Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Stand-alone page-table allocator for hyp stage-1 and guest stage-2. |
| 4 | * No bombay mix was harmed in the writing of this file. |
| 5 | * |
| 6 | * Copyright (C) 2020 Google LLC |
| 7 | * Author: Will Deacon <will@kernel.org> |
| 8 | */ |
| 9 | |
| 10 | #include <linux/bitfield.h> |
| 11 | #include <asm/kvm_pgtable.h> |
| 12 | |
| 13 | #define KVM_PGTABLE_MAX_LEVELS 4U |
| 14 | |
| 15 | #define KVM_PTE_VALID BIT(0) |
| 16 | |
| 17 | #define KVM_PTE_TYPE BIT(1) |
| 18 | #define KVM_PTE_TYPE_BLOCK 0 |
| 19 | #define KVM_PTE_TYPE_PAGE 1 |
| 20 | #define KVM_PTE_TYPE_TABLE 1 |
| 21 | |
| 22 | #define KVM_PTE_ADDR_MASK GENMASK(47, PAGE_SHIFT) |
| 23 | #define KVM_PTE_ADDR_51_48 GENMASK(15, 12) |
| 24 | |
| 25 | #define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2) |
| 26 | |
| 27 | #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2) |
| 28 | #define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6) |
| 29 | #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO 3 |
| 30 | #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW 1 |
| 31 | #define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8) |
| 32 | #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3 |
| 33 | #define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10) |
| 34 | |
| 35 | #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2) |
| 36 | #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6) |
| 37 | #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7) |
| 38 | #define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8) |
| 39 | #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3 |
| 40 | #define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10) |
| 41 | |
| 42 | #define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 51) |
| 43 | |
| 44 | #define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54) |
| 45 | |
| 46 | #define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54) |
| 47 | |
| 48 | struct kvm_pgtable_walk_data { |
| 49 | struct kvm_pgtable *pgt; |
| 50 | struct kvm_pgtable_walker *walker; |
| 51 | |
| 52 | u64 addr; |
| 53 | u64 end; |
| 54 | }; |
| 55 | |
| 56 | static u64 kvm_granule_shift(u32 level) |
| 57 | { |
| 58 | /* Assumes KVM_PGTABLE_MAX_LEVELS is 4 */ |
| 59 | return ARM64_HW_PGTABLE_LEVEL_SHIFT(level); |
| 60 | } |
| 61 | |
| 62 | static u64 kvm_granule_size(u32 level) |
| 63 | { |
| 64 | return BIT(kvm_granule_shift(level)); |
| 65 | } |
| 66 | |
| 67 | static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level) |
| 68 | { |
| 69 | u64 granule = kvm_granule_size(level); |
| 70 | |
| 71 | /* |
| 72 | * Reject invalid block mappings and don't bother with 4TB mappings for |
| 73 | * 52-bit PAs. |
| 74 | */ |
| 75 | if (level == 0 || (PAGE_SIZE != SZ_4K && level == 1)) |
| 76 | return false; |
| 77 | |
| 78 | if (granule > (end - addr)) |
| 79 | return false; |
| 80 | |
| 81 | return IS_ALIGNED(addr, granule) && IS_ALIGNED(phys, granule); |
| 82 | } |
| 83 | |
| 84 | static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level) |
| 85 | { |
| 86 | u64 shift = kvm_granule_shift(level); |
| 87 | u64 mask = BIT(PAGE_SHIFT - 3) - 1; |
| 88 | |
| 89 | return (data->addr >> shift) & mask; |
| 90 | } |
| 91 | |
| 92 | static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr) |
| 93 | { |
| 94 | u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */ |
| 95 | u64 mask = BIT(pgt->ia_bits) - 1; |
| 96 | |
| 97 | return (addr & mask) >> shift; |
| 98 | } |
| 99 | |
| 100 | static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data) |
| 101 | { |
| 102 | return __kvm_pgd_page_idx(data->pgt, data->addr); |
| 103 | } |
| 104 | |
| 105 | static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level) |
| 106 | { |
| 107 | struct kvm_pgtable pgt = { |
| 108 | .ia_bits = ia_bits, |
| 109 | .start_level = start_level, |
| 110 | }; |
| 111 | |
| 112 | return __kvm_pgd_page_idx(&pgt, -1ULL) + 1; |
| 113 | } |
| 114 | |
| 115 | static bool kvm_pte_valid(kvm_pte_t pte) |
| 116 | { |
| 117 | return pte & KVM_PTE_VALID; |
| 118 | } |
| 119 | |
| 120 | static bool kvm_pte_table(kvm_pte_t pte, u32 level) |
| 121 | { |
| 122 | if (level == KVM_PGTABLE_MAX_LEVELS - 1) |
| 123 | return false; |
| 124 | |
| 125 | if (!kvm_pte_valid(pte)) |
| 126 | return false; |
| 127 | |
| 128 | return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE; |
| 129 | } |
| 130 | |
| 131 | static u64 kvm_pte_to_phys(kvm_pte_t pte) |
| 132 | { |
| 133 | u64 pa = pte & KVM_PTE_ADDR_MASK; |
| 134 | |
| 135 | if (PAGE_SHIFT == 16) |
| 136 | pa |= FIELD_GET(KVM_PTE_ADDR_51_48, pte) << 48; |
| 137 | |
| 138 | return pa; |
| 139 | } |
| 140 | |
| 141 | static kvm_pte_t kvm_phys_to_pte(u64 pa) |
| 142 | { |
| 143 | kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK; |
| 144 | |
| 145 | if (PAGE_SHIFT == 16) |
| 146 | pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48); |
| 147 | |
| 148 | return pte; |
| 149 | } |
| 150 | |
| 151 | static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte) |
| 152 | { |
| 153 | return __va(kvm_pte_to_phys(pte)); |
| 154 | } |
| 155 | |
| 156 | static void kvm_set_invalid_pte(kvm_pte_t *ptep) |
| 157 | { |
| 158 | kvm_pte_t pte = *ptep; |
| 159 | WRITE_ONCE(*ptep, pte & ~KVM_PTE_VALID); |
| 160 | } |
| 161 | |
| 162 | static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp) |
| 163 | { |
| 164 | kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(__pa(childp)); |
| 165 | |
| 166 | pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE); |
| 167 | pte |= KVM_PTE_VALID; |
| 168 | |
| 169 | WARN_ON(kvm_pte_valid(old)); |
| 170 | smp_store_release(ptep, pte); |
| 171 | } |
| 172 | |
| 173 | static bool kvm_set_valid_leaf_pte(kvm_pte_t *ptep, u64 pa, kvm_pte_t attr, |
| 174 | u32 level) |
| 175 | { |
| 176 | kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(pa); |
| 177 | u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE : |
| 178 | KVM_PTE_TYPE_BLOCK; |
| 179 | |
| 180 | pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI); |
| 181 | pte |= FIELD_PREP(KVM_PTE_TYPE, type); |
| 182 | pte |= KVM_PTE_VALID; |
| 183 | |
| 184 | /* Tolerate KVM recreating the exact same mapping. */ |
| 185 | if (kvm_pte_valid(old)) |
| 186 | return old == pte; |
| 187 | |
| 188 | smp_store_release(ptep, pte); |
| 189 | return true; |
| 190 | } |
| 191 | |
| 192 | static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr, |
| 193 | u32 level, kvm_pte_t *ptep, |
| 194 | enum kvm_pgtable_walk_flags flag) |
| 195 | { |
| 196 | struct kvm_pgtable_walker *walker = data->walker; |
| 197 | return walker->cb(addr, data->end, level, ptep, flag, walker->arg); |
| 198 | } |
| 199 | |
| 200 | static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, |
| 201 | kvm_pte_t *pgtable, u32 level); |
| 202 | |
| 203 | static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data, |
| 204 | kvm_pte_t *ptep, u32 level) |
| 205 | { |
| 206 | int ret = 0; |
| 207 | u64 addr = data->addr; |
| 208 | kvm_pte_t *childp, pte = *ptep; |
| 209 | bool table = kvm_pte_table(pte, level); |
| 210 | enum kvm_pgtable_walk_flags flags = data->walker->flags; |
| 211 | |
| 212 | if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) { |
| 213 | ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, |
| 214 | KVM_PGTABLE_WALK_TABLE_PRE); |
| 215 | } |
| 216 | |
| 217 | if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) { |
| 218 | ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, |
| 219 | KVM_PGTABLE_WALK_LEAF); |
| 220 | pte = *ptep; |
| 221 | table = kvm_pte_table(pte, level); |
| 222 | } |
| 223 | |
| 224 | if (ret) |
| 225 | goto out; |
| 226 | |
| 227 | if (!table) { |
| 228 | data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level)); |
| 229 | data->addr += kvm_granule_size(level); |
| 230 | goto out; |
| 231 | } |
| 232 | |
| 233 | childp = kvm_pte_follow(pte); |
| 234 | ret = __kvm_pgtable_walk(data, childp, level + 1); |
| 235 | if (ret) |
| 236 | goto out; |
| 237 | |
| 238 | if (flags & KVM_PGTABLE_WALK_TABLE_POST) { |
| 239 | ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, |
| 240 | KVM_PGTABLE_WALK_TABLE_POST); |
| 241 | } |
| 242 | |
| 243 | out: |
| 244 | return ret; |
| 245 | } |
| 246 | |
| 247 | static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, |
| 248 | kvm_pte_t *pgtable, u32 level) |
| 249 | { |
| 250 | u32 idx; |
| 251 | int ret = 0; |
| 252 | |
| 253 | if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS)) |
| 254 | return -EINVAL; |
| 255 | |
| 256 | for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) { |
| 257 | kvm_pte_t *ptep = &pgtable[idx]; |
| 258 | |
| 259 | if (data->addr >= data->end) |
| 260 | break; |
| 261 | |
| 262 | ret = __kvm_pgtable_visit(data, ptep, level); |
| 263 | if (ret) |
| 264 | break; |
| 265 | } |
| 266 | |
| 267 | return ret; |
| 268 | } |
| 269 | |
| 270 | static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data) |
| 271 | { |
| 272 | u32 idx; |
| 273 | int ret = 0; |
| 274 | struct kvm_pgtable *pgt = data->pgt; |
| 275 | u64 limit = BIT(pgt->ia_bits); |
| 276 | |
| 277 | if (data->addr > limit || data->end > limit) |
| 278 | return -ERANGE; |
| 279 | |
| 280 | if (!pgt->pgd) |
| 281 | return -EINVAL; |
| 282 | |
| 283 | for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) { |
| 284 | kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE]; |
| 285 | |
| 286 | ret = __kvm_pgtable_walk(data, ptep, pgt->start_level); |
| 287 | if (ret) |
| 288 | break; |
| 289 | } |
| 290 | |
| 291 | return ret; |
| 292 | } |
| 293 | |
| 294 | int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size, |
| 295 | struct kvm_pgtable_walker *walker) |
| 296 | { |
| 297 | struct kvm_pgtable_walk_data walk_data = { |
| 298 | .pgt = pgt, |
| 299 | .addr = ALIGN_DOWN(addr, PAGE_SIZE), |
| 300 | .end = PAGE_ALIGN(walk_data.addr + size), |
| 301 | .walker = walker, |
| 302 | }; |
| 303 | |
| 304 | return _kvm_pgtable_walk(&walk_data); |
| 305 | } |
| 306 | |
| 307 | struct hyp_map_data { |
| 308 | u64 phys; |
| 309 | kvm_pte_t attr; |
| 310 | }; |
| 311 | |
| 312 | static int hyp_map_set_prot_attr(enum kvm_pgtable_prot prot, |
| 313 | struct hyp_map_data *data) |
| 314 | { |
| 315 | bool device = prot & KVM_PGTABLE_PROT_DEVICE; |
| 316 | u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL; |
| 317 | kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype); |
| 318 | u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS; |
| 319 | u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW : |
| 320 | KVM_PTE_LEAF_ATTR_LO_S1_AP_RO; |
| 321 | |
| 322 | if (!(prot & KVM_PGTABLE_PROT_R)) |
| 323 | return -EINVAL; |
| 324 | |
| 325 | if (prot & KVM_PGTABLE_PROT_X) { |
| 326 | if (prot & KVM_PGTABLE_PROT_W) |
| 327 | return -EINVAL; |
| 328 | |
| 329 | if (device) |
| 330 | return -EINVAL; |
| 331 | } else { |
| 332 | attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN; |
| 333 | } |
| 334 | |
| 335 | attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap); |
| 336 | attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh); |
| 337 | attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF; |
| 338 | data->attr = attr; |
| 339 | return 0; |
| 340 | } |
| 341 | |
| 342 | static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level, |
| 343 | kvm_pte_t *ptep, struct hyp_map_data *data) |
| 344 | { |
| 345 | u64 granule = kvm_granule_size(level), phys = data->phys; |
| 346 | |
| 347 | if (!kvm_block_mapping_supported(addr, end, phys, level)) |
| 348 | return false; |
| 349 | |
| 350 | WARN_ON(!kvm_set_valid_leaf_pte(ptep, phys, data->attr, level)); |
| 351 | data->phys += granule; |
| 352 | return true; |
| 353 | } |
| 354 | |
| 355 | static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| 356 | enum kvm_pgtable_walk_flags flag, void * const arg) |
| 357 | { |
| 358 | kvm_pte_t *childp; |
| 359 | |
| 360 | if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg)) |
| 361 | return 0; |
| 362 | |
| 363 | if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1)) |
| 364 | return -EINVAL; |
| 365 | |
| 366 | childp = (kvm_pte_t *)get_zeroed_page(GFP_KERNEL); |
| 367 | if (!childp) |
| 368 | return -ENOMEM; |
| 369 | |
| 370 | kvm_set_table_pte(ptep, childp); |
| 371 | return 0; |
| 372 | } |
| 373 | |
| 374 | int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys, |
| 375 | enum kvm_pgtable_prot prot) |
| 376 | { |
| 377 | int ret; |
| 378 | struct hyp_map_data map_data = { |
| 379 | .phys = ALIGN_DOWN(phys, PAGE_SIZE), |
| 380 | }; |
| 381 | struct kvm_pgtable_walker walker = { |
| 382 | .cb = hyp_map_walker, |
| 383 | .flags = KVM_PGTABLE_WALK_LEAF, |
| 384 | .arg = &map_data, |
| 385 | }; |
| 386 | |
| 387 | ret = hyp_map_set_prot_attr(prot, &map_data); |
| 388 | if (ret) |
| 389 | return ret; |
| 390 | |
| 391 | ret = kvm_pgtable_walk(pgt, addr, size, &walker); |
| 392 | dsb(ishst); |
| 393 | isb(); |
| 394 | return ret; |
| 395 | } |
| 396 | |
| 397 | int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits) |
| 398 | { |
| 399 | u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits); |
| 400 | |
| 401 | pgt->pgd = (kvm_pte_t *)get_zeroed_page(GFP_KERNEL); |
| 402 | if (!pgt->pgd) |
| 403 | return -ENOMEM; |
| 404 | |
| 405 | pgt->ia_bits = va_bits; |
| 406 | pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels; |
| 407 | pgt->mmu = NULL; |
| 408 | return 0; |
| 409 | } |
| 410 | |
| 411 | static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| 412 | enum kvm_pgtable_walk_flags flag, void * const arg) |
| 413 | { |
| 414 | free_page((unsigned long)kvm_pte_follow(*ptep)); |
| 415 | return 0; |
| 416 | } |
| 417 | |
| 418 | void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt) |
| 419 | { |
| 420 | struct kvm_pgtable_walker walker = { |
| 421 | .cb = hyp_free_walker, |
| 422 | .flags = KVM_PGTABLE_WALK_TABLE_POST, |
| 423 | }; |
| 424 | |
| 425 | WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); |
| 426 | free_page((unsigned long)pgt->pgd); |
| 427 | pgt->pgd = NULL; |
| 428 | } |
| 429 | |
| 430 | struct stage2_map_data { |
| 431 | u64 phys; |
| 432 | kvm_pte_t attr; |
| 433 | |
| 434 | kvm_pte_t *anchor; |
| 435 | |
| 436 | struct kvm_s2_mmu *mmu; |
| 437 | struct kvm_mmu_memory_cache *memcache; |
| 438 | }; |
| 439 | |
| 440 | static int stage2_map_set_prot_attr(enum kvm_pgtable_prot prot, |
| 441 | struct stage2_map_data *data) |
| 442 | { |
| 443 | bool device = prot & KVM_PGTABLE_PROT_DEVICE; |
| 444 | kvm_pte_t attr = device ? PAGE_S2_MEMATTR(DEVICE_nGnRE) : |
| 445 | PAGE_S2_MEMATTR(NORMAL); |
| 446 | u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS; |
| 447 | |
| 448 | if (!(prot & KVM_PGTABLE_PROT_X)) |
| 449 | attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; |
| 450 | else if (device) |
| 451 | return -EINVAL; |
| 452 | |
| 453 | if (prot & KVM_PGTABLE_PROT_R) |
| 454 | attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; |
| 455 | |
| 456 | if (prot & KVM_PGTABLE_PROT_W) |
| 457 | attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; |
| 458 | |
| 459 | attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh); |
| 460 | attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF; |
| 461 | data->attr = attr; |
| 462 | return 0; |
| 463 | } |
| 464 | |
| 465 | static bool stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level, |
| 466 | kvm_pte_t *ptep, |
| 467 | struct stage2_map_data *data) |
| 468 | { |
| 469 | u64 granule = kvm_granule_size(level), phys = data->phys; |
| 470 | |
| 471 | if (!kvm_block_mapping_supported(addr, end, phys, level)) |
| 472 | return false; |
| 473 | |
| 474 | /* |
| 475 | * If the PTE was already valid, drop the refcount on the table |
| 476 | * early, as it will be bumped-up again in stage2_map_walk_leaf(). |
| 477 | * This ensures that the refcount stays constant across a valid to |
| 478 | * valid PTE update. |
| 479 | */ |
| 480 | if (kvm_pte_valid(*ptep)) |
| 481 | put_page(virt_to_page(ptep)); |
| 482 | |
| 483 | if (kvm_set_valid_leaf_pte(ptep, phys, data->attr, level)) |
| 484 | goto out; |
| 485 | |
| 486 | /* There's an existing valid leaf entry, so perform break-before-make */ |
| 487 | kvm_set_invalid_pte(ptep); |
| 488 | kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, data->mmu, addr, level); |
| 489 | kvm_set_valid_leaf_pte(ptep, phys, data->attr, level); |
| 490 | out: |
| 491 | data->phys += granule; |
| 492 | return true; |
| 493 | } |
| 494 | |
| 495 | static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level, |
| 496 | kvm_pte_t *ptep, |
| 497 | struct stage2_map_data *data) |
| 498 | { |
| 499 | if (data->anchor) |
| 500 | return 0; |
| 501 | |
| 502 | if (!kvm_block_mapping_supported(addr, end, data->phys, level)) |
| 503 | return 0; |
| 504 | |
| 505 | kvm_set_invalid_pte(ptep); |
| 506 | |
| 507 | /* |
| 508 | * Invalidate the whole stage-2, as we may have numerous leaf |
| 509 | * entries below us which would otherwise need invalidating |
| 510 | * individually. |
| 511 | */ |
| 512 | kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu); |
| 513 | data->anchor = ptep; |
| 514 | return 0; |
| 515 | } |
| 516 | |
| 517 | static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| 518 | struct stage2_map_data *data) |
| 519 | { |
| 520 | kvm_pte_t *childp, pte = *ptep; |
| 521 | struct page *page = virt_to_page(ptep); |
| 522 | |
| 523 | if (data->anchor) { |
| 524 | if (kvm_pte_valid(pte)) |
| 525 | put_page(page); |
| 526 | |
| 527 | return 0; |
| 528 | } |
| 529 | |
| 530 | if (stage2_map_walker_try_leaf(addr, end, level, ptep, data)) |
| 531 | goto out_get_page; |
| 532 | |
| 533 | if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1)) |
| 534 | return -EINVAL; |
| 535 | |
| 536 | if (!data->memcache) |
| 537 | return -ENOMEM; |
| 538 | |
| 539 | childp = kvm_mmu_memory_cache_alloc(data->memcache); |
| 540 | if (!childp) |
| 541 | return -ENOMEM; |
| 542 | |
| 543 | /* |
| 544 | * If we've run into an existing block mapping then replace it with |
| 545 | * a table. Accesses beyond 'end' that fall within the new table |
| 546 | * will be mapped lazily. |
| 547 | */ |
| 548 | if (kvm_pte_valid(pte)) { |
| 549 | kvm_set_invalid_pte(ptep); |
| 550 | kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, data->mmu, addr, level); |
| 551 | put_page(page); |
| 552 | } |
| 553 | |
| 554 | kvm_set_table_pte(ptep, childp); |
| 555 | |
| 556 | out_get_page: |
| 557 | get_page(page); |
| 558 | return 0; |
| 559 | } |
| 560 | |
| 561 | static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level, |
| 562 | kvm_pte_t *ptep, |
| 563 | struct stage2_map_data *data) |
| 564 | { |
| 565 | int ret = 0; |
| 566 | |
| 567 | if (!data->anchor) |
| 568 | return 0; |
| 569 | |
| 570 | free_page((unsigned long)kvm_pte_follow(*ptep)); |
| 571 | put_page(virt_to_page(ptep)); |
| 572 | |
| 573 | if (data->anchor == ptep) { |
| 574 | data->anchor = NULL; |
| 575 | ret = stage2_map_walk_leaf(addr, end, level, ptep, data); |
| 576 | } |
| 577 | |
| 578 | return ret; |
| 579 | } |
| 580 | |
| 581 | /* |
| 582 | * This is a little fiddly, as we use all three of the walk flags. The idea |
| 583 | * is that the TABLE_PRE callback runs for table entries on the way down, |
| 584 | * looking for table entries which we could conceivably replace with a |
| 585 | * block entry for this mapping. If it finds one, then it sets the 'anchor' |
| 586 | * field in 'struct stage2_map_data' to point at the table entry, before |
| 587 | * clearing the entry to zero and descending into the now detached table. |
| 588 | * |
| 589 | * The behaviour of the LEAF callback then depends on whether or not the |
| 590 | * anchor has been set. If not, then we're not using a block mapping higher |
| 591 | * up the table and we perform the mapping at the existing leaves instead. |
| 592 | * If, on the other hand, the anchor _is_ set, then we drop references to |
| 593 | * all valid leaves so that the pages beneath the anchor can be freed. |
| 594 | * |
| 595 | * Finally, the TABLE_POST callback does nothing if the anchor has not |
| 596 | * been set, but otherwise frees the page-table pages while walking back up |
| 597 | * the page-table, installing the block entry when it revisits the anchor |
| 598 | * pointer and clearing the anchor to NULL. |
| 599 | */ |
| 600 | static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| 601 | enum kvm_pgtable_walk_flags flag, void * const arg) |
| 602 | { |
| 603 | struct stage2_map_data *data = arg; |
| 604 | |
| 605 | switch (flag) { |
| 606 | case KVM_PGTABLE_WALK_TABLE_PRE: |
| 607 | return stage2_map_walk_table_pre(addr, end, level, ptep, data); |
| 608 | case KVM_PGTABLE_WALK_LEAF: |
| 609 | return stage2_map_walk_leaf(addr, end, level, ptep, data); |
| 610 | case KVM_PGTABLE_WALK_TABLE_POST: |
| 611 | return stage2_map_walk_table_post(addr, end, level, ptep, data); |
| 612 | } |
| 613 | |
| 614 | return -EINVAL; |
| 615 | } |
| 616 | |
| 617 | int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size, |
| 618 | u64 phys, enum kvm_pgtable_prot prot, |
| 619 | struct kvm_mmu_memory_cache *mc) |
| 620 | { |
| 621 | int ret; |
| 622 | struct stage2_map_data map_data = { |
| 623 | .phys = ALIGN_DOWN(phys, PAGE_SIZE), |
| 624 | .mmu = pgt->mmu, |
| 625 | .memcache = mc, |
| 626 | }; |
| 627 | struct kvm_pgtable_walker walker = { |
| 628 | .cb = stage2_map_walker, |
| 629 | .flags = KVM_PGTABLE_WALK_TABLE_PRE | |
| 630 | KVM_PGTABLE_WALK_LEAF | |
| 631 | KVM_PGTABLE_WALK_TABLE_POST, |
| 632 | .arg = &map_data, |
| 633 | }; |
| 634 | |
| 635 | ret = stage2_map_set_prot_attr(prot, &map_data); |
| 636 | if (ret) |
| 637 | return ret; |
| 638 | |
| 639 | ret = kvm_pgtable_walk(pgt, addr, size, &walker); |
| 640 | dsb(ishst); |
| 641 | return ret; |
| 642 | } |
| 643 | |
| 644 | static void stage2_flush_dcache(void *addr, u64 size) |
| 645 | { |
| 646 | if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) |
| 647 | return; |
| 648 | |
| 649 | __flush_dcache_area(addr, size); |
| 650 | } |
| 651 | |
| 652 | static bool stage2_pte_cacheable(kvm_pte_t pte) |
| 653 | { |
| 654 | u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR; |
| 655 | return memattr == PAGE_S2_MEMATTR(NORMAL); |
| 656 | } |
| 657 | |
| 658 | static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| 659 | enum kvm_pgtable_walk_flags flag, |
| 660 | void * const arg) |
| 661 | { |
| 662 | struct kvm_s2_mmu *mmu = arg; |
| 663 | kvm_pte_t pte = *ptep, *childp = NULL; |
| 664 | bool need_flush = false; |
| 665 | |
| 666 | if (!kvm_pte_valid(pte)) |
| 667 | return 0; |
| 668 | |
| 669 | if (kvm_pte_table(pte, level)) { |
| 670 | childp = kvm_pte_follow(pte); |
| 671 | |
| 672 | if (page_count(virt_to_page(childp)) != 1) |
| 673 | return 0; |
| 674 | } else if (stage2_pte_cacheable(pte)) { |
| 675 | need_flush = true; |
| 676 | } |
| 677 | |
| 678 | /* |
| 679 | * This is similar to the map() path in that we unmap the entire |
| 680 | * block entry and rely on the remaining portions being faulted |
| 681 | * back lazily. |
| 682 | */ |
| 683 | kvm_set_invalid_pte(ptep); |
| 684 | kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level); |
| 685 | put_page(virt_to_page(ptep)); |
| 686 | |
| 687 | if (need_flush) { |
| 688 | stage2_flush_dcache(kvm_pte_follow(pte), |
| 689 | kvm_granule_size(level)); |
| 690 | } |
| 691 | |
| 692 | if (childp) |
| 693 | free_page((unsigned long)childp); |
| 694 | |
| 695 | return 0; |
| 696 | } |
| 697 | |
| 698 | int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) |
| 699 | { |
| 700 | struct kvm_pgtable_walker walker = { |
| 701 | .cb = stage2_unmap_walker, |
| 702 | .arg = pgt->mmu, |
| 703 | .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, |
| 704 | }; |
| 705 | |
| 706 | return kvm_pgtable_walk(pgt, addr, size, &walker); |
| 707 | } |
| 708 | |
| 709 | struct stage2_attr_data { |
| 710 | kvm_pte_t attr_set; |
| 711 | kvm_pte_t attr_clr; |
| 712 | kvm_pte_t pte; |
| 713 | u32 level; |
| 714 | }; |
| 715 | |
| 716 | static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| 717 | enum kvm_pgtable_walk_flags flag, |
| 718 | void * const arg) |
| 719 | { |
| 720 | kvm_pte_t pte = *ptep; |
| 721 | struct stage2_attr_data *data = arg; |
| 722 | |
| 723 | if (!kvm_pte_valid(pte)) |
| 724 | return 0; |
| 725 | |
| 726 | data->level = level; |
| 727 | data->pte = pte; |
| 728 | pte &= ~data->attr_clr; |
| 729 | pte |= data->attr_set; |
| 730 | |
| 731 | /* |
| 732 | * We may race with the CPU trying to set the access flag here, |
| 733 | * but worst-case the access flag update gets lost and will be |
| 734 | * set on the next access instead. |
| 735 | */ |
| 736 | if (data->pte != pte) |
| 737 | WRITE_ONCE(*ptep, pte); |
| 738 | |
| 739 | return 0; |
| 740 | } |
| 741 | |
| 742 | static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr, |
| 743 | u64 size, kvm_pte_t attr_set, |
| 744 | kvm_pte_t attr_clr, kvm_pte_t *orig_pte, |
| 745 | u32 *level) |
| 746 | { |
| 747 | int ret; |
| 748 | kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI; |
| 749 | struct stage2_attr_data data = { |
| 750 | .attr_set = attr_set & attr_mask, |
| 751 | .attr_clr = attr_clr & attr_mask, |
| 752 | }; |
| 753 | struct kvm_pgtable_walker walker = { |
| 754 | .cb = stage2_attr_walker, |
| 755 | .arg = &data, |
| 756 | .flags = KVM_PGTABLE_WALK_LEAF, |
| 757 | }; |
| 758 | |
| 759 | ret = kvm_pgtable_walk(pgt, addr, size, &walker); |
| 760 | if (ret) |
| 761 | return ret; |
| 762 | |
| 763 | if (orig_pte) |
| 764 | *orig_pte = data.pte; |
| 765 | |
| 766 | if (level) |
| 767 | *level = data.level; |
| 768 | return 0; |
| 769 | } |
| 770 | |
| 771 | int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size) |
| 772 | { |
| 773 | return stage2_update_leaf_attrs(pgt, addr, size, 0, |
| 774 | KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W, |
| 775 | NULL, NULL); |
| 776 | } |
| 777 | |
| 778 | kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr) |
| 779 | { |
| 780 | kvm_pte_t pte = 0; |
| 781 | stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0, |
| 782 | &pte, NULL); |
| 783 | dsb(ishst); |
| 784 | return pte; |
| 785 | } |
| 786 | |
| 787 | kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr) |
| 788 | { |
| 789 | kvm_pte_t pte = 0; |
| 790 | stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF, |
| 791 | &pte, NULL); |
| 792 | /* |
| 793 | * "But where's the TLBI?!", you scream. |
| 794 | * "Over in the core code", I sigh. |
| 795 | * |
| 796 | * See the '->clear_flush_young()' callback on the KVM mmu notifier. |
| 797 | */ |
| 798 | return pte; |
| 799 | } |
| 800 | |
| 801 | bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr) |
| 802 | { |
| 803 | kvm_pte_t pte = 0; |
| 804 | stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL); |
| 805 | return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF; |
| 806 | } |
| 807 | |
| 808 | int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr, |
| 809 | enum kvm_pgtable_prot prot) |
| 810 | { |
| 811 | int ret; |
| 812 | u32 level; |
| 813 | kvm_pte_t set = 0, clr = 0; |
| 814 | |
| 815 | if (prot & KVM_PGTABLE_PROT_R) |
| 816 | set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; |
| 817 | |
| 818 | if (prot & KVM_PGTABLE_PROT_W) |
| 819 | set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; |
| 820 | |
| 821 | if (prot & KVM_PGTABLE_PROT_X) |
| 822 | clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; |
| 823 | |
| 824 | ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level); |
| 825 | if (!ret) |
| 826 | kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level); |
| 827 | return ret; |
| 828 | } |
| 829 | |
| 830 | static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| 831 | enum kvm_pgtable_walk_flags flag, |
| 832 | void * const arg) |
| 833 | { |
| 834 | kvm_pte_t pte = *ptep; |
| 835 | |
| 836 | if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pte)) |
| 837 | return 0; |
| 838 | |
| 839 | stage2_flush_dcache(kvm_pte_follow(pte), kvm_granule_size(level)); |
| 840 | return 0; |
| 841 | } |
| 842 | |
| 843 | int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size) |
| 844 | { |
| 845 | struct kvm_pgtable_walker walker = { |
| 846 | .cb = stage2_flush_walker, |
| 847 | .flags = KVM_PGTABLE_WALK_LEAF, |
| 848 | }; |
| 849 | |
| 850 | if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) |
| 851 | return 0; |
| 852 | |
| 853 | return kvm_pgtable_walk(pgt, addr, size, &walker); |
| 854 | } |
| 855 | |
| 856 | int kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm *kvm) |
| 857 | { |
| 858 | size_t pgd_sz; |
| 859 | u64 vtcr = kvm->arch.vtcr; |
| 860 | u32 ia_bits = VTCR_EL2_IPA(vtcr); |
| 861 | u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); |
| 862 | u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; |
| 863 | |
| 864 | pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; |
| 865 | pgt->pgd = alloc_pages_exact(pgd_sz, GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| 866 | if (!pgt->pgd) |
| 867 | return -ENOMEM; |
| 868 | |
| 869 | pgt->ia_bits = ia_bits; |
| 870 | pgt->start_level = start_level; |
| 871 | pgt->mmu = &kvm->arch.mmu; |
| 872 | |
| 873 | /* Ensure zeroed PGD pages are visible to the hardware walker */ |
| 874 | dsb(ishst); |
| 875 | return 0; |
| 876 | } |
| 877 | |
| 878 | static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| 879 | enum kvm_pgtable_walk_flags flag, |
| 880 | void * const arg) |
| 881 | { |
| 882 | kvm_pte_t pte = *ptep; |
| 883 | |
| 884 | if (!kvm_pte_valid(pte)) |
| 885 | return 0; |
| 886 | |
| 887 | put_page(virt_to_page(ptep)); |
| 888 | |
| 889 | if (kvm_pte_table(pte, level)) |
| 890 | free_page((unsigned long)kvm_pte_follow(pte)); |
| 891 | |
| 892 | return 0; |
| 893 | } |
| 894 | |
| 895 | void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt) |
| 896 | { |
| 897 | size_t pgd_sz; |
| 898 | struct kvm_pgtable_walker walker = { |
| 899 | .cb = stage2_free_walker, |
| 900 | .flags = KVM_PGTABLE_WALK_LEAF | |
| 901 | KVM_PGTABLE_WALK_TABLE_POST, |
| 902 | }; |
| 903 | |
| 904 | WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); |
| 905 | pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE; |
| 906 | free_pages_exact(pgt->pgd, pgd_sz); |
| 907 | pgt->pgd = NULL; |
| 908 | } |