We shouldn't be going back to guest VCPU after |
| 269 | * receiving SYSTEM_OFF request. |
| 270 | * |
| 271 | * If user space accidentally/deliberately resumes |
| 272 | * guest VCPU after SYSTEM_OFF request then guest |
| 273 | * VCPU should see internal failure from PSCI return |
| 274 | * value. To achieve this, we preload r0 (or x0) with |
| 275 | * PSCI return value INTERNAL_FAILURE. |
| 276 | */ |
| 277 | val = PSCI_RET_INTERNAL_FAILURE; |
| 278 | ret = 0; |
| 279 | break; |
| 280 | case PSCI_0_2_FN_SYSTEM_RESET: |
| 281 | kvm_psci_system_reset(vcpu); |
| 282 | /* |
| 283 | * Same reason as SYSTEM_OFF for preloading r0 (or x0) |
| 284 | * with PSCI return value INTERNAL_FAILURE. |
| 285 | */ |
| 286 | val = PSCI_RET_INTERNAL_FAILURE; |
| 287 | ret = 0; |
| 288 | break; |
| 289 | default: |
| 290 | val = PSCI_RET_NOT_SUPPORTED; |
| 291 | break; |
| 292 | } |
| 293 | |
| 294 | out: |
| 295 | smccc_set_retval(vcpu, val, 0, 0, 0); |
| 296 | return ret; |
| 297 | } |
| 298 | |
| 299 | static int kvm_psci_1_0_call(struct kvm_vcpu *vcpu) |
| 300 | { |
| 301 | u32 psci_fn = smccc_get_function(vcpu); |
| 302 | u32 feature; |
| 303 | unsigned long val; |
| 304 | int ret = 1; |
| 305 | |
| 306 | switch(psci_fn) { |
| 307 | case PSCI_0_2_FN_PSCI_VERSION: |
| 308 | val = KVM_ARM_PSCI_1_0; |
| 309 | break; |
| 310 | case PSCI_1_0_FN_PSCI_FEATURES: |
| 311 | feature = smccc_get_arg1(vcpu); |
| 312 | val = kvm_psci_check_allowed_function(vcpu, feature); |
| 313 | if (val) |
| 314 | break; |
| 315 | |
| 316 | switch(feature) { |
| 317 | case PSCI_0_2_FN_PSCI_VERSION: |
| 318 | case PSCI_0_2_FN_CPU_SUSPEND: |
| 319 | case PSCI_0_2_FN64_CPU_SUSPEND: |
| 320 | case PSCI_0_2_FN_CPU_OFF: |
| 321 | case PSCI_0_2_FN_CPU_ON: |
| 322 | case PSCI_0_2_FN64_CPU_ON: |
| 323 | case PSCI_0_2_FN_AFFINITY_INFO: |
| 324 | case PSCI_0_2_FN64_AFFINITY_INFO: |
| 325 | case PSCI_0_2_FN_MIGRATE_INFO_TYPE: |
| 326 | case PSCI_0_2_FN_SYSTEM_OFF: |
| 327 | case PSCI_0_2_FN_SYSTEM_RESET: |
| 328 | case PSCI_1_0_FN_PSCI_FEATURES: |
| 329 | case ARM_SMCCC_VERSION_FUNC_ID: |
| 330 | val = 0; |
| 331 | break; |
| 332 | default: |
| 333 | val = PSCI_RET_NOT_SUPPORTED; |
| 334 | break; |
| 335 | } |
| 336 | break; |
| 337 | default: |
| 338 | return kvm_psci_0_2_call(vcpu); |
| 339 | } |
| 340 | |
| 341 | smccc_set_retval(vcpu, val, 0, 0, 0); |
| 342 | return ret; |
| 343 | } |
| 344 | |
| 345 | static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu) |
| 346 | { |
| 347 | struct kvm *kvm = vcpu->kvm; |
| 348 | u32 psci_fn = smccc_get_function(vcpu); |
| 349 | unsigned long val; |
| 350 | |
| 351 | switch (psci_fn) { |
| 352 | case KVM_PSCI_FN_CPU_OFF: |
| 353 | kvm_psci_vcpu_off(vcpu); |
| 354 | val = PSCI_RET_SUCCESS; |
| 355 | break; |
| 356 | case KVM_PSCI_FN_CPU_ON: |
| 357 | mutex_lock(&kvm->lock); |
| 358 | val = kvm_psci_vcpu_on(vcpu); |
| 359 | mutex_unlock(&kvm->lock); |
| 360 | break; |
| 361 | default: |
| 362 | val = PSCI_RET_NOT_SUPPORTED; |
| 363 | break; |
| 364 | } |
| 365 | |
| 366 | smccc_set_retval(vcpu, val, 0, 0, 0); |
| 367 | return 1; |
| 368 | } |
| 369 | |
| 370 | /** |
| 371 | * kvm_psci_call - handle PSCI call if r0 value is in range |
| 372 | * @vcpu: Pointer to the VCPU struct |
| 373 | * |
| 374 | * Handle PSCI calls from guests through traps from HVC instructions. |
| 375 | * The calling convention is similar to SMC calls to the secure world |
| 376 | * where the function number is placed in r0. |
| 377 | * |
| 378 | * This function returns: > 0 (success), 0 (success but exit to user |
| 379 | * space), and < 0 (errors) |
| 380 | * |
| 381 | * Errors: |
| 382 | * -EINVAL: Unrecognized PSCI function |
| 383 | */ |
| 384 | int kvm_psci_call(struct kvm_vcpu *vcpu) |
| 385 | { |
| 386 | switch (kvm_psci_version(vcpu, vcpu->kvm)) { |
| 387 | case KVM_ARM_PSCI_1_0: |
| 388 | return kvm_psci_1_0_call(vcpu); |
| 389 | case KVM_ARM_PSCI_0_2: |
| 390 | return kvm_psci_0_2_call(vcpu); |
| 391 | case KVM_ARM_PSCI_0_1: |
| 392 | return kvm_psci_0_1_call(vcpu); |
| 393 | default: |
| 394 | return -EINVAL; |
| 395 | }; |
| 396 | } |
| 397 | |
| 398 | int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu) |
| 399 | { |
| 400 | return 4; /* PSCI version and three workaround registers */ |
| 401 | } |
| 402 | |
| 403 | int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) |
| 404 | { |
| 405 | if (put_user(KVM_REG_ARM_PSCI_VERSION, uindices++)) |
| 406 | return -EFAULT; |
| 407 | |
| 408 | if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1, uindices++)) |
| 409 | return -EFAULT; |
| 410 | |
| 411 | if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2, uindices++)) |
| 412 | return -EFAULT; |
| 413 | |
| 414 | if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3, uindices++)) |
| 415 | return -EFAULT; |
| 416 | |
| 417 | return 0; |
| 418 | } |
| 419 | |
| 420 | #define KVM_REG_FEATURE_LEVEL_WIDTH 4 |
| 421 | #define KVM_REG_FEATURE_LEVEL_MASK (BIT(KVM_REG_FEATURE_LEVEL_WIDTH) - 1) |
| 422 | |
| 423 | /* |
| 424 | * Convert the workaround level into an easy-to-compare number, where higher |
| 425 | * values mean better protection. |
| 426 | */ |
| 427 | static int get_kernel_wa_level(u64 regid) |
| 428 | { |
| 429 | switch (regid) { |
| 430 | case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: |
| 431 | switch (arm64_get_spectre_v2_state()) { |
| 432 | case SPECTRE_VULNERABLE: |
| 433 | return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL; |
| 434 | case SPECTRE_MITIGATED: |
| 435 | return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL; |
| 436 | case SPECTRE_UNAFFECTED: |
| 437 | return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED; |
| 438 | } |
| 439 | return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL; |
| 440 | case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: |
| 441 | switch (arm64_get_spectre_v4_state()) { |
| 442 | case SPECTRE_MITIGATED: |
| 443 | /* |
| 444 | * As for the hypercall discovery, we pretend we |
| 445 | * don't have any FW mitigation if SSBS is there at |
| 446 | * all times. |
| 447 | */ |
| 448 | if (cpus_have_final_cap(ARM64_SSBS)) |
| 449 | return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; |
| 450 | fallthrough; |
| 451 | case SPECTRE_UNAFFECTED: |
| 452 | return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED; |
| 453 | case SPECTRE_VULNERABLE: |
| 454 | return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; |
| 455 | } |
| 456 | break; |
| 457 | case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: |
| 458 | switch (arm64_get_spectre_bhb_state()) { |
| 459 | case SPECTRE_VULNERABLE: |
| 460 | return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL; |
| 461 | case SPECTRE_MITIGATED: |
| 462 | return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_AVAIL; |
| 463 | case SPECTRE_UNAFFECTED: |
| 464 | return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_REQUIRED; |
| 465 | } |
| 466 | return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL; |
| 467 | } |
| 468 | |
| 469 | return -EINVAL; |
| 470 | } |
| 471 | |
| 472 | int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| 473 | { |
| 474 | void __user *uaddr = (void __user *)(long)reg->addr; |
| 475 | u64 val; |
| 476 | |
| 477 | switch (reg->id) { |
| 478 | case KVM_REG_ARM_PSCI_VERSION: |
| 479 | val = kvm_psci_version(vcpu, vcpu->kvm); |
| 480 | break; |
| 481 | case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: |
| 482 | case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: |
| 483 | case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: |
| 484 | val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK; |
| 485 | break; |
| 486 | default: |
| 487 | return -ENOENT; |
| 488 | } |
| 489 | |
| 490 | if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id))) |
| 491 | return -EFAULT; |
| 492 | |
| 493 | return 0; |
| 494 | } |
| 495 | |
| 496 | int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| 497 | { |
| 498 | void __user *uaddr = (void __user *)(long)reg->addr; |
| 499 | u64 val; |
| 500 | int wa_level; |
| 501 | |
| 502 | if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id))) |
| 503 | return -EFAULT; |
| 504 | |
| 505 | switch (reg->id) { |
| 506 | case KVM_REG_ARM_PSCI_VERSION: |
| 507 | { |
| 508 | bool wants_02; |
| 509 | |
| 510 | wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features); |
| 511 | |
| 512 | switch (val) { |
| 513 | case KVM_ARM_PSCI_0_1: |
| 514 | if (wants_02) |
| 515 | return -EINVAL; |
| 516 | vcpu->kvm->arch.psci_version = val; |
| 517 | return 0; |
| 518 | case KVM_ARM_PSCI_0_2: |
| 519 | case KVM_ARM_PSCI_1_0: |
| 520 | if (!wants_02) |
| 521 | return -EINVAL; |
| 522 | vcpu->kvm->arch.psci_version = val; |
| 523 | return 0; |
| 524 | } |
| 525 | break; |
| 526 | } |
| 527 | |
| 528 | case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: |
| 529 | case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: |
| 530 | if (val & ~KVM_REG_FEATURE_LEVEL_MASK) |
| 531 | return -EINVAL; |
| 532 | |
| 533 | if (get_kernel_wa_level(reg->id) < val) |
| 534 | return -EINVAL; |
| 535 | |
| 536 | return 0; |
| 537 | |
| 538 | case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: |
| 539 | if (val & ~(KVM_REG_FEATURE_LEVEL_MASK | |
| 540 | KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED)) |
| 541 | return -EINVAL; |
| 542 | |
| 543 | /* The enabled bit must not be set unless the level is AVAIL. */ |
| 544 | if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) && |
| 545 | (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL) |
| 546 | return -EINVAL; |
| 547 | |
| 548 | /* |
| 549 | * Map all the possible incoming states to the only two we |
| 550 | * really want to deal with. |
| 551 | */ |
| 552 | switch (val & KVM_REG_FEATURE_LEVEL_MASK) { |
| 553 | case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL: |
| 554 | case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN: |
| 555 | wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; |
| 556 | break; |
| 557 | case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL: |
| 558 | case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED: |
| 559 | wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED; |
| 560 | break; |
| 561 | default: |
| 562 | return -EINVAL; |
| 563 | } |
| 564 | |
| 565 | /* |
| 566 | * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the |
| 567 | * other way around. |
| 568 | */ |
| 569 | if (get_kernel_wa_level(reg->id) < wa_level) |
| 570 | return -EINVAL; |
| 571 | |
| 572 | return 0; |
| 573 | default: |
| 574 | return -ENOENT; |
| 575 | } |
| 576 | |
| 577 | return -EINVAL; |
| 578 | } |