blob: b339ff93df99759b3449f7e8e0f0bb04ab269b1a [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006#include <linux/iversion.h>
7
8#include "xfs.h"
9#include "xfs_fs.h"
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_sb.h"
15#include "xfs_mount.h"
16#include "xfs_defer.h"
17#include "xfs_inode.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000018#include "xfs_dir2.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000019#include "xfs_attr.h"
20#include "xfs_trans_space.h"
21#include "xfs_trans.h"
22#include "xfs_buf_item.h"
23#include "xfs_inode_item.h"
24#include "xfs_ialloc.h"
25#include "xfs_bmap.h"
26#include "xfs_bmap_util.h"
27#include "xfs_errortag.h"
28#include "xfs_error.h"
29#include "xfs_quota.h"
30#include "xfs_filestream.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000031#include "xfs_trace.h"
32#include "xfs_icache.h"
33#include "xfs_symlink.h"
34#include "xfs_trans_priv.h"
35#include "xfs_log.h"
36#include "xfs_bmap_btree.h"
37#include "xfs_reflink.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000038
39kmem_zone_t *xfs_inode_zone;
40
41/*
42 * Used in xfs_itruncate_extents(). This is the maximum number of extents
43 * freed from a file in a single transaction.
44 */
45#define XFS_ITRUNC_MAX_EXTENTS 2
46
47STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
48STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
49STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
50
51/*
52 * helper function to extract extent size hint from inode
53 */
54xfs_extlen_t
55xfs_get_extsz_hint(
56 struct xfs_inode *ip)
57{
58 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
59 return ip->i_d.di_extsize;
60 if (XFS_IS_REALTIME_INODE(ip))
61 return ip->i_mount->m_sb.sb_rextsize;
62 return 0;
63}
64
65/*
66 * Helper function to extract CoW extent size hint from inode.
67 * Between the extent size hint and the CoW extent size hint, we
68 * return the greater of the two. If the value is zero (automatic),
69 * use the default size.
70 */
71xfs_extlen_t
72xfs_get_cowextsz_hint(
73 struct xfs_inode *ip)
74{
75 xfs_extlen_t a, b;
76
77 a = 0;
78 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
79 a = ip->i_d.di_cowextsize;
80 b = xfs_get_extsz_hint(ip);
81
82 a = max(a, b);
83 if (a == 0)
84 return XFS_DEFAULT_COWEXTSZ_HINT;
85 return a;
86}
87
88/*
89 * These two are wrapper routines around the xfs_ilock() routine used to
90 * centralize some grungy code. They are used in places that wish to lock the
91 * inode solely for reading the extents. The reason these places can't just
92 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
93 * bringing in of the extents from disk for a file in b-tree format. If the
94 * inode is in b-tree format, then we need to lock the inode exclusively until
95 * the extents are read in. Locking it exclusively all the time would limit
96 * our parallelism unnecessarily, though. What we do instead is check to see
97 * if the extents have been read in yet, and only lock the inode exclusively
98 * if they have not.
99 *
100 * The functions return a value which should be given to the corresponding
101 * xfs_iunlock() call.
102 */
103uint
104xfs_ilock_data_map_shared(
105 struct xfs_inode *ip)
106{
107 uint lock_mode = XFS_ILOCK_SHARED;
108
109 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
110 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
111 lock_mode = XFS_ILOCK_EXCL;
112 xfs_ilock(ip, lock_mode);
113 return lock_mode;
114}
115
116uint
117xfs_ilock_attr_map_shared(
118 struct xfs_inode *ip)
119{
120 uint lock_mode = XFS_ILOCK_SHARED;
121
122 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
123 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
124 lock_mode = XFS_ILOCK_EXCL;
125 xfs_ilock(ip, lock_mode);
126 return lock_mode;
127}
128
129/*
130 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
131 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
132 * various combinations of the locks to be obtained.
133 *
134 * The 3 locks should always be ordered so that the IO lock is obtained first,
135 * the mmap lock second and the ilock last in order to prevent deadlock.
136 *
137 * Basic locking order:
138 *
139 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
140 *
141 * mmap_sem locking order:
142 *
143 * i_rwsem -> page lock -> mmap_sem
144 * mmap_sem -> i_mmap_lock -> page_lock
145 *
146 * The difference in mmap_sem locking order mean that we cannot hold the
147 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
148 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
149 * in get_user_pages() to map the user pages into the kernel address space for
150 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
151 * page faults already hold the mmap_sem.
152 *
153 * Hence to serialise fully against both syscall and mmap based IO, we need to
154 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
155 * taken in places where we need to invalidate the page cache in a race
156 * free manner (e.g. truncate, hole punch and other extent manipulation
157 * functions).
158 */
159void
160xfs_ilock(
161 xfs_inode_t *ip,
162 uint lock_flags)
163{
164 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
165
166 /*
167 * You can't set both SHARED and EXCL for the same lock,
168 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
169 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
170 */
171 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
172 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
173 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
174 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
175 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
176 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
177 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
178
179 if (lock_flags & XFS_IOLOCK_EXCL) {
180 down_write_nested(&VFS_I(ip)->i_rwsem,
181 XFS_IOLOCK_DEP(lock_flags));
182 } else if (lock_flags & XFS_IOLOCK_SHARED) {
183 down_read_nested(&VFS_I(ip)->i_rwsem,
184 XFS_IOLOCK_DEP(lock_flags));
185 }
186
187 if (lock_flags & XFS_MMAPLOCK_EXCL)
188 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
189 else if (lock_flags & XFS_MMAPLOCK_SHARED)
190 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
191
192 if (lock_flags & XFS_ILOCK_EXCL)
193 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
194 else if (lock_flags & XFS_ILOCK_SHARED)
195 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
196}
197
198/*
199 * This is just like xfs_ilock(), except that the caller
200 * is guaranteed not to sleep. It returns 1 if it gets
201 * the requested locks and 0 otherwise. If the IO lock is
202 * obtained but the inode lock cannot be, then the IO lock
203 * is dropped before returning.
204 *
205 * ip -- the inode being locked
206 * lock_flags -- this parameter indicates the inode's locks to be
207 * to be locked. See the comment for xfs_ilock() for a list
208 * of valid values.
209 */
210int
211xfs_ilock_nowait(
212 xfs_inode_t *ip,
213 uint lock_flags)
214{
215 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
216
217 /*
218 * You can't set both SHARED and EXCL for the same lock,
219 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
220 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
221 */
222 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
223 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
224 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
225 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
226 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
227 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
228 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
229
230 if (lock_flags & XFS_IOLOCK_EXCL) {
231 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
232 goto out;
233 } else if (lock_flags & XFS_IOLOCK_SHARED) {
234 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
235 goto out;
236 }
237
238 if (lock_flags & XFS_MMAPLOCK_EXCL) {
239 if (!mrtryupdate(&ip->i_mmaplock))
240 goto out_undo_iolock;
241 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
242 if (!mrtryaccess(&ip->i_mmaplock))
243 goto out_undo_iolock;
244 }
245
246 if (lock_flags & XFS_ILOCK_EXCL) {
247 if (!mrtryupdate(&ip->i_lock))
248 goto out_undo_mmaplock;
249 } else if (lock_flags & XFS_ILOCK_SHARED) {
250 if (!mrtryaccess(&ip->i_lock))
251 goto out_undo_mmaplock;
252 }
253 return 1;
254
255out_undo_mmaplock:
256 if (lock_flags & XFS_MMAPLOCK_EXCL)
257 mrunlock_excl(&ip->i_mmaplock);
258 else if (lock_flags & XFS_MMAPLOCK_SHARED)
259 mrunlock_shared(&ip->i_mmaplock);
260out_undo_iolock:
261 if (lock_flags & XFS_IOLOCK_EXCL)
262 up_write(&VFS_I(ip)->i_rwsem);
263 else if (lock_flags & XFS_IOLOCK_SHARED)
264 up_read(&VFS_I(ip)->i_rwsem);
265out:
266 return 0;
267}
268
269/*
270 * xfs_iunlock() is used to drop the inode locks acquired with
271 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
272 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
273 * that we know which locks to drop.
274 *
275 * ip -- the inode being unlocked
276 * lock_flags -- this parameter indicates the inode's locks to be
277 * to be unlocked. See the comment for xfs_ilock() for a list
278 * of valid values for this parameter.
279 *
280 */
281void
282xfs_iunlock(
283 xfs_inode_t *ip,
284 uint lock_flags)
285{
286 /*
287 * You can't set both SHARED and EXCL for the same lock,
288 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
289 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
290 */
291 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
292 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
293 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
294 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
295 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
296 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
297 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
298 ASSERT(lock_flags != 0);
299
300 if (lock_flags & XFS_IOLOCK_EXCL)
301 up_write(&VFS_I(ip)->i_rwsem);
302 else if (lock_flags & XFS_IOLOCK_SHARED)
303 up_read(&VFS_I(ip)->i_rwsem);
304
305 if (lock_flags & XFS_MMAPLOCK_EXCL)
306 mrunlock_excl(&ip->i_mmaplock);
307 else if (lock_flags & XFS_MMAPLOCK_SHARED)
308 mrunlock_shared(&ip->i_mmaplock);
309
310 if (lock_flags & XFS_ILOCK_EXCL)
311 mrunlock_excl(&ip->i_lock);
312 else if (lock_flags & XFS_ILOCK_SHARED)
313 mrunlock_shared(&ip->i_lock);
314
315 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
316}
317
318/*
319 * give up write locks. the i/o lock cannot be held nested
320 * if it is being demoted.
321 */
322void
323xfs_ilock_demote(
324 xfs_inode_t *ip,
325 uint lock_flags)
326{
327 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
328 ASSERT((lock_flags &
329 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
330
331 if (lock_flags & XFS_ILOCK_EXCL)
332 mrdemote(&ip->i_lock);
333 if (lock_flags & XFS_MMAPLOCK_EXCL)
334 mrdemote(&ip->i_mmaplock);
335 if (lock_flags & XFS_IOLOCK_EXCL)
336 downgrade_write(&VFS_I(ip)->i_rwsem);
337
338 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
339}
340
341#if defined(DEBUG) || defined(XFS_WARN)
342int
343xfs_isilocked(
344 xfs_inode_t *ip,
345 uint lock_flags)
346{
347 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
348 if (!(lock_flags & XFS_ILOCK_SHARED))
349 return !!ip->i_lock.mr_writer;
350 return rwsem_is_locked(&ip->i_lock.mr_lock);
351 }
352
353 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
354 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
355 return !!ip->i_mmaplock.mr_writer;
356 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
357 }
358
359 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
360 if (!(lock_flags & XFS_IOLOCK_SHARED))
361 return !debug_locks ||
362 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
363 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
364 }
365
366 ASSERT(0);
367 return 0;
368}
369#endif
370
371/*
372 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
373 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
374 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
375 * errors and warnings.
376 */
377#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
378static bool
379xfs_lockdep_subclass_ok(
380 int subclass)
381{
382 return subclass < MAX_LOCKDEP_SUBCLASSES;
383}
384#else
385#define xfs_lockdep_subclass_ok(subclass) (true)
386#endif
387
388/*
389 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
390 * value. This can be called for any type of inode lock combination, including
391 * parent locking. Care must be taken to ensure we don't overrun the subclass
392 * storage fields in the class mask we build.
393 */
394static inline int
395xfs_lock_inumorder(int lock_mode, int subclass)
396{
397 int class = 0;
398
399 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
400 XFS_ILOCK_RTSUM)));
401 ASSERT(xfs_lockdep_subclass_ok(subclass));
402
403 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
404 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
405 class += subclass << XFS_IOLOCK_SHIFT;
406 }
407
408 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
409 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
410 class += subclass << XFS_MMAPLOCK_SHIFT;
411 }
412
413 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
414 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
415 class += subclass << XFS_ILOCK_SHIFT;
416 }
417
418 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
419}
420
421/*
422 * The following routine will lock n inodes in exclusive mode. We assume the
423 * caller calls us with the inodes in i_ino order.
424 *
425 * We need to detect deadlock where an inode that we lock is in the AIL and we
426 * start waiting for another inode that is locked by a thread in a long running
427 * transaction (such as truncate). This can result in deadlock since the long
428 * running trans might need to wait for the inode we just locked in order to
429 * push the tail and free space in the log.
430 *
431 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
432 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
433 * lock more than one at a time, lockdep will report false positives saying we
434 * have violated locking orders.
435 */
436static void
437xfs_lock_inodes(
David Brazdil0f672f62019-12-10 10:32:29 +0000438 struct xfs_inode **ips,
439 int inodes,
440 uint lock_mode)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000441{
David Brazdil0f672f62019-12-10 10:32:29 +0000442 int attempts = 0, i, j, try_lock;
443 struct xfs_log_item *lp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000444
445 /*
446 * Currently supports between 2 and 5 inodes with exclusive locking. We
447 * support an arbitrary depth of locking here, but absolute limits on
448 * inodes depend on the the type of locking and the limits placed by
449 * lockdep annotations in xfs_lock_inumorder. These are all checked by
450 * the asserts.
451 */
452 ASSERT(ips && inodes >= 2 && inodes <= 5);
453 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
454 XFS_ILOCK_EXCL));
455 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
456 XFS_ILOCK_SHARED)));
457 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
461
462 if (lock_mode & XFS_IOLOCK_EXCL) {
463 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
466
467 try_lock = 0;
468 i = 0;
469again:
470 for (; i < inodes; i++) {
471 ASSERT(ips[i]);
472
473 if (i && (ips[i] == ips[i - 1])) /* Already locked */
474 continue;
475
476 /*
477 * If try_lock is not set yet, make sure all locked inodes are
478 * not in the AIL. If any are, set try_lock to be used later.
479 */
480 if (!try_lock) {
481 for (j = (i - 1); j >= 0 && !try_lock; j--) {
David Brazdil0f672f62019-12-10 10:32:29 +0000482 lp = &ips[j]->i_itemp->ili_item;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000483 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
484 try_lock++;
485 }
486 }
487
488 /*
489 * If any of the previous locks we have locked is in the AIL,
490 * we must TRY to get the second and subsequent locks. If
491 * we can't get any, we must release all we have
492 * and try again.
493 */
494 if (!try_lock) {
495 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 continue;
497 }
498
499 /* try_lock means we have an inode locked that is in the AIL. */
500 ASSERT(i != 0);
501 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 continue;
503
504 /*
505 * Unlock all previous guys and try again. xfs_iunlock will try
506 * to push the tail if the inode is in the AIL.
507 */
508 attempts++;
509 for (j = i - 1; j >= 0; j--) {
510 /*
511 * Check to see if we've already unlocked this one. Not
512 * the first one going back, and the inode ptr is the
513 * same.
514 */
515 if (j != (i - 1) && ips[j] == ips[j + 1])
516 continue;
517
518 xfs_iunlock(ips[j], lock_mode);
519 }
520
521 if ((attempts % 5) == 0) {
522 delay(1); /* Don't just spin the CPU */
523 }
524 i = 0;
525 try_lock = 0;
526 goto again;
527 }
528}
529
530/*
531 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
532 * the mmaplock or the ilock, but not more than one type at a time. If we lock
533 * more than one at a time, lockdep will report false positives saying we have
534 * violated locking orders. The iolock must be double-locked separately since
535 * we use i_rwsem for that. We now support taking one lock EXCL and the other
536 * SHARED.
537 */
538void
539xfs_lock_two_inodes(
540 struct xfs_inode *ip0,
541 uint ip0_mode,
542 struct xfs_inode *ip1,
543 uint ip1_mode)
544{
545 struct xfs_inode *temp;
546 uint mode_temp;
547 int attempts = 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000548 struct xfs_log_item *lp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000549
550 ASSERT(hweight32(ip0_mode) == 1);
551 ASSERT(hweight32(ip1_mode) == 1);
552 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
553 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
554 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
555 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
556 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
557 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
558 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
559 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562
563 ASSERT(ip0->i_ino != ip1->i_ino);
564
565 if (ip0->i_ino > ip1->i_ino) {
566 temp = ip0;
567 ip0 = ip1;
568 ip1 = temp;
569 mode_temp = ip0_mode;
570 ip0_mode = ip1_mode;
571 ip1_mode = mode_temp;
572 }
573
574 again:
575 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
576
577 /*
578 * If the first lock we have locked is in the AIL, we must TRY to get
579 * the second lock. If we can't get it, we must release the first one
580 * and try again.
581 */
David Brazdil0f672f62019-12-10 10:32:29 +0000582 lp = &ip0->i_itemp->ili_item;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000583 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
584 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
585 xfs_iunlock(ip0, ip0_mode);
586 if ((++attempts % 5) == 0)
587 delay(1); /* Don't just spin the CPU */
588 goto again;
589 }
590 } else {
591 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
592 }
593}
594
595void
596__xfs_iflock(
597 struct xfs_inode *ip)
598{
599 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
601
602 do {
603 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
604 if (xfs_isiflocked(ip))
605 io_schedule();
606 } while (!xfs_iflock_nowait(ip));
607
608 finish_wait(wq, &wait.wq_entry);
609}
610
611STATIC uint
612_xfs_dic2xflags(
613 uint16_t di_flags,
614 uint64_t di_flags2,
615 bool has_attr)
616{
617 uint flags = 0;
618
619 if (di_flags & XFS_DIFLAG_ANY) {
620 if (di_flags & XFS_DIFLAG_REALTIME)
621 flags |= FS_XFLAG_REALTIME;
622 if (di_flags & XFS_DIFLAG_PREALLOC)
623 flags |= FS_XFLAG_PREALLOC;
624 if (di_flags & XFS_DIFLAG_IMMUTABLE)
625 flags |= FS_XFLAG_IMMUTABLE;
626 if (di_flags & XFS_DIFLAG_APPEND)
627 flags |= FS_XFLAG_APPEND;
628 if (di_flags & XFS_DIFLAG_SYNC)
629 flags |= FS_XFLAG_SYNC;
630 if (di_flags & XFS_DIFLAG_NOATIME)
631 flags |= FS_XFLAG_NOATIME;
632 if (di_flags & XFS_DIFLAG_NODUMP)
633 flags |= FS_XFLAG_NODUMP;
634 if (di_flags & XFS_DIFLAG_RTINHERIT)
635 flags |= FS_XFLAG_RTINHERIT;
636 if (di_flags & XFS_DIFLAG_PROJINHERIT)
637 flags |= FS_XFLAG_PROJINHERIT;
638 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
639 flags |= FS_XFLAG_NOSYMLINKS;
640 if (di_flags & XFS_DIFLAG_EXTSIZE)
641 flags |= FS_XFLAG_EXTSIZE;
642 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
643 flags |= FS_XFLAG_EXTSZINHERIT;
644 if (di_flags & XFS_DIFLAG_NODEFRAG)
645 flags |= FS_XFLAG_NODEFRAG;
646 if (di_flags & XFS_DIFLAG_FILESTREAM)
647 flags |= FS_XFLAG_FILESTREAM;
648 }
649
650 if (di_flags2 & XFS_DIFLAG2_ANY) {
651 if (di_flags2 & XFS_DIFLAG2_DAX)
652 flags |= FS_XFLAG_DAX;
653 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
654 flags |= FS_XFLAG_COWEXTSIZE;
655 }
656
657 if (has_attr)
658 flags |= FS_XFLAG_HASATTR;
659
660 return flags;
661}
662
663uint
664xfs_ip2xflags(
665 struct xfs_inode *ip)
666{
667 struct xfs_icdinode *dic = &ip->i_d;
668
669 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
670}
671
672/*
673 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
674 * is allowed, otherwise it has to be an exact match. If a CI match is found,
675 * ci_name->name will point to a the actual name (caller must free) or
676 * will be set to NULL if an exact match is found.
677 */
678int
679xfs_lookup(
680 xfs_inode_t *dp,
681 struct xfs_name *name,
682 xfs_inode_t **ipp,
683 struct xfs_name *ci_name)
684{
685 xfs_ino_t inum;
686 int error;
687
688 trace_xfs_lookup(dp, name);
689
690 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
691 return -EIO;
692
693 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
694 if (error)
695 goto out_unlock;
696
697 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
698 if (error)
699 goto out_free_name;
700
701 return 0;
702
703out_free_name:
704 if (ci_name)
705 kmem_free(ci_name->name);
706out_unlock:
707 *ipp = NULL;
708 return error;
709}
710
711/*
712 * Allocate an inode on disk and return a copy of its in-core version.
713 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
714 * appropriately within the inode. The uid and gid for the inode are
715 * set according to the contents of the given cred structure.
716 *
717 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
718 * has a free inode available, call xfs_iget() to obtain the in-core
719 * version of the allocated inode. Finally, fill in the inode and
720 * log its initial contents. In this case, ialloc_context would be
721 * set to NULL.
722 *
723 * If xfs_dialloc() does not have an available inode, it will replenish
724 * its supply by doing an allocation. Since we can only do one
725 * allocation within a transaction without deadlocks, we must commit
726 * the current transaction before returning the inode itself.
727 * In this case, therefore, we will set ialloc_context and return.
728 * The caller should then commit the current transaction, start a new
729 * transaction, and call xfs_ialloc() again to actually get the inode.
730 *
731 * To ensure that some other process does not grab the inode that
732 * was allocated during the first call to xfs_ialloc(), this routine
733 * also returns the [locked] bp pointing to the head of the freelist
734 * as ialloc_context. The caller should hold this buffer across
735 * the commit and pass it back into this routine on the second call.
736 *
737 * If we are allocating quota inodes, we do not have a parent inode
738 * to attach to or associate with (i.e. pip == NULL) because they
739 * are not linked into the directory structure - they are attached
740 * directly to the superblock - and so have no parent.
741 */
742static int
743xfs_ialloc(
744 xfs_trans_t *tp,
745 xfs_inode_t *pip,
746 umode_t mode,
747 xfs_nlink_t nlink,
748 dev_t rdev,
749 prid_t prid,
750 xfs_buf_t **ialloc_context,
751 xfs_inode_t **ipp)
752{
753 struct xfs_mount *mp = tp->t_mountp;
754 xfs_ino_t ino;
755 xfs_inode_t *ip;
756 uint flags;
757 int error;
758 struct timespec64 tv;
759 struct inode *inode;
760
761 /*
762 * Call the space management code to pick
763 * the on-disk inode to be allocated.
764 */
765 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
766 ialloc_context, &ino);
767 if (error)
768 return error;
769 if (*ialloc_context || ino == NULLFSINO) {
770 *ipp = NULL;
771 return 0;
772 }
773 ASSERT(*ialloc_context == NULL);
774
775 /*
776 * Protect against obviously corrupt allocation btree records. Later
777 * xfs_iget checks will catch re-allocation of other active in-memory
778 * and on-disk inodes. If we don't catch reallocating the parent inode
779 * here we will deadlock in xfs_iget() so we have to do these checks
780 * first.
781 */
782 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
783 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
784 return -EFSCORRUPTED;
785 }
786
787 /*
788 * Get the in-core inode with the lock held exclusively.
789 * This is because we're setting fields here we need
790 * to prevent others from looking at until we're done.
791 */
792 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
793 XFS_ILOCK_EXCL, &ip);
794 if (error)
795 return error;
796 ASSERT(ip != NULL);
797 inode = VFS_I(ip);
798
799 /*
800 * We always convert v1 inodes to v2 now - we only support filesystems
801 * with >= v2 inode capability, so there is no reason for ever leaving
802 * an inode in v1 format.
803 */
804 if (ip->i_d.di_version == 1)
805 ip->i_d.di_version = 2;
806
807 inode->i_mode = mode;
808 set_nlink(inode, nlink);
809 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
810 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
811 inode->i_rdev = rdev;
812 xfs_set_projid(ip, prid);
813
814 if (pip && XFS_INHERIT_GID(pip)) {
815 ip->i_d.di_gid = pip->i_d.di_gid;
816 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
817 inode->i_mode |= S_ISGID;
818 }
819
820 /*
821 * If the group ID of the new file does not match the effective group
822 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
823 * (and only if the irix_sgid_inherit compatibility variable is set).
824 */
825 if ((irix_sgid_inherit) &&
826 (inode->i_mode & S_ISGID) &&
827 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
828 inode->i_mode &= ~S_ISGID;
829
830 ip->i_d.di_size = 0;
831 ip->i_d.di_nextents = 0;
832 ASSERT(ip->i_d.di_nblocks == 0);
833
834 tv = current_time(inode);
835 inode->i_mtime = tv;
836 inode->i_atime = tv;
837 inode->i_ctime = tv;
838
839 ip->i_d.di_extsize = 0;
840 ip->i_d.di_dmevmask = 0;
841 ip->i_d.di_dmstate = 0;
842 ip->i_d.di_flags = 0;
843
844 if (ip->i_d.di_version == 3) {
845 inode_set_iversion(inode, 1);
846 ip->i_d.di_flags2 = 0;
847 ip->i_d.di_cowextsize = 0;
848 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
849 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
850 }
851
852
853 flags = XFS_ILOG_CORE;
854 switch (mode & S_IFMT) {
855 case S_IFIFO:
856 case S_IFCHR:
857 case S_IFBLK:
858 case S_IFSOCK:
859 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
860 ip->i_df.if_flags = 0;
861 flags |= XFS_ILOG_DEV;
862 break;
863 case S_IFREG:
864 case S_IFDIR:
865 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
866 uint di_flags = 0;
867
868 if (S_ISDIR(mode)) {
869 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
870 di_flags |= XFS_DIFLAG_RTINHERIT;
871 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
872 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
873 ip->i_d.di_extsize = pip->i_d.di_extsize;
874 }
875 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
876 di_flags |= XFS_DIFLAG_PROJINHERIT;
877 } else if (S_ISREG(mode)) {
878 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
879 di_flags |= XFS_DIFLAG_REALTIME;
880 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
881 di_flags |= XFS_DIFLAG_EXTSIZE;
882 ip->i_d.di_extsize = pip->i_d.di_extsize;
883 }
884 }
885 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
886 xfs_inherit_noatime)
887 di_flags |= XFS_DIFLAG_NOATIME;
888 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
889 xfs_inherit_nodump)
890 di_flags |= XFS_DIFLAG_NODUMP;
891 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
892 xfs_inherit_sync)
893 di_flags |= XFS_DIFLAG_SYNC;
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
895 xfs_inherit_nosymlinks)
896 di_flags |= XFS_DIFLAG_NOSYMLINKS;
897 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
898 xfs_inherit_nodefrag)
899 di_flags |= XFS_DIFLAG_NODEFRAG;
900 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
901 di_flags |= XFS_DIFLAG_FILESTREAM;
902
903 ip->i_d.di_flags |= di_flags;
904 }
905 if (pip &&
906 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
907 pip->i_d.di_version == 3 &&
908 ip->i_d.di_version == 3) {
909 uint64_t di_flags2 = 0;
910
911 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
912 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
913 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
914 }
915 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
916 di_flags2 |= XFS_DIFLAG2_DAX;
917
918 ip->i_d.di_flags2 |= di_flags2;
919 }
920 /* FALLTHROUGH */
921 case S_IFLNK:
922 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
923 ip->i_df.if_flags = XFS_IFEXTENTS;
924 ip->i_df.if_bytes = 0;
925 ip->i_df.if_u1.if_root = NULL;
926 break;
927 default:
928 ASSERT(0);
929 }
930 /*
931 * Attribute fork settings for new inode.
932 */
933 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
934 ip->i_d.di_anextents = 0;
935
936 /*
937 * Log the new values stuffed into the inode.
938 */
939 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
940 xfs_trans_log_inode(tp, ip, flags);
941
942 /* now that we have an i_mode we can setup the inode structure */
943 xfs_setup_inode(ip);
944
945 *ipp = ip;
946 return 0;
947}
948
949/*
950 * Allocates a new inode from disk and return a pointer to the
951 * incore copy. This routine will internally commit the current
952 * transaction and allocate a new one if the Space Manager needed
953 * to do an allocation to replenish the inode free-list.
954 *
955 * This routine is designed to be called from xfs_create and
956 * xfs_create_dir.
957 *
958 */
959int
960xfs_dir_ialloc(
961 xfs_trans_t **tpp, /* input: current transaction;
962 output: may be a new transaction. */
963 xfs_inode_t *dp, /* directory within whose allocate
964 the inode. */
965 umode_t mode,
966 xfs_nlink_t nlink,
967 dev_t rdev,
968 prid_t prid, /* project id */
969 xfs_inode_t **ipp) /* pointer to inode; it will be
970 locked. */
971{
972 xfs_trans_t *tp;
973 xfs_inode_t *ip;
974 xfs_buf_t *ialloc_context = NULL;
975 int code;
976 void *dqinfo;
977 uint tflags;
978
979 tp = *tpp;
980 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
981
982 /*
983 * xfs_ialloc will return a pointer to an incore inode if
984 * the Space Manager has an available inode on the free
985 * list. Otherwise, it will do an allocation and replenish
986 * the freelist. Since we can only do one allocation per
987 * transaction without deadlocks, we will need to commit the
988 * current transaction and start a new one. We will then
989 * need to call xfs_ialloc again to get the inode.
990 *
991 * If xfs_ialloc did an allocation to replenish the freelist,
992 * it returns the bp containing the head of the freelist as
993 * ialloc_context. We will hold a lock on it across the
994 * transaction commit so that no other process can steal
995 * the inode(s) that we've just allocated.
996 */
997 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
998 &ip);
999
1000 /*
1001 * Return an error if we were unable to allocate a new inode.
1002 * This should only happen if we run out of space on disk or
1003 * encounter a disk error.
1004 */
1005 if (code) {
1006 *ipp = NULL;
1007 return code;
1008 }
1009 if (!ialloc_context && !ip) {
1010 *ipp = NULL;
1011 return -ENOSPC;
1012 }
1013
1014 /*
1015 * If the AGI buffer is non-NULL, then we were unable to get an
1016 * inode in one operation. We need to commit the current
1017 * transaction and call xfs_ialloc() again. It is guaranteed
1018 * to succeed the second time.
1019 */
1020 if (ialloc_context) {
1021 /*
1022 * Normally, xfs_trans_commit releases all the locks.
1023 * We call bhold to hang on to the ialloc_context across
1024 * the commit. Holding this buffer prevents any other
1025 * processes from doing any allocations in this
1026 * allocation group.
1027 */
1028 xfs_trans_bhold(tp, ialloc_context);
1029
1030 /*
1031 * We want the quota changes to be associated with the next
1032 * transaction, NOT this one. So, detach the dqinfo from this
1033 * and attach it to the next transaction.
1034 */
1035 dqinfo = NULL;
1036 tflags = 0;
1037 if (tp->t_dqinfo) {
1038 dqinfo = (void *)tp->t_dqinfo;
1039 tp->t_dqinfo = NULL;
1040 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1041 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1042 }
1043
1044 code = xfs_trans_roll(&tp);
1045
1046 /*
1047 * Re-attach the quota info that we detached from prev trx.
1048 */
1049 if (dqinfo) {
1050 tp->t_dqinfo = dqinfo;
1051 tp->t_flags |= tflags;
1052 }
1053
1054 if (code) {
1055 xfs_buf_relse(ialloc_context);
1056 *tpp = tp;
1057 *ipp = NULL;
1058 return code;
1059 }
1060 xfs_trans_bjoin(tp, ialloc_context);
1061
1062 /*
1063 * Call ialloc again. Since we've locked out all
1064 * other allocations in this allocation group,
1065 * this call should always succeed.
1066 */
1067 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1068 &ialloc_context, &ip);
1069
1070 /*
1071 * If we get an error at this point, return to the caller
1072 * so that the current transaction can be aborted.
1073 */
1074 if (code) {
1075 *tpp = tp;
1076 *ipp = NULL;
1077 return code;
1078 }
1079 ASSERT(!ialloc_context && ip);
1080
1081 }
1082
1083 *ipp = ip;
1084 *tpp = tp;
1085
1086 return 0;
1087}
1088
1089/*
1090 * Decrement the link count on an inode & log the change. If this causes the
1091 * link count to go to zero, move the inode to AGI unlinked list so that it can
1092 * be freed when the last active reference goes away via xfs_inactive().
1093 */
1094static int /* error */
1095xfs_droplink(
1096 xfs_trans_t *tp,
1097 xfs_inode_t *ip)
1098{
1099 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1100
1101 drop_nlink(VFS_I(ip));
1102 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1103
1104 if (VFS_I(ip)->i_nlink)
1105 return 0;
1106
1107 return xfs_iunlink(tp, ip);
1108}
1109
1110/*
1111 * Increment the link count on an inode & log the change.
1112 */
David Brazdil0f672f62019-12-10 10:32:29 +00001113static void
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001114xfs_bumplink(
1115 xfs_trans_t *tp,
1116 xfs_inode_t *ip)
1117{
1118 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1119
1120 ASSERT(ip->i_d.di_version > 1);
1121 inc_nlink(VFS_I(ip));
1122 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001123}
1124
1125int
1126xfs_create(
1127 xfs_inode_t *dp,
1128 struct xfs_name *name,
1129 umode_t mode,
1130 dev_t rdev,
1131 xfs_inode_t **ipp)
1132{
1133 int is_dir = S_ISDIR(mode);
1134 struct xfs_mount *mp = dp->i_mount;
1135 struct xfs_inode *ip = NULL;
1136 struct xfs_trans *tp = NULL;
1137 int error;
1138 bool unlock_dp_on_error = false;
1139 prid_t prid;
1140 struct xfs_dquot *udqp = NULL;
1141 struct xfs_dquot *gdqp = NULL;
1142 struct xfs_dquot *pdqp = NULL;
1143 struct xfs_trans_res *tres;
1144 uint resblks;
1145
1146 trace_xfs_create(dp, name);
1147
1148 if (XFS_FORCED_SHUTDOWN(mp))
1149 return -EIO;
1150
1151 prid = xfs_get_initial_prid(dp);
1152
1153 /*
1154 * Make sure that we have allocated dquot(s) on disk.
1155 */
1156 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1157 xfs_kgid_to_gid(current_fsgid()), prid,
1158 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1159 &udqp, &gdqp, &pdqp);
1160 if (error)
1161 return error;
1162
1163 if (is_dir) {
1164 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1165 tres = &M_RES(mp)->tr_mkdir;
1166 } else {
1167 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1168 tres = &M_RES(mp)->tr_create;
1169 }
1170
1171 /*
1172 * Initially assume that the file does not exist and
1173 * reserve the resources for that case. If that is not
1174 * the case we'll drop the one we have and get a more
1175 * appropriate transaction later.
1176 */
1177 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1178 if (error == -ENOSPC) {
1179 /* flush outstanding delalloc blocks and retry */
1180 xfs_flush_inodes(mp);
1181 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1182 }
1183 if (error)
1184 goto out_release_inode;
1185
1186 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1187 unlock_dp_on_error = true;
1188
1189 /*
1190 * Reserve disk quota and the inode.
1191 */
1192 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1193 pdqp, resblks, 1, 0);
1194 if (error)
1195 goto out_trans_cancel;
1196
1197 /*
1198 * A newly created regular or special file just has one directory
1199 * entry pointing to them, but a directory also the "." entry
1200 * pointing to itself.
1201 */
1202 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1203 if (error)
1204 goto out_trans_cancel;
1205
1206 /*
1207 * Now we join the directory inode to the transaction. We do not do it
1208 * earlier because xfs_dir_ialloc might commit the previous transaction
1209 * (and release all the locks). An error from here on will result in
1210 * the transaction cancel unlocking dp so don't do it explicitly in the
1211 * error path.
1212 */
1213 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1214 unlock_dp_on_error = false;
1215
1216 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1217 resblks ?
1218 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1219 if (error) {
1220 ASSERT(error != -ENOSPC);
1221 goto out_trans_cancel;
1222 }
1223 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1224 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1225
1226 if (is_dir) {
1227 error = xfs_dir_init(tp, ip, dp);
1228 if (error)
1229 goto out_trans_cancel;
1230
David Brazdil0f672f62019-12-10 10:32:29 +00001231 xfs_bumplink(tp, dp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001232 }
1233
1234 /*
1235 * If this is a synchronous mount, make sure that the
1236 * create transaction goes to disk before returning to
1237 * the user.
1238 */
1239 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1240 xfs_trans_set_sync(tp);
1241
1242 /*
1243 * Attach the dquot(s) to the inodes and modify them incore.
1244 * These ids of the inode couldn't have changed since the new
1245 * inode has been locked ever since it was created.
1246 */
1247 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1248
1249 error = xfs_trans_commit(tp);
1250 if (error)
1251 goto out_release_inode;
1252
1253 xfs_qm_dqrele(udqp);
1254 xfs_qm_dqrele(gdqp);
1255 xfs_qm_dqrele(pdqp);
1256
1257 *ipp = ip;
1258 return 0;
1259
1260 out_trans_cancel:
1261 xfs_trans_cancel(tp);
1262 out_release_inode:
1263 /*
1264 * Wait until after the current transaction is aborted to finish the
1265 * setup of the inode and release the inode. This prevents recursive
1266 * transactions and deadlocks from xfs_inactive.
1267 */
1268 if (ip) {
1269 xfs_finish_inode_setup(ip);
1270 xfs_irele(ip);
1271 }
1272
1273 xfs_qm_dqrele(udqp);
1274 xfs_qm_dqrele(gdqp);
1275 xfs_qm_dqrele(pdqp);
1276
1277 if (unlock_dp_on_error)
1278 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1279 return error;
1280}
1281
1282int
1283xfs_create_tmpfile(
1284 struct xfs_inode *dp,
1285 umode_t mode,
1286 struct xfs_inode **ipp)
1287{
1288 struct xfs_mount *mp = dp->i_mount;
1289 struct xfs_inode *ip = NULL;
1290 struct xfs_trans *tp = NULL;
1291 int error;
1292 prid_t prid;
1293 struct xfs_dquot *udqp = NULL;
1294 struct xfs_dquot *gdqp = NULL;
1295 struct xfs_dquot *pdqp = NULL;
1296 struct xfs_trans_res *tres;
1297 uint resblks;
1298
1299 if (XFS_FORCED_SHUTDOWN(mp))
1300 return -EIO;
1301
1302 prid = xfs_get_initial_prid(dp);
1303
1304 /*
1305 * Make sure that we have allocated dquot(s) on disk.
1306 */
1307 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1308 xfs_kgid_to_gid(current_fsgid()), prid,
1309 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1310 &udqp, &gdqp, &pdqp);
1311 if (error)
1312 return error;
1313
1314 resblks = XFS_IALLOC_SPACE_RES(mp);
1315 tres = &M_RES(mp)->tr_create_tmpfile;
1316
1317 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1318 if (error)
1319 goto out_release_inode;
1320
1321 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1322 pdqp, resblks, 1, 0);
1323 if (error)
1324 goto out_trans_cancel;
1325
David Brazdil0f672f62019-12-10 10:32:29 +00001326 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001327 if (error)
1328 goto out_trans_cancel;
1329
1330 if (mp->m_flags & XFS_MOUNT_WSYNC)
1331 xfs_trans_set_sync(tp);
1332
1333 /*
1334 * Attach the dquot(s) to the inodes and modify them incore.
1335 * These ids of the inode couldn't have changed since the new
1336 * inode has been locked ever since it was created.
1337 */
1338 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1339
1340 error = xfs_iunlink(tp, ip);
1341 if (error)
1342 goto out_trans_cancel;
1343
1344 error = xfs_trans_commit(tp);
1345 if (error)
1346 goto out_release_inode;
1347
1348 xfs_qm_dqrele(udqp);
1349 xfs_qm_dqrele(gdqp);
1350 xfs_qm_dqrele(pdqp);
1351
1352 *ipp = ip;
1353 return 0;
1354
1355 out_trans_cancel:
1356 xfs_trans_cancel(tp);
1357 out_release_inode:
1358 /*
1359 * Wait until after the current transaction is aborted to finish the
1360 * setup of the inode and release the inode. This prevents recursive
1361 * transactions and deadlocks from xfs_inactive.
1362 */
1363 if (ip) {
1364 xfs_finish_inode_setup(ip);
1365 xfs_irele(ip);
1366 }
1367
1368 xfs_qm_dqrele(udqp);
1369 xfs_qm_dqrele(gdqp);
1370 xfs_qm_dqrele(pdqp);
1371
1372 return error;
1373}
1374
1375int
1376xfs_link(
1377 xfs_inode_t *tdp,
1378 xfs_inode_t *sip,
1379 struct xfs_name *target_name)
1380{
1381 xfs_mount_t *mp = tdp->i_mount;
1382 xfs_trans_t *tp;
1383 int error;
1384 int resblks;
1385
1386 trace_xfs_link(tdp, target_name);
1387
1388 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1389
1390 if (XFS_FORCED_SHUTDOWN(mp))
1391 return -EIO;
1392
1393 error = xfs_qm_dqattach(sip);
1394 if (error)
1395 goto std_return;
1396
1397 error = xfs_qm_dqattach(tdp);
1398 if (error)
1399 goto std_return;
1400
1401 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1402 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1403 if (error == -ENOSPC) {
1404 resblks = 0;
1405 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1406 }
1407 if (error)
1408 goto std_return;
1409
1410 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1411
1412 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1413 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1414
1415 /*
1416 * If we are using project inheritance, we only allow hard link
1417 * creation in our tree when the project IDs are the same; else
1418 * the tree quota mechanism could be circumvented.
1419 */
1420 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1421 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1422 error = -EXDEV;
1423 goto error_return;
1424 }
1425
1426 if (!resblks) {
1427 error = xfs_dir_canenter(tp, tdp, target_name);
1428 if (error)
1429 goto error_return;
1430 }
1431
1432 /*
1433 * Handle initial link state of O_TMPFILE inode
1434 */
1435 if (VFS_I(sip)->i_nlink == 0) {
1436 error = xfs_iunlink_remove(tp, sip);
1437 if (error)
1438 goto error_return;
1439 }
1440
1441 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1442 resblks);
1443 if (error)
1444 goto error_return;
1445 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1446 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1447
David Brazdil0f672f62019-12-10 10:32:29 +00001448 xfs_bumplink(tp, sip);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001449
1450 /*
1451 * If this is a synchronous mount, make sure that the
1452 * link transaction goes to disk before returning to
1453 * the user.
1454 */
1455 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1456 xfs_trans_set_sync(tp);
1457
1458 return xfs_trans_commit(tp);
1459
1460 error_return:
1461 xfs_trans_cancel(tp);
1462 std_return:
1463 return error;
1464}
1465
1466/* Clear the reflink flag and the cowblocks tag if possible. */
1467static void
1468xfs_itruncate_clear_reflink_flags(
1469 struct xfs_inode *ip)
1470{
1471 struct xfs_ifork *dfork;
1472 struct xfs_ifork *cfork;
1473
1474 if (!xfs_is_reflink_inode(ip))
1475 return;
1476 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1477 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1478 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1479 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1480 if (cfork->if_bytes == 0)
1481 xfs_inode_clear_cowblocks_tag(ip);
1482}
1483
1484/*
1485 * Free up the underlying blocks past new_size. The new size must be smaller
1486 * than the current size. This routine can be used both for the attribute and
1487 * data fork, and does not modify the inode size, which is left to the caller.
1488 *
1489 * The transaction passed to this routine must have made a permanent log
1490 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1491 * given transaction and start new ones, so make sure everything involved in
1492 * the transaction is tidy before calling here. Some transaction will be
1493 * returned to the caller to be committed. The incoming transaction must
1494 * already include the inode, and both inode locks must be held exclusively.
1495 * The inode must also be "held" within the transaction. On return the inode
1496 * will be "held" within the returned transaction. This routine does NOT
1497 * require any disk space to be reserved for it within the transaction.
1498 *
1499 * If we get an error, we must return with the inode locked and linked into the
1500 * current transaction. This keeps things simple for the higher level code,
1501 * because it always knows that the inode is locked and held in the transaction
1502 * that returns to it whether errors occur or not. We don't mark the inode
1503 * dirty on error so that transactions can be easily aborted if possible.
1504 */
1505int
1506xfs_itruncate_extents_flags(
1507 struct xfs_trans **tpp,
1508 struct xfs_inode *ip,
1509 int whichfork,
1510 xfs_fsize_t new_size,
1511 int flags)
1512{
1513 struct xfs_mount *mp = ip->i_mount;
1514 struct xfs_trans *tp = *tpp;
1515 xfs_fileoff_t first_unmap_block;
1516 xfs_fileoff_t last_block;
1517 xfs_filblks_t unmap_len;
1518 int error = 0;
1519 int done = 0;
1520
1521 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1522 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1523 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1524 ASSERT(new_size <= XFS_ISIZE(ip));
1525 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1526 ASSERT(ip->i_itemp != NULL);
1527 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1528 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1529
1530 trace_xfs_itruncate_extents_start(ip, new_size);
1531
1532 flags |= xfs_bmapi_aflag(whichfork);
1533
1534 /*
1535 * Since it is possible for space to become allocated beyond
1536 * the end of the file (in a crash where the space is allocated
1537 * but the inode size is not yet updated), simply remove any
1538 * blocks which show up between the new EOF and the maximum
1539 * possible file size. If the first block to be removed is
1540 * beyond the maximum file size (ie it is the same as last_block),
1541 * then there is nothing to do.
1542 */
1543 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1544 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1545 if (first_unmap_block == last_block)
1546 return 0;
1547
1548 ASSERT(first_unmap_block < last_block);
1549 unmap_len = last_block - first_unmap_block + 1;
1550 while (!done) {
1551 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1552 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1553 XFS_ITRUNC_MAX_EXTENTS, &done);
1554 if (error)
1555 goto out;
1556
1557 /*
1558 * Duplicate the transaction that has the permanent
1559 * reservation and commit the old transaction.
1560 */
1561 error = xfs_defer_finish(&tp);
1562 if (error)
1563 goto out;
1564
1565 error = xfs_trans_roll_inode(&tp, ip);
1566 if (error)
1567 goto out;
1568 }
1569
1570 if (whichfork == XFS_DATA_FORK) {
1571 /* Remove all pending CoW reservations. */
1572 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1573 first_unmap_block, last_block, true);
1574 if (error)
1575 goto out;
1576
1577 xfs_itruncate_clear_reflink_flags(ip);
1578 }
1579
1580 /*
1581 * Always re-log the inode so that our permanent transaction can keep
1582 * on rolling it forward in the log.
1583 */
1584 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1585
1586 trace_xfs_itruncate_extents_end(ip, new_size);
1587
1588out:
1589 *tpp = tp;
1590 return error;
1591}
1592
1593int
1594xfs_release(
1595 xfs_inode_t *ip)
1596{
1597 xfs_mount_t *mp = ip->i_mount;
1598 int error;
1599
1600 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1601 return 0;
1602
1603 /* If this is a read-only mount, don't do this (would generate I/O) */
1604 if (mp->m_flags & XFS_MOUNT_RDONLY)
1605 return 0;
1606
1607 if (!XFS_FORCED_SHUTDOWN(mp)) {
1608 int truncated;
1609
1610 /*
1611 * If we previously truncated this file and removed old data
1612 * in the process, we want to initiate "early" writeout on
1613 * the last close. This is an attempt to combat the notorious
1614 * NULL files problem which is particularly noticeable from a
1615 * truncate down, buffered (re-)write (delalloc), followed by
1616 * a crash. What we are effectively doing here is
1617 * significantly reducing the time window where we'd otherwise
1618 * be exposed to that problem.
1619 */
1620 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1621 if (truncated) {
1622 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1623 if (ip->i_delayed_blks > 0) {
1624 error = filemap_flush(VFS_I(ip)->i_mapping);
1625 if (error)
1626 return error;
1627 }
1628 }
1629 }
1630
1631 if (VFS_I(ip)->i_nlink == 0)
1632 return 0;
1633
1634 if (xfs_can_free_eofblocks(ip, false)) {
1635
1636 /*
1637 * Check if the inode is being opened, written and closed
1638 * frequently and we have delayed allocation blocks outstanding
1639 * (e.g. streaming writes from the NFS server), truncating the
1640 * blocks past EOF will cause fragmentation to occur.
1641 *
1642 * In this case don't do the truncation, but we have to be
1643 * careful how we detect this case. Blocks beyond EOF show up as
1644 * i_delayed_blks even when the inode is clean, so we need to
1645 * truncate them away first before checking for a dirty release.
1646 * Hence on the first dirty close we will still remove the
1647 * speculative allocation, but after that we will leave it in
1648 * place.
1649 */
1650 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1651 return 0;
1652 /*
1653 * If we can't get the iolock just skip truncating the blocks
1654 * past EOF because we could deadlock with the mmap_sem
1655 * otherwise. We'll get another chance to drop them once the
1656 * last reference to the inode is dropped, so we'll never leak
1657 * blocks permanently.
1658 */
1659 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1660 error = xfs_free_eofblocks(ip);
1661 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1662 if (error)
1663 return error;
1664 }
1665
1666 /* delalloc blocks after truncation means it really is dirty */
1667 if (ip->i_delayed_blks)
1668 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1669 }
1670 return 0;
1671}
1672
1673/*
1674 * xfs_inactive_truncate
1675 *
1676 * Called to perform a truncate when an inode becomes unlinked.
1677 */
1678STATIC int
1679xfs_inactive_truncate(
1680 struct xfs_inode *ip)
1681{
1682 struct xfs_mount *mp = ip->i_mount;
1683 struct xfs_trans *tp;
1684 int error;
1685
1686 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1687 if (error) {
1688 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1689 return error;
1690 }
1691 xfs_ilock(ip, XFS_ILOCK_EXCL);
1692 xfs_trans_ijoin(tp, ip, 0);
1693
1694 /*
1695 * Log the inode size first to prevent stale data exposure in the event
1696 * of a system crash before the truncate completes. See the related
1697 * comment in xfs_vn_setattr_size() for details.
1698 */
1699 ip->i_d.di_size = 0;
1700 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1701
1702 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1703 if (error)
1704 goto error_trans_cancel;
1705
1706 ASSERT(ip->i_d.di_nextents == 0);
1707
1708 error = xfs_trans_commit(tp);
1709 if (error)
1710 goto error_unlock;
1711
1712 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1713 return 0;
1714
1715error_trans_cancel:
1716 xfs_trans_cancel(tp);
1717error_unlock:
1718 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1719 return error;
1720}
1721
1722/*
1723 * xfs_inactive_ifree()
1724 *
1725 * Perform the inode free when an inode is unlinked.
1726 */
1727STATIC int
1728xfs_inactive_ifree(
1729 struct xfs_inode *ip)
1730{
1731 struct xfs_mount *mp = ip->i_mount;
1732 struct xfs_trans *tp;
1733 int error;
1734
1735 /*
1736 * We try to use a per-AG reservation for any block needed by the finobt
1737 * tree, but as the finobt feature predates the per-AG reservation
1738 * support a degraded file system might not have enough space for the
1739 * reservation at mount time. In that case try to dip into the reserved
1740 * pool and pray.
1741 *
1742 * Send a warning if the reservation does happen to fail, as the inode
1743 * now remains allocated and sits on the unlinked list until the fs is
1744 * repaired.
1745 */
David Brazdil0f672f62019-12-10 10:32:29 +00001746 if (unlikely(mp->m_finobt_nores)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001747 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1748 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1749 &tp);
1750 } else {
1751 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1752 }
1753 if (error) {
1754 if (error == -ENOSPC) {
1755 xfs_warn_ratelimited(mp,
1756 "Failed to remove inode(s) from unlinked list. "
1757 "Please free space, unmount and run xfs_repair.");
1758 } else {
1759 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1760 }
1761 return error;
1762 }
1763
Olivier Deprez0e641232021-09-23 10:07:05 +02001764 /*
1765 * We do not hold the inode locked across the entire rolling transaction
1766 * here. We only need to hold it for the first transaction that
1767 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1768 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1769 * here breaks the relationship between cluster buffer invalidation and
1770 * stale inode invalidation on cluster buffer item journal commit
1771 * completion, and can result in leaving dirty stale inodes hanging
1772 * around in memory.
1773 *
1774 * We have no need for serialising this inode operation against other
1775 * operations - we freed the inode and hence reallocation is required
1776 * and that will serialise on reallocating the space the deferops need
1777 * to free. Hence we can unlock the inode on the first commit of
1778 * the transaction rather than roll it right through the deferops. This
1779 * avoids relogging the XFS_ISTALE inode.
1780 *
1781 * We check that xfs_ifree() hasn't grown an internal transaction roll
1782 * by asserting that the inode is still locked when it returns.
1783 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001784 xfs_ilock(ip, XFS_ILOCK_EXCL);
Olivier Deprez0e641232021-09-23 10:07:05 +02001785 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001786
1787 error = xfs_ifree(tp, ip);
Olivier Deprez0e641232021-09-23 10:07:05 +02001788 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001789 if (error) {
1790 /*
1791 * If we fail to free the inode, shut down. The cancel
1792 * might do that, we need to make sure. Otherwise the
1793 * inode might be lost for a long time or forever.
1794 */
1795 if (!XFS_FORCED_SHUTDOWN(mp)) {
1796 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1797 __func__, error);
1798 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1799 }
1800 xfs_trans_cancel(tp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001801 return error;
1802 }
1803
1804 /*
1805 * Credit the quota account(s). The inode is gone.
1806 */
1807 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1808
1809 /*
1810 * Just ignore errors at this point. There is nothing we can do except
1811 * to try to keep going. Make sure it's not a silent error.
1812 */
1813 error = xfs_trans_commit(tp);
1814 if (error)
1815 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1816 __func__, error);
1817
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001818 return 0;
1819}
1820
1821/*
1822 * xfs_inactive
1823 *
1824 * This is called when the vnode reference count for the vnode
1825 * goes to zero. If the file has been unlinked, then it must
1826 * now be truncated. Also, we clear all of the read-ahead state
1827 * kept for the inode here since the file is now closed.
1828 */
1829void
1830xfs_inactive(
1831 xfs_inode_t *ip)
1832{
1833 struct xfs_mount *mp;
1834 int error;
1835 int truncate = 0;
1836
1837 /*
1838 * If the inode is already free, then there can be nothing
1839 * to clean up here.
1840 */
1841 if (VFS_I(ip)->i_mode == 0) {
1842 ASSERT(ip->i_df.if_broot_bytes == 0);
1843 return;
1844 }
1845
1846 mp = ip->i_mount;
1847 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1848
1849 /* If this is a read-only mount, don't do this (would generate I/O) */
1850 if (mp->m_flags & XFS_MOUNT_RDONLY)
1851 return;
1852
1853 /* Try to clean out the cow blocks if there are any. */
1854 if (xfs_inode_has_cow_data(ip))
1855 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1856
1857 if (VFS_I(ip)->i_nlink != 0) {
1858 /*
1859 * force is true because we are evicting an inode from the
1860 * cache. Post-eof blocks must be freed, lest we end up with
1861 * broken free space accounting.
1862 *
1863 * Note: don't bother with iolock here since lockdep complains
1864 * about acquiring it in reclaim context. We have the only
1865 * reference to the inode at this point anyways.
1866 */
1867 if (xfs_can_free_eofblocks(ip, true))
1868 xfs_free_eofblocks(ip);
1869
1870 return;
1871 }
1872
1873 if (S_ISREG(VFS_I(ip)->i_mode) &&
1874 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1875 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1876 truncate = 1;
1877
1878 error = xfs_qm_dqattach(ip);
1879 if (error)
1880 return;
1881
1882 if (S_ISLNK(VFS_I(ip)->i_mode))
1883 error = xfs_inactive_symlink(ip);
1884 else if (truncate)
1885 error = xfs_inactive_truncate(ip);
1886 if (error)
1887 return;
1888
1889 /*
1890 * If there are attributes associated with the file then blow them away
1891 * now. The code calls a routine that recursively deconstructs the
1892 * attribute fork. If also blows away the in-core attribute fork.
1893 */
1894 if (XFS_IFORK_Q(ip)) {
1895 error = xfs_attr_inactive(ip);
1896 if (error)
1897 return;
1898 }
1899
1900 ASSERT(!ip->i_afp);
1901 ASSERT(ip->i_d.di_anextents == 0);
1902 ASSERT(ip->i_d.di_forkoff == 0);
1903
1904 /*
1905 * Free the inode.
1906 */
1907 error = xfs_inactive_ifree(ip);
1908 if (error)
1909 return;
1910
1911 /*
1912 * Release the dquots held by inode, if any.
1913 */
1914 xfs_qm_dqdetach(ip);
1915}
1916
1917/*
David Brazdil0f672f62019-12-10 10:32:29 +00001918 * In-Core Unlinked List Lookups
1919 * =============================
1920 *
1921 * Every inode is supposed to be reachable from some other piece of metadata
1922 * with the exception of the root directory. Inodes with a connection to a
1923 * file descriptor but not linked from anywhere in the on-disk directory tree
1924 * are collectively known as unlinked inodes, though the filesystem itself
1925 * maintains links to these inodes so that on-disk metadata are consistent.
1926 *
1927 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1928 * header contains a number of buckets that point to an inode, and each inode
1929 * record has a pointer to the next inode in the hash chain. This
1930 * singly-linked list causes scaling problems in the iunlink remove function
1931 * because we must walk that list to find the inode that points to the inode
1932 * being removed from the unlinked hash bucket list.
1933 *
1934 * What if we modelled the unlinked list as a collection of records capturing
1935 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1936 * have a fast way to look up unlinked list predecessors, which avoids the
1937 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1938 * rhashtable.
1939 *
1940 * Because this is a backref cache, we ignore operational failures since the
1941 * iunlink code can fall back to the slow bucket walk. The only errors that
1942 * should bubble out are for obviously incorrect situations.
1943 *
1944 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1945 * access or have otherwise provided for concurrency control.
1946 */
1947
1948/* Capture a "X.next_unlinked = Y" relationship. */
1949struct xfs_iunlink {
1950 struct rhash_head iu_rhash_head;
1951 xfs_agino_t iu_agino; /* X */
1952 xfs_agino_t iu_next_unlinked; /* Y */
1953};
1954
1955/* Unlinked list predecessor lookup hashtable construction */
1956static int
1957xfs_iunlink_obj_cmpfn(
1958 struct rhashtable_compare_arg *arg,
1959 const void *obj)
1960{
1961 const xfs_agino_t *key = arg->key;
1962 const struct xfs_iunlink *iu = obj;
1963
1964 if (iu->iu_next_unlinked != *key)
1965 return 1;
1966 return 0;
1967}
1968
1969static const struct rhashtable_params xfs_iunlink_hash_params = {
1970 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1971 .key_len = sizeof(xfs_agino_t),
1972 .key_offset = offsetof(struct xfs_iunlink,
1973 iu_next_unlinked),
1974 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1975 .automatic_shrinking = true,
1976 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1977};
1978
1979/*
1980 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1981 * relation is found.
1982 */
1983static xfs_agino_t
1984xfs_iunlink_lookup_backref(
1985 struct xfs_perag *pag,
1986 xfs_agino_t agino)
1987{
1988 struct xfs_iunlink *iu;
1989
1990 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1991 xfs_iunlink_hash_params);
1992 return iu ? iu->iu_agino : NULLAGINO;
1993}
1994
1995/*
1996 * Take ownership of an iunlink cache entry and insert it into the hash table.
1997 * If successful, the entry will be owned by the cache; if not, it is freed.
1998 * Either way, the caller does not own @iu after this call.
1999 */
2000static int
2001xfs_iunlink_insert_backref(
2002 struct xfs_perag *pag,
2003 struct xfs_iunlink *iu)
2004{
2005 int error;
2006
2007 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
2008 &iu->iu_rhash_head, xfs_iunlink_hash_params);
2009 /*
2010 * Fail loudly if there already was an entry because that's a sign of
2011 * corruption of in-memory data. Also fail loudly if we see an error
2012 * code we didn't anticipate from the rhashtable code. Currently we
2013 * only anticipate ENOMEM.
2014 */
2015 if (error) {
2016 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
2017 kmem_free(iu);
2018 }
2019 /*
2020 * Absorb any runtime errors that aren't a result of corruption because
2021 * this is a cache and we can always fall back to bucket list scanning.
2022 */
2023 if (error != 0 && error != -EEXIST)
2024 error = 0;
2025 return error;
2026}
2027
2028/* Remember that @prev_agino.next_unlinked = @this_agino. */
2029static int
2030xfs_iunlink_add_backref(
2031 struct xfs_perag *pag,
2032 xfs_agino_t prev_agino,
2033 xfs_agino_t this_agino)
2034{
2035 struct xfs_iunlink *iu;
2036
2037 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2038 return 0;
2039
2040 iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
2041 iu->iu_agino = prev_agino;
2042 iu->iu_next_unlinked = this_agino;
2043
2044 return xfs_iunlink_insert_backref(pag, iu);
2045}
2046
2047/*
2048 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2049 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
2050 * wasn't any such entry then we don't bother.
2051 */
2052static int
2053xfs_iunlink_change_backref(
2054 struct xfs_perag *pag,
2055 xfs_agino_t agino,
2056 xfs_agino_t next_unlinked)
2057{
2058 struct xfs_iunlink *iu;
2059 int error;
2060
2061 /* Look up the old entry; if there wasn't one then exit. */
2062 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2063 xfs_iunlink_hash_params);
2064 if (!iu)
2065 return 0;
2066
2067 /*
2068 * Remove the entry. This shouldn't ever return an error, but if we
2069 * couldn't remove the old entry we don't want to add it again to the
2070 * hash table, and if the entry disappeared on us then someone's
2071 * violated the locking rules and we need to fail loudly. Either way
2072 * we cannot remove the inode because internal state is or would have
2073 * been corrupt.
2074 */
2075 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2076 &iu->iu_rhash_head, xfs_iunlink_hash_params);
2077 if (error)
2078 return error;
2079
2080 /* If there is no new next entry just free our item and return. */
2081 if (next_unlinked == NULLAGINO) {
2082 kmem_free(iu);
2083 return 0;
2084 }
2085
2086 /* Update the entry and re-add it to the hash table. */
2087 iu->iu_next_unlinked = next_unlinked;
2088 return xfs_iunlink_insert_backref(pag, iu);
2089}
2090
2091/* Set up the in-core predecessor structures. */
2092int
2093xfs_iunlink_init(
2094 struct xfs_perag *pag)
2095{
2096 return rhashtable_init(&pag->pagi_unlinked_hash,
2097 &xfs_iunlink_hash_params);
2098}
2099
2100/* Free the in-core predecessor structures. */
2101static void
2102xfs_iunlink_free_item(
2103 void *ptr,
2104 void *arg)
2105{
2106 struct xfs_iunlink *iu = ptr;
2107 bool *freed_anything = arg;
2108
2109 *freed_anything = true;
2110 kmem_free(iu);
2111}
2112
2113void
2114xfs_iunlink_destroy(
2115 struct xfs_perag *pag)
2116{
2117 bool freed_anything = false;
2118
2119 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2120 xfs_iunlink_free_item, &freed_anything);
2121
2122 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2123}
2124
2125/*
2126 * Point the AGI unlinked bucket at an inode and log the results. The caller
2127 * is responsible for validating the old value.
2128 */
2129STATIC int
2130xfs_iunlink_update_bucket(
2131 struct xfs_trans *tp,
2132 xfs_agnumber_t agno,
2133 struct xfs_buf *agibp,
2134 unsigned int bucket_index,
2135 xfs_agino_t new_agino)
2136{
2137 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
2138 xfs_agino_t old_value;
2139 int offset;
2140
2141 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2142
2143 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2144 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2145 old_value, new_agino);
2146
2147 /*
2148 * We should never find the head of the list already set to the value
2149 * passed in because either we're adding or removing ourselves from the
2150 * head of the list.
2151 */
2152 if (old_value == new_agino)
2153 return -EFSCORRUPTED;
2154
2155 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2156 offset = offsetof(struct xfs_agi, agi_unlinked) +
2157 (sizeof(xfs_agino_t) * bucket_index);
2158 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2159 return 0;
2160}
2161
2162/* Set an on-disk inode's next_unlinked pointer. */
2163STATIC void
2164xfs_iunlink_update_dinode(
2165 struct xfs_trans *tp,
2166 xfs_agnumber_t agno,
2167 xfs_agino_t agino,
2168 struct xfs_buf *ibp,
2169 struct xfs_dinode *dip,
2170 struct xfs_imap *imap,
2171 xfs_agino_t next_agino)
2172{
2173 struct xfs_mount *mp = tp->t_mountp;
2174 int offset;
2175
2176 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2177
2178 trace_xfs_iunlink_update_dinode(mp, agno, agino,
2179 be32_to_cpu(dip->di_next_unlinked), next_agino);
2180
2181 dip->di_next_unlinked = cpu_to_be32(next_agino);
2182 offset = imap->im_boffset +
2183 offsetof(struct xfs_dinode, di_next_unlinked);
2184
2185 /* need to recalc the inode CRC if appropriate */
2186 xfs_dinode_calc_crc(mp, dip);
2187 xfs_trans_inode_buf(tp, ibp);
2188 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2189 xfs_inobp_check(mp, ibp);
2190}
2191
2192/* Set an in-core inode's unlinked pointer and return the old value. */
2193STATIC int
2194xfs_iunlink_update_inode(
2195 struct xfs_trans *tp,
2196 struct xfs_inode *ip,
2197 xfs_agnumber_t agno,
2198 xfs_agino_t next_agino,
2199 xfs_agino_t *old_next_agino)
2200{
2201 struct xfs_mount *mp = tp->t_mountp;
2202 struct xfs_dinode *dip;
2203 struct xfs_buf *ibp;
2204 xfs_agino_t old_value;
2205 int error;
2206
2207 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2208
2209 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2210 if (error)
2211 return error;
2212
2213 /* Make sure the old pointer isn't garbage. */
2214 old_value = be32_to_cpu(dip->di_next_unlinked);
2215 if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2216 error = -EFSCORRUPTED;
2217 goto out;
2218 }
2219
2220 /*
2221 * Since we're updating a linked list, we should never find that the
2222 * current pointer is the same as the new value, unless we're
2223 * terminating the list.
2224 */
2225 *old_next_agino = old_value;
2226 if (old_value == next_agino) {
2227 if (next_agino != NULLAGINO)
2228 error = -EFSCORRUPTED;
2229 goto out;
2230 }
2231
2232 /* Ok, update the new pointer. */
2233 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2234 ibp, dip, &ip->i_imap, next_agino);
2235 return 0;
2236out:
2237 xfs_trans_brelse(tp, ibp);
2238 return error;
2239}
2240
2241/*
2242 * This is called when the inode's link count has gone to 0 or we are creating
2243 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002244 *
2245 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2246 * list when the inode is freed.
2247 */
2248STATIC int
2249xfs_iunlink(
David Brazdil0f672f62019-12-10 10:32:29 +00002250 struct xfs_trans *tp,
2251 struct xfs_inode *ip)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002252{
David Brazdil0f672f62019-12-10 10:32:29 +00002253 struct xfs_mount *mp = tp->t_mountp;
2254 struct xfs_agi *agi;
2255 struct xfs_buf *agibp;
2256 xfs_agino_t next_agino;
2257 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2258 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2259 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2260 int error;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002261
David Brazdil0f672f62019-12-10 10:32:29 +00002262 ASSERT(VFS_I(ip)->i_nlink == 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002263 ASSERT(VFS_I(ip)->i_mode != 0);
David Brazdil0f672f62019-12-10 10:32:29 +00002264 trace_xfs_iunlink(ip);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002265
David Brazdil0f672f62019-12-10 10:32:29 +00002266 /* Get the agi buffer first. It ensures lock ordering on the list. */
2267 error = xfs_read_agi(mp, tp, agno, &agibp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002268 if (error)
2269 return error;
2270 agi = XFS_BUF_TO_AGI(agibp);
2271
2272 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002273 * Get the index into the agi hash table for the list this inode will
2274 * go on. Make sure the pointer isn't garbage and that this inode
2275 * isn't already on the list.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002276 */
David Brazdil0f672f62019-12-10 10:32:29 +00002277 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2278 if (next_agino == agino ||
2279 !xfs_verify_agino_or_null(mp, agno, next_agino))
2280 return -EFSCORRUPTED;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002281
David Brazdil0f672f62019-12-10 10:32:29 +00002282 if (next_agino != NULLAGINO) {
2283 struct xfs_perag *pag;
2284 xfs_agino_t old_agino;
2285
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002286 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002287 * There is already another inode in the bucket, so point this
2288 * inode to the current head of the list.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002289 */
David Brazdil0f672f62019-12-10 10:32:29 +00002290 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2291 &old_agino);
2292 if (error)
2293 return error;
2294 ASSERT(old_agino == NULLAGINO);
2295
2296 /*
2297 * agino has been unlinked, add a backref from the next inode
2298 * back to agino.
2299 */
2300 pag = xfs_perag_get(mp, agno);
2301 error = xfs_iunlink_add_backref(pag, agino, next_agino);
2302 xfs_perag_put(pag);
2303 if (error)
2304 return error;
2305 }
2306
2307 /* Point the head of the list to point to this inode. */
2308 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2309}
2310
2311/* Return the imap, dinode pointer, and buffer for an inode. */
2312STATIC int
2313xfs_iunlink_map_ino(
2314 struct xfs_trans *tp,
2315 xfs_agnumber_t agno,
2316 xfs_agino_t agino,
2317 struct xfs_imap *imap,
2318 struct xfs_dinode **dipp,
2319 struct xfs_buf **bpp)
2320{
2321 struct xfs_mount *mp = tp->t_mountp;
2322 int error;
2323
2324 imap->im_blkno = 0;
2325 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2326 if (error) {
2327 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2328 __func__, error);
2329 return error;
2330 }
2331
2332 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2333 if (error) {
2334 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2335 __func__, error);
2336 return error;
2337 }
2338
2339 return 0;
2340}
2341
2342/*
2343 * Walk the unlinked chain from @head_agino until we find the inode that
2344 * points to @target_agino. Return the inode number, map, dinode pointer,
2345 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2346 *
2347 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2348 * @agino, @imap, @dipp, and @bpp are all output parameters.
2349 *
2350 * Do not call this function if @target_agino is the head of the list.
2351 */
2352STATIC int
2353xfs_iunlink_map_prev(
2354 struct xfs_trans *tp,
2355 xfs_agnumber_t agno,
2356 xfs_agino_t head_agino,
2357 xfs_agino_t target_agino,
2358 xfs_agino_t *agino,
2359 struct xfs_imap *imap,
2360 struct xfs_dinode **dipp,
2361 struct xfs_buf **bpp,
2362 struct xfs_perag *pag)
2363{
2364 struct xfs_mount *mp = tp->t_mountp;
2365 xfs_agino_t next_agino;
2366 int error;
2367
2368 ASSERT(head_agino != target_agino);
2369 *bpp = NULL;
2370
2371 /* See if our backref cache can find it faster. */
2372 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2373 if (*agino != NULLAGINO) {
2374 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002375 if (error)
2376 return error;
2377
David Brazdil0f672f62019-12-10 10:32:29 +00002378 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2379 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002380
David Brazdil0f672f62019-12-10 10:32:29 +00002381 /*
2382 * If we get here the cache contents were corrupt, so drop the
2383 * buffer and fall back to walking the bucket list.
2384 */
2385 xfs_trans_brelse(tp, *bpp);
2386 *bpp = NULL;
2387 WARN_ON_ONCE(1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002388 }
2389
David Brazdil0f672f62019-12-10 10:32:29 +00002390 trace_xfs_iunlink_map_prev_fallback(mp, agno);
2391
2392 /* Otherwise, walk the entire bucket until we find it. */
2393 next_agino = head_agino;
2394 while (next_agino != target_agino) {
2395 xfs_agino_t unlinked_agino;
2396
2397 if (*bpp)
2398 xfs_trans_brelse(tp, *bpp);
2399
2400 *agino = next_agino;
2401 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2402 bpp);
2403 if (error)
2404 return error;
2405
2406 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2407 /*
2408 * Make sure this pointer is valid and isn't an obvious
2409 * infinite loop.
2410 */
2411 if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2412 next_agino == unlinked_agino) {
2413 XFS_CORRUPTION_ERROR(__func__,
2414 XFS_ERRLEVEL_LOW, mp,
2415 *dipp, sizeof(**dipp));
2416 error = -EFSCORRUPTED;
2417 return error;
2418 }
2419 next_agino = unlinked_agino;
2420 }
2421
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002422 return 0;
2423}
2424
2425/*
2426 * Pull the on-disk inode from the AGI unlinked list.
2427 */
2428STATIC int
2429xfs_iunlink_remove(
David Brazdil0f672f62019-12-10 10:32:29 +00002430 struct xfs_trans *tp,
2431 struct xfs_inode *ip)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002432{
David Brazdil0f672f62019-12-10 10:32:29 +00002433 struct xfs_mount *mp = tp->t_mountp;
2434 struct xfs_agi *agi;
2435 struct xfs_buf *agibp;
2436 struct xfs_buf *last_ibp;
2437 struct xfs_dinode *last_dip = NULL;
2438 struct xfs_perag *pag = NULL;
2439 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2440 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2441 xfs_agino_t next_agino;
2442 xfs_agino_t head_agino;
2443 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2444 int error;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002445
David Brazdil0f672f62019-12-10 10:32:29 +00002446 trace_xfs_iunlink_remove(ip);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002447
David Brazdil0f672f62019-12-10 10:32:29 +00002448 /* Get the agi buffer first. It ensures lock ordering on the list. */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002449 error = xfs_read_agi(mp, tp, agno, &agibp);
2450 if (error)
2451 return error;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002452 agi = XFS_BUF_TO_AGI(agibp);
2453
2454 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002455 * Get the index into the agi hash table for the list this inode will
2456 * go on. Make sure the head pointer isn't garbage.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002457 */
David Brazdil0f672f62019-12-10 10:32:29 +00002458 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2459 if (!xfs_verify_agino(mp, agno, head_agino)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002460 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2461 agi, sizeof(*agi));
2462 return -EFSCORRUPTED;
2463 }
2464
David Brazdil0f672f62019-12-10 10:32:29 +00002465 /*
2466 * Set our inode's next_unlinked pointer to NULL and then return
2467 * the old pointer value so that we can update whatever was previous
2468 * to us in the list to point to whatever was next in the list.
2469 */
2470 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2471 if (error)
2472 return error;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002473
David Brazdil0f672f62019-12-10 10:32:29 +00002474 /*
2475 * If there was a backref pointing from the next inode back to this
2476 * one, remove it because we've removed this inode from the list.
2477 *
2478 * Later, if this inode was in the middle of the list we'll update
2479 * this inode's backref to point from the next inode.
2480 */
2481 if (next_agino != NULLAGINO) {
2482 pag = xfs_perag_get(mp, agno);
2483 error = xfs_iunlink_change_backref(pag, next_agino,
2484 NULLAGINO);
2485 if (error)
2486 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002487 }
David Brazdil0f672f62019-12-10 10:32:29 +00002488
2489 if (head_agino == agino) {
2490 /* Point the head of the list to the next unlinked inode. */
2491 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2492 next_agino);
2493 if (error)
2494 goto out;
2495 } else {
2496 struct xfs_imap imap;
2497 xfs_agino_t prev_agino;
2498
2499 if (!pag)
2500 pag = xfs_perag_get(mp, agno);
2501
2502 /* We need to search the list for the inode being freed. */
2503 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2504 &prev_agino, &imap, &last_dip, &last_ibp,
2505 pag);
2506 if (error)
2507 goto out;
2508
2509 /* Point the previous inode on the list to the next inode. */
2510 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2511 last_dip, &imap, next_agino);
2512
2513 /*
2514 * Now we deal with the backref for this inode. If this inode
2515 * pointed at a real inode, change the backref that pointed to
2516 * us to point to our old next. If this inode was the end of
2517 * the list, delete the backref that pointed to us. Note that
2518 * change_backref takes care of deleting the backref if
2519 * next_agino is NULLAGINO.
2520 */
2521 error = xfs_iunlink_change_backref(pag, agino, next_agino);
2522 if (error)
2523 goto out;
2524 }
2525
2526out:
2527 if (pag)
2528 xfs_perag_put(pag);
2529 return error;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002530}
2531
2532/*
2533 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2534 * inodes that are in memory - they all must be marked stale and attached to
2535 * the cluster buffer.
2536 */
2537STATIC int
2538xfs_ifree_cluster(
2539 xfs_inode_t *free_ip,
2540 xfs_trans_t *tp,
2541 struct xfs_icluster *xic)
2542{
2543 xfs_mount_t *mp = free_ip->i_mount;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002544 int nbufs;
2545 int i, j;
2546 int ioffset;
2547 xfs_daddr_t blkno;
2548 xfs_buf_t *bp;
2549 xfs_inode_t *ip;
2550 xfs_inode_log_item_t *iip;
2551 struct xfs_log_item *lip;
2552 struct xfs_perag *pag;
David Brazdil0f672f62019-12-10 10:32:29 +00002553 struct xfs_ino_geometry *igeo = M_IGEO(mp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002554 xfs_ino_t inum;
2555
2556 inum = xic->first_ino;
2557 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
David Brazdil0f672f62019-12-10 10:32:29 +00002558 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002559
David Brazdil0f672f62019-12-10 10:32:29 +00002560 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002561 /*
2562 * The allocation bitmap tells us which inodes of the chunk were
2563 * physically allocated. Skip the cluster if an inode falls into
2564 * a sparse region.
2565 */
2566 ioffset = inum - xic->first_ino;
2567 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
David Brazdil0f672f62019-12-10 10:32:29 +00002568 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002569 continue;
2570 }
2571
2572 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2573 XFS_INO_TO_AGBNO(mp, inum));
2574
2575 /*
2576 * We obtain and lock the backing buffer first in the process
2577 * here, as we have to ensure that any dirty inode that we
2578 * can't get the flush lock on is attached to the buffer.
2579 * If we scan the in-memory inodes first, then buffer IO can
2580 * complete before we get a lock on it, and hence we may fail
2581 * to mark all the active inodes on the buffer stale.
2582 */
2583 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
David Brazdil0f672f62019-12-10 10:32:29 +00002584 mp->m_bsize * igeo->blocks_per_cluster,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002585 XBF_UNMAPPED);
2586
2587 if (!bp)
2588 return -ENOMEM;
2589
2590 /*
2591 * This buffer may not have been correctly initialised as we
2592 * didn't read it from disk. That's not important because we are
2593 * only using to mark the buffer as stale in the log, and to
2594 * attach stale cached inodes on it. That means it will never be
2595 * dispatched for IO. If it is, we want to know about it, and we
2596 * want it to fail. We can acheive this by adding a write
2597 * verifier to the buffer.
2598 */
David Brazdil0f672f62019-12-10 10:32:29 +00002599 bp->b_ops = &xfs_inode_buf_ops;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002600
2601 /*
2602 * Walk the inodes already attached to the buffer and mark them
2603 * stale. These will all have the flush locks held, so an
2604 * in-memory inode walk can't lock them. By marking them all
2605 * stale first, we will not attempt to lock them in the loop
2606 * below as the XFS_ISTALE flag will be set.
2607 */
2608 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2609 if (lip->li_type == XFS_LI_INODE) {
2610 iip = (xfs_inode_log_item_t *)lip;
2611 ASSERT(iip->ili_logged == 1);
2612 lip->li_cb = xfs_istale_done;
2613 xfs_trans_ail_copy_lsn(mp->m_ail,
2614 &iip->ili_flush_lsn,
2615 &iip->ili_item.li_lsn);
2616 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2617 }
2618 }
2619
2620
2621 /*
2622 * For each inode in memory attempt to add it to the inode
2623 * buffer and set it up for being staled on buffer IO
2624 * completion. This is safe as we've locked out tail pushing
2625 * and flushing by locking the buffer.
2626 *
2627 * We have already marked every inode that was part of a
2628 * transaction stale above, which means there is no point in
2629 * even trying to lock them.
2630 */
David Brazdil0f672f62019-12-10 10:32:29 +00002631 for (i = 0; i < igeo->inodes_per_cluster; i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002632retry:
2633 rcu_read_lock();
2634 ip = radix_tree_lookup(&pag->pag_ici_root,
2635 XFS_INO_TO_AGINO(mp, (inum + i)));
2636
2637 /* Inode not in memory, nothing to do */
2638 if (!ip) {
2639 rcu_read_unlock();
2640 continue;
2641 }
2642
2643 /*
2644 * because this is an RCU protected lookup, we could
2645 * find a recently freed or even reallocated inode
2646 * during the lookup. We need to check under the
2647 * i_flags_lock for a valid inode here. Skip it if it
2648 * is not valid, the wrong inode or stale.
2649 */
2650 spin_lock(&ip->i_flags_lock);
2651 if (ip->i_ino != inum + i ||
2652 __xfs_iflags_test(ip, XFS_ISTALE)) {
2653 spin_unlock(&ip->i_flags_lock);
2654 rcu_read_unlock();
2655 continue;
2656 }
2657 spin_unlock(&ip->i_flags_lock);
2658
2659 /*
2660 * Don't try to lock/unlock the current inode, but we
2661 * _cannot_ skip the other inodes that we did not find
2662 * in the list attached to the buffer and are not
2663 * already marked stale. If we can't lock it, back off
2664 * and retry.
2665 */
2666 if (ip != free_ip) {
2667 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2668 rcu_read_unlock();
2669 delay(1);
2670 goto retry;
2671 }
2672
2673 /*
2674 * Check the inode number again in case we're
2675 * racing with freeing in xfs_reclaim_inode().
2676 * See the comments in that function for more
2677 * information as to why the initial check is
2678 * not sufficient.
2679 */
2680 if (ip->i_ino != inum + i) {
2681 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2682 rcu_read_unlock();
2683 continue;
2684 }
2685 }
2686 rcu_read_unlock();
2687
2688 xfs_iflock(ip);
2689 xfs_iflags_set(ip, XFS_ISTALE);
2690
2691 /*
2692 * we don't need to attach clean inodes or those only
2693 * with unlogged changes (which we throw away, anyway).
2694 */
2695 iip = ip->i_itemp;
2696 if (!iip || xfs_inode_clean(ip)) {
2697 ASSERT(ip != free_ip);
2698 xfs_ifunlock(ip);
2699 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2700 continue;
2701 }
2702
2703 iip->ili_last_fields = iip->ili_fields;
2704 iip->ili_fields = 0;
2705 iip->ili_fsync_fields = 0;
2706 iip->ili_logged = 1;
2707 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2708 &iip->ili_item.li_lsn);
2709
2710 xfs_buf_attach_iodone(bp, xfs_istale_done,
2711 &iip->ili_item);
2712
2713 if (ip != free_ip)
2714 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2715 }
2716
2717 xfs_trans_stale_inode_buf(tp, bp);
2718 xfs_trans_binval(tp, bp);
2719 }
2720
2721 xfs_perag_put(pag);
2722 return 0;
2723}
2724
2725/*
2726 * Free any local-format buffers sitting around before we reset to
2727 * extents format.
2728 */
2729static inline void
2730xfs_ifree_local_data(
2731 struct xfs_inode *ip,
2732 int whichfork)
2733{
2734 struct xfs_ifork *ifp;
2735
2736 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2737 return;
2738
2739 ifp = XFS_IFORK_PTR(ip, whichfork);
2740 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2741}
2742
2743/*
2744 * This is called to return an inode to the inode free list.
2745 * The inode should already be truncated to 0 length and have
2746 * no pages associated with it. This routine also assumes that
2747 * the inode is already a part of the transaction.
2748 *
2749 * The on-disk copy of the inode will have been added to the list
2750 * of unlinked inodes in the AGI. We need to remove the inode from
2751 * that list atomically with respect to freeing it here.
2752 */
2753int
2754xfs_ifree(
2755 struct xfs_trans *tp,
2756 struct xfs_inode *ip)
2757{
2758 int error;
2759 struct xfs_icluster xic = { 0 };
2760
2761 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2762 ASSERT(VFS_I(ip)->i_nlink == 0);
2763 ASSERT(ip->i_d.di_nextents == 0);
2764 ASSERT(ip->i_d.di_anextents == 0);
2765 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2766 ASSERT(ip->i_d.di_nblocks == 0);
2767
2768 /*
2769 * Pull the on-disk inode from the AGI unlinked list.
2770 */
2771 error = xfs_iunlink_remove(tp, ip);
2772 if (error)
2773 return error;
2774
2775 error = xfs_difree(tp, ip->i_ino, &xic);
2776 if (error)
2777 return error;
2778
2779 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2780 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2781
2782 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2783 ip->i_d.di_flags = 0;
2784 ip->i_d.di_flags2 = 0;
2785 ip->i_d.di_dmevmask = 0;
2786 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2787 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2788 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2789
2790 /* Don't attempt to replay owner changes for a deleted inode */
2791 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2792
2793 /*
2794 * Bump the generation count so no one will be confused
2795 * by reincarnations of this inode.
2796 */
2797 VFS_I(ip)->i_generation++;
2798 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2799
2800 if (xic.deleted)
2801 error = xfs_ifree_cluster(ip, tp, &xic);
2802
2803 return error;
2804}
2805
2806/*
2807 * This is called to unpin an inode. The caller must have the inode locked
2808 * in at least shared mode so that the buffer cannot be subsequently pinned
2809 * once someone is waiting for it to be unpinned.
2810 */
2811static void
2812xfs_iunpin(
2813 struct xfs_inode *ip)
2814{
2815 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2816
2817 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2818
2819 /* Give the log a push to start the unpinning I/O */
2820 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2821
2822}
2823
2824static void
2825__xfs_iunpin_wait(
2826 struct xfs_inode *ip)
2827{
2828 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2829 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2830
2831 xfs_iunpin(ip);
2832
2833 do {
2834 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2835 if (xfs_ipincount(ip))
2836 io_schedule();
2837 } while (xfs_ipincount(ip));
2838 finish_wait(wq, &wait.wq_entry);
2839}
2840
2841void
2842xfs_iunpin_wait(
2843 struct xfs_inode *ip)
2844{
2845 if (xfs_ipincount(ip))
2846 __xfs_iunpin_wait(ip);
2847}
2848
2849/*
2850 * Removing an inode from the namespace involves removing the directory entry
2851 * and dropping the link count on the inode. Removing the directory entry can
2852 * result in locking an AGF (directory blocks were freed) and removing a link
2853 * count can result in placing the inode on an unlinked list which results in
2854 * locking an AGI.
2855 *
2856 * The big problem here is that we have an ordering constraint on AGF and AGI
2857 * locking - inode allocation locks the AGI, then can allocate a new extent for
2858 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2859 * removes the inode from the unlinked list, requiring that we lock the AGI
2860 * first, and then freeing the inode can result in an inode chunk being freed
2861 * and hence freeing disk space requiring that we lock an AGF.
2862 *
2863 * Hence the ordering that is imposed by other parts of the code is AGI before
2864 * AGF. This means we cannot remove the directory entry before we drop the inode
2865 * reference count and put it on the unlinked list as this results in a lock
2866 * order of AGF then AGI, and this can deadlock against inode allocation and
2867 * freeing. Therefore we must drop the link counts before we remove the
2868 * directory entry.
2869 *
2870 * This is still safe from a transactional point of view - it is not until we
2871 * get to xfs_defer_finish() that we have the possibility of multiple
2872 * transactions in this operation. Hence as long as we remove the directory
2873 * entry and drop the link count in the first transaction of the remove
2874 * operation, there are no transactional constraints on the ordering here.
2875 */
2876int
2877xfs_remove(
2878 xfs_inode_t *dp,
2879 struct xfs_name *name,
2880 xfs_inode_t *ip)
2881{
2882 xfs_mount_t *mp = dp->i_mount;
2883 xfs_trans_t *tp = NULL;
2884 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2885 int error = 0;
2886 uint resblks;
2887
2888 trace_xfs_remove(dp, name);
2889
2890 if (XFS_FORCED_SHUTDOWN(mp))
2891 return -EIO;
2892
2893 error = xfs_qm_dqattach(dp);
2894 if (error)
2895 goto std_return;
2896
2897 error = xfs_qm_dqattach(ip);
2898 if (error)
2899 goto std_return;
2900
2901 /*
2902 * We try to get the real space reservation first,
2903 * allowing for directory btree deletion(s) implying
2904 * possible bmap insert(s). If we can't get the space
2905 * reservation then we use 0 instead, and avoid the bmap
2906 * btree insert(s) in the directory code by, if the bmap
2907 * insert tries to happen, instead trimming the LAST
2908 * block from the directory.
2909 */
2910 resblks = XFS_REMOVE_SPACE_RES(mp);
2911 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2912 if (error == -ENOSPC) {
2913 resblks = 0;
2914 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2915 &tp);
2916 }
2917 if (error) {
2918 ASSERT(error != -ENOSPC);
2919 goto std_return;
2920 }
2921
2922 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2923
2924 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2925 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2926
2927 /*
2928 * If we're removing a directory perform some additional validation.
2929 */
2930 if (is_dir) {
2931 ASSERT(VFS_I(ip)->i_nlink >= 2);
2932 if (VFS_I(ip)->i_nlink != 2) {
2933 error = -ENOTEMPTY;
2934 goto out_trans_cancel;
2935 }
2936 if (!xfs_dir_isempty(ip)) {
2937 error = -ENOTEMPTY;
2938 goto out_trans_cancel;
2939 }
2940
2941 /* Drop the link from ip's "..". */
2942 error = xfs_droplink(tp, dp);
2943 if (error)
2944 goto out_trans_cancel;
2945
2946 /* Drop the "." link from ip to self. */
2947 error = xfs_droplink(tp, ip);
2948 if (error)
2949 goto out_trans_cancel;
2950 } else {
2951 /*
2952 * When removing a non-directory we need to log the parent
2953 * inode here. For a directory this is done implicitly
2954 * by the xfs_droplink call for the ".." entry.
2955 */
2956 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2957 }
2958 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2959
2960 /* Drop the link from dp to ip. */
2961 error = xfs_droplink(tp, ip);
2962 if (error)
2963 goto out_trans_cancel;
2964
2965 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2966 if (error) {
2967 ASSERT(error != -ENOENT);
2968 goto out_trans_cancel;
2969 }
2970
2971 /*
2972 * If this is a synchronous mount, make sure that the
2973 * remove transaction goes to disk before returning to
2974 * the user.
2975 */
2976 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2977 xfs_trans_set_sync(tp);
2978
2979 error = xfs_trans_commit(tp);
2980 if (error)
2981 goto std_return;
2982
2983 if (is_dir && xfs_inode_is_filestream(ip))
2984 xfs_filestream_deassociate(ip);
2985
2986 return 0;
2987
2988 out_trans_cancel:
2989 xfs_trans_cancel(tp);
2990 std_return:
2991 return error;
2992}
2993
2994/*
2995 * Enter all inodes for a rename transaction into a sorted array.
2996 */
2997#define __XFS_SORT_INODES 5
2998STATIC void
2999xfs_sort_for_rename(
3000 struct xfs_inode *dp1, /* in: old (source) directory inode */
3001 struct xfs_inode *dp2, /* in: new (target) directory inode */
3002 struct xfs_inode *ip1, /* in: inode of old entry */
3003 struct xfs_inode *ip2, /* in: inode of new entry */
3004 struct xfs_inode *wip, /* in: whiteout inode */
3005 struct xfs_inode **i_tab,/* out: sorted array of inodes */
3006 int *num_inodes) /* in/out: inodes in array */
3007{
3008 int i, j;
3009
3010 ASSERT(*num_inodes == __XFS_SORT_INODES);
3011 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
3012
3013 /*
3014 * i_tab contains a list of pointers to inodes. We initialize
3015 * the table here & we'll sort it. We will then use it to
3016 * order the acquisition of the inode locks.
3017 *
3018 * Note that the table may contain duplicates. e.g., dp1 == dp2.
3019 */
3020 i = 0;
3021 i_tab[i++] = dp1;
3022 i_tab[i++] = dp2;
3023 i_tab[i++] = ip1;
3024 if (ip2)
3025 i_tab[i++] = ip2;
3026 if (wip)
3027 i_tab[i++] = wip;
3028 *num_inodes = i;
3029
3030 /*
3031 * Sort the elements via bubble sort. (Remember, there are at
3032 * most 5 elements to sort, so this is adequate.)
3033 */
3034 for (i = 0; i < *num_inodes; i++) {
3035 for (j = 1; j < *num_inodes; j++) {
3036 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
3037 struct xfs_inode *temp = i_tab[j];
3038 i_tab[j] = i_tab[j-1];
3039 i_tab[j-1] = temp;
3040 }
3041 }
3042 }
3043}
3044
3045static int
3046xfs_finish_rename(
3047 struct xfs_trans *tp)
3048{
3049 /*
3050 * If this is a synchronous mount, make sure that the rename transaction
3051 * goes to disk before returning to the user.
3052 */
3053 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3054 xfs_trans_set_sync(tp);
3055
3056 return xfs_trans_commit(tp);
3057}
3058
3059/*
3060 * xfs_cross_rename()
3061 *
3062 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3063 */
3064STATIC int
3065xfs_cross_rename(
3066 struct xfs_trans *tp,
3067 struct xfs_inode *dp1,
3068 struct xfs_name *name1,
3069 struct xfs_inode *ip1,
3070 struct xfs_inode *dp2,
3071 struct xfs_name *name2,
3072 struct xfs_inode *ip2,
3073 int spaceres)
3074{
3075 int error = 0;
3076 int ip1_flags = 0;
3077 int ip2_flags = 0;
3078 int dp2_flags = 0;
3079
3080 /* Swap inode number for dirent in first parent */
3081 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3082 if (error)
3083 goto out_trans_abort;
3084
3085 /* Swap inode number for dirent in second parent */
3086 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3087 if (error)
3088 goto out_trans_abort;
3089
3090 /*
3091 * If we're renaming one or more directories across different parents,
3092 * update the respective ".." entries (and link counts) to match the new
3093 * parents.
3094 */
3095 if (dp1 != dp2) {
3096 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3097
3098 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3099 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3100 dp1->i_ino, spaceres);
3101 if (error)
3102 goto out_trans_abort;
3103
3104 /* transfer ip2 ".." reference to dp1 */
3105 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3106 error = xfs_droplink(tp, dp2);
3107 if (error)
3108 goto out_trans_abort;
David Brazdil0f672f62019-12-10 10:32:29 +00003109 xfs_bumplink(tp, dp1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003110 }
3111
3112 /*
3113 * Although ip1 isn't changed here, userspace needs
3114 * to be warned about the change, so that applications
3115 * relying on it (like backup ones), will properly
3116 * notify the change
3117 */
3118 ip1_flags |= XFS_ICHGTIME_CHG;
3119 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3120 }
3121
3122 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3123 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3124 dp2->i_ino, spaceres);
3125 if (error)
3126 goto out_trans_abort;
3127
3128 /* transfer ip1 ".." reference to dp2 */
3129 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3130 error = xfs_droplink(tp, dp1);
3131 if (error)
3132 goto out_trans_abort;
David Brazdil0f672f62019-12-10 10:32:29 +00003133 xfs_bumplink(tp, dp2);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003134 }
3135
3136 /*
3137 * Although ip2 isn't changed here, userspace needs
3138 * to be warned about the change, so that applications
3139 * relying on it (like backup ones), will properly
3140 * notify the change
3141 */
3142 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3143 ip2_flags |= XFS_ICHGTIME_CHG;
3144 }
3145 }
3146
3147 if (ip1_flags) {
3148 xfs_trans_ichgtime(tp, ip1, ip1_flags);
3149 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3150 }
3151 if (ip2_flags) {
3152 xfs_trans_ichgtime(tp, ip2, ip2_flags);
3153 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3154 }
3155 if (dp2_flags) {
3156 xfs_trans_ichgtime(tp, dp2, dp2_flags);
3157 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3158 }
3159 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3160 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3161 return xfs_finish_rename(tp);
3162
3163out_trans_abort:
3164 xfs_trans_cancel(tp);
3165 return error;
3166}
3167
3168/*
3169 * xfs_rename_alloc_whiteout()
3170 *
3171 * Return a referenced, unlinked, unlocked inode that that can be used as a
3172 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3173 * crash between allocating the inode and linking it into the rename transaction
3174 * recovery will free the inode and we won't leak it.
3175 */
3176static int
3177xfs_rename_alloc_whiteout(
3178 struct xfs_inode *dp,
3179 struct xfs_inode **wip)
3180{
3181 struct xfs_inode *tmpfile;
3182 int error;
3183
3184 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3185 if (error)
3186 return error;
3187
3188 /*
3189 * Prepare the tmpfile inode as if it were created through the VFS.
David Brazdil0f672f62019-12-10 10:32:29 +00003190 * Complete the inode setup and flag it as linkable. nlink is already
3191 * zero, so we can skip the drop_nlink.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003192 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003193 xfs_setup_iops(tmpfile);
3194 xfs_finish_inode_setup(tmpfile);
3195 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3196
3197 *wip = tmpfile;
3198 return 0;
3199}
3200
3201/*
3202 * xfs_rename
3203 */
3204int
3205xfs_rename(
3206 struct xfs_inode *src_dp,
3207 struct xfs_name *src_name,
3208 struct xfs_inode *src_ip,
3209 struct xfs_inode *target_dp,
3210 struct xfs_name *target_name,
3211 struct xfs_inode *target_ip,
3212 unsigned int flags)
3213{
3214 struct xfs_mount *mp = src_dp->i_mount;
3215 struct xfs_trans *tp;
3216 struct xfs_inode *wip = NULL; /* whiteout inode */
3217 struct xfs_inode *inodes[__XFS_SORT_INODES];
3218 int num_inodes = __XFS_SORT_INODES;
3219 bool new_parent = (src_dp != target_dp);
3220 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3221 int spaceres;
3222 int error;
3223
3224 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3225
3226 if ((flags & RENAME_EXCHANGE) && !target_ip)
3227 return -EINVAL;
3228
3229 /*
3230 * If we are doing a whiteout operation, allocate the whiteout inode
3231 * we will be placing at the target and ensure the type is set
3232 * appropriately.
3233 */
3234 if (flags & RENAME_WHITEOUT) {
3235 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3236 error = xfs_rename_alloc_whiteout(target_dp, &wip);
3237 if (error)
3238 return error;
3239
3240 /* setup target dirent info as whiteout */
3241 src_name->type = XFS_DIR3_FT_CHRDEV;
3242 }
3243
3244 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3245 inodes, &num_inodes);
3246
3247 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3248 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3249 if (error == -ENOSPC) {
3250 spaceres = 0;
3251 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3252 &tp);
3253 }
3254 if (error)
3255 goto out_release_wip;
3256
3257 /*
3258 * Attach the dquots to the inodes
3259 */
3260 error = xfs_qm_vop_rename_dqattach(inodes);
3261 if (error)
3262 goto out_trans_cancel;
3263
3264 /*
3265 * Lock all the participating inodes. Depending upon whether
3266 * the target_name exists in the target directory, and
3267 * whether the target directory is the same as the source
3268 * directory, we can lock from 2 to 4 inodes.
3269 */
3270 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3271
3272 /*
3273 * Join all the inodes to the transaction. From this point on,
3274 * we can rely on either trans_commit or trans_cancel to unlock
3275 * them.
3276 */
3277 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3278 if (new_parent)
3279 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3280 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3281 if (target_ip)
3282 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3283 if (wip)
3284 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3285
3286 /*
3287 * If we are using project inheritance, we only allow renames
3288 * into our tree when the project IDs are the same; else the
3289 * tree quota mechanism would be circumvented.
3290 */
3291 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3292 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3293 error = -EXDEV;
3294 goto out_trans_cancel;
3295 }
3296
3297 /* RENAME_EXCHANGE is unique from here on. */
3298 if (flags & RENAME_EXCHANGE)
3299 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3300 target_dp, target_name, target_ip,
3301 spaceres);
3302
3303 /*
David Brazdil0f672f62019-12-10 10:32:29 +00003304 * Check for expected errors before we dirty the transaction
3305 * so we can return an error without a transaction abort.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003306 */
3307 if (target_ip == NULL) {
3308 /*
3309 * If there's no space reservation, check the entry will
3310 * fit before actually inserting it.
3311 */
3312 if (!spaceres) {
3313 error = xfs_dir_canenter(tp, target_dp, target_name);
3314 if (error)
3315 goto out_trans_cancel;
3316 }
David Brazdil0f672f62019-12-10 10:32:29 +00003317 } else {
3318 /*
3319 * If target exists and it's a directory, check that whether
3320 * it can be destroyed.
3321 */
3322 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3323 (!xfs_dir_isempty(target_ip) ||
3324 (VFS_I(target_ip)->i_nlink > 2))) {
3325 error = -EEXIST;
3326 goto out_trans_cancel;
3327 }
3328 }
3329
3330 /*
3331 * Directory entry creation below may acquire the AGF. Remove
3332 * the whiteout from the unlinked list first to preserve correct
3333 * AGI/AGF locking order. This dirties the transaction so failures
3334 * after this point will abort and log recovery will clean up the
3335 * mess.
3336 *
3337 * For whiteouts, we need to bump the link count on the whiteout
3338 * inode. After this point, we have a real link, clear the tmpfile
3339 * state flag from the inode so it doesn't accidentally get misused
3340 * in future.
3341 */
3342 if (wip) {
3343 ASSERT(VFS_I(wip)->i_nlink == 0);
3344 error = xfs_iunlink_remove(tp, wip);
3345 if (error)
3346 goto out_trans_cancel;
3347
3348 xfs_bumplink(tp, wip);
3349 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3350 VFS_I(wip)->i_state &= ~I_LINKABLE;
3351 }
3352
3353 /*
3354 * Set up the target.
3355 */
3356 if (target_ip == NULL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003357 /*
3358 * If target does not exist and the rename crosses
3359 * directories, adjust the target directory link count
3360 * to account for the ".." reference from the new entry.
3361 */
3362 error = xfs_dir_createname(tp, target_dp, target_name,
3363 src_ip->i_ino, spaceres);
3364 if (error)
3365 goto out_trans_cancel;
3366
3367 xfs_trans_ichgtime(tp, target_dp,
3368 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3369
3370 if (new_parent && src_is_directory) {
David Brazdil0f672f62019-12-10 10:32:29 +00003371 xfs_bumplink(tp, target_dp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003372 }
3373 } else { /* target_ip != NULL */
3374 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003375 * Link the source inode under the target name.
3376 * If the source inode is a directory and we are moving
3377 * it across directories, its ".." entry will be
3378 * inconsistent until we replace that down below.
3379 *
3380 * In case there is already an entry with the same
3381 * name at the destination directory, remove it first.
3382 */
3383 error = xfs_dir_replace(tp, target_dp, target_name,
3384 src_ip->i_ino, spaceres);
3385 if (error)
3386 goto out_trans_cancel;
3387
3388 xfs_trans_ichgtime(tp, target_dp,
3389 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3390
3391 /*
3392 * Decrement the link count on the target since the target
3393 * dir no longer points to it.
3394 */
3395 error = xfs_droplink(tp, target_ip);
3396 if (error)
3397 goto out_trans_cancel;
3398
3399 if (src_is_directory) {
3400 /*
3401 * Drop the link from the old "." entry.
3402 */
3403 error = xfs_droplink(tp, target_ip);
3404 if (error)
3405 goto out_trans_cancel;
3406 }
3407 } /* target_ip != NULL */
3408
3409 /*
3410 * Remove the source.
3411 */
3412 if (new_parent && src_is_directory) {
3413 /*
3414 * Rewrite the ".." entry to point to the new
3415 * directory.
3416 */
3417 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3418 target_dp->i_ino, spaceres);
3419 ASSERT(error != -EEXIST);
3420 if (error)
3421 goto out_trans_cancel;
3422 }
3423
3424 /*
3425 * We always want to hit the ctime on the source inode.
3426 *
3427 * This isn't strictly required by the standards since the source
3428 * inode isn't really being changed, but old unix file systems did
3429 * it and some incremental backup programs won't work without it.
3430 */
3431 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3432 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3433
3434 /*
3435 * Adjust the link count on src_dp. This is necessary when
3436 * renaming a directory, either within one parent when
3437 * the target existed, or across two parent directories.
3438 */
3439 if (src_is_directory && (new_parent || target_ip != NULL)) {
3440
3441 /*
3442 * Decrement link count on src_directory since the
3443 * entry that's moved no longer points to it.
3444 */
3445 error = xfs_droplink(tp, src_dp);
3446 if (error)
3447 goto out_trans_cancel;
3448 }
3449
3450 /*
3451 * For whiteouts, we only need to update the source dirent with the
3452 * inode number of the whiteout inode rather than removing it
3453 * altogether.
3454 */
3455 if (wip) {
3456 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3457 spaceres);
3458 } else
3459 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3460 spaceres);
3461 if (error)
3462 goto out_trans_cancel;
3463
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003464 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3465 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3466 if (new_parent)
3467 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3468
3469 error = xfs_finish_rename(tp);
3470 if (wip)
3471 xfs_irele(wip);
3472 return error;
3473
3474out_trans_cancel:
3475 xfs_trans_cancel(tp);
3476out_release_wip:
3477 if (wip)
3478 xfs_irele(wip);
3479 return error;
3480}
3481
3482STATIC int
3483xfs_iflush_cluster(
3484 struct xfs_inode *ip,
3485 struct xfs_buf *bp)
3486{
3487 struct xfs_mount *mp = ip->i_mount;
3488 struct xfs_perag *pag;
3489 unsigned long first_index, mask;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003490 int cilist_size;
3491 struct xfs_inode **cilist;
3492 struct xfs_inode *cip;
David Brazdil0f672f62019-12-10 10:32:29 +00003493 struct xfs_ino_geometry *igeo = M_IGEO(mp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003494 int nr_found;
3495 int clcount = 0;
3496 int i;
3497
3498 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3499
David Brazdil0f672f62019-12-10 10:32:29 +00003500 cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003501 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3502 if (!cilist)
3503 goto out_put;
3504
David Brazdil0f672f62019-12-10 10:32:29 +00003505 mask = ~(igeo->inodes_per_cluster - 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003506 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3507 rcu_read_lock();
3508 /* really need a gang lookup range call here */
3509 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
David Brazdil0f672f62019-12-10 10:32:29 +00003510 first_index, igeo->inodes_per_cluster);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003511 if (nr_found == 0)
3512 goto out_free;
3513
3514 for (i = 0; i < nr_found; i++) {
3515 cip = cilist[i];
3516 if (cip == ip)
3517 continue;
3518
3519 /*
3520 * because this is an RCU protected lookup, we could find a
3521 * recently freed or even reallocated inode during the lookup.
3522 * We need to check under the i_flags_lock for a valid inode
3523 * here. Skip it if it is not valid or the wrong inode.
3524 */
3525 spin_lock(&cip->i_flags_lock);
3526 if (!cip->i_ino ||
3527 __xfs_iflags_test(cip, XFS_ISTALE)) {
3528 spin_unlock(&cip->i_flags_lock);
3529 continue;
3530 }
3531
3532 /*
3533 * Once we fall off the end of the cluster, no point checking
3534 * any more inodes in the list because they will also all be
3535 * outside the cluster.
3536 */
3537 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3538 spin_unlock(&cip->i_flags_lock);
3539 break;
3540 }
3541 spin_unlock(&cip->i_flags_lock);
3542
3543 /*
3544 * Do an un-protected check to see if the inode is dirty and
3545 * is a candidate for flushing. These checks will be repeated
3546 * later after the appropriate locks are acquired.
3547 */
3548 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3549 continue;
3550
3551 /*
3552 * Try to get locks. If any are unavailable or it is pinned,
3553 * then this inode cannot be flushed and is skipped.
3554 */
3555
3556 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3557 continue;
3558 if (!xfs_iflock_nowait(cip)) {
3559 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3560 continue;
3561 }
3562 if (xfs_ipincount(cip)) {
3563 xfs_ifunlock(cip);
3564 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3565 continue;
3566 }
3567
3568
3569 /*
3570 * Check the inode number again, just to be certain we are not
3571 * racing with freeing in xfs_reclaim_inode(). See the comments
3572 * in that function for more information as to why the initial
3573 * check is not sufficient.
3574 */
3575 if (!cip->i_ino) {
3576 xfs_ifunlock(cip);
3577 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3578 continue;
3579 }
3580
3581 /*
3582 * arriving here means that this inode can be flushed. First
3583 * re-check that it's dirty before flushing.
3584 */
3585 if (!xfs_inode_clean(cip)) {
3586 int error;
3587 error = xfs_iflush_int(cip, bp);
3588 if (error) {
3589 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3590 goto cluster_corrupt_out;
3591 }
3592 clcount++;
3593 } else {
3594 xfs_ifunlock(cip);
3595 }
3596 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3597 }
3598
3599 if (clcount) {
3600 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3601 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3602 }
3603
3604out_free:
3605 rcu_read_unlock();
3606 kmem_free(cilist);
3607out_put:
3608 xfs_perag_put(pag);
3609 return 0;
3610
3611
3612cluster_corrupt_out:
3613 /*
3614 * Corruption detected in the clustering loop. Invalidate the
3615 * inode buffer and shut down the filesystem.
3616 */
3617 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003618
3619 /*
3620 * We'll always have an inode attached to the buffer for completion
3621 * process by the time we are called from xfs_iflush(). Hence we have
3622 * always need to do IO completion processing to abort the inodes
3623 * attached to the buffer. handle them just like the shutdown case in
3624 * xfs_buf_submit().
3625 */
3626 ASSERT(bp->b_iodone);
David Brazdil0f672f62019-12-10 10:32:29 +00003627 bp->b_flags |= XBF_ASYNC;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003628 bp->b_flags &= ~XBF_DONE;
3629 xfs_buf_stale(bp);
3630 xfs_buf_ioerror(bp, -EIO);
3631 xfs_buf_ioend(bp);
3632
David Brazdil0f672f62019-12-10 10:32:29 +00003633 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3634
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003635 /* abort the corrupt inode, as it was not attached to the buffer */
3636 xfs_iflush_abort(cip, false);
3637 kmem_free(cilist);
3638 xfs_perag_put(pag);
3639 return -EFSCORRUPTED;
3640}
3641
3642/*
3643 * Flush dirty inode metadata into the backing buffer.
3644 *
3645 * The caller must have the inode lock and the inode flush lock held. The
3646 * inode lock will still be held upon return to the caller, and the inode
3647 * flush lock will be released after the inode has reached the disk.
3648 *
3649 * The caller must write out the buffer returned in *bpp and release it.
3650 */
3651int
3652xfs_iflush(
3653 struct xfs_inode *ip,
3654 struct xfs_buf **bpp)
3655{
3656 struct xfs_mount *mp = ip->i_mount;
3657 struct xfs_buf *bp = NULL;
3658 struct xfs_dinode *dip;
3659 int error;
3660
3661 XFS_STATS_INC(mp, xs_iflush_count);
3662
3663 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3664 ASSERT(xfs_isiflocked(ip));
3665 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3666 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3667
3668 *bpp = NULL;
3669
3670 xfs_iunpin_wait(ip);
3671
3672 /*
3673 * For stale inodes we cannot rely on the backing buffer remaining
3674 * stale in cache for the remaining life of the stale inode and so
3675 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3676 * inodes below. We have to check this after ensuring the inode is
3677 * unpinned so that it is safe to reclaim the stale inode after the
3678 * flush call.
3679 */
3680 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3681 xfs_ifunlock(ip);
3682 return 0;
3683 }
3684
3685 /*
3686 * This may have been unpinned because the filesystem is shutting
3687 * down forcibly. If that's the case we must not write this inode
3688 * to disk, because the log record didn't make it to disk.
3689 *
3690 * We also have to remove the log item from the AIL in this case,
3691 * as we wait for an empty AIL as part of the unmount process.
3692 */
3693 if (XFS_FORCED_SHUTDOWN(mp)) {
3694 error = -EIO;
3695 goto abort_out;
3696 }
3697
3698 /*
3699 * Get the buffer containing the on-disk inode. We are doing a try-lock
3700 * operation here, so we may get an EAGAIN error. In that case, we
3701 * simply want to return with the inode still dirty.
3702 *
3703 * If we get any other error, we effectively have a corruption situation
3704 * and we cannot flush the inode, so we treat it the same as failing
3705 * xfs_iflush_int().
3706 */
3707 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3708 0);
3709 if (error == -EAGAIN) {
3710 xfs_ifunlock(ip);
3711 return error;
3712 }
3713 if (error)
3714 goto corrupt_out;
3715
3716 /*
3717 * First flush out the inode that xfs_iflush was called with.
3718 */
3719 error = xfs_iflush_int(ip, bp);
3720 if (error)
3721 goto corrupt_out;
3722
3723 /*
3724 * If the buffer is pinned then push on the log now so we won't
3725 * get stuck waiting in the write for too long.
3726 */
3727 if (xfs_buf_ispinned(bp))
3728 xfs_log_force(mp, 0);
3729
3730 /*
3731 * inode clustering: try to gather other inodes into this write
3732 *
3733 * Note: Any error during clustering will result in the filesystem
3734 * being shut down and completion callbacks run on the cluster buffer.
3735 * As we have already flushed and attached this inode to the buffer,
3736 * it has already been aborted and released by xfs_iflush_cluster() and
3737 * so we have no further error handling to do here.
3738 */
3739 error = xfs_iflush_cluster(ip, bp);
3740 if (error)
3741 return error;
3742
3743 *bpp = bp;
3744 return 0;
3745
3746corrupt_out:
3747 if (bp)
3748 xfs_buf_relse(bp);
3749 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3750abort_out:
3751 /* abort the corrupt inode, as it was not attached to the buffer */
3752 xfs_iflush_abort(ip, false);
3753 return error;
3754}
3755
3756/*
3757 * If there are inline format data / attr forks attached to this inode,
3758 * make sure they're not corrupt.
3759 */
3760bool
3761xfs_inode_verify_forks(
3762 struct xfs_inode *ip)
3763{
3764 struct xfs_ifork *ifp;
3765 xfs_failaddr_t fa;
3766
3767 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3768 if (fa) {
3769 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3770 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3771 ifp->if_u1.if_data, ifp->if_bytes, fa);
3772 return false;
3773 }
3774
3775 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3776 if (fa) {
3777 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3778 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3779 ifp ? ifp->if_u1.if_data : NULL,
3780 ifp ? ifp->if_bytes : 0, fa);
3781 return false;
3782 }
3783 return true;
3784}
3785
3786STATIC int
3787xfs_iflush_int(
3788 struct xfs_inode *ip,
3789 struct xfs_buf *bp)
3790{
3791 struct xfs_inode_log_item *iip = ip->i_itemp;
3792 struct xfs_dinode *dip;
3793 struct xfs_mount *mp = ip->i_mount;
3794
3795 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3796 ASSERT(xfs_isiflocked(ip));
3797 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3798 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3799 ASSERT(iip != NULL && iip->ili_fields != 0);
3800 ASSERT(ip->i_d.di_version > 1);
3801
3802 /* set *dip = inode's place in the buffer */
3803 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3804
3805 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3806 mp, XFS_ERRTAG_IFLUSH_1)) {
3807 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3808 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3809 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3810 goto corrupt_out;
3811 }
3812 if (S_ISREG(VFS_I(ip)->i_mode)) {
3813 if (XFS_TEST_ERROR(
3814 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3815 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3816 mp, XFS_ERRTAG_IFLUSH_3)) {
3817 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3818 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3819 __func__, ip->i_ino, ip);
3820 goto corrupt_out;
3821 }
3822 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3823 if (XFS_TEST_ERROR(
3824 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3825 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3826 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3827 mp, XFS_ERRTAG_IFLUSH_4)) {
3828 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3829 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3830 __func__, ip->i_ino, ip);
3831 goto corrupt_out;
3832 }
3833 }
3834 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3835 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3836 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3837 "%s: detected corrupt incore inode %Lu, "
3838 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3839 __func__, ip->i_ino,
3840 ip->i_d.di_nextents + ip->i_d.di_anextents,
3841 ip->i_d.di_nblocks, ip);
3842 goto corrupt_out;
3843 }
3844 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3845 mp, XFS_ERRTAG_IFLUSH_6)) {
3846 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3847 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3848 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3849 goto corrupt_out;
3850 }
3851
3852 /*
3853 * Inode item log recovery for v2 inodes are dependent on the
3854 * di_flushiter count for correct sequencing. We bump the flush
3855 * iteration count so we can detect flushes which postdate a log record
3856 * during recovery. This is redundant as we now log every change and
3857 * hence this can't happen but we need to still do it to ensure
3858 * backwards compatibility with old kernels that predate logging all
3859 * inode changes.
3860 */
3861 if (ip->i_d.di_version < 3)
3862 ip->i_d.di_flushiter++;
3863
3864 /* Check the inline fork data before we write out. */
3865 if (!xfs_inode_verify_forks(ip))
3866 goto corrupt_out;
3867
3868 /*
3869 * Copy the dirty parts of the inode into the on-disk inode. We always
3870 * copy out the core of the inode, because if the inode is dirty at all
3871 * the core must be.
3872 */
3873 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3874
3875 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3876 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3877 ip->i_d.di_flushiter = 0;
3878
3879 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3880 if (XFS_IFORK_Q(ip))
3881 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3882 xfs_inobp_check(mp, bp);
3883
3884 /*
3885 * We've recorded everything logged in the inode, so we'd like to clear
3886 * the ili_fields bits so we don't log and flush things unnecessarily.
3887 * However, we can't stop logging all this information until the data
3888 * we've copied into the disk buffer is written to disk. If we did we
3889 * might overwrite the copy of the inode in the log with all the data
3890 * after re-logging only part of it, and in the face of a crash we
3891 * wouldn't have all the data we need to recover.
3892 *
3893 * What we do is move the bits to the ili_last_fields field. When
3894 * logging the inode, these bits are moved back to the ili_fields field.
3895 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3896 * know that the information those bits represent is permanently on
3897 * disk. As long as the flush completes before the inode is logged
3898 * again, then both ili_fields and ili_last_fields will be cleared.
3899 *
3900 * We can play with the ili_fields bits here, because the inode lock
3901 * must be held exclusively in order to set bits there and the flush
3902 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3903 * done routine can tell whether or not to look in the AIL. Also, store
3904 * the current LSN of the inode so that we can tell whether the item has
3905 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3906 * need the AIL lock, because it is a 64 bit value that cannot be read
3907 * atomically.
3908 */
3909 iip->ili_last_fields = iip->ili_fields;
3910 iip->ili_fields = 0;
3911 iip->ili_fsync_fields = 0;
3912 iip->ili_logged = 1;
3913
3914 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3915 &iip->ili_item.li_lsn);
3916
3917 /*
3918 * Attach the function xfs_iflush_done to the inode's
3919 * buffer. This will remove the inode from the AIL
3920 * and unlock the inode's flush lock when the inode is
3921 * completely written to disk.
3922 */
3923 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3924
3925 /* generate the checksum. */
3926 xfs_dinode_calc_crc(mp, dip);
3927
3928 ASSERT(!list_empty(&bp->b_li_list));
3929 ASSERT(bp->b_iodone != NULL);
3930 return 0;
3931
3932corrupt_out:
3933 return -EFSCORRUPTED;
3934}
3935
3936/* Release an inode. */
3937void
3938xfs_irele(
3939 struct xfs_inode *ip)
3940{
3941 trace_xfs_irele(ip, _RET_IP_);
3942 iput(VFS_I(ip));
3943}