Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
| 4 | * All Rights Reserved. |
| 5 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 6 | #include <linux/iversion.h> |
| 7 | |
| 8 | #include "xfs.h" |
| 9 | #include "xfs_fs.h" |
| 10 | #include "xfs_shared.h" |
| 11 | #include "xfs_format.h" |
| 12 | #include "xfs_log_format.h" |
| 13 | #include "xfs_trans_resv.h" |
| 14 | #include "xfs_sb.h" |
| 15 | #include "xfs_mount.h" |
| 16 | #include "xfs_defer.h" |
| 17 | #include "xfs_inode.h" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 18 | #include "xfs_dir2.h" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 19 | #include "xfs_attr.h" |
| 20 | #include "xfs_trans_space.h" |
| 21 | #include "xfs_trans.h" |
| 22 | #include "xfs_buf_item.h" |
| 23 | #include "xfs_inode_item.h" |
| 24 | #include "xfs_ialloc.h" |
| 25 | #include "xfs_bmap.h" |
| 26 | #include "xfs_bmap_util.h" |
| 27 | #include "xfs_errortag.h" |
| 28 | #include "xfs_error.h" |
| 29 | #include "xfs_quota.h" |
| 30 | #include "xfs_filestream.h" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 31 | #include "xfs_trace.h" |
| 32 | #include "xfs_icache.h" |
| 33 | #include "xfs_symlink.h" |
| 34 | #include "xfs_trans_priv.h" |
| 35 | #include "xfs_log.h" |
| 36 | #include "xfs_bmap_btree.h" |
| 37 | #include "xfs_reflink.h" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 38 | |
| 39 | kmem_zone_t *xfs_inode_zone; |
| 40 | |
| 41 | /* |
| 42 | * Used in xfs_itruncate_extents(). This is the maximum number of extents |
| 43 | * freed from a file in a single transaction. |
| 44 | */ |
| 45 | #define XFS_ITRUNC_MAX_EXTENTS 2 |
| 46 | |
| 47 | STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); |
| 48 | STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); |
| 49 | STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); |
| 50 | |
| 51 | /* |
| 52 | * helper function to extract extent size hint from inode |
| 53 | */ |
| 54 | xfs_extlen_t |
| 55 | xfs_get_extsz_hint( |
| 56 | struct xfs_inode *ip) |
| 57 | { |
| 58 | if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) |
| 59 | return ip->i_d.di_extsize; |
| 60 | if (XFS_IS_REALTIME_INODE(ip)) |
| 61 | return ip->i_mount->m_sb.sb_rextsize; |
| 62 | return 0; |
| 63 | } |
| 64 | |
| 65 | /* |
| 66 | * Helper function to extract CoW extent size hint from inode. |
| 67 | * Between the extent size hint and the CoW extent size hint, we |
| 68 | * return the greater of the two. If the value is zero (automatic), |
| 69 | * use the default size. |
| 70 | */ |
| 71 | xfs_extlen_t |
| 72 | xfs_get_cowextsz_hint( |
| 73 | struct xfs_inode *ip) |
| 74 | { |
| 75 | xfs_extlen_t a, b; |
| 76 | |
| 77 | a = 0; |
| 78 | if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) |
| 79 | a = ip->i_d.di_cowextsize; |
| 80 | b = xfs_get_extsz_hint(ip); |
| 81 | |
| 82 | a = max(a, b); |
| 83 | if (a == 0) |
| 84 | return XFS_DEFAULT_COWEXTSZ_HINT; |
| 85 | return a; |
| 86 | } |
| 87 | |
| 88 | /* |
| 89 | * These two are wrapper routines around the xfs_ilock() routine used to |
| 90 | * centralize some grungy code. They are used in places that wish to lock the |
| 91 | * inode solely for reading the extents. The reason these places can't just |
| 92 | * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to |
| 93 | * bringing in of the extents from disk for a file in b-tree format. If the |
| 94 | * inode is in b-tree format, then we need to lock the inode exclusively until |
| 95 | * the extents are read in. Locking it exclusively all the time would limit |
| 96 | * our parallelism unnecessarily, though. What we do instead is check to see |
| 97 | * if the extents have been read in yet, and only lock the inode exclusively |
| 98 | * if they have not. |
| 99 | * |
| 100 | * The functions return a value which should be given to the corresponding |
| 101 | * xfs_iunlock() call. |
| 102 | */ |
| 103 | uint |
| 104 | xfs_ilock_data_map_shared( |
| 105 | struct xfs_inode *ip) |
| 106 | { |
| 107 | uint lock_mode = XFS_ILOCK_SHARED; |
| 108 | |
| 109 | if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && |
| 110 | (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) |
| 111 | lock_mode = XFS_ILOCK_EXCL; |
| 112 | xfs_ilock(ip, lock_mode); |
| 113 | return lock_mode; |
| 114 | } |
| 115 | |
| 116 | uint |
| 117 | xfs_ilock_attr_map_shared( |
| 118 | struct xfs_inode *ip) |
| 119 | { |
| 120 | uint lock_mode = XFS_ILOCK_SHARED; |
| 121 | |
| 122 | if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && |
| 123 | (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) |
| 124 | lock_mode = XFS_ILOCK_EXCL; |
| 125 | xfs_ilock(ip, lock_mode); |
| 126 | return lock_mode; |
| 127 | } |
| 128 | |
| 129 | /* |
| 130 | * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 |
| 131 | * multi-reader locks: i_mmap_lock and the i_lock. This routine allows |
| 132 | * various combinations of the locks to be obtained. |
| 133 | * |
| 134 | * The 3 locks should always be ordered so that the IO lock is obtained first, |
| 135 | * the mmap lock second and the ilock last in order to prevent deadlock. |
| 136 | * |
| 137 | * Basic locking order: |
| 138 | * |
| 139 | * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock |
| 140 | * |
| 141 | * mmap_sem locking order: |
| 142 | * |
| 143 | * i_rwsem -> page lock -> mmap_sem |
| 144 | * mmap_sem -> i_mmap_lock -> page_lock |
| 145 | * |
| 146 | * The difference in mmap_sem locking order mean that we cannot hold the |
| 147 | * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can |
| 148 | * fault in pages during copy in/out (for buffered IO) or require the mmap_sem |
| 149 | * in get_user_pages() to map the user pages into the kernel address space for |
| 150 | * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because |
| 151 | * page faults already hold the mmap_sem. |
| 152 | * |
| 153 | * Hence to serialise fully against both syscall and mmap based IO, we need to |
| 154 | * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both |
| 155 | * taken in places where we need to invalidate the page cache in a race |
| 156 | * free manner (e.g. truncate, hole punch and other extent manipulation |
| 157 | * functions). |
| 158 | */ |
| 159 | void |
| 160 | xfs_ilock( |
| 161 | xfs_inode_t *ip, |
| 162 | uint lock_flags) |
| 163 | { |
| 164 | trace_xfs_ilock(ip, lock_flags, _RET_IP_); |
| 165 | |
| 166 | /* |
| 167 | * You can't set both SHARED and EXCL for the same lock, |
| 168 | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| 169 | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| 170 | */ |
| 171 | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| 172 | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| 173 | ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
| 174 | (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); |
| 175 | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| 176 | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| 177 | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
| 178 | |
| 179 | if (lock_flags & XFS_IOLOCK_EXCL) { |
| 180 | down_write_nested(&VFS_I(ip)->i_rwsem, |
| 181 | XFS_IOLOCK_DEP(lock_flags)); |
| 182 | } else if (lock_flags & XFS_IOLOCK_SHARED) { |
| 183 | down_read_nested(&VFS_I(ip)->i_rwsem, |
| 184 | XFS_IOLOCK_DEP(lock_flags)); |
| 185 | } |
| 186 | |
| 187 | if (lock_flags & XFS_MMAPLOCK_EXCL) |
| 188 | mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); |
| 189 | else if (lock_flags & XFS_MMAPLOCK_SHARED) |
| 190 | mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); |
| 191 | |
| 192 | if (lock_flags & XFS_ILOCK_EXCL) |
| 193 | mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); |
| 194 | else if (lock_flags & XFS_ILOCK_SHARED) |
| 195 | mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); |
| 196 | } |
| 197 | |
| 198 | /* |
| 199 | * This is just like xfs_ilock(), except that the caller |
| 200 | * is guaranteed not to sleep. It returns 1 if it gets |
| 201 | * the requested locks and 0 otherwise. If the IO lock is |
| 202 | * obtained but the inode lock cannot be, then the IO lock |
| 203 | * is dropped before returning. |
| 204 | * |
| 205 | * ip -- the inode being locked |
| 206 | * lock_flags -- this parameter indicates the inode's locks to be |
| 207 | * to be locked. See the comment for xfs_ilock() for a list |
| 208 | * of valid values. |
| 209 | */ |
| 210 | int |
| 211 | xfs_ilock_nowait( |
| 212 | xfs_inode_t *ip, |
| 213 | uint lock_flags) |
| 214 | { |
| 215 | trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); |
| 216 | |
| 217 | /* |
| 218 | * You can't set both SHARED and EXCL for the same lock, |
| 219 | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| 220 | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| 221 | */ |
| 222 | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| 223 | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| 224 | ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
| 225 | (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); |
| 226 | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| 227 | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| 228 | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
| 229 | |
| 230 | if (lock_flags & XFS_IOLOCK_EXCL) { |
| 231 | if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) |
| 232 | goto out; |
| 233 | } else if (lock_flags & XFS_IOLOCK_SHARED) { |
| 234 | if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) |
| 235 | goto out; |
| 236 | } |
| 237 | |
| 238 | if (lock_flags & XFS_MMAPLOCK_EXCL) { |
| 239 | if (!mrtryupdate(&ip->i_mmaplock)) |
| 240 | goto out_undo_iolock; |
| 241 | } else if (lock_flags & XFS_MMAPLOCK_SHARED) { |
| 242 | if (!mrtryaccess(&ip->i_mmaplock)) |
| 243 | goto out_undo_iolock; |
| 244 | } |
| 245 | |
| 246 | if (lock_flags & XFS_ILOCK_EXCL) { |
| 247 | if (!mrtryupdate(&ip->i_lock)) |
| 248 | goto out_undo_mmaplock; |
| 249 | } else if (lock_flags & XFS_ILOCK_SHARED) { |
| 250 | if (!mrtryaccess(&ip->i_lock)) |
| 251 | goto out_undo_mmaplock; |
| 252 | } |
| 253 | return 1; |
| 254 | |
| 255 | out_undo_mmaplock: |
| 256 | if (lock_flags & XFS_MMAPLOCK_EXCL) |
| 257 | mrunlock_excl(&ip->i_mmaplock); |
| 258 | else if (lock_flags & XFS_MMAPLOCK_SHARED) |
| 259 | mrunlock_shared(&ip->i_mmaplock); |
| 260 | out_undo_iolock: |
| 261 | if (lock_flags & XFS_IOLOCK_EXCL) |
| 262 | up_write(&VFS_I(ip)->i_rwsem); |
| 263 | else if (lock_flags & XFS_IOLOCK_SHARED) |
| 264 | up_read(&VFS_I(ip)->i_rwsem); |
| 265 | out: |
| 266 | return 0; |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | * xfs_iunlock() is used to drop the inode locks acquired with |
| 271 | * xfs_ilock() and xfs_ilock_nowait(). The caller must pass |
| 272 | * in the flags given to xfs_ilock() or xfs_ilock_nowait() so |
| 273 | * that we know which locks to drop. |
| 274 | * |
| 275 | * ip -- the inode being unlocked |
| 276 | * lock_flags -- this parameter indicates the inode's locks to be |
| 277 | * to be unlocked. See the comment for xfs_ilock() for a list |
| 278 | * of valid values for this parameter. |
| 279 | * |
| 280 | */ |
| 281 | void |
| 282 | xfs_iunlock( |
| 283 | xfs_inode_t *ip, |
| 284 | uint lock_flags) |
| 285 | { |
| 286 | /* |
| 287 | * You can't set both SHARED and EXCL for the same lock, |
| 288 | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| 289 | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| 290 | */ |
| 291 | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| 292 | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| 293 | ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
| 294 | (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); |
| 295 | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| 296 | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| 297 | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
| 298 | ASSERT(lock_flags != 0); |
| 299 | |
| 300 | if (lock_flags & XFS_IOLOCK_EXCL) |
| 301 | up_write(&VFS_I(ip)->i_rwsem); |
| 302 | else if (lock_flags & XFS_IOLOCK_SHARED) |
| 303 | up_read(&VFS_I(ip)->i_rwsem); |
| 304 | |
| 305 | if (lock_flags & XFS_MMAPLOCK_EXCL) |
| 306 | mrunlock_excl(&ip->i_mmaplock); |
| 307 | else if (lock_flags & XFS_MMAPLOCK_SHARED) |
| 308 | mrunlock_shared(&ip->i_mmaplock); |
| 309 | |
| 310 | if (lock_flags & XFS_ILOCK_EXCL) |
| 311 | mrunlock_excl(&ip->i_lock); |
| 312 | else if (lock_flags & XFS_ILOCK_SHARED) |
| 313 | mrunlock_shared(&ip->i_lock); |
| 314 | |
| 315 | trace_xfs_iunlock(ip, lock_flags, _RET_IP_); |
| 316 | } |
| 317 | |
| 318 | /* |
| 319 | * give up write locks. the i/o lock cannot be held nested |
| 320 | * if it is being demoted. |
| 321 | */ |
| 322 | void |
| 323 | xfs_ilock_demote( |
| 324 | xfs_inode_t *ip, |
| 325 | uint lock_flags) |
| 326 | { |
| 327 | ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); |
| 328 | ASSERT((lock_flags & |
| 329 | ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); |
| 330 | |
| 331 | if (lock_flags & XFS_ILOCK_EXCL) |
| 332 | mrdemote(&ip->i_lock); |
| 333 | if (lock_flags & XFS_MMAPLOCK_EXCL) |
| 334 | mrdemote(&ip->i_mmaplock); |
| 335 | if (lock_flags & XFS_IOLOCK_EXCL) |
| 336 | downgrade_write(&VFS_I(ip)->i_rwsem); |
| 337 | |
| 338 | trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); |
| 339 | } |
| 340 | |
| 341 | #if defined(DEBUG) || defined(XFS_WARN) |
| 342 | int |
| 343 | xfs_isilocked( |
| 344 | xfs_inode_t *ip, |
| 345 | uint lock_flags) |
| 346 | { |
| 347 | if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { |
| 348 | if (!(lock_flags & XFS_ILOCK_SHARED)) |
| 349 | return !!ip->i_lock.mr_writer; |
| 350 | return rwsem_is_locked(&ip->i_lock.mr_lock); |
| 351 | } |
| 352 | |
| 353 | if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { |
| 354 | if (!(lock_flags & XFS_MMAPLOCK_SHARED)) |
| 355 | return !!ip->i_mmaplock.mr_writer; |
| 356 | return rwsem_is_locked(&ip->i_mmaplock.mr_lock); |
| 357 | } |
| 358 | |
| 359 | if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { |
| 360 | if (!(lock_flags & XFS_IOLOCK_SHARED)) |
| 361 | return !debug_locks || |
| 362 | lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); |
| 363 | return rwsem_is_locked(&VFS_I(ip)->i_rwsem); |
| 364 | } |
| 365 | |
| 366 | ASSERT(0); |
| 367 | return 0; |
| 368 | } |
| 369 | #endif |
| 370 | |
| 371 | /* |
| 372 | * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when |
| 373 | * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined |
| 374 | * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build |
| 375 | * errors and warnings. |
| 376 | */ |
| 377 | #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) |
| 378 | static bool |
| 379 | xfs_lockdep_subclass_ok( |
| 380 | int subclass) |
| 381 | { |
| 382 | return subclass < MAX_LOCKDEP_SUBCLASSES; |
| 383 | } |
| 384 | #else |
| 385 | #define xfs_lockdep_subclass_ok(subclass) (true) |
| 386 | #endif |
| 387 | |
| 388 | /* |
| 389 | * Bump the subclass so xfs_lock_inodes() acquires each lock with a different |
| 390 | * value. This can be called for any type of inode lock combination, including |
| 391 | * parent locking. Care must be taken to ensure we don't overrun the subclass |
| 392 | * storage fields in the class mask we build. |
| 393 | */ |
| 394 | static inline int |
| 395 | xfs_lock_inumorder(int lock_mode, int subclass) |
| 396 | { |
| 397 | int class = 0; |
| 398 | |
| 399 | ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | |
| 400 | XFS_ILOCK_RTSUM))); |
| 401 | ASSERT(xfs_lockdep_subclass_ok(subclass)); |
| 402 | |
| 403 | if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { |
| 404 | ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); |
| 405 | class += subclass << XFS_IOLOCK_SHIFT; |
| 406 | } |
| 407 | |
| 408 | if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { |
| 409 | ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); |
| 410 | class += subclass << XFS_MMAPLOCK_SHIFT; |
| 411 | } |
| 412 | |
| 413 | if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { |
| 414 | ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); |
| 415 | class += subclass << XFS_ILOCK_SHIFT; |
| 416 | } |
| 417 | |
| 418 | return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * The following routine will lock n inodes in exclusive mode. We assume the |
| 423 | * caller calls us with the inodes in i_ino order. |
| 424 | * |
| 425 | * We need to detect deadlock where an inode that we lock is in the AIL and we |
| 426 | * start waiting for another inode that is locked by a thread in a long running |
| 427 | * transaction (such as truncate). This can result in deadlock since the long |
| 428 | * running trans might need to wait for the inode we just locked in order to |
| 429 | * push the tail and free space in the log. |
| 430 | * |
| 431 | * xfs_lock_inodes() can only be used to lock one type of lock at a time - |
| 432 | * the iolock, the mmaplock or the ilock, but not more than one at a time. If we |
| 433 | * lock more than one at a time, lockdep will report false positives saying we |
| 434 | * have violated locking orders. |
| 435 | */ |
| 436 | static void |
| 437 | xfs_lock_inodes( |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 438 | struct xfs_inode **ips, |
| 439 | int inodes, |
| 440 | uint lock_mode) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 441 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 442 | int attempts = 0, i, j, try_lock; |
| 443 | struct xfs_log_item *lp; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 444 | |
| 445 | /* |
| 446 | * Currently supports between 2 and 5 inodes with exclusive locking. We |
| 447 | * support an arbitrary depth of locking here, but absolute limits on |
| 448 | * inodes depend on the the type of locking and the limits placed by |
| 449 | * lockdep annotations in xfs_lock_inumorder. These are all checked by |
| 450 | * the asserts. |
| 451 | */ |
| 452 | ASSERT(ips && inodes >= 2 && inodes <= 5); |
| 453 | ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | |
| 454 | XFS_ILOCK_EXCL)); |
| 455 | ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | |
| 456 | XFS_ILOCK_SHARED))); |
| 457 | ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || |
| 458 | inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); |
| 459 | ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || |
| 460 | inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); |
| 461 | |
| 462 | if (lock_mode & XFS_IOLOCK_EXCL) { |
| 463 | ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); |
| 464 | } else if (lock_mode & XFS_MMAPLOCK_EXCL) |
| 465 | ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); |
| 466 | |
| 467 | try_lock = 0; |
| 468 | i = 0; |
| 469 | again: |
| 470 | for (; i < inodes; i++) { |
| 471 | ASSERT(ips[i]); |
| 472 | |
| 473 | if (i && (ips[i] == ips[i - 1])) /* Already locked */ |
| 474 | continue; |
| 475 | |
| 476 | /* |
| 477 | * If try_lock is not set yet, make sure all locked inodes are |
| 478 | * not in the AIL. If any are, set try_lock to be used later. |
| 479 | */ |
| 480 | if (!try_lock) { |
| 481 | for (j = (i - 1); j >= 0 && !try_lock; j--) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 482 | lp = &ips[j]->i_itemp->ili_item; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 483 | if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) |
| 484 | try_lock++; |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | /* |
| 489 | * If any of the previous locks we have locked is in the AIL, |
| 490 | * we must TRY to get the second and subsequent locks. If |
| 491 | * we can't get any, we must release all we have |
| 492 | * and try again. |
| 493 | */ |
| 494 | if (!try_lock) { |
| 495 | xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); |
| 496 | continue; |
| 497 | } |
| 498 | |
| 499 | /* try_lock means we have an inode locked that is in the AIL. */ |
| 500 | ASSERT(i != 0); |
| 501 | if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) |
| 502 | continue; |
| 503 | |
| 504 | /* |
| 505 | * Unlock all previous guys and try again. xfs_iunlock will try |
| 506 | * to push the tail if the inode is in the AIL. |
| 507 | */ |
| 508 | attempts++; |
| 509 | for (j = i - 1; j >= 0; j--) { |
| 510 | /* |
| 511 | * Check to see if we've already unlocked this one. Not |
| 512 | * the first one going back, and the inode ptr is the |
| 513 | * same. |
| 514 | */ |
| 515 | if (j != (i - 1) && ips[j] == ips[j + 1]) |
| 516 | continue; |
| 517 | |
| 518 | xfs_iunlock(ips[j], lock_mode); |
| 519 | } |
| 520 | |
| 521 | if ((attempts % 5) == 0) { |
| 522 | delay(1); /* Don't just spin the CPU */ |
| 523 | } |
| 524 | i = 0; |
| 525 | try_lock = 0; |
| 526 | goto again; |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | /* |
| 531 | * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - |
| 532 | * the mmaplock or the ilock, but not more than one type at a time. If we lock |
| 533 | * more than one at a time, lockdep will report false positives saying we have |
| 534 | * violated locking orders. The iolock must be double-locked separately since |
| 535 | * we use i_rwsem for that. We now support taking one lock EXCL and the other |
| 536 | * SHARED. |
| 537 | */ |
| 538 | void |
| 539 | xfs_lock_two_inodes( |
| 540 | struct xfs_inode *ip0, |
| 541 | uint ip0_mode, |
| 542 | struct xfs_inode *ip1, |
| 543 | uint ip1_mode) |
| 544 | { |
| 545 | struct xfs_inode *temp; |
| 546 | uint mode_temp; |
| 547 | int attempts = 0; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 548 | struct xfs_log_item *lp; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 549 | |
| 550 | ASSERT(hweight32(ip0_mode) == 1); |
| 551 | ASSERT(hweight32(ip1_mode) == 1); |
| 552 | ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); |
| 553 | ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); |
| 554 | ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || |
| 555 | !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); |
| 556 | ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || |
| 557 | !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); |
| 558 | ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || |
| 559 | !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); |
| 560 | ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || |
| 561 | !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); |
| 562 | |
| 563 | ASSERT(ip0->i_ino != ip1->i_ino); |
| 564 | |
| 565 | if (ip0->i_ino > ip1->i_ino) { |
| 566 | temp = ip0; |
| 567 | ip0 = ip1; |
| 568 | ip1 = temp; |
| 569 | mode_temp = ip0_mode; |
| 570 | ip0_mode = ip1_mode; |
| 571 | ip1_mode = mode_temp; |
| 572 | } |
| 573 | |
| 574 | again: |
| 575 | xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); |
| 576 | |
| 577 | /* |
| 578 | * If the first lock we have locked is in the AIL, we must TRY to get |
| 579 | * the second lock. If we can't get it, we must release the first one |
| 580 | * and try again. |
| 581 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 582 | lp = &ip0->i_itemp->ili_item; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 583 | if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { |
| 584 | if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { |
| 585 | xfs_iunlock(ip0, ip0_mode); |
| 586 | if ((++attempts % 5) == 0) |
| 587 | delay(1); /* Don't just spin the CPU */ |
| 588 | goto again; |
| 589 | } |
| 590 | } else { |
| 591 | xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | void |
| 596 | __xfs_iflock( |
| 597 | struct xfs_inode *ip) |
| 598 | { |
| 599 | wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); |
| 600 | DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); |
| 601 | |
| 602 | do { |
| 603 | prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); |
| 604 | if (xfs_isiflocked(ip)) |
| 605 | io_schedule(); |
| 606 | } while (!xfs_iflock_nowait(ip)); |
| 607 | |
| 608 | finish_wait(wq, &wait.wq_entry); |
| 609 | } |
| 610 | |
| 611 | STATIC uint |
| 612 | _xfs_dic2xflags( |
| 613 | uint16_t di_flags, |
| 614 | uint64_t di_flags2, |
| 615 | bool has_attr) |
| 616 | { |
| 617 | uint flags = 0; |
| 618 | |
| 619 | if (di_flags & XFS_DIFLAG_ANY) { |
| 620 | if (di_flags & XFS_DIFLAG_REALTIME) |
| 621 | flags |= FS_XFLAG_REALTIME; |
| 622 | if (di_flags & XFS_DIFLAG_PREALLOC) |
| 623 | flags |= FS_XFLAG_PREALLOC; |
| 624 | if (di_flags & XFS_DIFLAG_IMMUTABLE) |
| 625 | flags |= FS_XFLAG_IMMUTABLE; |
| 626 | if (di_flags & XFS_DIFLAG_APPEND) |
| 627 | flags |= FS_XFLAG_APPEND; |
| 628 | if (di_flags & XFS_DIFLAG_SYNC) |
| 629 | flags |= FS_XFLAG_SYNC; |
| 630 | if (di_flags & XFS_DIFLAG_NOATIME) |
| 631 | flags |= FS_XFLAG_NOATIME; |
| 632 | if (di_flags & XFS_DIFLAG_NODUMP) |
| 633 | flags |= FS_XFLAG_NODUMP; |
| 634 | if (di_flags & XFS_DIFLAG_RTINHERIT) |
| 635 | flags |= FS_XFLAG_RTINHERIT; |
| 636 | if (di_flags & XFS_DIFLAG_PROJINHERIT) |
| 637 | flags |= FS_XFLAG_PROJINHERIT; |
| 638 | if (di_flags & XFS_DIFLAG_NOSYMLINKS) |
| 639 | flags |= FS_XFLAG_NOSYMLINKS; |
| 640 | if (di_flags & XFS_DIFLAG_EXTSIZE) |
| 641 | flags |= FS_XFLAG_EXTSIZE; |
| 642 | if (di_flags & XFS_DIFLAG_EXTSZINHERIT) |
| 643 | flags |= FS_XFLAG_EXTSZINHERIT; |
| 644 | if (di_flags & XFS_DIFLAG_NODEFRAG) |
| 645 | flags |= FS_XFLAG_NODEFRAG; |
| 646 | if (di_flags & XFS_DIFLAG_FILESTREAM) |
| 647 | flags |= FS_XFLAG_FILESTREAM; |
| 648 | } |
| 649 | |
| 650 | if (di_flags2 & XFS_DIFLAG2_ANY) { |
| 651 | if (di_flags2 & XFS_DIFLAG2_DAX) |
| 652 | flags |= FS_XFLAG_DAX; |
| 653 | if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) |
| 654 | flags |= FS_XFLAG_COWEXTSIZE; |
| 655 | } |
| 656 | |
| 657 | if (has_attr) |
| 658 | flags |= FS_XFLAG_HASATTR; |
| 659 | |
| 660 | return flags; |
| 661 | } |
| 662 | |
| 663 | uint |
| 664 | xfs_ip2xflags( |
| 665 | struct xfs_inode *ip) |
| 666 | { |
| 667 | struct xfs_icdinode *dic = &ip->i_d; |
| 668 | |
| 669 | return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); |
| 670 | } |
| 671 | |
| 672 | /* |
| 673 | * Lookups up an inode from "name". If ci_name is not NULL, then a CI match |
| 674 | * is allowed, otherwise it has to be an exact match. If a CI match is found, |
| 675 | * ci_name->name will point to a the actual name (caller must free) or |
| 676 | * will be set to NULL if an exact match is found. |
| 677 | */ |
| 678 | int |
| 679 | xfs_lookup( |
| 680 | xfs_inode_t *dp, |
| 681 | struct xfs_name *name, |
| 682 | xfs_inode_t **ipp, |
| 683 | struct xfs_name *ci_name) |
| 684 | { |
| 685 | xfs_ino_t inum; |
| 686 | int error; |
| 687 | |
| 688 | trace_xfs_lookup(dp, name); |
| 689 | |
| 690 | if (XFS_FORCED_SHUTDOWN(dp->i_mount)) |
| 691 | return -EIO; |
| 692 | |
| 693 | error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); |
| 694 | if (error) |
| 695 | goto out_unlock; |
| 696 | |
| 697 | error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); |
| 698 | if (error) |
| 699 | goto out_free_name; |
| 700 | |
| 701 | return 0; |
| 702 | |
| 703 | out_free_name: |
| 704 | if (ci_name) |
| 705 | kmem_free(ci_name->name); |
| 706 | out_unlock: |
| 707 | *ipp = NULL; |
| 708 | return error; |
| 709 | } |
| 710 | |
| 711 | /* |
| 712 | * Allocate an inode on disk and return a copy of its in-core version. |
| 713 | * The in-core inode is locked exclusively. Set mode, nlink, and rdev |
| 714 | * appropriately within the inode. The uid and gid for the inode are |
| 715 | * set according to the contents of the given cred structure. |
| 716 | * |
| 717 | * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() |
| 718 | * has a free inode available, call xfs_iget() to obtain the in-core |
| 719 | * version of the allocated inode. Finally, fill in the inode and |
| 720 | * log its initial contents. In this case, ialloc_context would be |
| 721 | * set to NULL. |
| 722 | * |
| 723 | * If xfs_dialloc() does not have an available inode, it will replenish |
| 724 | * its supply by doing an allocation. Since we can only do one |
| 725 | * allocation within a transaction without deadlocks, we must commit |
| 726 | * the current transaction before returning the inode itself. |
| 727 | * In this case, therefore, we will set ialloc_context and return. |
| 728 | * The caller should then commit the current transaction, start a new |
| 729 | * transaction, and call xfs_ialloc() again to actually get the inode. |
| 730 | * |
| 731 | * To ensure that some other process does not grab the inode that |
| 732 | * was allocated during the first call to xfs_ialloc(), this routine |
| 733 | * also returns the [locked] bp pointing to the head of the freelist |
| 734 | * as ialloc_context. The caller should hold this buffer across |
| 735 | * the commit and pass it back into this routine on the second call. |
| 736 | * |
| 737 | * If we are allocating quota inodes, we do not have a parent inode |
| 738 | * to attach to or associate with (i.e. pip == NULL) because they |
| 739 | * are not linked into the directory structure - they are attached |
| 740 | * directly to the superblock - and so have no parent. |
| 741 | */ |
| 742 | static int |
| 743 | xfs_ialloc( |
| 744 | xfs_trans_t *tp, |
| 745 | xfs_inode_t *pip, |
| 746 | umode_t mode, |
| 747 | xfs_nlink_t nlink, |
| 748 | dev_t rdev, |
| 749 | prid_t prid, |
| 750 | xfs_buf_t **ialloc_context, |
| 751 | xfs_inode_t **ipp) |
| 752 | { |
| 753 | struct xfs_mount *mp = tp->t_mountp; |
| 754 | xfs_ino_t ino; |
| 755 | xfs_inode_t *ip; |
| 756 | uint flags; |
| 757 | int error; |
| 758 | struct timespec64 tv; |
| 759 | struct inode *inode; |
| 760 | |
| 761 | /* |
| 762 | * Call the space management code to pick |
| 763 | * the on-disk inode to be allocated. |
| 764 | */ |
| 765 | error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, |
| 766 | ialloc_context, &ino); |
| 767 | if (error) |
| 768 | return error; |
| 769 | if (*ialloc_context || ino == NULLFSINO) { |
| 770 | *ipp = NULL; |
| 771 | return 0; |
| 772 | } |
| 773 | ASSERT(*ialloc_context == NULL); |
| 774 | |
| 775 | /* |
| 776 | * Protect against obviously corrupt allocation btree records. Later |
| 777 | * xfs_iget checks will catch re-allocation of other active in-memory |
| 778 | * and on-disk inodes. If we don't catch reallocating the parent inode |
| 779 | * here we will deadlock in xfs_iget() so we have to do these checks |
| 780 | * first. |
| 781 | */ |
| 782 | if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { |
| 783 | xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); |
| 784 | return -EFSCORRUPTED; |
| 785 | } |
| 786 | |
| 787 | /* |
| 788 | * Get the in-core inode with the lock held exclusively. |
| 789 | * This is because we're setting fields here we need |
| 790 | * to prevent others from looking at until we're done. |
| 791 | */ |
| 792 | error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, |
| 793 | XFS_ILOCK_EXCL, &ip); |
| 794 | if (error) |
| 795 | return error; |
| 796 | ASSERT(ip != NULL); |
| 797 | inode = VFS_I(ip); |
| 798 | |
| 799 | /* |
| 800 | * We always convert v1 inodes to v2 now - we only support filesystems |
| 801 | * with >= v2 inode capability, so there is no reason for ever leaving |
| 802 | * an inode in v1 format. |
| 803 | */ |
| 804 | if (ip->i_d.di_version == 1) |
| 805 | ip->i_d.di_version = 2; |
| 806 | |
| 807 | inode->i_mode = mode; |
| 808 | set_nlink(inode, nlink); |
| 809 | ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); |
| 810 | ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); |
| 811 | inode->i_rdev = rdev; |
| 812 | xfs_set_projid(ip, prid); |
| 813 | |
| 814 | if (pip && XFS_INHERIT_GID(pip)) { |
| 815 | ip->i_d.di_gid = pip->i_d.di_gid; |
| 816 | if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) |
| 817 | inode->i_mode |= S_ISGID; |
| 818 | } |
| 819 | |
| 820 | /* |
| 821 | * If the group ID of the new file does not match the effective group |
| 822 | * ID or one of the supplementary group IDs, the S_ISGID bit is cleared |
| 823 | * (and only if the irix_sgid_inherit compatibility variable is set). |
| 824 | */ |
| 825 | if ((irix_sgid_inherit) && |
| 826 | (inode->i_mode & S_ISGID) && |
| 827 | (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) |
| 828 | inode->i_mode &= ~S_ISGID; |
| 829 | |
| 830 | ip->i_d.di_size = 0; |
| 831 | ip->i_d.di_nextents = 0; |
| 832 | ASSERT(ip->i_d.di_nblocks == 0); |
| 833 | |
| 834 | tv = current_time(inode); |
| 835 | inode->i_mtime = tv; |
| 836 | inode->i_atime = tv; |
| 837 | inode->i_ctime = tv; |
| 838 | |
| 839 | ip->i_d.di_extsize = 0; |
| 840 | ip->i_d.di_dmevmask = 0; |
| 841 | ip->i_d.di_dmstate = 0; |
| 842 | ip->i_d.di_flags = 0; |
| 843 | |
| 844 | if (ip->i_d.di_version == 3) { |
| 845 | inode_set_iversion(inode, 1); |
| 846 | ip->i_d.di_flags2 = 0; |
| 847 | ip->i_d.di_cowextsize = 0; |
| 848 | ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec; |
| 849 | ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec; |
| 850 | } |
| 851 | |
| 852 | |
| 853 | flags = XFS_ILOG_CORE; |
| 854 | switch (mode & S_IFMT) { |
| 855 | case S_IFIFO: |
| 856 | case S_IFCHR: |
| 857 | case S_IFBLK: |
| 858 | case S_IFSOCK: |
| 859 | ip->i_d.di_format = XFS_DINODE_FMT_DEV; |
| 860 | ip->i_df.if_flags = 0; |
| 861 | flags |= XFS_ILOG_DEV; |
| 862 | break; |
| 863 | case S_IFREG: |
| 864 | case S_IFDIR: |
| 865 | if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { |
| 866 | uint di_flags = 0; |
| 867 | |
| 868 | if (S_ISDIR(mode)) { |
| 869 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) |
| 870 | di_flags |= XFS_DIFLAG_RTINHERIT; |
| 871 | if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { |
| 872 | di_flags |= XFS_DIFLAG_EXTSZINHERIT; |
| 873 | ip->i_d.di_extsize = pip->i_d.di_extsize; |
| 874 | } |
| 875 | if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) |
| 876 | di_flags |= XFS_DIFLAG_PROJINHERIT; |
| 877 | } else if (S_ISREG(mode)) { |
| 878 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) |
| 879 | di_flags |= XFS_DIFLAG_REALTIME; |
| 880 | if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { |
| 881 | di_flags |= XFS_DIFLAG_EXTSIZE; |
| 882 | ip->i_d.di_extsize = pip->i_d.di_extsize; |
| 883 | } |
| 884 | } |
| 885 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && |
| 886 | xfs_inherit_noatime) |
| 887 | di_flags |= XFS_DIFLAG_NOATIME; |
| 888 | if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && |
| 889 | xfs_inherit_nodump) |
| 890 | di_flags |= XFS_DIFLAG_NODUMP; |
| 891 | if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && |
| 892 | xfs_inherit_sync) |
| 893 | di_flags |= XFS_DIFLAG_SYNC; |
| 894 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && |
| 895 | xfs_inherit_nosymlinks) |
| 896 | di_flags |= XFS_DIFLAG_NOSYMLINKS; |
| 897 | if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && |
| 898 | xfs_inherit_nodefrag) |
| 899 | di_flags |= XFS_DIFLAG_NODEFRAG; |
| 900 | if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) |
| 901 | di_flags |= XFS_DIFLAG_FILESTREAM; |
| 902 | |
| 903 | ip->i_d.di_flags |= di_flags; |
| 904 | } |
| 905 | if (pip && |
| 906 | (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && |
| 907 | pip->i_d.di_version == 3 && |
| 908 | ip->i_d.di_version == 3) { |
| 909 | uint64_t di_flags2 = 0; |
| 910 | |
| 911 | if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { |
| 912 | di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; |
| 913 | ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; |
| 914 | } |
| 915 | if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) |
| 916 | di_flags2 |= XFS_DIFLAG2_DAX; |
| 917 | |
| 918 | ip->i_d.di_flags2 |= di_flags2; |
| 919 | } |
| 920 | /* FALLTHROUGH */ |
| 921 | case S_IFLNK: |
| 922 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; |
| 923 | ip->i_df.if_flags = XFS_IFEXTENTS; |
| 924 | ip->i_df.if_bytes = 0; |
| 925 | ip->i_df.if_u1.if_root = NULL; |
| 926 | break; |
| 927 | default: |
| 928 | ASSERT(0); |
| 929 | } |
| 930 | /* |
| 931 | * Attribute fork settings for new inode. |
| 932 | */ |
| 933 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; |
| 934 | ip->i_d.di_anextents = 0; |
| 935 | |
| 936 | /* |
| 937 | * Log the new values stuffed into the inode. |
| 938 | */ |
| 939 | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| 940 | xfs_trans_log_inode(tp, ip, flags); |
| 941 | |
| 942 | /* now that we have an i_mode we can setup the inode structure */ |
| 943 | xfs_setup_inode(ip); |
| 944 | |
| 945 | *ipp = ip; |
| 946 | return 0; |
| 947 | } |
| 948 | |
| 949 | /* |
| 950 | * Allocates a new inode from disk and return a pointer to the |
| 951 | * incore copy. This routine will internally commit the current |
| 952 | * transaction and allocate a new one if the Space Manager needed |
| 953 | * to do an allocation to replenish the inode free-list. |
| 954 | * |
| 955 | * This routine is designed to be called from xfs_create and |
| 956 | * xfs_create_dir. |
| 957 | * |
| 958 | */ |
| 959 | int |
| 960 | xfs_dir_ialloc( |
| 961 | xfs_trans_t **tpp, /* input: current transaction; |
| 962 | output: may be a new transaction. */ |
| 963 | xfs_inode_t *dp, /* directory within whose allocate |
| 964 | the inode. */ |
| 965 | umode_t mode, |
| 966 | xfs_nlink_t nlink, |
| 967 | dev_t rdev, |
| 968 | prid_t prid, /* project id */ |
| 969 | xfs_inode_t **ipp) /* pointer to inode; it will be |
| 970 | locked. */ |
| 971 | { |
| 972 | xfs_trans_t *tp; |
| 973 | xfs_inode_t *ip; |
| 974 | xfs_buf_t *ialloc_context = NULL; |
| 975 | int code; |
| 976 | void *dqinfo; |
| 977 | uint tflags; |
| 978 | |
| 979 | tp = *tpp; |
| 980 | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| 981 | |
| 982 | /* |
| 983 | * xfs_ialloc will return a pointer to an incore inode if |
| 984 | * the Space Manager has an available inode on the free |
| 985 | * list. Otherwise, it will do an allocation and replenish |
| 986 | * the freelist. Since we can only do one allocation per |
| 987 | * transaction without deadlocks, we will need to commit the |
| 988 | * current transaction and start a new one. We will then |
| 989 | * need to call xfs_ialloc again to get the inode. |
| 990 | * |
| 991 | * If xfs_ialloc did an allocation to replenish the freelist, |
| 992 | * it returns the bp containing the head of the freelist as |
| 993 | * ialloc_context. We will hold a lock on it across the |
| 994 | * transaction commit so that no other process can steal |
| 995 | * the inode(s) that we've just allocated. |
| 996 | */ |
| 997 | code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, |
| 998 | &ip); |
| 999 | |
| 1000 | /* |
| 1001 | * Return an error if we were unable to allocate a new inode. |
| 1002 | * This should only happen if we run out of space on disk or |
| 1003 | * encounter a disk error. |
| 1004 | */ |
| 1005 | if (code) { |
| 1006 | *ipp = NULL; |
| 1007 | return code; |
| 1008 | } |
| 1009 | if (!ialloc_context && !ip) { |
| 1010 | *ipp = NULL; |
| 1011 | return -ENOSPC; |
| 1012 | } |
| 1013 | |
| 1014 | /* |
| 1015 | * If the AGI buffer is non-NULL, then we were unable to get an |
| 1016 | * inode in one operation. We need to commit the current |
| 1017 | * transaction and call xfs_ialloc() again. It is guaranteed |
| 1018 | * to succeed the second time. |
| 1019 | */ |
| 1020 | if (ialloc_context) { |
| 1021 | /* |
| 1022 | * Normally, xfs_trans_commit releases all the locks. |
| 1023 | * We call bhold to hang on to the ialloc_context across |
| 1024 | * the commit. Holding this buffer prevents any other |
| 1025 | * processes from doing any allocations in this |
| 1026 | * allocation group. |
| 1027 | */ |
| 1028 | xfs_trans_bhold(tp, ialloc_context); |
| 1029 | |
| 1030 | /* |
| 1031 | * We want the quota changes to be associated with the next |
| 1032 | * transaction, NOT this one. So, detach the dqinfo from this |
| 1033 | * and attach it to the next transaction. |
| 1034 | */ |
| 1035 | dqinfo = NULL; |
| 1036 | tflags = 0; |
| 1037 | if (tp->t_dqinfo) { |
| 1038 | dqinfo = (void *)tp->t_dqinfo; |
| 1039 | tp->t_dqinfo = NULL; |
| 1040 | tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; |
| 1041 | tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); |
| 1042 | } |
| 1043 | |
| 1044 | code = xfs_trans_roll(&tp); |
| 1045 | |
| 1046 | /* |
| 1047 | * Re-attach the quota info that we detached from prev trx. |
| 1048 | */ |
| 1049 | if (dqinfo) { |
| 1050 | tp->t_dqinfo = dqinfo; |
| 1051 | tp->t_flags |= tflags; |
| 1052 | } |
| 1053 | |
| 1054 | if (code) { |
| 1055 | xfs_buf_relse(ialloc_context); |
| 1056 | *tpp = tp; |
| 1057 | *ipp = NULL; |
| 1058 | return code; |
| 1059 | } |
| 1060 | xfs_trans_bjoin(tp, ialloc_context); |
| 1061 | |
| 1062 | /* |
| 1063 | * Call ialloc again. Since we've locked out all |
| 1064 | * other allocations in this allocation group, |
| 1065 | * this call should always succeed. |
| 1066 | */ |
| 1067 | code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, |
| 1068 | &ialloc_context, &ip); |
| 1069 | |
| 1070 | /* |
| 1071 | * If we get an error at this point, return to the caller |
| 1072 | * so that the current transaction can be aborted. |
| 1073 | */ |
| 1074 | if (code) { |
| 1075 | *tpp = tp; |
| 1076 | *ipp = NULL; |
| 1077 | return code; |
| 1078 | } |
| 1079 | ASSERT(!ialloc_context && ip); |
| 1080 | |
| 1081 | } |
| 1082 | |
| 1083 | *ipp = ip; |
| 1084 | *tpp = tp; |
| 1085 | |
| 1086 | return 0; |
| 1087 | } |
| 1088 | |
| 1089 | /* |
| 1090 | * Decrement the link count on an inode & log the change. If this causes the |
| 1091 | * link count to go to zero, move the inode to AGI unlinked list so that it can |
| 1092 | * be freed when the last active reference goes away via xfs_inactive(). |
| 1093 | */ |
| 1094 | static int /* error */ |
| 1095 | xfs_droplink( |
| 1096 | xfs_trans_t *tp, |
| 1097 | xfs_inode_t *ip) |
| 1098 | { |
| 1099 | xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); |
| 1100 | |
| 1101 | drop_nlink(VFS_I(ip)); |
| 1102 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 1103 | |
| 1104 | if (VFS_I(ip)->i_nlink) |
| 1105 | return 0; |
| 1106 | |
| 1107 | return xfs_iunlink(tp, ip); |
| 1108 | } |
| 1109 | |
| 1110 | /* |
| 1111 | * Increment the link count on an inode & log the change. |
| 1112 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1113 | static void |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1114 | xfs_bumplink( |
| 1115 | xfs_trans_t *tp, |
| 1116 | xfs_inode_t *ip) |
| 1117 | { |
| 1118 | xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); |
| 1119 | |
| 1120 | ASSERT(ip->i_d.di_version > 1); |
| 1121 | inc_nlink(VFS_I(ip)); |
| 1122 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1123 | } |
| 1124 | |
| 1125 | int |
| 1126 | xfs_create( |
| 1127 | xfs_inode_t *dp, |
| 1128 | struct xfs_name *name, |
| 1129 | umode_t mode, |
| 1130 | dev_t rdev, |
| 1131 | xfs_inode_t **ipp) |
| 1132 | { |
| 1133 | int is_dir = S_ISDIR(mode); |
| 1134 | struct xfs_mount *mp = dp->i_mount; |
| 1135 | struct xfs_inode *ip = NULL; |
| 1136 | struct xfs_trans *tp = NULL; |
| 1137 | int error; |
| 1138 | bool unlock_dp_on_error = false; |
| 1139 | prid_t prid; |
| 1140 | struct xfs_dquot *udqp = NULL; |
| 1141 | struct xfs_dquot *gdqp = NULL; |
| 1142 | struct xfs_dquot *pdqp = NULL; |
| 1143 | struct xfs_trans_res *tres; |
| 1144 | uint resblks; |
| 1145 | |
| 1146 | trace_xfs_create(dp, name); |
| 1147 | |
| 1148 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 1149 | return -EIO; |
| 1150 | |
| 1151 | prid = xfs_get_initial_prid(dp); |
| 1152 | |
| 1153 | /* |
| 1154 | * Make sure that we have allocated dquot(s) on disk. |
| 1155 | */ |
| 1156 | error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), |
| 1157 | xfs_kgid_to_gid(current_fsgid()), prid, |
| 1158 | XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, |
| 1159 | &udqp, &gdqp, &pdqp); |
| 1160 | if (error) |
| 1161 | return error; |
| 1162 | |
| 1163 | if (is_dir) { |
| 1164 | resblks = XFS_MKDIR_SPACE_RES(mp, name->len); |
| 1165 | tres = &M_RES(mp)->tr_mkdir; |
| 1166 | } else { |
| 1167 | resblks = XFS_CREATE_SPACE_RES(mp, name->len); |
| 1168 | tres = &M_RES(mp)->tr_create; |
| 1169 | } |
| 1170 | |
| 1171 | /* |
| 1172 | * Initially assume that the file does not exist and |
| 1173 | * reserve the resources for that case. If that is not |
| 1174 | * the case we'll drop the one we have and get a more |
| 1175 | * appropriate transaction later. |
| 1176 | */ |
| 1177 | error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); |
| 1178 | if (error == -ENOSPC) { |
| 1179 | /* flush outstanding delalloc blocks and retry */ |
| 1180 | xfs_flush_inodes(mp); |
| 1181 | error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); |
| 1182 | } |
| 1183 | if (error) |
| 1184 | goto out_release_inode; |
| 1185 | |
| 1186 | xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); |
| 1187 | unlock_dp_on_error = true; |
| 1188 | |
| 1189 | /* |
| 1190 | * Reserve disk quota and the inode. |
| 1191 | */ |
| 1192 | error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, |
| 1193 | pdqp, resblks, 1, 0); |
| 1194 | if (error) |
| 1195 | goto out_trans_cancel; |
| 1196 | |
| 1197 | /* |
| 1198 | * A newly created regular or special file just has one directory |
| 1199 | * entry pointing to them, but a directory also the "." entry |
| 1200 | * pointing to itself. |
| 1201 | */ |
| 1202 | error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); |
| 1203 | if (error) |
| 1204 | goto out_trans_cancel; |
| 1205 | |
| 1206 | /* |
| 1207 | * Now we join the directory inode to the transaction. We do not do it |
| 1208 | * earlier because xfs_dir_ialloc might commit the previous transaction |
| 1209 | * (and release all the locks). An error from here on will result in |
| 1210 | * the transaction cancel unlocking dp so don't do it explicitly in the |
| 1211 | * error path. |
| 1212 | */ |
| 1213 | xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); |
| 1214 | unlock_dp_on_error = false; |
| 1215 | |
| 1216 | error = xfs_dir_createname(tp, dp, name, ip->i_ino, |
| 1217 | resblks ? |
| 1218 | resblks - XFS_IALLOC_SPACE_RES(mp) : 0); |
| 1219 | if (error) { |
| 1220 | ASSERT(error != -ENOSPC); |
| 1221 | goto out_trans_cancel; |
| 1222 | } |
| 1223 | xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 1224 | xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); |
| 1225 | |
| 1226 | if (is_dir) { |
| 1227 | error = xfs_dir_init(tp, ip, dp); |
| 1228 | if (error) |
| 1229 | goto out_trans_cancel; |
| 1230 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1231 | xfs_bumplink(tp, dp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1232 | } |
| 1233 | |
| 1234 | /* |
| 1235 | * If this is a synchronous mount, make sure that the |
| 1236 | * create transaction goes to disk before returning to |
| 1237 | * the user. |
| 1238 | */ |
| 1239 | if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| 1240 | xfs_trans_set_sync(tp); |
| 1241 | |
| 1242 | /* |
| 1243 | * Attach the dquot(s) to the inodes and modify them incore. |
| 1244 | * These ids of the inode couldn't have changed since the new |
| 1245 | * inode has been locked ever since it was created. |
| 1246 | */ |
| 1247 | xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); |
| 1248 | |
| 1249 | error = xfs_trans_commit(tp); |
| 1250 | if (error) |
| 1251 | goto out_release_inode; |
| 1252 | |
| 1253 | xfs_qm_dqrele(udqp); |
| 1254 | xfs_qm_dqrele(gdqp); |
| 1255 | xfs_qm_dqrele(pdqp); |
| 1256 | |
| 1257 | *ipp = ip; |
| 1258 | return 0; |
| 1259 | |
| 1260 | out_trans_cancel: |
| 1261 | xfs_trans_cancel(tp); |
| 1262 | out_release_inode: |
| 1263 | /* |
| 1264 | * Wait until after the current transaction is aborted to finish the |
| 1265 | * setup of the inode and release the inode. This prevents recursive |
| 1266 | * transactions and deadlocks from xfs_inactive. |
| 1267 | */ |
| 1268 | if (ip) { |
| 1269 | xfs_finish_inode_setup(ip); |
| 1270 | xfs_irele(ip); |
| 1271 | } |
| 1272 | |
| 1273 | xfs_qm_dqrele(udqp); |
| 1274 | xfs_qm_dqrele(gdqp); |
| 1275 | xfs_qm_dqrele(pdqp); |
| 1276 | |
| 1277 | if (unlock_dp_on_error) |
| 1278 | xfs_iunlock(dp, XFS_ILOCK_EXCL); |
| 1279 | return error; |
| 1280 | } |
| 1281 | |
| 1282 | int |
| 1283 | xfs_create_tmpfile( |
| 1284 | struct xfs_inode *dp, |
| 1285 | umode_t mode, |
| 1286 | struct xfs_inode **ipp) |
| 1287 | { |
| 1288 | struct xfs_mount *mp = dp->i_mount; |
| 1289 | struct xfs_inode *ip = NULL; |
| 1290 | struct xfs_trans *tp = NULL; |
| 1291 | int error; |
| 1292 | prid_t prid; |
| 1293 | struct xfs_dquot *udqp = NULL; |
| 1294 | struct xfs_dquot *gdqp = NULL; |
| 1295 | struct xfs_dquot *pdqp = NULL; |
| 1296 | struct xfs_trans_res *tres; |
| 1297 | uint resblks; |
| 1298 | |
| 1299 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 1300 | return -EIO; |
| 1301 | |
| 1302 | prid = xfs_get_initial_prid(dp); |
| 1303 | |
| 1304 | /* |
| 1305 | * Make sure that we have allocated dquot(s) on disk. |
| 1306 | */ |
| 1307 | error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), |
| 1308 | xfs_kgid_to_gid(current_fsgid()), prid, |
| 1309 | XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, |
| 1310 | &udqp, &gdqp, &pdqp); |
| 1311 | if (error) |
| 1312 | return error; |
| 1313 | |
| 1314 | resblks = XFS_IALLOC_SPACE_RES(mp); |
| 1315 | tres = &M_RES(mp)->tr_create_tmpfile; |
| 1316 | |
| 1317 | error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); |
| 1318 | if (error) |
| 1319 | goto out_release_inode; |
| 1320 | |
| 1321 | error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, |
| 1322 | pdqp, resblks, 1, 0); |
| 1323 | if (error) |
| 1324 | goto out_trans_cancel; |
| 1325 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1326 | error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1327 | if (error) |
| 1328 | goto out_trans_cancel; |
| 1329 | |
| 1330 | if (mp->m_flags & XFS_MOUNT_WSYNC) |
| 1331 | xfs_trans_set_sync(tp); |
| 1332 | |
| 1333 | /* |
| 1334 | * Attach the dquot(s) to the inodes and modify them incore. |
| 1335 | * These ids of the inode couldn't have changed since the new |
| 1336 | * inode has been locked ever since it was created. |
| 1337 | */ |
| 1338 | xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); |
| 1339 | |
| 1340 | error = xfs_iunlink(tp, ip); |
| 1341 | if (error) |
| 1342 | goto out_trans_cancel; |
| 1343 | |
| 1344 | error = xfs_trans_commit(tp); |
| 1345 | if (error) |
| 1346 | goto out_release_inode; |
| 1347 | |
| 1348 | xfs_qm_dqrele(udqp); |
| 1349 | xfs_qm_dqrele(gdqp); |
| 1350 | xfs_qm_dqrele(pdqp); |
| 1351 | |
| 1352 | *ipp = ip; |
| 1353 | return 0; |
| 1354 | |
| 1355 | out_trans_cancel: |
| 1356 | xfs_trans_cancel(tp); |
| 1357 | out_release_inode: |
| 1358 | /* |
| 1359 | * Wait until after the current transaction is aborted to finish the |
| 1360 | * setup of the inode and release the inode. This prevents recursive |
| 1361 | * transactions and deadlocks from xfs_inactive. |
| 1362 | */ |
| 1363 | if (ip) { |
| 1364 | xfs_finish_inode_setup(ip); |
| 1365 | xfs_irele(ip); |
| 1366 | } |
| 1367 | |
| 1368 | xfs_qm_dqrele(udqp); |
| 1369 | xfs_qm_dqrele(gdqp); |
| 1370 | xfs_qm_dqrele(pdqp); |
| 1371 | |
| 1372 | return error; |
| 1373 | } |
| 1374 | |
| 1375 | int |
| 1376 | xfs_link( |
| 1377 | xfs_inode_t *tdp, |
| 1378 | xfs_inode_t *sip, |
| 1379 | struct xfs_name *target_name) |
| 1380 | { |
| 1381 | xfs_mount_t *mp = tdp->i_mount; |
| 1382 | xfs_trans_t *tp; |
| 1383 | int error; |
| 1384 | int resblks; |
| 1385 | |
| 1386 | trace_xfs_link(tdp, target_name); |
| 1387 | |
| 1388 | ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); |
| 1389 | |
| 1390 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 1391 | return -EIO; |
| 1392 | |
| 1393 | error = xfs_qm_dqattach(sip); |
| 1394 | if (error) |
| 1395 | goto std_return; |
| 1396 | |
| 1397 | error = xfs_qm_dqattach(tdp); |
| 1398 | if (error) |
| 1399 | goto std_return; |
| 1400 | |
| 1401 | resblks = XFS_LINK_SPACE_RES(mp, target_name->len); |
| 1402 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); |
| 1403 | if (error == -ENOSPC) { |
| 1404 | resblks = 0; |
| 1405 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); |
| 1406 | } |
| 1407 | if (error) |
| 1408 | goto std_return; |
| 1409 | |
| 1410 | xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); |
| 1411 | |
| 1412 | xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); |
| 1413 | xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); |
| 1414 | |
| 1415 | /* |
| 1416 | * If we are using project inheritance, we only allow hard link |
| 1417 | * creation in our tree when the project IDs are the same; else |
| 1418 | * the tree quota mechanism could be circumvented. |
| 1419 | */ |
| 1420 | if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && |
| 1421 | (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { |
| 1422 | error = -EXDEV; |
| 1423 | goto error_return; |
| 1424 | } |
| 1425 | |
| 1426 | if (!resblks) { |
| 1427 | error = xfs_dir_canenter(tp, tdp, target_name); |
| 1428 | if (error) |
| 1429 | goto error_return; |
| 1430 | } |
| 1431 | |
| 1432 | /* |
| 1433 | * Handle initial link state of O_TMPFILE inode |
| 1434 | */ |
| 1435 | if (VFS_I(sip)->i_nlink == 0) { |
| 1436 | error = xfs_iunlink_remove(tp, sip); |
| 1437 | if (error) |
| 1438 | goto error_return; |
| 1439 | } |
| 1440 | |
| 1441 | error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, |
| 1442 | resblks); |
| 1443 | if (error) |
| 1444 | goto error_return; |
| 1445 | xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 1446 | xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); |
| 1447 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1448 | xfs_bumplink(tp, sip); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1449 | |
| 1450 | /* |
| 1451 | * If this is a synchronous mount, make sure that the |
| 1452 | * link transaction goes to disk before returning to |
| 1453 | * the user. |
| 1454 | */ |
| 1455 | if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| 1456 | xfs_trans_set_sync(tp); |
| 1457 | |
| 1458 | return xfs_trans_commit(tp); |
| 1459 | |
| 1460 | error_return: |
| 1461 | xfs_trans_cancel(tp); |
| 1462 | std_return: |
| 1463 | return error; |
| 1464 | } |
| 1465 | |
| 1466 | /* Clear the reflink flag and the cowblocks tag if possible. */ |
| 1467 | static void |
| 1468 | xfs_itruncate_clear_reflink_flags( |
| 1469 | struct xfs_inode *ip) |
| 1470 | { |
| 1471 | struct xfs_ifork *dfork; |
| 1472 | struct xfs_ifork *cfork; |
| 1473 | |
| 1474 | if (!xfs_is_reflink_inode(ip)) |
| 1475 | return; |
| 1476 | dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); |
| 1477 | cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); |
| 1478 | if (dfork->if_bytes == 0 && cfork->if_bytes == 0) |
| 1479 | ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; |
| 1480 | if (cfork->if_bytes == 0) |
| 1481 | xfs_inode_clear_cowblocks_tag(ip); |
| 1482 | } |
| 1483 | |
| 1484 | /* |
| 1485 | * Free up the underlying blocks past new_size. The new size must be smaller |
| 1486 | * than the current size. This routine can be used both for the attribute and |
| 1487 | * data fork, and does not modify the inode size, which is left to the caller. |
| 1488 | * |
| 1489 | * The transaction passed to this routine must have made a permanent log |
| 1490 | * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the |
| 1491 | * given transaction and start new ones, so make sure everything involved in |
| 1492 | * the transaction is tidy before calling here. Some transaction will be |
| 1493 | * returned to the caller to be committed. The incoming transaction must |
| 1494 | * already include the inode, and both inode locks must be held exclusively. |
| 1495 | * The inode must also be "held" within the transaction. On return the inode |
| 1496 | * will be "held" within the returned transaction. This routine does NOT |
| 1497 | * require any disk space to be reserved for it within the transaction. |
| 1498 | * |
| 1499 | * If we get an error, we must return with the inode locked and linked into the |
| 1500 | * current transaction. This keeps things simple for the higher level code, |
| 1501 | * because it always knows that the inode is locked and held in the transaction |
| 1502 | * that returns to it whether errors occur or not. We don't mark the inode |
| 1503 | * dirty on error so that transactions can be easily aborted if possible. |
| 1504 | */ |
| 1505 | int |
| 1506 | xfs_itruncate_extents_flags( |
| 1507 | struct xfs_trans **tpp, |
| 1508 | struct xfs_inode *ip, |
| 1509 | int whichfork, |
| 1510 | xfs_fsize_t new_size, |
| 1511 | int flags) |
| 1512 | { |
| 1513 | struct xfs_mount *mp = ip->i_mount; |
| 1514 | struct xfs_trans *tp = *tpp; |
| 1515 | xfs_fileoff_t first_unmap_block; |
| 1516 | xfs_fileoff_t last_block; |
| 1517 | xfs_filblks_t unmap_len; |
| 1518 | int error = 0; |
| 1519 | int done = 0; |
| 1520 | |
| 1521 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| 1522 | ASSERT(!atomic_read(&VFS_I(ip)->i_count) || |
| 1523 | xfs_isilocked(ip, XFS_IOLOCK_EXCL)); |
| 1524 | ASSERT(new_size <= XFS_ISIZE(ip)); |
| 1525 | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| 1526 | ASSERT(ip->i_itemp != NULL); |
| 1527 | ASSERT(ip->i_itemp->ili_lock_flags == 0); |
| 1528 | ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); |
| 1529 | |
| 1530 | trace_xfs_itruncate_extents_start(ip, new_size); |
| 1531 | |
| 1532 | flags |= xfs_bmapi_aflag(whichfork); |
| 1533 | |
| 1534 | /* |
| 1535 | * Since it is possible for space to become allocated beyond |
| 1536 | * the end of the file (in a crash where the space is allocated |
| 1537 | * but the inode size is not yet updated), simply remove any |
| 1538 | * blocks which show up between the new EOF and the maximum |
| 1539 | * possible file size. If the first block to be removed is |
| 1540 | * beyond the maximum file size (ie it is the same as last_block), |
| 1541 | * then there is nothing to do. |
| 1542 | */ |
| 1543 | first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); |
| 1544 | last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); |
| 1545 | if (first_unmap_block == last_block) |
| 1546 | return 0; |
| 1547 | |
| 1548 | ASSERT(first_unmap_block < last_block); |
| 1549 | unmap_len = last_block - first_unmap_block + 1; |
| 1550 | while (!done) { |
| 1551 | ASSERT(tp->t_firstblock == NULLFSBLOCK); |
| 1552 | error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags, |
| 1553 | XFS_ITRUNC_MAX_EXTENTS, &done); |
| 1554 | if (error) |
| 1555 | goto out; |
| 1556 | |
| 1557 | /* |
| 1558 | * Duplicate the transaction that has the permanent |
| 1559 | * reservation and commit the old transaction. |
| 1560 | */ |
| 1561 | error = xfs_defer_finish(&tp); |
| 1562 | if (error) |
| 1563 | goto out; |
| 1564 | |
| 1565 | error = xfs_trans_roll_inode(&tp, ip); |
| 1566 | if (error) |
| 1567 | goto out; |
| 1568 | } |
| 1569 | |
| 1570 | if (whichfork == XFS_DATA_FORK) { |
| 1571 | /* Remove all pending CoW reservations. */ |
| 1572 | error = xfs_reflink_cancel_cow_blocks(ip, &tp, |
| 1573 | first_unmap_block, last_block, true); |
| 1574 | if (error) |
| 1575 | goto out; |
| 1576 | |
| 1577 | xfs_itruncate_clear_reflink_flags(ip); |
| 1578 | } |
| 1579 | |
| 1580 | /* |
| 1581 | * Always re-log the inode so that our permanent transaction can keep |
| 1582 | * on rolling it forward in the log. |
| 1583 | */ |
| 1584 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 1585 | |
| 1586 | trace_xfs_itruncate_extents_end(ip, new_size); |
| 1587 | |
| 1588 | out: |
| 1589 | *tpp = tp; |
| 1590 | return error; |
| 1591 | } |
| 1592 | |
| 1593 | int |
| 1594 | xfs_release( |
| 1595 | xfs_inode_t *ip) |
| 1596 | { |
| 1597 | xfs_mount_t *mp = ip->i_mount; |
| 1598 | int error; |
| 1599 | |
| 1600 | if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) |
| 1601 | return 0; |
| 1602 | |
| 1603 | /* If this is a read-only mount, don't do this (would generate I/O) */ |
| 1604 | if (mp->m_flags & XFS_MOUNT_RDONLY) |
| 1605 | return 0; |
| 1606 | |
| 1607 | if (!XFS_FORCED_SHUTDOWN(mp)) { |
| 1608 | int truncated; |
| 1609 | |
| 1610 | /* |
| 1611 | * If we previously truncated this file and removed old data |
| 1612 | * in the process, we want to initiate "early" writeout on |
| 1613 | * the last close. This is an attempt to combat the notorious |
| 1614 | * NULL files problem which is particularly noticeable from a |
| 1615 | * truncate down, buffered (re-)write (delalloc), followed by |
| 1616 | * a crash. What we are effectively doing here is |
| 1617 | * significantly reducing the time window where we'd otherwise |
| 1618 | * be exposed to that problem. |
| 1619 | */ |
| 1620 | truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); |
| 1621 | if (truncated) { |
| 1622 | xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); |
| 1623 | if (ip->i_delayed_blks > 0) { |
| 1624 | error = filemap_flush(VFS_I(ip)->i_mapping); |
| 1625 | if (error) |
| 1626 | return error; |
| 1627 | } |
| 1628 | } |
| 1629 | } |
| 1630 | |
| 1631 | if (VFS_I(ip)->i_nlink == 0) |
| 1632 | return 0; |
| 1633 | |
| 1634 | if (xfs_can_free_eofblocks(ip, false)) { |
| 1635 | |
| 1636 | /* |
| 1637 | * Check if the inode is being opened, written and closed |
| 1638 | * frequently and we have delayed allocation blocks outstanding |
| 1639 | * (e.g. streaming writes from the NFS server), truncating the |
| 1640 | * blocks past EOF will cause fragmentation to occur. |
| 1641 | * |
| 1642 | * In this case don't do the truncation, but we have to be |
| 1643 | * careful how we detect this case. Blocks beyond EOF show up as |
| 1644 | * i_delayed_blks even when the inode is clean, so we need to |
| 1645 | * truncate them away first before checking for a dirty release. |
| 1646 | * Hence on the first dirty close we will still remove the |
| 1647 | * speculative allocation, but after that we will leave it in |
| 1648 | * place. |
| 1649 | */ |
| 1650 | if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) |
| 1651 | return 0; |
| 1652 | /* |
| 1653 | * If we can't get the iolock just skip truncating the blocks |
| 1654 | * past EOF because we could deadlock with the mmap_sem |
| 1655 | * otherwise. We'll get another chance to drop them once the |
| 1656 | * last reference to the inode is dropped, so we'll never leak |
| 1657 | * blocks permanently. |
| 1658 | */ |
| 1659 | if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { |
| 1660 | error = xfs_free_eofblocks(ip); |
| 1661 | xfs_iunlock(ip, XFS_IOLOCK_EXCL); |
| 1662 | if (error) |
| 1663 | return error; |
| 1664 | } |
| 1665 | |
| 1666 | /* delalloc blocks after truncation means it really is dirty */ |
| 1667 | if (ip->i_delayed_blks) |
| 1668 | xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); |
| 1669 | } |
| 1670 | return 0; |
| 1671 | } |
| 1672 | |
| 1673 | /* |
| 1674 | * xfs_inactive_truncate |
| 1675 | * |
| 1676 | * Called to perform a truncate when an inode becomes unlinked. |
| 1677 | */ |
| 1678 | STATIC int |
| 1679 | xfs_inactive_truncate( |
| 1680 | struct xfs_inode *ip) |
| 1681 | { |
| 1682 | struct xfs_mount *mp = ip->i_mount; |
| 1683 | struct xfs_trans *tp; |
| 1684 | int error; |
| 1685 | |
| 1686 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); |
| 1687 | if (error) { |
| 1688 | ASSERT(XFS_FORCED_SHUTDOWN(mp)); |
| 1689 | return error; |
| 1690 | } |
| 1691 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 1692 | xfs_trans_ijoin(tp, ip, 0); |
| 1693 | |
| 1694 | /* |
| 1695 | * Log the inode size first to prevent stale data exposure in the event |
| 1696 | * of a system crash before the truncate completes. See the related |
| 1697 | * comment in xfs_vn_setattr_size() for details. |
| 1698 | */ |
| 1699 | ip->i_d.di_size = 0; |
| 1700 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 1701 | |
| 1702 | error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); |
| 1703 | if (error) |
| 1704 | goto error_trans_cancel; |
| 1705 | |
| 1706 | ASSERT(ip->i_d.di_nextents == 0); |
| 1707 | |
| 1708 | error = xfs_trans_commit(tp); |
| 1709 | if (error) |
| 1710 | goto error_unlock; |
| 1711 | |
| 1712 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1713 | return 0; |
| 1714 | |
| 1715 | error_trans_cancel: |
| 1716 | xfs_trans_cancel(tp); |
| 1717 | error_unlock: |
| 1718 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1719 | return error; |
| 1720 | } |
| 1721 | |
| 1722 | /* |
| 1723 | * xfs_inactive_ifree() |
| 1724 | * |
| 1725 | * Perform the inode free when an inode is unlinked. |
| 1726 | */ |
| 1727 | STATIC int |
| 1728 | xfs_inactive_ifree( |
| 1729 | struct xfs_inode *ip) |
| 1730 | { |
| 1731 | struct xfs_mount *mp = ip->i_mount; |
| 1732 | struct xfs_trans *tp; |
| 1733 | int error; |
| 1734 | |
| 1735 | /* |
| 1736 | * We try to use a per-AG reservation for any block needed by the finobt |
| 1737 | * tree, but as the finobt feature predates the per-AG reservation |
| 1738 | * support a degraded file system might not have enough space for the |
| 1739 | * reservation at mount time. In that case try to dip into the reserved |
| 1740 | * pool and pray. |
| 1741 | * |
| 1742 | * Send a warning if the reservation does happen to fail, as the inode |
| 1743 | * now remains allocated and sits on the unlinked list until the fs is |
| 1744 | * repaired. |
| 1745 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1746 | if (unlikely(mp->m_finobt_nores)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1747 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, |
| 1748 | XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, |
| 1749 | &tp); |
| 1750 | } else { |
| 1751 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); |
| 1752 | } |
| 1753 | if (error) { |
| 1754 | if (error == -ENOSPC) { |
| 1755 | xfs_warn_ratelimited(mp, |
| 1756 | "Failed to remove inode(s) from unlinked list. " |
| 1757 | "Please free space, unmount and run xfs_repair."); |
| 1758 | } else { |
| 1759 | ASSERT(XFS_FORCED_SHUTDOWN(mp)); |
| 1760 | } |
| 1761 | return error; |
| 1762 | } |
| 1763 | |
| 1764 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 1765 | xfs_trans_ijoin(tp, ip, 0); |
| 1766 | |
| 1767 | error = xfs_ifree(tp, ip); |
| 1768 | if (error) { |
| 1769 | /* |
| 1770 | * If we fail to free the inode, shut down. The cancel |
| 1771 | * might do that, we need to make sure. Otherwise the |
| 1772 | * inode might be lost for a long time or forever. |
| 1773 | */ |
| 1774 | if (!XFS_FORCED_SHUTDOWN(mp)) { |
| 1775 | xfs_notice(mp, "%s: xfs_ifree returned error %d", |
| 1776 | __func__, error); |
| 1777 | xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); |
| 1778 | } |
| 1779 | xfs_trans_cancel(tp); |
| 1780 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1781 | return error; |
| 1782 | } |
| 1783 | |
| 1784 | /* |
| 1785 | * Credit the quota account(s). The inode is gone. |
| 1786 | */ |
| 1787 | xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); |
| 1788 | |
| 1789 | /* |
| 1790 | * Just ignore errors at this point. There is nothing we can do except |
| 1791 | * to try to keep going. Make sure it's not a silent error. |
| 1792 | */ |
| 1793 | error = xfs_trans_commit(tp); |
| 1794 | if (error) |
| 1795 | xfs_notice(mp, "%s: xfs_trans_commit returned error %d", |
| 1796 | __func__, error); |
| 1797 | |
| 1798 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1799 | return 0; |
| 1800 | } |
| 1801 | |
| 1802 | /* |
| 1803 | * xfs_inactive |
| 1804 | * |
| 1805 | * This is called when the vnode reference count for the vnode |
| 1806 | * goes to zero. If the file has been unlinked, then it must |
| 1807 | * now be truncated. Also, we clear all of the read-ahead state |
| 1808 | * kept for the inode here since the file is now closed. |
| 1809 | */ |
| 1810 | void |
| 1811 | xfs_inactive( |
| 1812 | xfs_inode_t *ip) |
| 1813 | { |
| 1814 | struct xfs_mount *mp; |
| 1815 | int error; |
| 1816 | int truncate = 0; |
| 1817 | |
| 1818 | /* |
| 1819 | * If the inode is already free, then there can be nothing |
| 1820 | * to clean up here. |
| 1821 | */ |
| 1822 | if (VFS_I(ip)->i_mode == 0) { |
| 1823 | ASSERT(ip->i_df.if_broot_bytes == 0); |
| 1824 | return; |
| 1825 | } |
| 1826 | |
| 1827 | mp = ip->i_mount; |
| 1828 | ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); |
| 1829 | |
| 1830 | /* If this is a read-only mount, don't do this (would generate I/O) */ |
| 1831 | if (mp->m_flags & XFS_MOUNT_RDONLY) |
| 1832 | return; |
| 1833 | |
| 1834 | /* Try to clean out the cow blocks if there are any. */ |
| 1835 | if (xfs_inode_has_cow_data(ip)) |
| 1836 | xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); |
| 1837 | |
| 1838 | if (VFS_I(ip)->i_nlink != 0) { |
| 1839 | /* |
| 1840 | * force is true because we are evicting an inode from the |
| 1841 | * cache. Post-eof blocks must be freed, lest we end up with |
| 1842 | * broken free space accounting. |
| 1843 | * |
| 1844 | * Note: don't bother with iolock here since lockdep complains |
| 1845 | * about acquiring it in reclaim context. We have the only |
| 1846 | * reference to the inode at this point anyways. |
| 1847 | */ |
| 1848 | if (xfs_can_free_eofblocks(ip, true)) |
| 1849 | xfs_free_eofblocks(ip); |
| 1850 | |
| 1851 | return; |
| 1852 | } |
| 1853 | |
| 1854 | if (S_ISREG(VFS_I(ip)->i_mode) && |
| 1855 | (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || |
| 1856 | ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) |
| 1857 | truncate = 1; |
| 1858 | |
| 1859 | error = xfs_qm_dqattach(ip); |
| 1860 | if (error) |
| 1861 | return; |
| 1862 | |
| 1863 | if (S_ISLNK(VFS_I(ip)->i_mode)) |
| 1864 | error = xfs_inactive_symlink(ip); |
| 1865 | else if (truncate) |
| 1866 | error = xfs_inactive_truncate(ip); |
| 1867 | if (error) |
| 1868 | return; |
| 1869 | |
| 1870 | /* |
| 1871 | * If there are attributes associated with the file then blow them away |
| 1872 | * now. The code calls a routine that recursively deconstructs the |
| 1873 | * attribute fork. If also blows away the in-core attribute fork. |
| 1874 | */ |
| 1875 | if (XFS_IFORK_Q(ip)) { |
| 1876 | error = xfs_attr_inactive(ip); |
| 1877 | if (error) |
| 1878 | return; |
| 1879 | } |
| 1880 | |
| 1881 | ASSERT(!ip->i_afp); |
| 1882 | ASSERT(ip->i_d.di_anextents == 0); |
| 1883 | ASSERT(ip->i_d.di_forkoff == 0); |
| 1884 | |
| 1885 | /* |
| 1886 | * Free the inode. |
| 1887 | */ |
| 1888 | error = xfs_inactive_ifree(ip); |
| 1889 | if (error) |
| 1890 | return; |
| 1891 | |
| 1892 | /* |
| 1893 | * Release the dquots held by inode, if any. |
| 1894 | */ |
| 1895 | xfs_qm_dqdetach(ip); |
| 1896 | } |
| 1897 | |
| 1898 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1899 | * In-Core Unlinked List Lookups |
| 1900 | * ============================= |
| 1901 | * |
| 1902 | * Every inode is supposed to be reachable from some other piece of metadata |
| 1903 | * with the exception of the root directory. Inodes with a connection to a |
| 1904 | * file descriptor but not linked from anywhere in the on-disk directory tree |
| 1905 | * are collectively known as unlinked inodes, though the filesystem itself |
| 1906 | * maintains links to these inodes so that on-disk metadata are consistent. |
| 1907 | * |
| 1908 | * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI |
| 1909 | * header contains a number of buckets that point to an inode, and each inode |
| 1910 | * record has a pointer to the next inode in the hash chain. This |
| 1911 | * singly-linked list causes scaling problems in the iunlink remove function |
| 1912 | * because we must walk that list to find the inode that points to the inode |
| 1913 | * being removed from the unlinked hash bucket list. |
| 1914 | * |
| 1915 | * What if we modelled the unlinked list as a collection of records capturing |
| 1916 | * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd |
| 1917 | * have a fast way to look up unlinked list predecessors, which avoids the |
| 1918 | * slow list walk. That's exactly what we do here (in-core) with a per-AG |
| 1919 | * rhashtable. |
| 1920 | * |
| 1921 | * Because this is a backref cache, we ignore operational failures since the |
| 1922 | * iunlink code can fall back to the slow bucket walk. The only errors that |
| 1923 | * should bubble out are for obviously incorrect situations. |
| 1924 | * |
| 1925 | * All users of the backref cache MUST hold the AGI buffer lock to serialize |
| 1926 | * access or have otherwise provided for concurrency control. |
| 1927 | */ |
| 1928 | |
| 1929 | /* Capture a "X.next_unlinked = Y" relationship. */ |
| 1930 | struct xfs_iunlink { |
| 1931 | struct rhash_head iu_rhash_head; |
| 1932 | xfs_agino_t iu_agino; /* X */ |
| 1933 | xfs_agino_t iu_next_unlinked; /* Y */ |
| 1934 | }; |
| 1935 | |
| 1936 | /* Unlinked list predecessor lookup hashtable construction */ |
| 1937 | static int |
| 1938 | xfs_iunlink_obj_cmpfn( |
| 1939 | struct rhashtable_compare_arg *arg, |
| 1940 | const void *obj) |
| 1941 | { |
| 1942 | const xfs_agino_t *key = arg->key; |
| 1943 | const struct xfs_iunlink *iu = obj; |
| 1944 | |
| 1945 | if (iu->iu_next_unlinked != *key) |
| 1946 | return 1; |
| 1947 | return 0; |
| 1948 | } |
| 1949 | |
| 1950 | static const struct rhashtable_params xfs_iunlink_hash_params = { |
| 1951 | .min_size = XFS_AGI_UNLINKED_BUCKETS, |
| 1952 | .key_len = sizeof(xfs_agino_t), |
| 1953 | .key_offset = offsetof(struct xfs_iunlink, |
| 1954 | iu_next_unlinked), |
| 1955 | .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), |
| 1956 | .automatic_shrinking = true, |
| 1957 | .obj_cmpfn = xfs_iunlink_obj_cmpfn, |
| 1958 | }; |
| 1959 | |
| 1960 | /* |
| 1961 | * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such |
| 1962 | * relation is found. |
| 1963 | */ |
| 1964 | static xfs_agino_t |
| 1965 | xfs_iunlink_lookup_backref( |
| 1966 | struct xfs_perag *pag, |
| 1967 | xfs_agino_t agino) |
| 1968 | { |
| 1969 | struct xfs_iunlink *iu; |
| 1970 | |
| 1971 | iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, |
| 1972 | xfs_iunlink_hash_params); |
| 1973 | return iu ? iu->iu_agino : NULLAGINO; |
| 1974 | } |
| 1975 | |
| 1976 | /* |
| 1977 | * Take ownership of an iunlink cache entry and insert it into the hash table. |
| 1978 | * If successful, the entry will be owned by the cache; if not, it is freed. |
| 1979 | * Either way, the caller does not own @iu after this call. |
| 1980 | */ |
| 1981 | static int |
| 1982 | xfs_iunlink_insert_backref( |
| 1983 | struct xfs_perag *pag, |
| 1984 | struct xfs_iunlink *iu) |
| 1985 | { |
| 1986 | int error; |
| 1987 | |
| 1988 | error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, |
| 1989 | &iu->iu_rhash_head, xfs_iunlink_hash_params); |
| 1990 | /* |
| 1991 | * Fail loudly if there already was an entry because that's a sign of |
| 1992 | * corruption of in-memory data. Also fail loudly if we see an error |
| 1993 | * code we didn't anticipate from the rhashtable code. Currently we |
| 1994 | * only anticipate ENOMEM. |
| 1995 | */ |
| 1996 | if (error) { |
| 1997 | WARN(error != -ENOMEM, "iunlink cache insert error %d", error); |
| 1998 | kmem_free(iu); |
| 1999 | } |
| 2000 | /* |
| 2001 | * Absorb any runtime errors that aren't a result of corruption because |
| 2002 | * this is a cache and we can always fall back to bucket list scanning. |
| 2003 | */ |
| 2004 | if (error != 0 && error != -EEXIST) |
| 2005 | error = 0; |
| 2006 | return error; |
| 2007 | } |
| 2008 | |
| 2009 | /* Remember that @prev_agino.next_unlinked = @this_agino. */ |
| 2010 | static int |
| 2011 | xfs_iunlink_add_backref( |
| 2012 | struct xfs_perag *pag, |
| 2013 | xfs_agino_t prev_agino, |
| 2014 | xfs_agino_t this_agino) |
| 2015 | { |
| 2016 | struct xfs_iunlink *iu; |
| 2017 | |
| 2018 | if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) |
| 2019 | return 0; |
| 2020 | |
| 2021 | iu = kmem_zalloc(sizeof(*iu), KM_NOFS); |
| 2022 | iu->iu_agino = prev_agino; |
| 2023 | iu->iu_next_unlinked = this_agino; |
| 2024 | |
| 2025 | return xfs_iunlink_insert_backref(pag, iu); |
| 2026 | } |
| 2027 | |
| 2028 | /* |
| 2029 | * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. |
| 2030 | * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there |
| 2031 | * wasn't any such entry then we don't bother. |
| 2032 | */ |
| 2033 | static int |
| 2034 | xfs_iunlink_change_backref( |
| 2035 | struct xfs_perag *pag, |
| 2036 | xfs_agino_t agino, |
| 2037 | xfs_agino_t next_unlinked) |
| 2038 | { |
| 2039 | struct xfs_iunlink *iu; |
| 2040 | int error; |
| 2041 | |
| 2042 | /* Look up the old entry; if there wasn't one then exit. */ |
| 2043 | iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, |
| 2044 | xfs_iunlink_hash_params); |
| 2045 | if (!iu) |
| 2046 | return 0; |
| 2047 | |
| 2048 | /* |
| 2049 | * Remove the entry. This shouldn't ever return an error, but if we |
| 2050 | * couldn't remove the old entry we don't want to add it again to the |
| 2051 | * hash table, and if the entry disappeared on us then someone's |
| 2052 | * violated the locking rules and we need to fail loudly. Either way |
| 2053 | * we cannot remove the inode because internal state is or would have |
| 2054 | * been corrupt. |
| 2055 | */ |
| 2056 | error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, |
| 2057 | &iu->iu_rhash_head, xfs_iunlink_hash_params); |
| 2058 | if (error) |
| 2059 | return error; |
| 2060 | |
| 2061 | /* If there is no new next entry just free our item and return. */ |
| 2062 | if (next_unlinked == NULLAGINO) { |
| 2063 | kmem_free(iu); |
| 2064 | return 0; |
| 2065 | } |
| 2066 | |
| 2067 | /* Update the entry and re-add it to the hash table. */ |
| 2068 | iu->iu_next_unlinked = next_unlinked; |
| 2069 | return xfs_iunlink_insert_backref(pag, iu); |
| 2070 | } |
| 2071 | |
| 2072 | /* Set up the in-core predecessor structures. */ |
| 2073 | int |
| 2074 | xfs_iunlink_init( |
| 2075 | struct xfs_perag *pag) |
| 2076 | { |
| 2077 | return rhashtable_init(&pag->pagi_unlinked_hash, |
| 2078 | &xfs_iunlink_hash_params); |
| 2079 | } |
| 2080 | |
| 2081 | /* Free the in-core predecessor structures. */ |
| 2082 | static void |
| 2083 | xfs_iunlink_free_item( |
| 2084 | void *ptr, |
| 2085 | void *arg) |
| 2086 | { |
| 2087 | struct xfs_iunlink *iu = ptr; |
| 2088 | bool *freed_anything = arg; |
| 2089 | |
| 2090 | *freed_anything = true; |
| 2091 | kmem_free(iu); |
| 2092 | } |
| 2093 | |
| 2094 | void |
| 2095 | xfs_iunlink_destroy( |
| 2096 | struct xfs_perag *pag) |
| 2097 | { |
| 2098 | bool freed_anything = false; |
| 2099 | |
| 2100 | rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, |
| 2101 | xfs_iunlink_free_item, &freed_anything); |
| 2102 | |
| 2103 | ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); |
| 2104 | } |
| 2105 | |
| 2106 | /* |
| 2107 | * Point the AGI unlinked bucket at an inode and log the results. The caller |
| 2108 | * is responsible for validating the old value. |
| 2109 | */ |
| 2110 | STATIC int |
| 2111 | xfs_iunlink_update_bucket( |
| 2112 | struct xfs_trans *tp, |
| 2113 | xfs_agnumber_t agno, |
| 2114 | struct xfs_buf *agibp, |
| 2115 | unsigned int bucket_index, |
| 2116 | xfs_agino_t new_agino) |
| 2117 | { |
| 2118 | struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); |
| 2119 | xfs_agino_t old_value; |
| 2120 | int offset; |
| 2121 | |
| 2122 | ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); |
| 2123 | |
| 2124 | old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); |
| 2125 | trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, |
| 2126 | old_value, new_agino); |
| 2127 | |
| 2128 | /* |
| 2129 | * We should never find the head of the list already set to the value |
| 2130 | * passed in because either we're adding or removing ourselves from the |
| 2131 | * head of the list. |
| 2132 | */ |
| 2133 | if (old_value == new_agino) |
| 2134 | return -EFSCORRUPTED; |
| 2135 | |
| 2136 | agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); |
| 2137 | offset = offsetof(struct xfs_agi, agi_unlinked) + |
| 2138 | (sizeof(xfs_agino_t) * bucket_index); |
| 2139 | xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); |
| 2140 | return 0; |
| 2141 | } |
| 2142 | |
| 2143 | /* Set an on-disk inode's next_unlinked pointer. */ |
| 2144 | STATIC void |
| 2145 | xfs_iunlink_update_dinode( |
| 2146 | struct xfs_trans *tp, |
| 2147 | xfs_agnumber_t agno, |
| 2148 | xfs_agino_t agino, |
| 2149 | struct xfs_buf *ibp, |
| 2150 | struct xfs_dinode *dip, |
| 2151 | struct xfs_imap *imap, |
| 2152 | xfs_agino_t next_agino) |
| 2153 | { |
| 2154 | struct xfs_mount *mp = tp->t_mountp; |
| 2155 | int offset; |
| 2156 | |
| 2157 | ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); |
| 2158 | |
| 2159 | trace_xfs_iunlink_update_dinode(mp, agno, agino, |
| 2160 | be32_to_cpu(dip->di_next_unlinked), next_agino); |
| 2161 | |
| 2162 | dip->di_next_unlinked = cpu_to_be32(next_agino); |
| 2163 | offset = imap->im_boffset + |
| 2164 | offsetof(struct xfs_dinode, di_next_unlinked); |
| 2165 | |
| 2166 | /* need to recalc the inode CRC if appropriate */ |
| 2167 | xfs_dinode_calc_crc(mp, dip); |
| 2168 | xfs_trans_inode_buf(tp, ibp); |
| 2169 | xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); |
| 2170 | xfs_inobp_check(mp, ibp); |
| 2171 | } |
| 2172 | |
| 2173 | /* Set an in-core inode's unlinked pointer and return the old value. */ |
| 2174 | STATIC int |
| 2175 | xfs_iunlink_update_inode( |
| 2176 | struct xfs_trans *tp, |
| 2177 | struct xfs_inode *ip, |
| 2178 | xfs_agnumber_t agno, |
| 2179 | xfs_agino_t next_agino, |
| 2180 | xfs_agino_t *old_next_agino) |
| 2181 | { |
| 2182 | struct xfs_mount *mp = tp->t_mountp; |
| 2183 | struct xfs_dinode *dip; |
| 2184 | struct xfs_buf *ibp; |
| 2185 | xfs_agino_t old_value; |
| 2186 | int error; |
| 2187 | |
| 2188 | ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); |
| 2189 | |
| 2190 | error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0); |
| 2191 | if (error) |
| 2192 | return error; |
| 2193 | |
| 2194 | /* Make sure the old pointer isn't garbage. */ |
| 2195 | old_value = be32_to_cpu(dip->di_next_unlinked); |
| 2196 | if (!xfs_verify_agino_or_null(mp, agno, old_value)) { |
| 2197 | error = -EFSCORRUPTED; |
| 2198 | goto out; |
| 2199 | } |
| 2200 | |
| 2201 | /* |
| 2202 | * Since we're updating a linked list, we should never find that the |
| 2203 | * current pointer is the same as the new value, unless we're |
| 2204 | * terminating the list. |
| 2205 | */ |
| 2206 | *old_next_agino = old_value; |
| 2207 | if (old_value == next_agino) { |
| 2208 | if (next_agino != NULLAGINO) |
| 2209 | error = -EFSCORRUPTED; |
| 2210 | goto out; |
| 2211 | } |
| 2212 | |
| 2213 | /* Ok, update the new pointer. */ |
| 2214 | xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), |
| 2215 | ibp, dip, &ip->i_imap, next_agino); |
| 2216 | return 0; |
| 2217 | out: |
| 2218 | xfs_trans_brelse(tp, ibp); |
| 2219 | return error; |
| 2220 | } |
| 2221 | |
| 2222 | /* |
| 2223 | * This is called when the inode's link count has gone to 0 or we are creating |
| 2224 | * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2225 | * |
| 2226 | * We place the on-disk inode on a list in the AGI. It will be pulled from this |
| 2227 | * list when the inode is freed. |
| 2228 | */ |
| 2229 | STATIC int |
| 2230 | xfs_iunlink( |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2231 | struct xfs_trans *tp, |
| 2232 | struct xfs_inode *ip) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2233 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2234 | struct xfs_mount *mp = tp->t_mountp; |
| 2235 | struct xfs_agi *agi; |
| 2236 | struct xfs_buf *agibp; |
| 2237 | xfs_agino_t next_agino; |
| 2238 | xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
| 2239 | xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); |
| 2240 | short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; |
| 2241 | int error; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2242 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2243 | ASSERT(VFS_I(ip)->i_nlink == 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2244 | ASSERT(VFS_I(ip)->i_mode != 0); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2245 | trace_xfs_iunlink(ip); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2246 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2247 | /* Get the agi buffer first. It ensures lock ordering on the list. */ |
| 2248 | error = xfs_read_agi(mp, tp, agno, &agibp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2249 | if (error) |
| 2250 | return error; |
| 2251 | agi = XFS_BUF_TO_AGI(agibp); |
| 2252 | |
| 2253 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2254 | * Get the index into the agi hash table for the list this inode will |
| 2255 | * go on. Make sure the pointer isn't garbage and that this inode |
| 2256 | * isn't already on the list. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2257 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2258 | next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); |
| 2259 | if (next_agino == agino || |
| 2260 | !xfs_verify_agino_or_null(mp, agno, next_agino)) |
| 2261 | return -EFSCORRUPTED; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2262 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2263 | if (next_agino != NULLAGINO) { |
| 2264 | struct xfs_perag *pag; |
| 2265 | xfs_agino_t old_agino; |
| 2266 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2267 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2268 | * There is already another inode in the bucket, so point this |
| 2269 | * inode to the current head of the list. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2270 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2271 | error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, |
| 2272 | &old_agino); |
| 2273 | if (error) |
| 2274 | return error; |
| 2275 | ASSERT(old_agino == NULLAGINO); |
| 2276 | |
| 2277 | /* |
| 2278 | * agino has been unlinked, add a backref from the next inode |
| 2279 | * back to agino. |
| 2280 | */ |
| 2281 | pag = xfs_perag_get(mp, agno); |
| 2282 | error = xfs_iunlink_add_backref(pag, agino, next_agino); |
| 2283 | xfs_perag_put(pag); |
| 2284 | if (error) |
| 2285 | return error; |
| 2286 | } |
| 2287 | |
| 2288 | /* Point the head of the list to point to this inode. */ |
| 2289 | return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); |
| 2290 | } |
| 2291 | |
| 2292 | /* Return the imap, dinode pointer, and buffer for an inode. */ |
| 2293 | STATIC int |
| 2294 | xfs_iunlink_map_ino( |
| 2295 | struct xfs_trans *tp, |
| 2296 | xfs_agnumber_t agno, |
| 2297 | xfs_agino_t agino, |
| 2298 | struct xfs_imap *imap, |
| 2299 | struct xfs_dinode **dipp, |
| 2300 | struct xfs_buf **bpp) |
| 2301 | { |
| 2302 | struct xfs_mount *mp = tp->t_mountp; |
| 2303 | int error; |
| 2304 | |
| 2305 | imap->im_blkno = 0; |
| 2306 | error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); |
| 2307 | if (error) { |
| 2308 | xfs_warn(mp, "%s: xfs_imap returned error %d.", |
| 2309 | __func__, error); |
| 2310 | return error; |
| 2311 | } |
| 2312 | |
| 2313 | error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0); |
| 2314 | if (error) { |
| 2315 | xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", |
| 2316 | __func__, error); |
| 2317 | return error; |
| 2318 | } |
| 2319 | |
| 2320 | return 0; |
| 2321 | } |
| 2322 | |
| 2323 | /* |
| 2324 | * Walk the unlinked chain from @head_agino until we find the inode that |
| 2325 | * points to @target_agino. Return the inode number, map, dinode pointer, |
| 2326 | * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. |
| 2327 | * |
| 2328 | * @tp, @pag, @head_agino, and @target_agino are input parameters. |
| 2329 | * @agino, @imap, @dipp, and @bpp are all output parameters. |
| 2330 | * |
| 2331 | * Do not call this function if @target_agino is the head of the list. |
| 2332 | */ |
| 2333 | STATIC int |
| 2334 | xfs_iunlink_map_prev( |
| 2335 | struct xfs_trans *tp, |
| 2336 | xfs_agnumber_t agno, |
| 2337 | xfs_agino_t head_agino, |
| 2338 | xfs_agino_t target_agino, |
| 2339 | xfs_agino_t *agino, |
| 2340 | struct xfs_imap *imap, |
| 2341 | struct xfs_dinode **dipp, |
| 2342 | struct xfs_buf **bpp, |
| 2343 | struct xfs_perag *pag) |
| 2344 | { |
| 2345 | struct xfs_mount *mp = tp->t_mountp; |
| 2346 | xfs_agino_t next_agino; |
| 2347 | int error; |
| 2348 | |
| 2349 | ASSERT(head_agino != target_agino); |
| 2350 | *bpp = NULL; |
| 2351 | |
| 2352 | /* See if our backref cache can find it faster. */ |
| 2353 | *agino = xfs_iunlink_lookup_backref(pag, target_agino); |
| 2354 | if (*agino != NULLAGINO) { |
| 2355 | error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2356 | if (error) |
| 2357 | return error; |
| 2358 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2359 | if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) |
| 2360 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2361 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2362 | /* |
| 2363 | * If we get here the cache contents were corrupt, so drop the |
| 2364 | * buffer and fall back to walking the bucket list. |
| 2365 | */ |
| 2366 | xfs_trans_brelse(tp, *bpp); |
| 2367 | *bpp = NULL; |
| 2368 | WARN_ON_ONCE(1); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2369 | } |
| 2370 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2371 | trace_xfs_iunlink_map_prev_fallback(mp, agno); |
| 2372 | |
| 2373 | /* Otherwise, walk the entire bucket until we find it. */ |
| 2374 | next_agino = head_agino; |
| 2375 | while (next_agino != target_agino) { |
| 2376 | xfs_agino_t unlinked_agino; |
| 2377 | |
| 2378 | if (*bpp) |
| 2379 | xfs_trans_brelse(tp, *bpp); |
| 2380 | |
| 2381 | *agino = next_agino; |
| 2382 | error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, |
| 2383 | bpp); |
| 2384 | if (error) |
| 2385 | return error; |
| 2386 | |
| 2387 | unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); |
| 2388 | /* |
| 2389 | * Make sure this pointer is valid and isn't an obvious |
| 2390 | * infinite loop. |
| 2391 | */ |
| 2392 | if (!xfs_verify_agino(mp, agno, unlinked_agino) || |
| 2393 | next_agino == unlinked_agino) { |
| 2394 | XFS_CORRUPTION_ERROR(__func__, |
| 2395 | XFS_ERRLEVEL_LOW, mp, |
| 2396 | *dipp, sizeof(**dipp)); |
| 2397 | error = -EFSCORRUPTED; |
| 2398 | return error; |
| 2399 | } |
| 2400 | next_agino = unlinked_agino; |
| 2401 | } |
| 2402 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2403 | return 0; |
| 2404 | } |
| 2405 | |
| 2406 | /* |
| 2407 | * Pull the on-disk inode from the AGI unlinked list. |
| 2408 | */ |
| 2409 | STATIC int |
| 2410 | xfs_iunlink_remove( |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2411 | struct xfs_trans *tp, |
| 2412 | struct xfs_inode *ip) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2413 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2414 | struct xfs_mount *mp = tp->t_mountp; |
| 2415 | struct xfs_agi *agi; |
| 2416 | struct xfs_buf *agibp; |
| 2417 | struct xfs_buf *last_ibp; |
| 2418 | struct xfs_dinode *last_dip = NULL; |
| 2419 | struct xfs_perag *pag = NULL; |
| 2420 | xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
| 2421 | xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); |
| 2422 | xfs_agino_t next_agino; |
| 2423 | xfs_agino_t head_agino; |
| 2424 | short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; |
| 2425 | int error; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2426 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2427 | trace_xfs_iunlink_remove(ip); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2428 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2429 | /* Get the agi buffer first. It ensures lock ordering on the list. */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2430 | error = xfs_read_agi(mp, tp, agno, &agibp); |
| 2431 | if (error) |
| 2432 | return error; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2433 | agi = XFS_BUF_TO_AGI(agibp); |
| 2434 | |
| 2435 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2436 | * Get the index into the agi hash table for the list this inode will |
| 2437 | * go on. Make sure the head pointer isn't garbage. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2438 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2439 | head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); |
| 2440 | if (!xfs_verify_agino(mp, agno, head_agino)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2441 | XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, |
| 2442 | agi, sizeof(*agi)); |
| 2443 | return -EFSCORRUPTED; |
| 2444 | } |
| 2445 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2446 | /* |
| 2447 | * Set our inode's next_unlinked pointer to NULL and then return |
| 2448 | * the old pointer value so that we can update whatever was previous |
| 2449 | * to us in the list to point to whatever was next in the list. |
| 2450 | */ |
| 2451 | error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); |
| 2452 | if (error) |
| 2453 | return error; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2454 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2455 | /* |
| 2456 | * If there was a backref pointing from the next inode back to this |
| 2457 | * one, remove it because we've removed this inode from the list. |
| 2458 | * |
| 2459 | * Later, if this inode was in the middle of the list we'll update |
| 2460 | * this inode's backref to point from the next inode. |
| 2461 | */ |
| 2462 | if (next_agino != NULLAGINO) { |
| 2463 | pag = xfs_perag_get(mp, agno); |
| 2464 | error = xfs_iunlink_change_backref(pag, next_agino, |
| 2465 | NULLAGINO); |
| 2466 | if (error) |
| 2467 | goto out; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2468 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2469 | |
| 2470 | if (head_agino == agino) { |
| 2471 | /* Point the head of the list to the next unlinked inode. */ |
| 2472 | error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, |
| 2473 | next_agino); |
| 2474 | if (error) |
| 2475 | goto out; |
| 2476 | } else { |
| 2477 | struct xfs_imap imap; |
| 2478 | xfs_agino_t prev_agino; |
| 2479 | |
| 2480 | if (!pag) |
| 2481 | pag = xfs_perag_get(mp, agno); |
| 2482 | |
| 2483 | /* We need to search the list for the inode being freed. */ |
| 2484 | error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, |
| 2485 | &prev_agino, &imap, &last_dip, &last_ibp, |
| 2486 | pag); |
| 2487 | if (error) |
| 2488 | goto out; |
| 2489 | |
| 2490 | /* Point the previous inode on the list to the next inode. */ |
| 2491 | xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, |
| 2492 | last_dip, &imap, next_agino); |
| 2493 | |
| 2494 | /* |
| 2495 | * Now we deal with the backref for this inode. If this inode |
| 2496 | * pointed at a real inode, change the backref that pointed to |
| 2497 | * us to point to our old next. If this inode was the end of |
| 2498 | * the list, delete the backref that pointed to us. Note that |
| 2499 | * change_backref takes care of deleting the backref if |
| 2500 | * next_agino is NULLAGINO. |
| 2501 | */ |
| 2502 | error = xfs_iunlink_change_backref(pag, agino, next_agino); |
| 2503 | if (error) |
| 2504 | goto out; |
| 2505 | } |
| 2506 | |
| 2507 | out: |
| 2508 | if (pag) |
| 2509 | xfs_perag_put(pag); |
| 2510 | return error; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2511 | } |
| 2512 | |
| 2513 | /* |
| 2514 | * A big issue when freeing the inode cluster is that we _cannot_ skip any |
| 2515 | * inodes that are in memory - they all must be marked stale and attached to |
| 2516 | * the cluster buffer. |
| 2517 | */ |
| 2518 | STATIC int |
| 2519 | xfs_ifree_cluster( |
| 2520 | xfs_inode_t *free_ip, |
| 2521 | xfs_trans_t *tp, |
| 2522 | struct xfs_icluster *xic) |
| 2523 | { |
| 2524 | xfs_mount_t *mp = free_ip->i_mount; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2525 | int nbufs; |
| 2526 | int i, j; |
| 2527 | int ioffset; |
| 2528 | xfs_daddr_t blkno; |
| 2529 | xfs_buf_t *bp; |
| 2530 | xfs_inode_t *ip; |
| 2531 | xfs_inode_log_item_t *iip; |
| 2532 | struct xfs_log_item *lip; |
| 2533 | struct xfs_perag *pag; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2534 | struct xfs_ino_geometry *igeo = M_IGEO(mp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2535 | xfs_ino_t inum; |
| 2536 | |
| 2537 | inum = xic->first_ino; |
| 2538 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2539 | nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2540 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2541 | for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2542 | /* |
| 2543 | * The allocation bitmap tells us which inodes of the chunk were |
| 2544 | * physically allocated. Skip the cluster if an inode falls into |
| 2545 | * a sparse region. |
| 2546 | */ |
| 2547 | ioffset = inum - xic->first_ino; |
| 2548 | if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2549 | ASSERT(ioffset % igeo->inodes_per_cluster == 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2550 | continue; |
| 2551 | } |
| 2552 | |
| 2553 | blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), |
| 2554 | XFS_INO_TO_AGBNO(mp, inum)); |
| 2555 | |
| 2556 | /* |
| 2557 | * We obtain and lock the backing buffer first in the process |
| 2558 | * here, as we have to ensure that any dirty inode that we |
| 2559 | * can't get the flush lock on is attached to the buffer. |
| 2560 | * If we scan the in-memory inodes first, then buffer IO can |
| 2561 | * complete before we get a lock on it, and hence we may fail |
| 2562 | * to mark all the active inodes on the buffer stale. |
| 2563 | */ |
| 2564 | bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2565 | mp->m_bsize * igeo->blocks_per_cluster, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2566 | XBF_UNMAPPED); |
| 2567 | |
| 2568 | if (!bp) |
| 2569 | return -ENOMEM; |
| 2570 | |
| 2571 | /* |
| 2572 | * This buffer may not have been correctly initialised as we |
| 2573 | * didn't read it from disk. That's not important because we are |
| 2574 | * only using to mark the buffer as stale in the log, and to |
| 2575 | * attach stale cached inodes on it. That means it will never be |
| 2576 | * dispatched for IO. If it is, we want to know about it, and we |
| 2577 | * want it to fail. We can acheive this by adding a write |
| 2578 | * verifier to the buffer. |
| 2579 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2580 | bp->b_ops = &xfs_inode_buf_ops; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2581 | |
| 2582 | /* |
| 2583 | * Walk the inodes already attached to the buffer and mark them |
| 2584 | * stale. These will all have the flush locks held, so an |
| 2585 | * in-memory inode walk can't lock them. By marking them all |
| 2586 | * stale first, we will not attempt to lock them in the loop |
| 2587 | * below as the XFS_ISTALE flag will be set. |
| 2588 | */ |
| 2589 | list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { |
| 2590 | if (lip->li_type == XFS_LI_INODE) { |
| 2591 | iip = (xfs_inode_log_item_t *)lip; |
| 2592 | ASSERT(iip->ili_logged == 1); |
| 2593 | lip->li_cb = xfs_istale_done; |
| 2594 | xfs_trans_ail_copy_lsn(mp->m_ail, |
| 2595 | &iip->ili_flush_lsn, |
| 2596 | &iip->ili_item.li_lsn); |
| 2597 | xfs_iflags_set(iip->ili_inode, XFS_ISTALE); |
| 2598 | } |
| 2599 | } |
| 2600 | |
| 2601 | |
| 2602 | /* |
| 2603 | * For each inode in memory attempt to add it to the inode |
| 2604 | * buffer and set it up for being staled on buffer IO |
| 2605 | * completion. This is safe as we've locked out tail pushing |
| 2606 | * and flushing by locking the buffer. |
| 2607 | * |
| 2608 | * We have already marked every inode that was part of a |
| 2609 | * transaction stale above, which means there is no point in |
| 2610 | * even trying to lock them. |
| 2611 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2612 | for (i = 0; i < igeo->inodes_per_cluster; i++) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2613 | retry: |
| 2614 | rcu_read_lock(); |
| 2615 | ip = radix_tree_lookup(&pag->pag_ici_root, |
| 2616 | XFS_INO_TO_AGINO(mp, (inum + i))); |
| 2617 | |
| 2618 | /* Inode not in memory, nothing to do */ |
| 2619 | if (!ip) { |
| 2620 | rcu_read_unlock(); |
| 2621 | continue; |
| 2622 | } |
| 2623 | |
| 2624 | /* |
| 2625 | * because this is an RCU protected lookup, we could |
| 2626 | * find a recently freed or even reallocated inode |
| 2627 | * during the lookup. We need to check under the |
| 2628 | * i_flags_lock for a valid inode here. Skip it if it |
| 2629 | * is not valid, the wrong inode or stale. |
| 2630 | */ |
| 2631 | spin_lock(&ip->i_flags_lock); |
| 2632 | if (ip->i_ino != inum + i || |
| 2633 | __xfs_iflags_test(ip, XFS_ISTALE)) { |
| 2634 | spin_unlock(&ip->i_flags_lock); |
| 2635 | rcu_read_unlock(); |
| 2636 | continue; |
| 2637 | } |
| 2638 | spin_unlock(&ip->i_flags_lock); |
| 2639 | |
| 2640 | /* |
| 2641 | * Don't try to lock/unlock the current inode, but we |
| 2642 | * _cannot_ skip the other inodes that we did not find |
| 2643 | * in the list attached to the buffer and are not |
| 2644 | * already marked stale. If we can't lock it, back off |
| 2645 | * and retry. |
| 2646 | */ |
| 2647 | if (ip != free_ip) { |
| 2648 | if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { |
| 2649 | rcu_read_unlock(); |
| 2650 | delay(1); |
| 2651 | goto retry; |
| 2652 | } |
| 2653 | |
| 2654 | /* |
| 2655 | * Check the inode number again in case we're |
| 2656 | * racing with freeing in xfs_reclaim_inode(). |
| 2657 | * See the comments in that function for more |
| 2658 | * information as to why the initial check is |
| 2659 | * not sufficient. |
| 2660 | */ |
| 2661 | if (ip->i_ino != inum + i) { |
| 2662 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 2663 | rcu_read_unlock(); |
| 2664 | continue; |
| 2665 | } |
| 2666 | } |
| 2667 | rcu_read_unlock(); |
| 2668 | |
| 2669 | xfs_iflock(ip); |
| 2670 | xfs_iflags_set(ip, XFS_ISTALE); |
| 2671 | |
| 2672 | /* |
| 2673 | * we don't need to attach clean inodes or those only |
| 2674 | * with unlogged changes (which we throw away, anyway). |
| 2675 | */ |
| 2676 | iip = ip->i_itemp; |
| 2677 | if (!iip || xfs_inode_clean(ip)) { |
| 2678 | ASSERT(ip != free_ip); |
| 2679 | xfs_ifunlock(ip); |
| 2680 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 2681 | continue; |
| 2682 | } |
| 2683 | |
| 2684 | iip->ili_last_fields = iip->ili_fields; |
| 2685 | iip->ili_fields = 0; |
| 2686 | iip->ili_fsync_fields = 0; |
| 2687 | iip->ili_logged = 1; |
| 2688 | xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, |
| 2689 | &iip->ili_item.li_lsn); |
| 2690 | |
| 2691 | xfs_buf_attach_iodone(bp, xfs_istale_done, |
| 2692 | &iip->ili_item); |
| 2693 | |
| 2694 | if (ip != free_ip) |
| 2695 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 2696 | } |
| 2697 | |
| 2698 | xfs_trans_stale_inode_buf(tp, bp); |
| 2699 | xfs_trans_binval(tp, bp); |
| 2700 | } |
| 2701 | |
| 2702 | xfs_perag_put(pag); |
| 2703 | return 0; |
| 2704 | } |
| 2705 | |
| 2706 | /* |
| 2707 | * Free any local-format buffers sitting around before we reset to |
| 2708 | * extents format. |
| 2709 | */ |
| 2710 | static inline void |
| 2711 | xfs_ifree_local_data( |
| 2712 | struct xfs_inode *ip, |
| 2713 | int whichfork) |
| 2714 | { |
| 2715 | struct xfs_ifork *ifp; |
| 2716 | |
| 2717 | if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) |
| 2718 | return; |
| 2719 | |
| 2720 | ifp = XFS_IFORK_PTR(ip, whichfork); |
| 2721 | xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); |
| 2722 | } |
| 2723 | |
| 2724 | /* |
| 2725 | * This is called to return an inode to the inode free list. |
| 2726 | * The inode should already be truncated to 0 length and have |
| 2727 | * no pages associated with it. This routine also assumes that |
| 2728 | * the inode is already a part of the transaction. |
| 2729 | * |
| 2730 | * The on-disk copy of the inode will have been added to the list |
| 2731 | * of unlinked inodes in the AGI. We need to remove the inode from |
| 2732 | * that list atomically with respect to freeing it here. |
| 2733 | */ |
| 2734 | int |
| 2735 | xfs_ifree( |
| 2736 | struct xfs_trans *tp, |
| 2737 | struct xfs_inode *ip) |
| 2738 | { |
| 2739 | int error; |
| 2740 | struct xfs_icluster xic = { 0 }; |
| 2741 | |
| 2742 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| 2743 | ASSERT(VFS_I(ip)->i_nlink == 0); |
| 2744 | ASSERT(ip->i_d.di_nextents == 0); |
| 2745 | ASSERT(ip->i_d.di_anextents == 0); |
| 2746 | ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); |
| 2747 | ASSERT(ip->i_d.di_nblocks == 0); |
| 2748 | |
| 2749 | /* |
| 2750 | * Pull the on-disk inode from the AGI unlinked list. |
| 2751 | */ |
| 2752 | error = xfs_iunlink_remove(tp, ip); |
| 2753 | if (error) |
| 2754 | return error; |
| 2755 | |
| 2756 | error = xfs_difree(tp, ip->i_ino, &xic); |
| 2757 | if (error) |
| 2758 | return error; |
| 2759 | |
| 2760 | xfs_ifree_local_data(ip, XFS_DATA_FORK); |
| 2761 | xfs_ifree_local_data(ip, XFS_ATTR_FORK); |
| 2762 | |
| 2763 | VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ |
| 2764 | ip->i_d.di_flags = 0; |
| 2765 | ip->i_d.di_flags2 = 0; |
| 2766 | ip->i_d.di_dmevmask = 0; |
| 2767 | ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ |
| 2768 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; |
| 2769 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; |
| 2770 | |
| 2771 | /* Don't attempt to replay owner changes for a deleted inode */ |
| 2772 | ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); |
| 2773 | |
| 2774 | /* |
| 2775 | * Bump the generation count so no one will be confused |
| 2776 | * by reincarnations of this inode. |
| 2777 | */ |
| 2778 | VFS_I(ip)->i_generation++; |
| 2779 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 2780 | |
| 2781 | if (xic.deleted) |
| 2782 | error = xfs_ifree_cluster(ip, tp, &xic); |
| 2783 | |
| 2784 | return error; |
| 2785 | } |
| 2786 | |
| 2787 | /* |
| 2788 | * This is called to unpin an inode. The caller must have the inode locked |
| 2789 | * in at least shared mode so that the buffer cannot be subsequently pinned |
| 2790 | * once someone is waiting for it to be unpinned. |
| 2791 | */ |
| 2792 | static void |
| 2793 | xfs_iunpin( |
| 2794 | struct xfs_inode *ip) |
| 2795 | { |
| 2796 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| 2797 | |
| 2798 | trace_xfs_inode_unpin_nowait(ip, _RET_IP_); |
| 2799 | |
| 2800 | /* Give the log a push to start the unpinning I/O */ |
| 2801 | xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); |
| 2802 | |
| 2803 | } |
| 2804 | |
| 2805 | static void |
| 2806 | __xfs_iunpin_wait( |
| 2807 | struct xfs_inode *ip) |
| 2808 | { |
| 2809 | wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); |
| 2810 | DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); |
| 2811 | |
| 2812 | xfs_iunpin(ip); |
| 2813 | |
| 2814 | do { |
| 2815 | prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); |
| 2816 | if (xfs_ipincount(ip)) |
| 2817 | io_schedule(); |
| 2818 | } while (xfs_ipincount(ip)); |
| 2819 | finish_wait(wq, &wait.wq_entry); |
| 2820 | } |
| 2821 | |
| 2822 | void |
| 2823 | xfs_iunpin_wait( |
| 2824 | struct xfs_inode *ip) |
| 2825 | { |
| 2826 | if (xfs_ipincount(ip)) |
| 2827 | __xfs_iunpin_wait(ip); |
| 2828 | } |
| 2829 | |
| 2830 | /* |
| 2831 | * Removing an inode from the namespace involves removing the directory entry |
| 2832 | * and dropping the link count on the inode. Removing the directory entry can |
| 2833 | * result in locking an AGF (directory blocks were freed) and removing a link |
| 2834 | * count can result in placing the inode on an unlinked list which results in |
| 2835 | * locking an AGI. |
| 2836 | * |
| 2837 | * The big problem here is that we have an ordering constraint on AGF and AGI |
| 2838 | * locking - inode allocation locks the AGI, then can allocate a new extent for |
| 2839 | * new inodes, locking the AGF after the AGI. Similarly, freeing the inode |
| 2840 | * removes the inode from the unlinked list, requiring that we lock the AGI |
| 2841 | * first, and then freeing the inode can result in an inode chunk being freed |
| 2842 | * and hence freeing disk space requiring that we lock an AGF. |
| 2843 | * |
| 2844 | * Hence the ordering that is imposed by other parts of the code is AGI before |
| 2845 | * AGF. This means we cannot remove the directory entry before we drop the inode |
| 2846 | * reference count and put it on the unlinked list as this results in a lock |
| 2847 | * order of AGF then AGI, and this can deadlock against inode allocation and |
| 2848 | * freeing. Therefore we must drop the link counts before we remove the |
| 2849 | * directory entry. |
| 2850 | * |
| 2851 | * This is still safe from a transactional point of view - it is not until we |
| 2852 | * get to xfs_defer_finish() that we have the possibility of multiple |
| 2853 | * transactions in this operation. Hence as long as we remove the directory |
| 2854 | * entry and drop the link count in the first transaction of the remove |
| 2855 | * operation, there are no transactional constraints on the ordering here. |
| 2856 | */ |
| 2857 | int |
| 2858 | xfs_remove( |
| 2859 | xfs_inode_t *dp, |
| 2860 | struct xfs_name *name, |
| 2861 | xfs_inode_t *ip) |
| 2862 | { |
| 2863 | xfs_mount_t *mp = dp->i_mount; |
| 2864 | xfs_trans_t *tp = NULL; |
| 2865 | int is_dir = S_ISDIR(VFS_I(ip)->i_mode); |
| 2866 | int error = 0; |
| 2867 | uint resblks; |
| 2868 | |
| 2869 | trace_xfs_remove(dp, name); |
| 2870 | |
| 2871 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 2872 | return -EIO; |
| 2873 | |
| 2874 | error = xfs_qm_dqattach(dp); |
| 2875 | if (error) |
| 2876 | goto std_return; |
| 2877 | |
| 2878 | error = xfs_qm_dqattach(ip); |
| 2879 | if (error) |
| 2880 | goto std_return; |
| 2881 | |
| 2882 | /* |
| 2883 | * We try to get the real space reservation first, |
| 2884 | * allowing for directory btree deletion(s) implying |
| 2885 | * possible bmap insert(s). If we can't get the space |
| 2886 | * reservation then we use 0 instead, and avoid the bmap |
| 2887 | * btree insert(s) in the directory code by, if the bmap |
| 2888 | * insert tries to happen, instead trimming the LAST |
| 2889 | * block from the directory. |
| 2890 | */ |
| 2891 | resblks = XFS_REMOVE_SPACE_RES(mp); |
| 2892 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); |
| 2893 | if (error == -ENOSPC) { |
| 2894 | resblks = 0; |
| 2895 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, |
| 2896 | &tp); |
| 2897 | } |
| 2898 | if (error) { |
| 2899 | ASSERT(error != -ENOSPC); |
| 2900 | goto std_return; |
| 2901 | } |
| 2902 | |
| 2903 | xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); |
| 2904 | |
| 2905 | xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); |
| 2906 | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| 2907 | |
| 2908 | /* |
| 2909 | * If we're removing a directory perform some additional validation. |
| 2910 | */ |
| 2911 | if (is_dir) { |
| 2912 | ASSERT(VFS_I(ip)->i_nlink >= 2); |
| 2913 | if (VFS_I(ip)->i_nlink != 2) { |
| 2914 | error = -ENOTEMPTY; |
| 2915 | goto out_trans_cancel; |
| 2916 | } |
| 2917 | if (!xfs_dir_isempty(ip)) { |
| 2918 | error = -ENOTEMPTY; |
| 2919 | goto out_trans_cancel; |
| 2920 | } |
| 2921 | |
| 2922 | /* Drop the link from ip's "..". */ |
| 2923 | error = xfs_droplink(tp, dp); |
| 2924 | if (error) |
| 2925 | goto out_trans_cancel; |
| 2926 | |
| 2927 | /* Drop the "." link from ip to self. */ |
| 2928 | error = xfs_droplink(tp, ip); |
| 2929 | if (error) |
| 2930 | goto out_trans_cancel; |
| 2931 | } else { |
| 2932 | /* |
| 2933 | * When removing a non-directory we need to log the parent |
| 2934 | * inode here. For a directory this is done implicitly |
| 2935 | * by the xfs_droplink call for the ".." entry. |
| 2936 | */ |
| 2937 | xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); |
| 2938 | } |
| 2939 | xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 2940 | |
| 2941 | /* Drop the link from dp to ip. */ |
| 2942 | error = xfs_droplink(tp, ip); |
| 2943 | if (error) |
| 2944 | goto out_trans_cancel; |
| 2945 | |
| 2946 | error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); |
| 2947 | if (error) { |
| 2948 | ASSERT(error != -ENOENT); |
| 2949 | goto out_trans_cancel; |
| 2950 | } |
| 2951 | |
| 2952 | /* |
| 2953 | * If this is a synchronous mount, make sure that the |
| 2954 | * remove transaction goes to disk before returning to |
| 2955 | * the user. |
| 2956 | */ |
| 2957 | if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| 2958 | xfs_trans_set_sync(tp); |
| 2959 | |
| 2960 | error = xfs_trans_commit(tp); |
| 2961 | if (error) |
| 2962 | goto std_return; |
| 2963 | |
| 2964 | if (is_dir && xfs_inode_is_filestream(ip)) |
| 2965 | xfs_filestream_deassociate(ip); |
| 2966 | |
| 2967 | return 0; |
| 2968 | |
| 2969 | out_trans_cancel: |
| 2970 | xfs_trans_cancel(tp); |
| 2971 | std_return: |
| 2972 | return error; |
| 2973 | } |
| 2974 | |
| 2975 | /* |
| 2976 | * Enter all inodes for a rename transaction into a sorted array. |
| 2977 | */ |
| 2978 | #define __XFS_SORT_INODES 5 |
| 2979 | STATIC void |
| 2980 | xfs_sort_for_rename( |
| 2981 | struct xfs_inode *dp1, /* in: old (source) directory inode */ |
| 2982 | struct xfs_inode *dp2, /* in: new (target) directory inode */ |
| 2983 | struct xfs_inode *ip1, /* in: inode of old entry */ |
| 2984 | struct xfs_inode *ip2, /* in: inode of new entry */ |
| 2985 | struct xfs_inode *wip, /* in: whiteout inode */ |
| 2986 | struct xfs_inode **i_tab,/* out: sorted array of inodes */ |
| 2987 | int *num_inodes) /* in/out: inodes in array */ |
| 2988 | { |
| 2989 | int i, j; |
| 2990 | |
| 2991 | ASSERT(*num_inodes == __XFS_SORT_INODES); |
| 2992 | memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); |
| 2993 | |
| 2994 | /* |
| 2995 | * i_tab contains a list of pointers to inodes. We initialize |
| 2996 | * the table here & we'll sort it. We will then use it to |
| 2997 | * order the acquisition of the inode locks. |
| 2998 | * |
| 2999 | * Note that the table may contain duplicates. e.g., dp1 == dp2. |
| 3000 | */ |
| 3001 | i = 0; |
| 3002 | i_tab[i++] = dp1; |
| 3003 | i_tab[i++] = dp2; |
| 3004 | i_tab[i++] = ip1; |
| 3005 | if (ip2) |
| 3006 | i_tab[i++] = ip2; |
| 3007 | if (wip) |
| 3008 | i_tab[i++] = wip; |
| 3009 | *num_inodes = i; |
| 3010 | |
| 3011 | /* |
| 3012 | * Sort the elements via bubble sort. (Remember, there are at |
| 3013 | * most 5 elements to sort, so this is adequate.) |
| 3014 | */ |
| 3015 | for (i = 0; i < *num_inodes; i++) { |
| 3016 | for (j = 1; j < *num_inodes; j++) { |
| 3017 | if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { |
| 3018 | struct xfs_inode *temp = i_tab[j]; |
| 3019 | i_tab[j] = i_tab[j-1]; |
| 3020 | i_tab[j-1] = temp; |
| 3021 | } |
| 3022 | } |
| 3023 | } |
| 3024 | } |
| 3025 | |
| 3026 | static int |
| 3027 | xfs_finish_rename( |
| 3028 | struct xfs_trans *tp) |
| 3029 | { |
| 3030 | /* |
| 3031 | * If this is a synchronous mount, make sure that the rename transaction |
| 3032 | * goes to disk before returning to the user. |
| 3033 | */ |
| 3034 | if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| 3035 | xfs_trans_set_sync(tp); |
| 3036 | |
| 3037 | return xfs_trans_commit(tp); |
| 3038 | } |
| 3039 | |
| 3040 | /* |
| 3041 | * xfs_cross_rename() |
| 3042 | * |
| 3043 | * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall |
| 3044 | */ |
| 3045 | STATIC int |
| 3046 | xfs_cross_rename( |
| 3047 | struct xfs_trans *tp, |
| 3048 | struct xfs_inode *dp1, |
| 3049 | struct xfs_name *name1, |
| 3050 | struct xfs_inode *ip1, |
| 3051 | struct xfs_inode *dp2, |
| 3052 | struct xfs_name *name2, |
| 3053 | struct xfs_inode *ip2, |
| 3054 | int spaceres) |
| 3055 | { |
| 3056 | int error = 0; |
| 3057 | int ip1_flags = 0; |
| 3058 | int ip2_flags = 0; |
| 3059 | int dp2_flags = 0; |
| 3060 | |
| 3061 | /* Swap inode number for dirent in first parent */ |
| 3062 | error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); |
| 3063 | if (error) |
| 3064 | goto out_trans_abort; |
| 3065 | |
| 3066 | /* Swap inode number for dirent in second parent */ |
| 3067 | error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); |
| 3068 | if (error) |
| 3069 | goto out_trans_abort; |
| 3070 | |
| 3071 | /* |
| 3072 | * If we're renaming one or more directories across different parents, |
| 3073 | * update the respective ".." entries (and link counts) to match the new |
| 3074 | * parents. |
| 3075 | */ |
| 3076 | if (dp1 != dp2) { |
| 3077 | dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; |
| 3078 | |
| 3079 | if (S_ISDIR(VFS_I(ip2)->i_mode)) { |
| 3080 | error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, |
| 3081 | dp1->i_ino, spaceres); |
| 3082 | if (error) |
| 3083 | goto out_trans_abort; |
| 3084 | |
| 3085 | /* transfer ip2 ".." reference to dp1 */ |
| 3086 | if (!S_ISDIR(VFS_I(ip1)->i_mode)) { |
| 3087 | error = xfs_droplink(tp, dp2); |
| 3088 | if (error) |
| 3089 | goto out_trans_abort; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3090 | xfs_bumplink(tp, dp1); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3091 | } |
| 3092 | |
| 3093 | /* |
| 3094 | * Although ip1 isn't changed here, userspace needs |
| 3095 | * to be warned about the change, so that applications |
| 3096 | * relying on it (like backup ones), will properly |
| 3097 | * notify the change |
| 3098 | */ |
| 3099 | ip1_flags |= XFS_ICHGTIME_CHG; |
| 3100 | ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; |
| 3101 | } |
| 3102 | |
| 3103 | if (S_ISDIR(VFS_I(ip1)->i_mode)) { |
| 3104 | error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, |
| 3105 | dp2->i_ino, spaceres); |
| 3106 | if (error) |
| 3107 | goto out_trans_abort; |
| 3108 | |
| 3109 | /* transfer ip1 ".." reference to dp2 */ |
| 3110 | if (!S_ISDIR(VFS_I(ip2)->i_mode)) { |
| 3111 | error = xfs_droplink(tp, dp1); |
| 3112 | if (error) |
| 3113 | goto out_trans_abort; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3114 | xfs_bumplink(tp, dp2); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3115 | } |
| 3116 | |
| 3117 | /* |
| 3118 | * Although ip2 isn't changed here, userspace needs |
| 3119 | * to be warned about the change, so that applications |
| 3120 | * relying on it (like backup ones), will properly |
| 3121 | * notify the change |
| 3122 | */ |
| 3123 | ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; |
| 3124 | ip2_flags |= XFS_ICHGTIME_CHG; |
| 3125 | } |
| 3126 | } |
| 3127 | |
| 3128 | if (ip1_flags) { |
| 3129 | xfs_trans_ichgtime(tp, ip1, ip1_flags); |
| 3130 | xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); |
| 3131 | } |
| 3132 | if (ip2_flags) { |
| 3133 | xfs_trans_ichgtime(tp, ip2, ip2_flags); |
| 3134 | xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); |
| 3135 | } |
| 3136 | if (dp2_flags) { |
| 3137 | xfs_trans_ichgtime(tp, dp2, dp2_flags); |
| 3138 | xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); |
| 3139 | } |
| 3140 | xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 3141 | xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); |
| 3142 | return xfs_finish_rename(tp); |
| 3143 | |
| 3144 | out_trans_abort: |
| 3145 | xfs_trans_cancel(tp); |
| 3146 | return error; |
| 3147 | } |
| 3148 | |
| 3149 | /* |
| 3150 | * xfs_rename_alloc_whiteout() |
| 3151 | * |
| 3152 | * Return a referenced, unlinked, unlocked inode that that can be used as a |
| 3153 | * whiteout in a rename transaction. We use a tmpfile inode here so that if we |
| 3154 | * crash between allocating the inode and linking it into the rename transaction |
| 3155 | * recovery will free the inode and we won't leak it. |
| 3156 | */ |
| 3157 | static int |
| 3158 | xfs_rename_alloc_whiteout( |
| 3159 | struct xfs_inode *dp, |
| 3160 | struct xfs_inode **wip) |
| 3161 | { |
| 3162 | struct xfs_inode *tmpfile; |
| 3163 | int error; |
| 3164 | |
| 3165 | error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); |
| 3166 | if (error) |
| 3167 | return error; |
| 3168 | |
| 3169 | /* |
| 3170 | * Prepare the tmpfile inode as if it were created through the VFS. |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3171 | * Complete the inode setup and flag it as linkable. nlink is already |
| 3172 | * zero, so we can skip the drop_nlink. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3173 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3174 | xfs_setup_iops(tmpfile); |
| 3175 | xfs_finish_inode_setup(tmpfile); |
| 3176 | VFS_I(tmpfile)->i_state |= I_LINKABLE; |
| 3177 | |
| 3178 | *wip = tmpfile; |
| 3179 | return 0; |
| 3180 | } |
| 3181 | |
| 3182 | /* |
| 3183 | * xfs_rename |
| 3184 | */ |
| 3185 | int |
| 3186 | xfs_rename( |
| 3187 | struct xfs_inode *src_dp, |
| 3188 | struct xfs_name *src_name, |
| 3189 | struct xfs_inode *src_ip, |
| 3190 | struct xfs_inode *target_dp, |
| 3191 | struct xfs_name *target_name, |
| 3192 | struct xfs_inode *target_ip, |
| 3193 | unsigned int flags) |
| 3194 | { |
| 3195 | struct xfs_mount *mp = src_dp->i_mount; |
| 3196 | struct xfs_trans *tp; |
| 3197 | struct xfs_inode *wip = NULL; /* whiteout inode */ |
| 3198 | struct xfs_inode *inodes[__XFS_SORT_INODES]; |
| 3199 | int num_inodes = __XFS_SORT_INODES; |
| 3200 | bool new_parent = (src_dp != target_dp); |
| 3201 | bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); |
| 3202 | int spaceres; |
| 3203 | int error; |
| 3204 | |
| 3205 | trace_xfs_rename(src_dp, target_dp, src_name, target_name); |
| 3206 | |
| 3207 | if ((flags & RENAME_EXCHANGE) && !target_ip) |
| 3208 | return -EINVAL; |
| 3209 | |
| 3210 | /* |
| 3211 | * If we are doing a whiteout operation, allocate the whiteout inode |
| 3212 | * we will be placing at the target and ensure the type is set |
| 3213 | * appropriately. |
| 3214 | */ |
| 3215 | if (flags & RENAME_WHITEOUT) { |
| 3216 | ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); |
| 3217 | error = xfs_rename_alloc_whiteout(target_dp, &wip); |
| 3218 | if (error) |
| 3219 | return error; |
| 3220 | |
| 3221 | /* setup target dirent info as whiteout */ |
| 3222 | src_name->type = XFS_DIR3_FT_CHRDEV; |
| 3223 | } |
| 3224 | |
| 3225 | xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, |
| 3226 | inodes, &num_inodes); |
| 3227 | |
| 3228 | spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); |
| 3229 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); |
| 3230 | if (error == -ENOSPC) { |
| 3231 | spaceres = 0; |
| 3232 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, |
| 3233 | &tp); |
| 3234 | } |
| 3235 | if (error) |
| 3236 | goto out_release_wip; |
| 3237 | |
| 3238 | /* |
| 3239 | * Attach the dquots to the inodes |
| 3240 | */ |
| 3241 | error = xfs_qm_vop_rename_dqattach(inodes); |
| 3242 | if (error) |
| 3243 | goto out_trans_cancel; |
| 3244 | |
| 3245 | /* |
| 3246 | * Lock all the participating inodes. Depending upon whether |
| 3247 | * the target_name exists in the target directory, and |
| 3248 | * whether the target directory is the same as the source |
| 3249 | * directory, we can lock from 2 to 4 inodes. |
| 3250 | */ |
| 3251 | xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); |
| 3252 | |
| 3253 | /* |
| 3254 | * Join all the inodes to the transaction. From this point on, |
| 3255 | * we can rely on either trans_commit or trans_cancel to unlock |
| 3256 | * them. |
| 3257 | */ |
| 3258 | xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); |
| 3259 | if (new_parent) |
| 3260 | xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); |
| 3261 | xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); |
| 3262 | if (target_ip) |
| 3263 | xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); |
| 3264 | if (wip) |
| 3265 | xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); |
| 3266 | |
| 3267 | /* |
| 3268 | * If we are using project inheritance, we only allow renames |
| 3269 | * into our tree when the project IDs are the same; else the |
| 3270 | * tree quota mechanism would be circumvented. |
| 3271 | */ |
| 3272 | if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && |
| 3273 | (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { |
| 3274 | error = -EXDEV; |
| 3275 | goto out_trans_cancel; |
| 3276 | } |
| 3277 | |
| 3278 | /* RENAME_EXCHANGE is unique from here on. */ |
| 3279 | if (flags & RENAME_EXCHANGE) |
| 3280 | return xfs_cross_rename(tp, src_dp, src_name, src_ip, |
| 3281 | target_dp, target_name, target_ip, |
| 3282 | spaceres); |
| 3283 | |
| 3284 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3285 | * Check for expected errors before we dirty the transaction |
| 3286 | * so we can return an error without a transaction abort. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3287 | */ |
| 3288 | if (target_ip == NULL) { |
| 3289 | /* |
| 3290 | * If there's no space reservation, check the entry will |
| 3291 | * fit before actually inserting it. |
| 3292 | */ |
| 3293 | if (!spaceres) { |
| 3294 | error = xfs_dir_canenter(tp, target_dp, target_name); |
| 3295 | if (error) |
| 3296 | goto out_trans_cancel; |
| 3297 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3298 | } else { |
| 3299 | /* |
| 3300 | * If target exists and it's a directory, check that whether |
| 3301 | * it can be destroyed. |
| 3302 | */ |
| 3303 | if (S_ISDIR(VFS_I(target_ip)->i_mode) && |
| 3304 | (!xfs_dir_isempty(target_ip) || |
| 3305 | (VFS_I(target_ip)->i_nlink > 2))) { |
| 3306 | error = -EEXIST; |
| 3307 | goto out_trans_cancel; |
| 3308 | } |
| 3309 | } |
| 3310 | |
| 3311 | /* |
| 3312 | * Directory entry creation below may acquire the AGF. Remove |
| 3313 | * the whiteout from the unlinked list first to preserve correct |
| 3314 | * AGI/AGF locking order. This dirties the transaction so failures |
| 3315 | * after this point will abort and log recovery will clean up the |
| 3316 | * mess. |
| 3317 | * |
| 3318 | * For whiteouts, we need to bump the link count on the whiteout |
| 3319 | * inode. After this point, we have a real link, clear the tmpfile |
| 3320 | * state flag from the inode so it doesn't accidentally get misused |
| 3321 | * in future. |
| 3322 | */ |
| 3323 | if (wip) { |
| 3324 | ASSERT(VFS_I(wip)->i_nlink == 0); |
| 3325 | error = xfs_iunlink_remove(tp, wip); |
| 3326 | if (error) |
| 3327 | goto out_trans_cancel; |
| 3328 | |
| 3329 | xfs_bumplink(tp, wip); |
| 3330 | xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); |
| 3331 | VFS_I(wip)->i_state &= ~I_LINKABLE; |
| 3332 | } |
| 3333 | |
| 3334 | /* |
| 3335 | * Set up the target. |
| 3336 | */ |
| 3337 | if (target_ip == NULL) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3338 | /* |
| 3339 | * If target does not exist and the rename crosses |
| 3340 | * directories, adjust the target directory link count |
| 3341 | * to account for the ".." reference from the new entry. |
| 3342 | */ |
| 3343 | error = xfs_dir_createname(tp, target_dp, target_name, |
| 3344 | src_ip->i_ino, spaceres); |
| 3345 | if (error) |
| 3346 | goto out_trans_cancel; |
| 3347 | |
| 3348 | xfs_trans_ichgtime(tp, target_dp, |
| 3349 | XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 3350 | |
| 3351 | if (new_parent && src_is_directory) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3352 | xfs_bumplink(tp, target_dp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3353 | } |
| 3354 | } else { /* target_ip != NULL */ |
| 3355 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3356 | * Link the source inode under the target name. |
| 3357 | * If the source inode is a directory and we are moving |
| 3358 | * it across directories, its ".." entry will be |
| 3359 | * inconsistent until we replace that down below. |
| 3360 | * |
| 3361 | * In case there is already an entry with the same |
| 3362 | * name at the destination directory, remove it first. |
| 3363 | */ |
| 3364 | error = xfs_dir_replace(tp, target_dp, target_name, |
| 3365 | src_ip->i_ino, spaceres); |
| 3366 | if (error) |
| 3367 | goto out_trans_cancel; |
| 3368 | |
| 3369 | xfs_trans_ichgtime(tp, target_dp, |
| 3370 | XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 3371 | |
| 3372 | /* |
| 3373 | * Decrement the link count on the target since the target |
| 3374 | * dir no longer points to it. |
| 3375 | */ |
| 3376 | error = xfs_droplink(tp, target_ip); |
| 3377 | if (error) |
| 3378 | goto out_trans_cancel; |
| 3379 | |
| 3380 | if (src_is_directory) { |
| 3381 | /* |
| 3382 | * Drop the link from the old "." entry. |
| 3383 | */ |
| 3384 | error = xfs_droplink(tp, target_ip); |
| 3385 | if (error) |
| 3386 | goto out_trans_cancel; |
| 3387 | } |
| 3388 | } /* target_ip != NULL */ |
| 3389 | |
| 3390 | /* |
| 3391 | * Remove the source. |
| 3392 | */ |
| 3393 | if (new_parent && src_is_directory) { |
| 3394 | /* |
| 3395 | * Rewrite the ".." entry to point to the new |
| 3396 | * directory. |
| 3397 | */ |
| 3398 | error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, |
| 3399 | target_dp->i_ino, spaceres); |
| 3400 | ASSERT(error != -EEXIST); |
| 3401 | if (error) |
| 3402 | goto out_trans_cancel; |
| 3403 | } |
| 3404 | |
| 3405 | /* |
| 3406 | * We always want to hit the ctime on the source inode. |
| 3407 | * |
| 3408 | * This isn't strictly required by the standards since the source |
| 3409 | * inode isn't really being changed, but old unix file systems did |
| 3410 | * it and some incremental backup programs won't work without it. |
| 3411 | */ |
| 3412 | xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); |
| 3413 | xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); |
| 3414 | |
| 3415 | /* |
| 3416 | * Adjust the link count on src_dp. This is necessary when |
| 3417 | * renaming a directory, either within one parent when |
| 3418 | * the target existed, or across two parent directories. |
| 3419 | */ |
| 3420 | if (src_is_directory && (new_parent || target_ip != NULL)) { |
| 3421 | |
| 3422 | /* |
| 3423 | * Decrement link count on src_directory since the |
| 3424 | * entry that's moved no longer points to it. |
| 3425 | */ |
| 3426 | error = xfs_droplink(tp, src_dp); |
| 3427 | if (error) |
| 3428 | goto out_trans_cancel; |
| 3429 | } |
| 3430 | |
| 3431 | /* |
| 3432 | * For whiteouts, we only need to update the source dirent with the |
| 3433 | * inode number of the whiteout inode rather than removing it |
| 3434 | * altogether. |
| 3435 | */ |
| 3436 | if (wip) { |
| 3437 | error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, |
| 3438 | spaceres); |
| 3439 | } else |
| 3440 | error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, |
| 3441 | spaceres); |
| 3442 | if (error) |
| 3443 | goto out_trans_cancel; |
| 3444 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3445 | xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 3446 | xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); |
| 3447 | if (new_parent) |
| 3448 | xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); |
| 3449 | |
| 3450 | error = xfs_finish_rename(tp); |
| 3451 | if (wip) |
| 3452 | xfs_irele(wip); |
| 3453 | return error; |
| 3454 | |
| 3455 | out_trans_cancel: |
| 3456 | xfs_trans_cancel(tp); |
| 3457 | out_release_wip: |
| 3458 | if (wip) |
| 3459 | xfs_irele(wip); |
| 3460 | return error; |
| 3461 | } |
| 3462 | |
| 3463 | STATIC int |
| 3464 | xfs_iflush_cluster( |
| 3465 | struct xfs_inode *ip, |
| 3466 | struct xfs_buf *bp) |
| 3467 | { |
| 3468 | struct xfs_mount *mp = ip->i_mount; |
| 3469 | struct xfs_perag *pag; |
| 3470 | unsigned long first_index, mask; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3471 | int cilist_size; |
| 3472 | struct xfs_inode **cilist; |
| 3473 | struct xfs_inode *cip; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3474 | struct xfs_ino_geometry *igeo = M_IGEO(mp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3475 | int nr_found; |
| 3476 | int clcount = 0; |
| 3477 | int i; |
| 3478 | |
| 3479 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
| 3480 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3481 | cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3482 | cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); |
| 3483 | if (!cilist) |
| 3484 | goto out_put; |
| 3485 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3486 | mask = ~(igeo->inodes_per_cluster - 1); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3487 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; |
| 3488 | rcu_read_lock(); |
| 3489 | /* really need a gang lookup range call here */ |
| 3490 | nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3491 | first_index, igeo->inodes_per_cluster); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3492 | if (nr_found == 0) |
| 3493 | goto out_free; |
| 3494 | |
| 3495 | for (i = 0; i < nr_found; i++) { |
| 3496 | cip = cilist[i]; |
| 3497 | if (cip == ip) |
| 3498 | continue; |
| 3499 | |
| 3500 | /* |
| 3501 | * because this is an RCU protected lookup, we could find a |
| 3502 | * recently freed or even reallocated inode during the lookup. |
| 3503 | * We need to check under the i_flags_lock for a valid inode |
| 3504 | * here. Skip it if it is not valid or the wrong inode. |
| 3505 | */ |
| 3506 | spin_lock(&cip->i_flags_lock); |
| 3507 | if (!cip->i_ino || |
| 3508 | __xfs_iflags_test(cip, XFS_ISTALE)) { |
| 3509 | spin_unlock(&cip->i_flags_lock); |
| 3510 | continue; |
| 3511 | } |
| 3512 | |
| 3513 | /* |
| 3514 | * Once we fall off the end of the cluster, no point checking |
| 3515 | * any more inodes in the list because they will also all be |
| 3516 | * outside the cluster. |
| 3517 | */ |
| 3518 | if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { |
| 3519 | spin_unlock(&cip->i_flags_lock); |
| 3520 | break; |
| 3521 | } |
| 3522 | spin_unlock(&cip->i_flags_lock); |
| 3523 | |
| 3524 | /* |
| 3525 | * Do an un-protected check to see if the inode is dirty and |
| 3526 | * is a candidate for flushing. These checks will be repeated |
| 3527 | * later after the appropriate locks are acquired. |
| 3528 | */ |
| 3529 | if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) |
| 3530 | continue; |
| 3531 | |
| 3532 | /* |
| 3533 | * Try to get locks. If any are unavailable or it is pinned, |
| 3534 | * then this inode cannot be flushed and is skipped. |
| 3535 | */ |
| 3536 | |
| 3537 | if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) |
| 3538 | continue; |
| 3539 | if (!xfs_iflock_nowait(cip)) { |
| 3540 | xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| 3541 | continue; |
| 3542 | } |
| 3543 | if (xfs_ipincount(cip)) { |
| 3544 | xfs_ifunlock(cip); |
| 3545 | xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| 3546 | continue; |
| 3547 | } |
| 3548 | |
| 3549 | |
| 3550 | /* |
| 3551 | * Check the inode number again, just to be certain we are not |
| 3552 | * racing with freeing in xfs_reclaim_inode(). See the comments |
| 3553 | * in that function for more information as to why the initial |
| 3554 | * check is not sufficient. |
| 3555 | */ |
| 3556 | if (!cip->i_ino) { |
| 3557 | xfs_ifunlock(cip); |
| 3558 | xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| 3559 | continue; |
| 3560 | } |
| 3561 | |
| 3562 | /* |
| 3563 | * arriving here means that this inode can be flushed. First |
| 3564 | * re-check that it's dirty before flushing. |
| 3565 | */ |
| 3566 | if (!xfs_inode_clean(cip)) { |
| 3567 | int error; |
| 3568 | error = xfs_iflush_int(cip, bp); |
| 3569 | if (error) { |
| 3570 | xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| 3571 | goto cluster_corrupt_out; |
| 3572 | } |
| 3573 | clcount++; |
| 3574 | } else { |
| 3575 | xfs_ifunlock(cip); |
| 3576 | } |
| 3577 | xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| 3578 | } |
| 3579 | |
| 3580 | if (clcount) { |
| 3581 | XFS_STATS_INC(mp, xs_icluster_flushcnt); |
| 3582 | XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); |
| 3583 | } |
| 3584 | |
| 3585 | out_free: |
| 3586 | rcu_read_unlock(); |
| 3587 | kmem_free(cilist); |
| 3588 | out_put: |
| 3589 | xfs_perag_put(pag); |
| 3590 | return 0; |
| 3591 | |
| 3592 | |
| 3593 | cluster_corrupt_out: |
| 3594 | /* |
| 3595 | * Corruption detected in the clustering loop. Invalidate the |
| 3596 | * inode buffer and shut down the filesystem. |
| 3597 | */ |
| 3598 | rcu_read_unlock(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3599 | |
| 3600 | /* |
| 3601 | * We'll always have an inode attached to the buffer for completion |
| 3602 | * process by the time we are called from xfs_iflush(). Hence we have |
| 3603 | * always need to do IO completion processing to abort the inodes |
| 3604 | * attached to the buffer. handle them just like the shutdown case in |
| 3605 | * xfs_buf_submit(). |
| 3606 | */ |
| 3607 | ASSERT(bp->b_iodone); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3608 | bp->b_flags |= XBF_ASYNC; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3609 | bp->b_flags &= ~XBF_DONE; |
| 3610 | xfs_buf_stale(bp); |
| 3611 | xfs_buf_ioerror(bp, -EIO); |
| 3612 | xfs_buf_ioend(bp); |
| 3613 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3614 | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| 3615 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3616 | /* abort the corrupt inode, as it was not attached to the buffer */ |
| 3617 | xfs_iflush_abort(cip, false); |
| 3618 | kmem_free(cilist); |
| 3619 | xfs_perag_put(pag); |
| 3620 | return -EFSCORRUPTED; |
| 3621 | } |
| 3622 | |
| 3623 | /* |
| 3624 | * Flush dirty inode metadata into the backing buffer. |
| 3625 | * |
| 3626 | * The caller must have the inode lock and the inode flush lock held. The |
| 3627 | * inode lock will still be held upon return to the caller, and the inode |
| 3628 | * flush lock will be released after the inode has reached the disk. |
| 3629 | * |
| 3630 | * The caller must write out the buffer returned in *bpp and release it. |
| 3631 | */ |
| 3632 | int |
| 3633 | xfs_iflush( |
| 3634 | struct xfs_inode *ip, |
| 3635 | struct xfs_buf **bpp) |
| 3636 | { |
| 3637 | struct xfs_mount *mp = ip->i_mount; |
| 3638 | struct xfs_buf *bp = NULL; |
| 3639 | struct xfs_dinode *dip; |
| 3640 | int error; |
| 3641 | |
| 3642 | XFS_STATS_INC(mp, xs_iflush_count); |
| 3643 | |
| 3644 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| 3645 | ASSERT(xfs_isiflocked(ip)); |
| 3646 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
| 3647 | ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); |
| 3648 | |
| 3649 | *bpp = NULL; |
| 3650 | |
| 3651 | xfs_iunpin_wait(ip); |
| 3652 | |
| 3653 | /* |
| 3654 | * For stale inodes we cannot rely on the backing buffer remaining |
| 3655 | * stale in cache for the remaining life of the stale inode and so |
| 3656 | * xfs_imap_to_bp() below may give us a buffer that no longer contains |
| 3657 | * inodes below. We have to check this after ensuring the inode is |
| 3658 | * unpinned so that it is safe to reclaim the stale inode after the |
| 3659 | * flush call. |
| 3660 | */ |
| 3661 | if (xfs_iflags_test(ip, XFS_ISTALE)) { |
| 3662 | xfs_ifunlock(ip); |
| 3663 | return 0; |
| 3664 | } |
| 3665 | |
| 3666 | /* |
| 3667 | * This may have been unpinned because the filesystem is shutting |
| 3668 | * down forcibly. If that's the case we must not write this inode |
| 3669 | * to disk, because the log record didn't make it to disk. |
| 3670 | * |
| 3671 | * We also have to remove the log item from the AIL in this case, |
| 3672 | * as we wait for an empty AIL as part of the unmount process. |
| 3673 | */ |
| 3674 | if (XFS_FORCED_SHUTDOWN(mp)) { |
| 3675 | error = -EIO; |
| 3676 | goto abort_out; |
| 3677 | } |
| 3678 | |
| 3679 | /* |
| 3680 | * Get the buffer containing the on-disk inode. We are doing a try-lock |
| 3681 | * operation here, so we may get an EAGAIN error. In that case, we |
| 3682 | * simply want to return with the inode still dirty. |
| 3683 | * |
| 3684 | * If we get any other error, we effectively have a corruption situation |
| 3685 | * and we cannot flush the inode, so we treat it the same as failing |
| 3686 | * xfs_iflush_int(). |
| 3687 | */ |
| 3688 | error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, |
| 3689 | 0); |
| 3690 | if (error == -EAGAIN) { |
| 3691 | xfs_ifunlock(ip); |
| 3692 | return error; |
| 3693 | } |
| 3694 | if (error) |
| 3695 | goto corrupt_out; |
| 3696 | |
| 3697 | /* |
| 3698 | * First flush out the inode that xfs_iflush was called with. |
| 3699 | */ |
| 3700 | error = xfs_iflush_int(ip, bp); |
| 3701 | if (error) |
| 3702 | goto corrupt_out; |
| 3703 | |
| 3704 | /* |
| 3705 | * If the buffer is pinned then push on the log now so we won't |
| 3706 | * get stuck waiting in the write for too long. |
| 3707 | */ |
| 3708 | if (xfs_buf_ispinned(bp)) |
| 3709 | xfs_log_force(mp, 0); |
| 3710 | |
| 3711 | /* |
| 3712 | * inode clustering: try to gather other inodes into this write |
| 3713 | * |
| 3714 | * Note: Any error during clustering will result in the filesystem |
| 3715 | * being shut down and completion callbacks run on the cluster buffer. |
| 3716 | * As we have already flushed and attached this inode to the buffer, |
| 3717 | * it has already been aborted and released by xfs_iflush_cluster() and |
| 3718 | * so we have no further error handling to do here. |
| 3719 | */ |
| 3720 | error = xfs_iflush_cluster(ip, bp); |
| 3721 | if (error) |
| 3722 | return error; |
| 3723 | |
| 3724 | *bpp = bp; |
| 3725 | return 0; |
| 3726 | |
| 3727 | corrupt_out: |
| 3728 | if (bp) |
| 3729 | xfs_buf_relse(bp); |
| 3730 | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| 3731 | abort_out: |
| 3732 | /* abort the corrupt inode, as it was not attached to the buffer */ |
| 3733 | xfs_iflush_abort(ip, false); |
| 3734 | return error; |
| 3735 | } |
| 3736 | |
| 3737 | /* |
| 3738 | * If there are inline format data / attr forks attached to this inode, |
| 3739 | * make sure they're not corrupt. |
| 3740 | */ |
| 3741 | bool |
| 3742 | xfs_inode_verify_forks( |
| 3743 | struct xfs_inode *ip) |
| 3744 | { |
| 3745 | struct xfs_ifork *ifp; |
| 3746 | xfs_failaddr_t fa; |
| 3747 | |
| 3748 | fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); |
| 3749 | if (fa) { |
| 3750 | ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); |
| 3751 | xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", |
| 3752 | ifp->if_u1.if_data, ifp->if_bytes, fa); |
| 3753 | return false; |
| 3754 | } |
| 3755 | |
| 3756 | fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); |
| 3757 | if (fa) { |
| 3758 | ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); |
| 3759 | xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", |
| 3760 | ifp ? ifp->if_u1.if_data : NULL, |
| 3761 | ifp ? ifp->if_bytes : 0, fa); |
| 3762 | return false; |
| 3763 | } |
| 3764 | return true; |
| 3765 | } |
| 3766 | |
| 3767 | STATIC int |
| 3768 | xfs_iflush_int( |
| 3769 | struct xfs_inode *ip, |
| 3770 | struct xfs_buf *bp) |
| 3771 | { |
| 3772 | struct xfs_inode_log_item *iip = ip->i_itemp; |
| 3773 | struct xfs_dinode *dip; |
| 3774 | struct xfs_mount *mp = ip->i_mount; |
| 3775 | |
| 3776 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| 3777 | ASSERT(xfs_isiflocked(ip)); |
| 3778 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
| 3779 | ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); |
| 3780 | ASSERT(iip != NULL && iip->ili_fields != 0); |
| 3781 | ASSERT(ip->i_d.di_version > 1); |
| 3782 | |
| 3783 | /* set *dip = inode's place in the buffer */ |
| 3784 | dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); |
| 3785 | |
| 3786 | if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), |
| 3787 | mp, XFS_ERRTAG_IFLUSH_1)) { |
| 3788 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| 3789 | "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, |
| 3790 | __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); |
| 3791 | goto corrupt_out; |
| 3792 | } |
| 3793 | if (S_ISREG(VFS_I(ip)->i_mode)) { |
| 3794 | if (XFS_TEST_ERROR( |
| 3795 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && |
| 3796 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), |
| 3797 | mp, XFS_ERRTAG_IFLUSH_3)) { |
| 3798 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| 3799 | "%s: Bad regular inode %Lu, ptr "PTR_FMT, |
| 3800 | __func__, ip->i_ino, ip); |
| 3801 | goto corrupt_out; |
| 3802 | } |
| 3803 | } else if (S_ISDIR(VFS_I(ip)->i_mode)) { |
| 3804 | if (XFS_TEST_ERROR( |
| 3805 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && |
| 3806 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && |
| 3807 | (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), |
| 3808 | mp, XFS_ERRTAG_IFLUSH_4)) { |
| 3809 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| 3810 | "%s: Bad directory inode %Lu, ptr "PTR_FMT, |
| 3811 | __func__, ip->i_ino, ip); |
| 3812 | goto corrupt_out; |
| 3813 | } |
| 3814 | } |
| 3815 | if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > |
| 3816 | ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { |
| 3817 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| 3818 | "%s: detected corrupt incore inode %Lu, " |
| 3819 | "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, |
| 3820 | __func__, ip->i_ino, |
| 3821 | ip->i_d.di_nextents + ip->i_d.di_anextents, |
| 3822 | ip->i_d.di_nblocks, ip); |
| 3823 | goto corrupt_out; |
| 3824 | } |
| 3825 | if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, |
| 3826 | mp, XFS_ERRTAG_IFLUSH_6)) { |
| 3827 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| 3828 | "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, |
| 3829 | __func__, ip->i_ino, ip->i_d.di_forkoff, ip); |
| 3830 | goto corrupt_out; |
| 3831 | } |
| 3832 | |
| 3833 | /* |
| 3834 | * Inode item log recovery for v2 inodes are dependent on the |
| 3835 | * di_flushiter count for correct sequencing. We bump the flush |
| 3836 | * iteration count so we can detect flushes which postdate a log record |
| 3837 | * during recovery. This is redundant as we now log every change and |
| 3838 | * hence this can't happen but we need to still do it to ensure |
| 3839 | * backwards compatibility with old kernels that predate logging all |
| 3840 | * inode changes. |
| 3841 | */ |
| 3842 | if (ip->i_d.di_version < 3) |
| 3843 | ip->i_d.di_flushiter++; |
| 3844 | |
| 3845 | /* Check the inline fork data before we write out. */ |
| 3846 | if (!xfs_inode_verify_forks(ip)) |
| 3847 | goto corrupt_out; |
| 3848 | |
| 3849 | /* |
| 3850 | * Copy the dirty parts of the inode into the on-disk inode. We always |
| 3851 | * copy out the core of the inode, because if the inode is dirty at all |
| 3852 | * the core must be. |
| 3853 | */ |
| 3854 | xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); |
| 3855 | |
| 3856 | /* Wrap, we never let the log put out DI_MAX_FLUSH */ |
| 3857 | if (ip->i_d.di_flushiter == DI_MAX_FLUSH) |
| 3858 | ip->i_d.di_flushiter = 0; |
| 3859 | |
| 3860 | xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); |
| 3861 | if (XFS_IFORK_Q(ip)) |
| 3862 | xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); |
| 3863 | xfs_inobp_check(mp, bp); |
| 3864 | |
| 3865 | /* |
| 3866 | * We've recorded everything logged in the inode, so we'd like to clear |
| 3867 | * the ili_fields bits so we don't log and flush things unnecessarily. |
| 3868 | * However, we can't stop logging all this information until the data |
| 3869 | * we've copied into the disk buffer is written to disk. If we did we |
| 3870 | * might overwrite the copy of the inode in the log with all the data |
| 3871 | * after re-logging only part of it, and in the face of a crash we |
| 3872 | * wouldn't have all the data we need to recover. |
| 3873 | * |
| 3874 | * What we do is move the bits to the ili_last_fields field. When |
| 3875 | * logging the inode, these bits are moved back to the ili_fields field. |
| 3876 | * In the xfs_iflush_done() routine we clear ili_last_fields, since we |
| 3877 | * know that the information those bits represent is permanently on |
| 3878 | * disk. As long as the flush completes before the inode is logged |
| 3879 | * again, then both ili_fields and ili_last_fields will be cleared. |
| 3880 | * |
| 3881 | * We can play with the ili_fields bits here, because the inode lock |
| 3882 | * must be held exclusively in order to set bits there and the flush |
| 3883 | * lock protects the ili_last_fields bits. Set ili_logged so the flush |
| 3884 | * done routine can tell whether or not to look in the AIL. Also, store |
| 3885 | * the current LSN of the inode so that we can tell whether the item has |
| 3886 | * moved in the AIL from xfs_iflush_done(). In order to read the lsn we |
| 3887 | * need the AIL lock, because it is a 64 bit value that cannot be read |
| 3888 | * atomically. |
| 3889 | */ |
| 3890 | iip->ili_last_fields = iip->ili_fields; |
| 3891 | iip->ili_fields = 0; |
| 3892 | iip->ili_fsync_fields = 0; |
| 3893 | iip->ili_logged = 1; |
| 3894 | |
| 3895 | xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, |
| 3896 | &iip->ili_item.li_lsn); |
| 3897 | |
| 3898 | /* |
| 3899 | * Attach the function xfs_iflush_done to the inode's |
| 3900 | * buffer. This will remove the inode from the AIL |
| 3901 | * and unlock the inode's flush lock when the inode is |
| 3902 | * completely written to disk. |
| 3903 | */ |
| 3904 | xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); |
| 3905 | |
| 3906 | /* generate the checksum. */ |
| 3907 | xfs_dinode_calc_crc(mp, dip); |
| 3908 | |
| 3909 | ASSERT(!list_empty(&bp->b_li_list)); |
| 3910 | ASSERT(bp->b_iodone != NULL); |
| 3911 | return 0; |
| 3912 | |
| 3913 | corrupt_out: |
| 3914 | return -EFSCORRUPTED; |
| 3915 | } |
| 3916 | |
| 3917 | /* Release an inode. */ |
| 3918 | void |
| 3919 | xfs_irele( |
| 3920 | struct xfs_inode *ip) |
| 3921 | { |
| 3922 | trace_xfs_irele(ip, _RET_IP_); |
| 3923 | iput(VFS_I(ip)); |
| 3924 | } |