blob: 16a2b62f5f74cfd0ecfad89943a4997b218e8676 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003 * Kernel internal timers
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
8 *
9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
10 * "A Kernel Model for Precision Timekeeping" by Dave Mills
11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12 * serialize accesses to xtime/lost_ticks).
13 * Copyright (C) 1998 Andrea Arcangeli
14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19 */
20
21#include <linux/kernel_stat.h>
22#include <linux/export.h>
23#include <linux/interrupt.h>
24#include <linux/percpu.h>
25#include <linux/init.h>
26#include <linux/mm.h>
27#include <linux/swap.h>
28#include <linux/pid_namespace.h>
29#include <linux/notifier.h>
30#include <linux/thread_info.h>
31#include <linux/time.h>
32#include <linux/jiffies.h>
33#include <linux/posix-timers.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
36#include <linux/delay.h>
37#include <linux/tick.h>
38#include <linux/kallsyms.h>
39#include <linux/irq_work.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/sysctl.h>
42#include <linux/sched/nohz.h>
43#include <linux/sched/debug.h>
44#include <linux/slab.h>
45#include <linux/compat.h>
Olivier Deprez0e641232021-09-23 10:07:05 +020046#include <linux/random.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000047
48#include <linux/uaccess.h>
49#include <asm/unistd.h>
50#include <asm/div64.h>
51#include <asm/timex.h>
52#include <asm/io.h>
53
54#include "tick-internal.h"
55
56#define CREATE_TRACE_POINTS
57#include <trace/events/timer.h>
58
59__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
60
61EXPORT_SYMBOL(jiffies_64);
62
63/*
64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66 * level has a different granularity.
67 *
68 * The level granularity is: LVL_CLK_DIV ^ lvl
69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
70 *
71 * The array level of a newly armed timer depends on the relative expiry
72 * time. The farther the expiry time is away the higher the array level and
73 * therefor the granularity becomes.
74 *
75 * Contrary to the original timer wheel implementation, which aims for 'exact'
76 * expiry of the timers, this implementation removes the need for recascading
77 * the timers into the lower array levels. The previous 'classic' timer wheel
78 * implementation of the kernel already violated the 'exact' expiry by adding
79 * slack to the expiry time to provide batched expiration. The granularity
80 * levels provide implicit batching.
81 *
82 * This is an optimization of the original timer wheel implementation for the
83 * majority of the timer wheel use cases: timeouts. The vast majority of
84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85 * the timeout expires it indicates that normal operation is disturbed, so it
86 * does not matter much whether the timeout comes with a slight delay.
87 *
88 * The only exception to this are networking timers with a small expiry
89 * time. They rely on the granularity. Those fit into the first wheel level,
90 * which has HZ granularity.
91 *
92 * We don't have cascading anymore. timers with a expiry time above the
93 * capacity of the last wheel level are force expired at the maximum timeout
94 * value of the last wheel level. From data sampling we know that the maximum
95 * value observed is 5 days (network connection tracking), so this should not
96 * be an issue.
97 *
98 * The currently chosen array constants values are a good compromise between
99 * array size and granularity.
100 *
101 * This results in the following granularity and range levels:
102 *
103 * HZ 1000 steps
104 * Level Offset Granularity Range
105 * 0 0 1 ms 0 ms - 63 ms
106 * 1 64 8 ms 64 ms - 511 ms
107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
114 *
115 * HZ 300
116 * Level Offset Granularity Range
117 * 0 0 3 ms 0 ms - 210 ms
118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126 *
127 * HZ 250
128 * Level Offset Granularity Range
129 * 0 0 4 ms 0 ms - 255 ms
130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138 *
139 * HZ 100
140 * Level Offset Granularity Range
141 * 0 0 10 ms 0 ms - 630 ms
142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
149 */
150
151/* Clock divisor for the next level */
152#define LVL_CLK_SHIFT 3
153#define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
154#define LVL_CLK_MASK (LVL_CLK_DIV - 1)
155#define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
156#define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
157
158/*
159 * The time start value for each level to select the bucket at enqueue
160 * time.
161 */
162#define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
163
164/* Size of each clock level */
165#define LVL_BITS 6
166#define LVL_SIZE (1UL << LVL_BITS)
167#define LVL_MASK (LVL_SIZE - 1)
168#define LVL_OFFS(n) ((n) * LVL_SIZE)
169
170/* Level depth */
171#if HZ > 100
172# define LVL_DEPTH 9
173# else
174# define LVL_DEPTH 8
175#endif
176
177/* The cutoff (max. capacity of the wheel) */
178#define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
179#define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
180
181/*
182 * The resulting wheel size. If NOHZ is configured we allocate two
183 * wheels so we have a separate storage for the deferrable timers.
184 */
185#define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
186
187#ifdef CONFIG_NO_HZ_COMMON
188# define NR_BASES 2
189# define BASE_STD 0
190# define BASE_DEF 1
191#else
192# define NR_BASES 1
193# define BASE_STD 0
194# define BASE_DEF 0
195#endif
196
197struct timer_base {
198 raw_spinlock_t lock;
199 struct timer_list *running_timer;
David Brazdil0f672f62019-12-10 10:32:29 +0000200#ifdef CONFIG_PREEMPT_RT
201 spinlock_t expiry_lock;
202 atomic_t timer_waiters;
203#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000204 unsigned long clk;
205 unsigned long next_expiry;
206 unsigned int cpu;
207 bool is_idle;
208 bool must_forward_clk;
209 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
210 struct hlist_head vectors[WHEEL_SIZE];
211} ____cacheline_aligned;
212
213static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
214
215#ifdef CONFIG_NO_HZ_COMMON
216
217static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
218static DEFINE_MUTEX(timer_keys_mutex);
219
220static void timer_update_keys(struct work_struct *work);
221static DECLARE_WORK(timer_update_work, timer_update_keys);
222
223#ifdef CONFIG_SMP
224unsigned int sysctl_timer_migration = 1;
225
226DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
227
228static void timers_update_migration(void)
229{
230 if (sysctl_timer_migration && tick_nohz_active)
231 static_branch_enable(&timers_migration_enabled);
232 else
233 static_branch_disable(&timers_migration_enabled);
234}
235#else
236static inline void timers_update_migration(void) { }
237#endif /* !CONFIG_SMP */
238
239static void timer_update_keys(struct work_struct *work)
240{
241 mutex_lock(&timer_keys_mutex);
242 timers_update_migration();
243 static_branch_enable(&timers_nohz_active);
244 mutex_unlock(&timer_keys_mutex);
245}
246
247void timers_update_nohz(void)
248{
249 schedule_work(&timer_update_work);
250}
251
252int timer_migration_handler(struct ctl_table *table, int write,
253 void __user *buffer, size_t *lenp,
254 loff_t *ppos)
255{
256 int ret;
257
258 mutex_lock(&timer_keys_mutex);
259 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
260 if (!ret && write)
261 timers_update_migration();
262 mutex_unlock(&timer_keys_mutex);
263 return ret;
264}
265
266static inline bool is_timers_nohz_active(void)
267{
268 return static_branch_unlikely(&timers_nohz_active);
269}
270#else
271static inline bool is_timers_nohz_active(void) { return false; }
272#endif /* NO_HZ_COMMON */
273
274static unsigned long round_jiffies_common(unsigned long j, int cpu,
275 bool force_up)
276{
277 int rem;
278 unsigned long original = j;
279
280 /*
281 * We don't want all cpus firing their timers at once hitting the
282 * same lock or cachelines, so we skew each extra cpu with an extra
283 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
284 * already did this.
285 * The skew is done by adding 3*cpunr, then round, then subtract this
286 * extra offset again.
287 */
288 j += cpu * 3;
289
290 rem = j % HZ;
291
292 /*
293 * If the target jiffie is just after a whole second (which can happen
294 * due to delays of the timer irq, long irq off times etc etc) then
295 * we should round down to the whole second, not up. Use 1/4th second
296 * as cutoff for this rounding as an extreme upper bound for this.
297 * But never round down if @force_up is set.
298 */
299 if (rem < HZ/4 && !force_up) /* round down */
300 j = j - rem;
301 else /* round up */
302 j = j - rem + HZ;
303
304 /* now that we have rounded, subtract the extra skew again */
305 j -= cpu * 3;
306
307 /*
308 * Make sure j is still in the future. Otherwise return the
309 * unmodified value.
310 */
311 return time_is_after_jiffies(j) ? j : original;
312}
313
314/**
315 * __round_jiffies - function to round jiffies to a full second
316 * @j: the time in (absolute) jiffies that should be rounded
317 * @cpu: the processor number on which the timeout will happen
318 *
319 * __round_jiffies() rounds an absolute time in the future (in jiffies)
320 * up or down to (approximately) full seconds. This is useful for timers
321 * for which the exact time they fire does not matter too much, as long as
322 * they fire approximately every X seconds.
323 *
324 * By rounding these timers to whole seconds, all such timers will fire
325 * at the same time, rather than at various times spread out. The goal
326 * of this is to have the CPU wake up less, which saves power.
327 *
328 * The exact rounding is skewed for each processor to avoid all
329 * processors firing at the exact same time, which could lead
330 * to lock contention or spurious cache line bouncing.
331 *
332 * The return value is the rounded version of the @j parameter.
333 */
334unsigned long __round_jiffies(unsigned long j, int cpu)
335{
336 return round_jiffies_common(j, cpu, false);
337}
338EXPORT_SYMBOL_GPL(__round_jiffies);
339
340/**
341 * __round_jiffies_relative - function to round jiffies to a full second
342 * @j: the time in (relative) jiffies that should be rounded
343 * @cpu: the processor number on which the timeout will happen
344 *
345 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
346 * up or down to (approximately) full seconds. This is useful for timers
347 * for which the exact time they fire does not matter too much, as long as
348 * they fire approximately every X seconds.
349 *
350 * By rounding these timers to whole seconds, all such timers will fire
351 * at the same time, rather than at various times spread out. The goal
352 * of this is to have the CPU wake up less, which saves power.
353 *
354 * The exact rounding is skewed for each processor to avoid all
355 * processors firing at the exact same time, which could lead
356 * to lock contention or spurious cache line bouncing.
357 *
358 * The return value is the rounded version of the @j parameter.
359 */
360unsigned long __round_jiffies_relative(unsigned long j, int cpu)
361{
362 unsigned long j0 = jiffies;
363
364 /* Use j0 because jiffies might change while we run */
365 return round_jiffies_common(j + j0, cpu, false) - j0;
366}
367EXPORT_SYMBOL_GPL(__round_jiffies_relative);
368
369/**
370 * round_jiffies - function to round jiffies to a full second
371 * @j: the time in (absolute) jiffies that should be rounded
372 *
373 * round_jiffies() rounds an absolute time in the future (in jiffies)
374 * up or down to (approximately) full seconds. This is useful for timers
375 * for which the exact time they fire does not matter too much, as long as
376 * they fire approximately every X seconds.
377 *
378 * By rounding these timers to whole seconds, all such timers will fire
379 * at the same time, rather than at various times spread out. The goal
380 * of this is to have the CPU wake up less, which saves power.
381 *
382 * The return value is the rounded version of the @j parameter.
383 */
384unsigned long round_jiffies(unsigned long j)
385{
386 return round_jiffies_common(j, raw_smp_processor_id(), false);
387}
388EXPORT_SYMBOL_GPL(round_jiffies);
389
390/**
391 * round_jiffies_relative - function to round jiffies to a full second
392 * @j: the time in (relative) jiffies that should be rounded
393 *
394 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
395 * up or down to (approximately) full seconds. This is useful for timers
396 * for which the exact time they fire does not matter too much, as long as
397 * they fire approximately every X seconds.
398 *
399 * By rounding these timers to whole seconds, all such timers will fire
400 * at the same time, rather than at various times spread out. The goal
401 * of this is to have the CPU wake up less, which saves power.
402 *
403 * The return value is the rounded version of the @j parameter.
404 */
405unsigned long round_jiffies_relative(unsigned long j)
406{
407 return __round_jiffies_relative(j, raw_smp_processor_id());
408}
409EXPORT_SYMBOL_GPL(round_jiffies_relative);
410
411/**
412 * __round_jiffies_up - function to round jiffies up to a full second
413 * @j: the time in (absolute) jiffies that should be rounded
414 * @cpu: the processor number on which the timeout will happen
415 *
416 * This is the same as __round_jiffies() except that it will never
417 * round down. This is useful for timeouts for which the exact time
418 * of firing does not matter too much, as long as they don't fire too
419 * early.
420 */
421unsigned long __round_jiffies_up(unsigned long j, int cpu)
422{
423 return round_jiffies_common(j, cpu, true);
424}
425EXPORT_SYMBOL_GPL(__round_jiffies_up);
426
427/**
428 * __round_jiffies_up_relative - function to round jiffies up to a full second
429 * @j: the time in (relative) jiffies that should be rounded
430 * @cpu: the processor number on which the timeout will happen
431 *
432 * This is the same as __round_jiffies_relative() except that it will never
433 * round down. This is useful for timeouts for which the exact time
434 * of firing does not matter too much, as long as they don't fire too
435 * early.
436 */
437unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
438{
439 unsigned long j0 = jiffies;
440
441 /* Use j0 because jiffies might change while we run */
442 return round_jiffies_common(j + j0, cpu, true) - j0;
443}
444EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
445
446/**
447 * round_jiffies_up - function to round jiffies up to a full second
448 * @j: the time in (absolute) jiffies that should be rounded
449 *
450 * This is the same as round_jiffies() except that it will never
451 * round down. This is useful for timeouts for which the exact time
452 * of firing does not matter too much, as long as they don't fire too
453 * early.
454 */
455unsigned long round_jiffies_up(unsigned long j)
456{
457 return round_jiffies_common(j, raw_smp_processor_id(), true);
458}
459EXPORT_SYMBOL_GPL(round_jiffies_up);
460
461/**
462 * round_jiffies_up_relative - function to round jiffies up to a full second
463 * @j: the time in (relative) jiffies that should be rounded
464 *
465 * This is the same as round_jiffies_relative() except that it will never
466 * round down. This is useful for timeouts for which the exact time
467 * of firing does not matter too much, as long as they don't fire too
468 * early.
469 */
470unsigned long round_jiffies_up_relative(unsigned long j)
471{
472 return __round_jiffies_up_relative(j, raw_smp_processor_id());
473}
474EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
475
476
477static inline unsigned int timer_get_idx(struct timer_list *timer)
478{
479 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
480}
481
482static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
483{
484 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
485 idx << TIMER_ARRAYSHIFT;
486}
487
488/*
489 * Helper function to calculate the array index for a given expiry
490 * time.
491 */
492static inline unsigned calc_index(unsigned expires, unsigned lvl)
493{
494 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
495 return LVL_OFFS(lvl) + (expires & LVL_MASK);
496}
497
498static int calc_wheel_index(unsigned long expires, unsigned long clk)
499{
500 unsigned long delta = expires - clk;
501 unsigned int idx;
502
503 if (delta < LVL_START(1)) {
504 idx = calc_index(expires, 0);
505 } else if (delta < LVL_START(2)) {
506 idx = calc_index(expires, 1);
507 } else if (delta < LVL_START(3)) {
508 idx = calc_index(expires, 2);
509 } else if (delta < LVL_START(4)) {
510 idx = calc_index(expires, 3);
511 } else if (delta < LVL_START(5)) {
512 idx = calc_index(expires, 4);
513 } else if (delta < LVL_START(6)) {
514 idx = calc_index(expires, 5);
515 } else if (delta < LVL_START(7)) {
516 idx = calc_index(expires, 6);
517 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
518 idx = calc_index(expires, 7);
519 } else if ((long) delta < 0) {
520 idx = clk & LVL_MASK;
521 } else {
522 /*
523 * Force expire obscene large timeouts to expire at the
524 * capacity limit of the wheel.
525 */
Olivier Deprez0e641232021-09-23 10:07:05 +0200526 if (delta >= WHEEL_TIMEOUT_CUTOFF)
527 expires = clk + WHEEL_TIMEOUT_MAX;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000528
529 idx = calc_index(expires, LVL_DEPTH - 1);
530 }
531 return idx;
532}
533
534/*
535 * Enqueue the timer into the hash bucket, mark it pending in
536 * the bitmap and store the index in the timer flags.
537 */
538static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
539 unsigned int idx)
540{
541 hlist_add_head(&timer->entry, base->vectors + idx);
542 __set_bit(idx, base->pending_map);
543 timer_set_idx(timer, idx);
David Brazdil0f672f62019-12-10 10:32:29 +0000544
545 trace_timer_start(timer, timer->expires, timer->flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000546}
547
548static void
549__internal_add_timer(struct timer_base *base, struct timer_list *timer)
550{
551 unsigned int idx;
552
553 idx = calc_wheel_index(timer->expires, base->clk);
554 enqueue_timer(base, timer, idx);
555}
556
557static void
558trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
559{
560 if (!is_timers_nohz_active())
561 return;
562
563 /*
564 * TODO: This wants some optimizing similar to the code below, but we
565 * will do that when we switch from push to pull for deferrable timers.
566 */
567 if (timer->flags & TIMER_DEFERRABLE) {
568 if (tick_nohz_full_cpu(base->cpu))
569 wake_up_nohz_cpu(base->cpu);
570 return;
571 }
572
573 /*
574 * We might have to IPI the remote CPU if the base is idle and the
575 * timer is not deferrable. If the other CPU is on the way to idle
576 * then it can't set base->is_idle as we hold the base lock:
577 */
578 if (!base->is_idle)
579 return;
580
581 /* Check whether this is the new first expiring timer: */
582 if (time_after_eq(timer->expires, base->next_expiry))
583 return;
584
585 /*
586 * Set the next expiry time and kick the CPU so it can reevaluate the
587 * wheel:
588 */
Olivier Deprez0e641232021-09-23 10:07:05 +0200589 if (time_before(timer->expires, base->clk)) {
590 /*
591 * Prevent from forward_timer_base() moving the base->clk
592 * backward
593 */
594 base->next_expiry = base->clk;
595 } else {
596 base->next_expiry = timer->expires;
597 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000598 wake_up_nohz_cpu(base->cpu);
599}
600
601static void
602internal_add_timer(struct timer_base *base, struct timer_list *timer)
603{
604 __internal_add_timer(base, timer);
605 trigger_dyntick_cpu(base, timer);
606}
607
608#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
609
610static struct debug_obj_descr timer_debug_descr;
611
612static void *timer_debug_hint(void *addr)
613{
614 return ((struct timer_list *) addr)->function;
615}
616
617static bool timer_is_static_object(void *addr)
618{
619 struct timer_list *timer = addr;
620
621 return (timer->entry.pprev == NULL &&
622 timer->entry.next == TIMER_ENTRY_STATIC);
623}
624
625/*
626 * fixup_init is called when:
627 * - an active object is initialized
628 */
629static bool timer_fixup_init(void *addr, enum debug_obj_state state)
630{
631 struct timer_list *timer = addr;
632
633 switch (state) {
634 case ODEBUG_STATE_ACTIVE:
635 del_timer_sync(timer);
636 debug_object_init(timer, &timer_debug_descr);
637 return true;
638 default:
639 return false;
640 }
641}
642
643/* Stub timer callback for improperly used timers. */
644static void stub_timer(struct timer_list *unused)
645{
646 WARN_ON(1);
647}
648
649/*
650 * fixup_activate is called when:
651 * - an active object is activated
652 * - an unknown non-static object is activated
653 */
654static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
655{
656 struct timer_list *timer = addr;
657
658 switch (state) {
659 case ODEBUG_STATE_NOTAVAILABLE:
660 timer_setup(timer, stub_timer, 0);
661 return true;
662
663 case ODEBUG_STATE_ACTIVE:
664 WARN_ON(1);
David Brazdil0f672f62019-12-10 10:32:29 +0000665 /* fall through */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000666 default:
667 return false;
668 }
669}
670
671/*
672 * fixup_free is called when:
673 * - an active object is freed
674 */
675static bool timer_fixup_free(void *addr, enum debug_obj_state state)
676{
677 struct timer_list *timer = addr;
678
679 switch (state) {
680 case ODEBUG_STATE_ACTIVE:
681 del_timer_sync(timer);
682 debug_object_free(timer, &timer_debug_descr);
683 return true;
684 default:
685 return false;
686 }
687}
688
689/*
690 * fixup_assert_init is called when:
691 * - an untracked/uninit-ed object is found
692 */
693static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
694{
695 struct timer_list *timer = addr;
696
697 switch (state) {
698 case ODEBUG_STATE_NOTAVAILABLE:
699 timer_setup(timer, stub_timer, 0);
700 return true;
701 default:
702 return false;
703 }
704}
705
706static struct debug_obj_descr timer_debug_descr = {
707 .name = "timer_list",
708 .debug_hint = timer_debug_hint,
709 .is_static_object = timer_is_static_object,
710 .fixup_init = timer_fixup_init,
711 .fixup_activate = timer_fixup_activate,
712 .fixup_free = timer_fixup_free,
713 .fixup_assert_init = timer_fixup_assert_init,
714};
715
716static inline void debug_timer_init(struct timer_list *timer)
717{
718 debug_object_init(timer, &timer_debug_descr);
719}
720
721static inline void debug_timer_activate(struct timer_list *timer)
722{
723 debug_object_activate(timer, &timer_debug_descr);
724}
725
726static inline void debug_timer_deactivate(struct timer_list *timer)
727{
728 debug_object_deactivate(timer, &timer_debug_descr);
729}
730
731static inline void debug_timer_free(struct timer_list *timer)
732{
733 debug_object_free(timer, &timer_debug_descr);
734}
735
736static inline void debug_timer_assert_init(struct timer_list *timer)
737{
738 debug_object_assert_init(timer, &timer_debug_descr);
739}
740
741static void do_init_timer(struct timer_list *timer,
742 void (*func)(struct timer_list *),
743 unsigned int flags,
744 const char *name, struct lock_class_key *key);
745
746void init_timer_on_stack_key(struct timer_list *timer,
747 void (*func)(struct timer_list *),
748 unsigned int flags,
749 const char *name, struct lock_class_key *key)
750{
751 debug_object_init_on_stack(timer, &timer_debug_descr);
752 do_init_timer(timer, func, flags, name, key);
753}
754EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
755
756void destroy_timer_on_stack(struct timer_list *timer)
757{
758 debug_object_free(timer, &timer_debug_descr);
759}
760EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
761
762#else
763static inline void debug_timer_init(struct timer_list *timer) { }
764static inline void debug_timer_activate(struct timer_list *timer) { }
765static inline void debug_timer_deactivate(struct timer_list *timer) { }
766static inline void debug_timer_assert_init(struct timer_list *timer) { }
767#endif
768
769static inline void debug_init(struct timer_list *timer)
770{
771 debug_timer_init(timer);
772 trace_timer_init(timer);
773}
774
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000775static inline void debug_deactivate(struct timer_list *timer)
776{
777 debug_timer_deactivate(timer);
778 trace_timer_cancel(timer);
779}
780
781static inline void debug_assert_init(struct timer_list *timer)
782{
783 debug_timer_assert_init(timer);
784}
785
786static void do_init_timer(struct timer_list *timer,
787 void (*func)(struct timer_list *),
788 unsigned int flags,
789 const char *name, struct lock_class_key *key)
790{
791 timer->entry.pprev = NULL;
792 timer->function = func;
793 timer->flags = flags | raw_smp_processor_id();
794 lockdep_init_map(&timer->lockdep_map, name, key, 0);
795}
796
797/**
798 * init_timer_key - initialize a timer
799 * @timer: the timer to be initialized
800 * @func: timer callback function
801 * @flags: timer flags
802 * @name: name of the timer
803 * @key: lockdep class key of the fake lock used for tracking timer
804 * sync lock dependencies
805 *
806 * init_timer_key() must be done to a timer prior calling *any* of the
807 * other timer functions.
808 */
809void init_timer_key(struct timer_list *timer,
810 void (*func)(struct timer_list *), unsigned int flags,
811 const char *name, struct lock_class_key *key)
812{
813 debug_init(timer);
814 do_init_timer(timer, func, flags, name, key);
815}
816EXPORT_SYMBOL(init_timer_key);
817
818static inline void detach_timer(struct timer_list *timer, bool clear_pending)
819{
820 struct hlist_node *entry = &timer->entry;
821
822 debug_deactivate(timer);
823
824 __hlist_del(entry);
825 if (clear_pending)
826 entry->pprev = NULL;
827 entry->next = LIST_POISON2;
828}
829
830static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
831 bool clear_pending)
832{
833 unsigned idx = timer_get_idx(timer);
834
835 if (!timer_pending(timer))
836 return 0;
837
838 if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
839 __clear_bit(idx, base->pending_map);
840
841 detach_timer(timer, clear_pending);
842 return 1;
843}
844
845static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
846{
847 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
848
849 /*
850 * If the timer is deferrable and NO_HZ_COMMON is set then we need
851 * to use the deferrable base.
852 */
853 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
854 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
855 return base;
856}
857
858static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
859{
860 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
861
862 /*
863 * If the timer is deferrable and NO_HZ_COMMON is set then we need
864 * to use the deferrable base.
865 */
866 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
867 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
868 return base;
869}
870
871static inline struct timer_base *get_timer_base(u32 tflags)
872{
873 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
874}
875
876static inline struct timer_base *
877get_target_base(struct timer_base *base, unsigned tflags)
878{
879#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
880 if (static_branch_likely(&timers_migration_enabled) &&
881 !(tflags & TIMER_PINNED))
882 return get_timer_cpu_base(tflags, get_nohz_timer_target());
883#endif
884 return get_timer_this_cpu_base(tflags);
885}
886
887static inline void forward_timer_base(struct timer_base *base)
888{
889#ifdef CONFIG_NO_HZ_COMMON
890 unsigned long jnow;
891
892 /*
893 * We only forward the base when we are idle or have just come out of
894 * idle (must_forward_clk logic), and have a delta between base clock
895 * and jiffies. In the common case, run_timers will take care of it.
896 */
897 if (likely(!base->must_forward_clk))
898 return;
899
900 jnow = READ_ONCE(jiffies);
901 base->must_forward_clk = base->is_idle;
902 if ((long)(jnow - base->clk) < 2)
903 return;
904
905 /*
906 * If the next expiry value is > jiffies, then we fast forward to
907 * jiffies otherwise we forward to the next expiry value.
908 */
Olivier Deprez0e641232021-09-23 10:07:05 +0200909 if (time_after(base->next_expiry, jnow)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000910 base->clk = jnow;
Olivier Deprez0e641232021-09-23 10:07:05 +0200911 } else {
912 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
913 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000914 base->clk = base->next_expiry;
Olivier Deprez0e641232021-09-23 10:07:05 +0200915 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000916#endif
917}
918
919
920/*
921 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
922 * that all timers which are tied to this base are locked, and the base itself
923 * is locked too.
924 *
925 * So __run_timers/migrate_timers can safely modify all timers which could
926 * be found in the base->vectors array.
927 *
928 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
929 * to wait until the migration is done.
930 */
931static struct timer_base *lock_timer_base(struct timer_list *timer,
932 unsigned long *flags)
933 __acquires(timer->base->lock)
934{
935 for (;;) {
936 struct timer_base *base;
937 u32 tf;
938
939 /*
940 * We need to use READ_ONCE() here, otherwise the compiler
941 * might re-read @tf between the check for TIMER_MIGRATING
942 * and spin_lock().
943 */
944 tf = READ_ONCE(timer->flags);
945
946 if (!(tf & TIMER_MIGRATING)) {
947 base = get_timer_base(tf);
948 raw_spin_lock_irqsave(&base->lock, *flags);
949 if (timer->flags == tf)
950 return base;
951 raw_spin_unlock_irqrestore(&base->lock, *flags);
952 }
953 cpu_relax();
954 }
955}
956
957#define MOD_TIMER_PENDING_ONLY 0x01
958#define MOD_TIMER_REDUCE 0x02
959
960static inline int
961__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
962{
963 struct timer_base *base, *new_base;
964 unsigned int idx = UINT_MAX;
965 unsigned long clk = 0, flags;
966 int ret = 0;
967
968 BUG_ON(!timer->function);
969
970 /*
971 * This is a common optimization triggered by the networking code - if
972 * the timer is re-modified to have the same timeout or ends up in the
973 * same array bucket then just return:
974 */
975 if (timer_pending(timer)) {
976 /*
977 * The downside of this optimization is that it can result in
978 * larger granularity than you would get from adding a new
979 * timer with this expiry.
980 */
981 long diff = timer->expires - expires;
982
983 if (!diff)
984 return 1;
985 if (options & MOD_TIMER_REDUCE && diff <= 0)
986 return 1;
987
988 /*
989 * We lock timer base and calculate the bucket index right
990 * here. If the timer ends up in the same bucket, then we
991 * just update the expiry time and avoid the whole
992 * dequeue/enqueue dance.
993 */
994 base = lock_timer_base(timer, &flags);
995 forward_timer_base(base);
996
997 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
998 time_before_eq(timer->expires, expires)) {
999 ret = 1;
1000 goto out_unlock;
1001 }
1002
1003 clk = base->clk;
1004 idx = calc_wheel_index(expires, clk);
1005
1006 /*
1007 * Retrieve and compare the array index of the pending
1008 * timer. If it matches set the expiry to the new value so a
1009 * subsequent call will exit in the expires check above.
1010 */
1011 if (idx == timer_get_idx(timer)) {
1012 if (!(options & MOD_TIMER_REDUCE))
1013 timer->expires = expires;
1014 else if (time_after(timer->expires, expires))
1015 timer->expires = expires;
1016 ret = 1;
1017 goto out_unlock;
1018 }
1019 } else {
1020 base = lock_timer_base(timer, &flags);
1021 forward_timer_base(base);
1022 }
1023
1024 ret = detach_if_pending(timer, base, false);
1025 if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1026 goto out_unlock;
1027
1028 new_base = get_target_base(base, timer->flags);
1029
1030 if (base != new_base) {
1031 /*
1032 * We are trying to schedule the timer on the new base.
1033 * However we can't change timer's base while it is running,
1034 * otherwise del_timer_sync() can't detect that the timer's
1035 * handler yet has not finished. This also guarantees that the
1036 * timer is serialized wrt itself.
1037 */
1038 if (likely(base->running_timer != timer)) {
1039 /* See the comment in lock_timer_base() */
1040 timer->flags |= TIMER_MIGRATING;
1041
1042 raw_spin_unlock(&base->lock);
1043 base = new_base;
1044 raw_spin_lock(&base->lock);
1045 WRITE_ONCE(timer->flags,
1046 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1047 forward_timer_base(base);
1048 }
1049 }
1050
David Brazdil0f672f62019-12-10 10:32:29 +00001051 debug_timer_activate(timer);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001052
1053 timer->expires = expires;
1054 /*
1055 * If 'idx' was calculated above and the base time did not advance
1056 * between calculating 'idx' and possibly switching the base, only
1057 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1058 * we need to (re)calculate the wheel index via
1059 * internal_add_timer().
1060 */
1061 if (idx != UINT_MAX && clk == base->clk) {
1062 enqueue_timer(base, timer, idx);
1063 trigger_dyntick_cpu(base, timer);
1064 } else {
1065 internal_add_timer(base, timer);
1066 }
1067
1068out_unlock:
1069 raw_spin_unlock_irqrestore(&base->lock, flags);
1070
1071 return ret;
1072}
1073
1074/**
1075 * mod_timer_pending - modify a pending timer's timeout
1076 * @timer: the pending timer to be modified
1077 * @expires: new timeout in jiffies
1078 *
1079 * mod_timer_pending() is the same for pending timers as mod_timer(),
1080 * but will not re-activate and modify already deleted timers.
1081 *
1082 * It is useful for unserialized use of timers.
1083 */
1084int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1085{
1086 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1087}
1088EXPORT_SYMBOL(mod_timer_pending);
1089
1090/**
1091 * mod_timer - modify a timer's timeout
1092 * @timer: the timer to be modified
1093 * @expires: new timeout in jiffies
1094 *
1095 * mod_timer() is a more efficient way to update the expire field of an
1096 * active timer (if the timer is inactive it will be activated)
1097 *
1098 * mod_timer(timer, expires) is equivalent to:
1099 *
1100 * del_timer(timer); timer->expires = expires; add_timer(timer);
1101 *
1102 * Note that if there are multiple unserialized concurrent users of the
1103 * same timer, then mod_timer() is the only safe way to modify the timeout,
1104 * since add_timer() cannot modify an already running timer.
1105 *
1106 * The function returns whether it has modified a pending timer or not.
1107 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1108 * active timer returns 1.)
1109 */
1110int mod_timer(struct timer_list *timer, unsigned long expires)
1111{
1112 return __mod_timer(timer, expires, 0);
1113}
1114EXPORT_SYMBOL(mod_timer);
1115
1116/**
1117 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1118 * @timer: The timer to be modified
1119 * @expires: New timeout in jiffies
1120 *
1121 * timer_reduce() is very similar to mod_timer(), except that it will only
1122 * modify a running timer if that would reduce the expiration time (it will
1123 * start a timer that isn't running).
1124 */
1125int timer_reduce(struct timer_list *timer, unsigned long expires)
1126{
1127 return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1128}
1129EXPORT_SYMBOL(timer_reduce);
1130
1131/**
1132 * add_timer - start a timer
1133 * @timer: the timer to be added
1134 *
1135 * The kernel will do a ->function(@timer) callback from the
1136 * timer interrupt at the ->expires point in the future. The
1137 * current time is 'jiffies'.
1138 *
1139 * The timer's ->expires, ->function fields must be set prior calling this
1140 * function.
1141 *
1142 * Timers with an ->expires field in the past will be executed in the next
1143 * timer tick.
1144 */
1145void add_timer(struct timer_list *timer)
1146{
1147 BUG_ON(timer_pending(timer));
1148 mod_timer(timer, timer->expires);
1149}
1150EXPORT_SYMBOL(add_timer);
1151
1152/**
1153 * add_timer_on - start a timer on a particular CPU
1154 * @timer: the timer to be added
1155 * @cpu: the CPU to start it on
1156 *
1157 * This is not very scalable on SMP. Double adds are not possible.
1158 */
1159void add_timer_on(struct timer_list *timer, int cpu)
1160{
1161 struct timer_base *new_base, *base;
1162 unsigned long flags;
1163
1164 BUG_ON(timer_pending(timer) || !timer->function);
1165
1166 new_base = get_timer_cpu_base(timer->flags, cpu);
1167
1168 /*
1169 * If @timer was on a different CPU, it should be migrated with the
1170 * old base locked to prevent other operations proceeding with the
1171 * wrong base locked. See lock_timer_base().
1172 */
1173 base = lock_timer_base(timer, &flags);
1174 if (base != new_base) {
1175 timer->flags |= TIMER_MIGRATING;
1176
1177 raw_spin_unlock(&base->lock);
1178 base = new_base;
1179 raw_spin_lock(&base->lock);
1180 WRITE_ONCE(timer->flags,
1181 (timer->flags & ~TIMER_BASEMASK) | cpu);
1182 }
1183 forward_timer_base(base);
1184
David Brazdil0f672f62019-12-10 10:32:29 +00001185 debug_timer_activate(timer);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001186 internal_add_timer(base, timer);
1187 raw_spin_unlock_irqrestore(&base->lock, flags);
1188}
1189EXPORT_SYMBOL_GPL(add_timer_on);
1190
1191/**
1192 * del_timer - deactivate a timer.
1193 * @timer: the timer to be deactivated
1194 *
1195 * del_timer() deactivates a timer - this works on both active and inactive
1196 * timers.
1197 *
1198 * The function returns whether it has deactivated a pending timer or not.
1199 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1200 * active timer returns 1.)
1201 */
1202int del_timer(struct timer_list *timer)
1203{
1204 struct timer_base *base;
1205 unsigned long flags;
1206 int ret = 0;
1207
1208 debug_assert_init(timer);
1209
1210 if (timer_pending(timer)) {
1211 base = lock_timer_base(timer, &flags);
1212 ret = detach_if_pending(timer, base, true);
1213 raw_spin_unlock_irqrestore(&base->lock, flags);
1214 }
1215
1216 return ret;
1217}
1218EXPORT_SYMBOL(del_timer);
1219
1220/**
1221 * try_to_del_timer_sync - Try to deactivate a timer
1222 * @timer: timer to delete
1223 *
1224 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1225 * exit the timer is not queued and the handler is not running on any CPU.
1226 */
1227int try_to_del_timer_sync(struct timer_list *timer)
1228{
1229 struct timer_base *base;
1230 unsigned long flags;
1231 int ret = -1;
1232
1233 debug_assert_init(timer);
1234
1235 base = lock_timer_base(timer, &flags);
1236
1237 if (base->running_timer != timer)
1238 ret = detach_if_pending(timer, base, true);
1239
1240 raw_spin_unlock_irqrestore(&base->lock, flags);
1241
1242 return ret;
1243}
1244EXPORT_SYMBOL(try_to_del_timer_sync);
1245
David Brazdil0f672f62019-12-10 10:32:29 +00001246#ifdef CONFIG_PREEMPT_RT
1247static __init void timer_base_init_expiry_lock(struct timer_base *base)
1248{
1249 spin_lock_init(&base->expiry_lock);
1250}
1251
1252static inline void timer_base_lock_expiry(struct timer_base *base)
1253{
1254 spin_lock(&base->expiry_lock);
1255}
1256
1257static inline void timer_base_unlock_expiry(struct timer_base *base)
1258{
1259 spin_unlock(&base->expiry_lock);
1260}
1261
1262/*
1263 * The counterpart to del_timer_wait_running().
1264 *
1265 * If there is a waiter for base->expiry_lock, then it was waiting for the
1266 * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1267 * the waiter to acquire the lock and make progress.
1268 */
1269static void timer_sync_wait_running(struct timer_base *base)
1270{
1271 if (atomic_read(&base->timer_waiters)) {
Olivier Deprez0e641232021-09-23 10:07:05 +02001272 raw_spin_unlock_irq(&base->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001273 spin_unlock(&base->expiry_lock);
1274 spin_lock(&base->expiry_lock);
Olivier Deprez0e641232021-09-23 10:07:05 +02001275 raw_spin_lock_irq(&base->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001276 }
1277}
1278
1279/*
1280 * This function is called on PREEMPT_RT kernels when the fast path
1281 * deletion of a timer failed because the timer callback function was
1282 * running.
1283 *
1284 * This prevents priority inversion, if the softirq thread on a remote CPU
1285 * got preempted, and it prevents a life lock when the task which tries to
1286 * delete a timer preempted the softirq thread running the timer callback
1287 * function.
1288 */
1289static void del_timer_wait_running(struct timer_list *timer)
1290{
1291 u32 tf;
1292
1293 tf = READ_ONCE(timer->flags);
1294 if (!(tf & TIMER_MIGRATING)) {
1295 struct timer_base *base = get_timer_base(tf);
1296
1297 /*
1298 * Mark the base as contended and grab the expiry lock,
1299 * which is held by the softirq across the timer
1300 * callback. Drop the lock immediately so the softirq can
1301 * expire the next timer. In theory the timer could already
1302 * be running again, but that's more than unlikely and just
1303 * causes another wait loop.
1304 */
1305 atomic_inc(&base->timer_waiters);
1306 spin_lock_bh(&base->expiry_lock);
1307 atomic_dec(&base->timer_waiters);
1308 spin_unlock_bh(&base->expiry_lock);
1309 }
1310}
1311#else
1312static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1313static inline void timer_base_lock_expiry(struct timer_base *base) { }
1314static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1315static inline void timer_sync_wait_running(struct timer_base *base) { }
1316static inline void del_timer_wait_running(struct timer_list *timer) { }
1317#endif
1318
1319#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001320/**
1321 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1322 * @timer: the timer to be deactivated
1323 *
1324 * This function only differs from del_timer() on SMP: besides deactivating
1325 * the timer it also makes sure the handler has finished executing on other
1326 * CPUs.
1327 *
1328 * Synchronization rules: Callers must prevent restarting of the timer,
1329 * otherwise this function is meaningless. It must not be called from
1330 * interrupt contexts unless the timer is an irqsafe one. The caller must
1331 * not hold locks which would prevent completion of the timer's
1332 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1333 * timer is not queued and the handler is not running on any CPU.
1334 *
1335 * Note: For !irqsafe timers, you must not hold locks that are held in
1336 * interrupt context while calling this function. Even if the lock has
1337 * nothing to do with the timer in question. Here's why::
1338 *
1339 * CPU0 CPU1
1340 * ---- ----
1341 * <SOFTIRQ>
1342 * call_timer_fn();
1343 * base->running_timer = mytimer;
1344 * spin_lock_irq(somelock);
1345 * <IRQ>
1346 * spin_lock(somelock);
1347 * del_timer_sync(mytimer);
1348 * while (base->running_timer == mytimer);
1349 *
1350 * Now del_timer_sync() will never return and never release somelock.
1351 * The interrupt on the other CPU is waiting to grab somelock but
1352 * it has interrupted the softirq that CPU0 is waiting to finish.
1353 *
1354 * The function returns whether it has deactivated a pending timer or not.
1355 */
1356int del_timer_sync(struct timer_list *timer)
1357{
David Brazdil0f672f62019-12-10 10:32:29 +00001358 int ret;
1359
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001360#ifdef CONFIG_LOCKDEP
1361 unsigned long flags;
1362
1363 /*
1364 * If lockdep gives a backtrace here, please reference
1365 * the synchronization rules above.
1366 */
1367 local_irq_save(flags);
1368 lock_map_acquire(&timer->lockdep_map);
1369 lock_map_release(&timer->lockdep_map);
1370 local_irq_restore(flags);
1371#endif
1372 /*
1373 * don't use it in hardirq context, because it
1374 * could lead to deadlock.
1375 */
1376 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
David Brazdil0f672f62019-12-10 10:32:29 +00001377
1378 do {
1379 ret = try_to_del_timer_sync(timer);
1380
1381 if (unlikely(ret < 0)) {
1382 del_timer_wait_running(timer);
1383 cpu_relax();
1384 }
1385 } while (ret < 0);
1386
1387 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001388}
1389EXPORT_SYMBOL(del_timer_sync);
1390#endif
1391
David Brazdil0f672f62019-12-10 10:32:29 +00001392static void call_timer_fn(struct timer_list *timer,
1393 void (*fn)(struct timer_list *),
1394 unsigned long baseclk)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001395{
1396 int count = preempt_count();
1397
1398#ifdef CONFIG_LOCKDEP
1399 /*
1400 * It is permissible to free the timer from inside the
1401 * function that is called from it, this we need to take into
1402 * account for lockdep too. To avoid bogus "held lock freed"
1403 * warnings as well as problems when looking into
1404 * timer->lockdep_map, make a copy and use that here.
1405 */
1406 struct lockdep_map lockdep_map;
1407
1408 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1409#endif
1410 /*
1411 * Couple the lock chain with the lock chain at
1412 * del_timer_sync() by acquiring the lock_map around the fn()
1413 * call here and in del_timer_sync().
1414 */
1415 lock_map_acquire(&lockdep_map);
1416
David Brazdil0f672f62019-12-10 10:32:29 +00001417 trace_timer_expire_entry(timer, baseclk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001418 fn(timer);
1419 trace_timer_expire_exit(timer);
1420
1421 lock_map_release(&lockdep_map);
1422
1423 if (count != preempt_count()) {
David Brazdil0f672f62019-12-10 10:32:29 +00001424 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001425 fn, count, preempt_count());
1426 /*
1427 * Restore the preempt count. That gives us a decent
1428 * chance to survive and extract information. If the
1429 * callback kept a lock held, bad luck, but not worse
1430 * than the BUG() we had.
1431 */
1432 preempt_count_set(count);
1433 }
1434}
1435
1436static void expire_timers(struct timer_base *base, struct hlist_head *head)
1437{
David Brazdil0f672f62019-12-10 10:32:29 +00001438 /*
1439 * This value is required only for tracing. base->clk was
1440 * incremented directly before expire_timers was called. But expiry
1441 * is related to the old base->clk value.
1442 */
1443 unsigned long baseclk = base->clk - 1;
1444
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001445 while (!hlist_empty(head)) {
1446 struct timer_list *timer;
1447 void (*fn)(struct timer_list *);
1448
1449 timer = hlist_entry(head->first, struct timer_list, entry);
1450
1451 base->running_timer = timer;
1452 detach_timer(timer, true);
1453
1454 fn = timer->function;
1455
1456 if (timer->flags & TIMER_IRQSAFE) {
1457 raw_spin_unlock(&base->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001458 call_timer_fn(timer, fn, baseclk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001459 raw_spin_lock(&base->lock);
Olivier Deprez0e641232021-09-23 10:07:05 +02001460 base->running_timer = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001461 } else {
1462 raw_spin_unlock_irq(&base->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001463 call_timer_fn(timer, fn, baseclk);
Olivier Deprez0e641232021-09-23 10:07:05 +02001464 raw_spin_lock_irq(&base->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001465 base->running_timer = NULL;
1466 timer_sync_wait_running(base);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001467 }
1468 }
1469}
1470
1471static int __collect_expired_timers(struct timer_base *base,
1472 struct hlist_head *heads)
1473{
1474 unsigned long clk = base->clk;
1475 struct hlist_head *vec;
1476 int i, levels = 0;
1477 unsigned int idx;
1478
1479 for (i = 0; i < LVL_DEPTH; i++) {
1480 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1481
1482 if (__test_and_clear_bit(idx, base->pending_map)) {
1483 vec = base->vectors + idx;
1484 hlist_move_list(vec, heads++);
1485 levels++;
1486 }
1487 /* Is it time to look at the next level? */
1488 if (clk & LVL_CLK_MASK)
1489 break;
1490 /* Shift clock for the next level granularity */
1491 clk >>= LVL_CLK_SHIFT;
1492 }
1493 return levels;
1494}
1495
1496#ifdef CONFIG_NO_HZ_COMMON
1497/*
1498 * Find the next pending bucket of a level. Search from level start (@offset)
1499 * + @clk upwards and if nothing there, search from start of the level
1500 * (@offset) up to @offset + clk.
1501 */
1502static int next_pending_bucket(struct timer_base *base, unsigned offset,
1503 unsigned clk)
1504{
1505 unsigned pos, start = offset + clk;
1506 unsigned end = offset + LVL_SIZE;
1507
1508 pos = find_next_bit(base->pending_map, end, start);
1509 if (pos < end)
1510 return pos - start;
1511
1512 pos = find_next_bit(base->pending_map, start, offset);
1513 return pos < start ? pos + LVL_SIZE - start : -1;
1514}
1515
1516/*
1517 * Search the first expiring timer in the various clock levels. Caller must
1518 * hold base->lock.
1519 */
1520static unsigned long __next_timer_interrupt(struct timer_base *base)
1521{
1522 unsigned long clk, next, adj;
1523 unsigned lvl, offset = 0;
1524
1525 next = base->clk + NEXT_TIMER_MAX_DELTA;
1526 clk = base->clk;
1527 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1528 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1529
1530 if (pos >= 0) {
1531 unsigned long tmp = clk + (unsigned long) pos;
1532
1533 tmp <<= LVL_SHIFT(lvl);
1534 if (time_before(tmp, next))
1535 next = tmp;
1536 }
1537 /*
1538 * Clock for the next level. If the current level clock lower
1539 * bits are zero, we look at the next level as is. If not we
1540 * need to advance it by one because that's going to be the
1541 * next expiring bucket in that level. base->clk is the next
1542 * expiring jiffie. So in case of:
1543 *
1544 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1545 * 0 0 0 0 0 0
1546 *
1547 * we have to look at all levels @index 0. With
1548 *
1549 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1550 * 0 0 0 0 0 2
1551 *
1552 * LVL0 has the next expiring bucket @index 2. The upper
1553 * levels have the next expiring bucket @index 1.
1554 *
1555 * In case that the propagation wraps the next level the same
1556 * rules apply:
1557 *
1558 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1559 * 0 0 0 0 F 2
1560 *
1561 * So after looking at LVL0 we get:
1562 *
1563 * LVL5 LVL4 LVL3 LVL2 LVL1
1564 * 0 0 0 1 0
1565 *
1566 * So no propagation from LVL1 to LVL2 because that happened
1567 * with the add already, but then we need to propagate further
1568 * from LVL2 to LVL3.
1569 *
1570 * So the simple check whether the lower bits of the current
1571 * level are 0 or not is sufficient for all cases.
1572 */
1573 adj = clk & LVL_CLK_MASK ? 1 : 0;
1574 clk >>= LVL_CLK_SHIFT;
1575 clk += adj;
1576 }
1577 return next;
1578}
1579
1580/*
1581 * Check, if the next hrtimer event is before the next timer wheel
1582 * event:
1583 */
1584static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1585{
1586 u64 nextevt = hrtimer_get_next_event();
1587
1588 /*
1589 * If high resolution timers are enabled
1590 * hrtimer_get_next_event() returns KTIME_MAX.
1591 */
1592 if (expires <= nextevt)
1593 return expires;
1594
1595 /*
1596 * If the next timer is already expired, return the tick base
1597 * time so the tick is fired immediately.
1598 */
1599 if (nextevt <= basem)
1600 return basem;
1601
1602 /*
1603 * Round up to the next jiffie. High resolution timers are
1604 * off, so the hrtimers are expired in the tick and we need to
1605 * make sure that this tick really expires the timer to avoid
1606 * a ping pong of the nohz stop code.
1607 *
1608 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1609 */
1610 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1611}
1612
1613/**
1614 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1615 * @basej: base time jiffies
1616 * @basem: base time clock monotonic
1617 *
1618 * Returns the tick aligned clock monotonic time of the next pending
1619 * timer or KTIME_MAX if no timer is pending.
1620 */
1621u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1622{
1623 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1624 u64 expires = KTIME_MAX;
1625 unsigned long nextevt;
1626 bool is_max_delta;
1627
1628 /*
1629 * Pretend that there is no timer pending if the cpu is offline.
1630 * Possible pending timers will be migrated later to an active cpu.
1631 */
1632 if (cpu_is_offline(smp_processor_id()))
1633 return expires;
1634
1635 raw_spin_lock(&base->lock);
1636 nextevt = __next_timer_interrupt(base);
1637 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1638 base->next_expiry = nextevt;
1639 /*
1640 * We have a fresh next event. Check whether we can forward the
1641 * base. We can only do that when @basej is past base->clk
1642 * otherwise we might rewind base->clk.
1643 */
1644 if (time_after(basej, base->clk)) {
1645 if (time_after(nextevt, basej))
1646 base->clk = basej;
1647 else if (time_after(nextevt, base->clk))
1648 base->clk = nextevt;
1649 }
1650
1651 if (time_before_eq(nextevt, basej)) {
1652 expires = basem;
1653 base->is_idle = false;
1654 } else {
1655 if (!is_max_delta)
1656 expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1657 /*
1658 * If we expect to sleep more than a tick, mark the base idle.
1659 * Also the tick is stopped so any added timer must forward
1660 * the base clk itself to keep granularity small. This idle
1661 * logic is only maintained for the BASE_STD base, deferrable
1662 * timers may still see large granularity skew (by design).
1663 */
1664 if ((expires - basem) > TICK_NSEC) {
1665 base->must_forward_clk = true;
1666 base->is_idle = true;
1667 }
1668 }
1669 raw_spin_unlock(&base->lock);
1670
1671 return cmp_next_hrtimer_event(basem, expires);
1672}
1673
1674/**
1675 * timer_clear_idle - Clear the idle state of the timer base
1676 *
1677 * Called with interrupts disabled
1678 */
1679void timer_clear_idle(void)
1680{
1681 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1682
1683 /*
1684 * We do this unlocked. The worst outcome is a remote enqueue sending
1685 * a pointless IPI, but taking the lock would just make the window for
1686 * sending the IPI a few instructions smaller for the cost of taking
1687 * the lock in the exit from idle path.
1688 */
1689 base->is_idle = false;
1690}
1691
1692static int collect_expired_timers(struct timer_base *base,
1693 struct hlist_head *heads)
1694{
David Brazdil0f672f62019-12-10 10:32:29 +00001695 unsigned long now = READ_ONCE(jiffies);
1696
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001697 /*
1698 * NOHZ optimization. After a long idle sleep we need to forward the
1699 * base to current jiffies. Avoid a loop by searching the bitfield for
1700 * the next expiring timer.
1701 */
David Brazdil0f672f62019-12-10 10:32:29 +00001702 if ((long)(now - base->clk) > 2) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001703 unsigned long next = __next_timer_interrupt(base);
1704
1705 /*
1706 * If the next timer is ahead of time forward to current
1707 * jiffies, otherwise forward to the next expiry time:
1708 */
David Brazdil0f672f62019-12-10 10:32:29 +00001709 if (time_after(next, now)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001710 /*
1711 * The call site will increment base->clk and then
1712 * terminate the expiry loop immediately.
1713 */
David Brazdil0f672f62019-12-10 10:32:29 +00001714 base->clk = now;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001715 return 0;
1716 }
1717 base->clk = next;
1718 }
1719 return __collect_expired_timers(base, heads);
1720}
1721#else
1722static inline int collect_expired_timers(struct timer_base *base,
1723 struct hlist_head *heads)
1724{
1725 return __collect_expired_timers(base, heads);
1726}
1727#endif
1728
1729/*
1730 * Called from the timer interrupt handler to charge one tick to the current
1731 * process. user_tick is 1 if the tick is user time, 0 for system.
1732 */
1733void update_process_times(int user_tick)
1734{
1735 struct task_struct *p = current;
1736
1737 /* Note: this timer irq context must be accounted for as well. */
1738 account_process_tick(p, user_tick);
1739 run_local_timers();
David Brazdil0f672f62019-12-10 10:32:29 +00001740 rcu_sched_clock_irq(user_tick);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001741#ifdef CONFIG_IRQ_WORK
1742 if (in_irq())
1743 irq_work_tick();
1744#endif
1745 scheduler_tick();
1746 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
David Brazdil0f672f62019-12-10 10:32:29 +00001747 run_posix_cpu_timers();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001748}
1749
1750/**
1751 * __run_timers - run all expired timers (if any) on this CPU.
1752 * @base: the timer vector to be processed.
1753 */
1754static inline void __run_timers(struct timer_base *base)
1755{
1756 struct hlist_head heads[LVL_DEPTH];
1757 int levels;
1758
1759 if (!time_after_eq(jiffies, base->clk))
1760 return;
1761
David Brazdil0f672f62019-12-10 10:32:29 +00001762 timer_base_lock_expiry(base);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001763 raw_spin_lock_irq(&base->lock);
1764
1765 /*
1766 * timer_base::must_forward_clk must be cleared before running
1767 * timers so that any timer functions that call mod_timer() will
1768 * not try to forward the base. Idle tracking / clock forwarding
1769 * logic is only used with BASE_STD timers.
1770 *
1771 * The must_forward_clk flag is cleared unconditionally also for
1772 * the deferrable base. The deferrable base is not affected by idle
1773 * tracking and never forwarded, so clearing the flag is a NOOP.
1774 *
1775 * The fact that the deferrable base is never forwarded can cause
1776 * large variations in granularity for deferrable timers, but they
1777 * can be deferred for long periods due to idle anyway.
1778 */
1779 base->must_forward_clk = false;
1780
1781 while (time_after_eq(jiffies, base->clk)) {
1782
1783 levels = collect_expired_timers(base, heads);
1784 base->clk++;
1785
1786 while (levels--)
1787 expire_timers(base, heads + levels);
1788 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001789 raw_spin_unlock_irq(&base->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001790 timer_base_unlock_expiry(base);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001791}
1792
1793/*
1794 * This function runs timers and the timer-tq in bottom half context.
1795 */
1796static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1797{
1798 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1799
1800 __run_timers(base);
1801 if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1802 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1803}
1804
1805/*
1806 * Called by the local, per-CPU timer interrupt on SMP.
1807 */
1808void run_local_timers(void)
1809{
1810 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1811
1812 hrtimer_run_queues();
1813 /* Raise the softirq only if required. */
1814 if (time_before(jiffies, base->clk)) {
1815 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1816 return;
1817 /* CPU is awake, so check the deferrable base. */
1818 base++;
1819 if (time_before(jiffies, base->clk))
1820 return;
1821 }
1822 raise_softirq(TIMER_SOFTIRQ);
1823}
1824
1825/*
1826 * Since schedule_timeout()'s timer is defined on the stack, it must store
1827 * the target task on the stack as well.
1828 */
1829struct process_timer {
1830 struct timer_list timer;
1831 struct task_struct *task;
1832};
1833
1834static void process_timeout(struct timer_list *t)
1835{
1836 struct process_timer *timeout = from_timer(timeout, t, timer);
1837
1838 wake_up_process(timeout->task);
1839}
1840
1841/**
1842 * schedule_timeout - sleep until timeout
1843 * @timeout: timeout value in jiffies
1844 *
1845 * Make the current task sleep until @timeout jiffies have
1846 * elapsed. The routine will return immediately unless
1847 * the current task state has been set (see set_current_state()).
1848 *
1849 * You can set the task state as follows -
1850 *
1851 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1852 * pass before the routine returns unless the current task is explicitly
1853 * woken up, (e.g. by wake_up_process())".
1854 *
1855 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1856 * delivered to the current task or the current task is explicitly woken
1857 * up.
1858 *
1859 * The current task state is guaranteed to be TASK_RUNNING when this
1860 * routine returns.
1861 *
1862 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1863 * the CPU away without a bound on the timeout. In this case the return
1864 * value will be %MAX_SCHEDULE_TIMEOUT.
1865 *
1866 * Returns 0 when the timer has expired otherwise the remaining time in
1867 * jiffies will be returned. In all cases the return value is guaranteed
1868 * to be non-negative.
1869 */
1870signed long __sched schedule_timeout(signed long timeout)
1871{
1872 struct process_timer timer;
1873 unsigned long expire;
1874
1875 switch (timeout)
1876 {
1877 case MAX_SCHEDULE_TIMEOUT:
1878 /*
1879 * These two special cases are useful to be comfortable
1880 * in the caller. Nothing more. We could take
1881 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1882 * but I' d like to return a valid offset (>=0) to allow
1883 * the caller to do everything it want with the retval.
1884 */
1885 schedule();
1886 goto out;
1887 default:
1888 /*
1889 * Another bit of PARANOID. Note that the retval will be
1890 * 0 since no piece of kernel is supposed to do a check
1891 * for a negative retval of schedule_timeout() (since it
1892 * should never happens anyway). You just have the printk()
1893 * that will tell you if something is gone wrong and where.
1894 */
1895 if (timeout < 0) {
1896 printk(KERN_ERR "schedule_timeout: wrong timeout "
1897 "value %lx\n", timeout);
1898 dump_stack();
1899 current->state = TASK_RUNNING;
1900 goto out;
1901 }
1902 }
1903
1904 expire = timeout + jiffies;
1905
1906 timer.task = current;
1907 timer_setup_on_stack(&timer.timer, process_timeout, 0);
1908 __mod_timer(&timer.timer, expire, 0);
1909 schedule();
1910 del_singleshot_timer_sync(&timer.timer);
1911
1912 /* Remove the timer from the object tracker */
1913 destroy_timer_on_stack(&timer.timer);
1914
1915 timeout = expire - jiffies;
1916
1917 out:
1918 return timeout < 0 ? 0 : timeout;
1919}
1920EXPORT_SYMBOL(schedule_timeout);
1921
1922/*
1923 * We can use __set_current_state() here because schedule_timeout() calls
1924 * schedule() unconditionally.
1925 */
1926signed long __sched schedule_timeout_interruptible(signed long timeout)
1927{
1928 __set_current_state(TASK_INTERRUPTIBLE);
1929 return schedule_timeout(timeout);
1930}
1931EXPORT_SYMBOL(schedule_timeout_interruptible);
1932
1933signed long __sched schedule_timeout_killable(signed long timeout)
1934{
1935 __set_current_state(TASK_KILLABLE);
1936 return schedule_timeout(timeout);
1937}
1938EXPORT_SYMBOL(schedule_timeout_killable);
1939
1940signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1941{
1942 __set_current_state(TASK_UNINTERRUPTIBLE);
1943 return schedule_timeout(timeout);
1944}
1945EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1946
1947/*
1948 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1949 * to load average.
1950 */
1951signed long __sched schedule_timeout_idle(signed long timeout)
1952{
1953 __set_current_state(TASK_IDLE);
1954 return schedule_timeout(timeout);
1955}
1956EXPORT_SYMBOL(schedule_timeout_idle);
1957
1958#ifdef CONFIG_HOTPLUG_CPU
1959static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1960{
1961 struct timer_list *timer;
1962 int cpu = new_base->cpu;
1963
1964 while (!hlist_empty(head)) {
1965 timer = hlist_entry(head->first, struct timer_list, entry);
1966 detach_timer(timer, false);
1967 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1968 internal_add_timer(new_base, timer);
1969 }
1970}
1971
1972int timers_prepare_cpu(unsigned int cpu)
1973{
1974 struct timer_base *base;
1975 int b;
1976
1977 for (b = 0; b < NR_BASES; b++) {
1978 base = per_cpu_ptr(&timer_bases[b], cpu);
1979 base->clk = jiffies;
1980 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1981 base->is_idle = false;
1982 base->must_forward_clk = true;
1983 }
1984 return 0;
1985}
1986
1987int timers_dead_cpu(unsigned int cpu)
1988{
1989 struct timer_base *old_base;
1990 struct timer_base *new_base;
1991 int b, i;
1992
1993 BUG_ON(cpu_online(cpu));
1994
1995 for (b = 0; b < NR_BASES; b++) {
1996 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1997 new_base = get_cpu_ptr(&timer_bases[b]);
1998 /*
1999 * The caller is globally serialized and nobody else
2000 * takes two locks at once, deadlock is not possible.
2001 */
2002 raw_spin_lock_irq(&new_base->lock);
2003 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2004
2005 /*
2006 * The current CPUs base clock might be stale. Update it
2007 * before moving the timers over.
2008 */
2009 forward_timer_base(new_base);
2010
2011 BUG_ON(old_base->running_timer);
2012
2013 for (i = 0; i < WHEEL_SIZE; i++)
2014 migrate_timer_list(new_base, old_base->vectors + i);
2015
2016 raw_spin_unlock(&old_base->lock);
2017 raw_spin_unlock_irq(&new_base->lock);
2018 put_cpu_ptr(&timer_bases);
2019 }
2020 return 0;
2021}
2022
2023#endif /* CONFIG_HOTPLUG_CPU */
2024
2025static void __init init_timer_cpu(int cpu)
2026{
2027 struct timer_base *base;
2028 int i;
2029
2030 for (i = 0; i < NR_BASES; i++) {
2031 base = per_cpu_ptr(&timer_bases[i], cpu);
2032 base->cpu = cpu;
2033 raw_spin_lock_init(&base->lock);
2034 base->clk = jiffies;
David Brazdil0f672f62019-12-10 10:32:29 +00002035 timer_base_init_expiry_lock(base);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002036 }
2037}
2038
2039static void __init init_timer_cpus(void)
2040{
2041 int cpu;
2042
2043 for_each_possible_cpu(cpu)
2044 init_timer_cpu(cpu);
2045}
2046
2047void __init init_timers(void)
2048{
2049 init_timer_cpus();
2050 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2051}
2052
2053/**
2054 * msleep - sleep safely even with waitqueue interruptions
2055 * @msecs: Time in milliseconds to sleep for
2056 */
2057void msleep(unsigned int msecs)
2058{
2059 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2060
2061 while (timeout)
2062 timeout = schedule_timeout_uninterruptible(timeout);
2063}
2064
2065EXPORT_SYMBOL(msleep);
2066
2067/**
2068 * msleep_interruptible - sleep waiting for signals
2069 * @msecs: Time in milliseconds to sleep for
2070 */
2071unsigned long msleep_interruptible(unsigned int msecs)
2072{
2073 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2074
2075 while (timeout && !signal_pending(current))
2076 timeout = schedule_timeout_interruptible(timeout);
2077 return jiffies_to_msecs(timeout);
2078}
2079
2080EXPORT_SYMBOL(msleep_interruptible);
2081
2082/**
2083 * usleep_range - Sleep for an approximate time
2084 * @min: Minimum time in usecs to sleep
2085 * @max: Maximum time in usecs to sleep
2086 *
2087 * In non-atomic context where the exact wakeup time is flexible, use
2088 * usleep_range() instead of udelay(). The sleep improves responsiveness
2089 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2090 * power usage by allowing hrtimers to take advantage of an already-
2091 * scheduled interrupt instead of scheduling a new one just for this sleep.
2092 */
2093void __sched usleep_range(unsigned long min, unsigned long max)
2094{
2095 ktime_t exp = ktime_add_us(ktime_get(), min);
2096 u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2097
2098 for (;;) {
2099 __set_current_state(TASK_UNINTERRUPTIBLE);
2100 /* Do not return before the requested sleep time has elapsed */
2101 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2102 break;
2103 }
2104}
2105EXPORT_SYMBOL(usleep_range);