David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3 | * 2002-10-15 Posix Clocks & timers |
| 4 | * by George Anzinger george@mvista.com |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5 | * Copyright (C) 2002 2003 by MontaVista Software. |
| 6 | * |
| 7 | * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. |
| 8 | * Copyright (C) 2004 Boris Hu |
| 9 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 10 | * These are all the functions necessary to implement POSIX clocks & timers |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 11 | */ |
| 12 | #include <linux/mm.h> |
| 13 | #include <linux/interrupt.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/time.h> |
| 16 | #include <linux/mutex.h> |
| 17 | #include <linux/sched/task.h> |
| 18 | |
| 19 | #include <linux/uaccess.h> |
| 20 | #include <linux/list.h> |
| 21 | #include <linux/init.h> |
| 22 | #include <linux/compiler.h> |
| 23 | #include <linux/hash.h> |
| 24 | #include <linux/posix-clock.h> |
| 25 | #include <linux/posix-timers.h> |
| 26 | #include <linux/syscalls.h> |
| 27 | #include <linux/wait.h> |
| 28 | #include <linux/workqueue.h> |
| 29 | #include <linux/export.h> |
| 30 | #include <linux/hashtable.h> |
| 31 | #include <linux/compat.h> |
| 32 | #include <linux/nospec.h> |
| 33 | |
| 34 | #include "timekeeping.h" |
| 35 | #include "posix-timers.h" |
| 36 | |
| 37 | /* |
| 38 | * Management arrays for POSIX timers. Timers are now kept in static hash table |
| 39 | * with 512 entries. |
| 40 | * Timer ids are allocated by local routine, which selects proper hash head by |
| 41 | * key, constructed from current->signal address and per signal struct counter. |
| 42 | * This keeps timer ids unique per process, but now they can intersect between |
| 43 | * processes. |
| 44 | */ |
| 45 | |
| 46 | /* |
| 47 | * Lets keep our timers in a slab cache :-) |
| 48 | */ |
| 49 | static struct kmem_cache *posix_timers_cache; |
| 50 | |
| 51 | static DEFINE_HASHTABLE(posix_timers_hashtable, 9); |
| 52 | static DEFINE_SPINLOCK(hash_lock); |
| 53 | |
| 54 | static const struct k_clock * const posix_clocks[]; |
| 55 | static const struct k_clock *clockid_to_kclock(const clockid_t id); |
| 56 | static const struct k_clock clock_realtime, clock_monotonic; |
| 57 | |
| 58 | /* |
| 59 | * we assume that the new SIGEV_THREAD_ID shares no bits with the other |
| 60 | * SIGEV values. Here we put out an error if this assumption fails. |
| 61 | */ |
| 62 | #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ |
| 63 | ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) |
| 64 | #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" |
| 65 | #endif |
| 66 | |
| 67 | /* |
| 68 | * The timer ID is turned into a timer address by idr_find(). |
| 69 | * Verifying a valid ID consists of: |
| 70 | * |
| 71 | * a) checking that idr_find() returns other than -1. |
| 72 | * b) checking that the timer id matches the one in the timer itself. |
| 73 | * c) that the timer owner is in the callers thread group. |
| 74 | */ |
| 75 | |
| 76 | /* |
| 77 | * CLOCKs: The POSIX standard calls for a couple of clocks and allows us |
| 78 | * to implement others. This structure defines the various |
| 79 | * clocks. |
| 80 | * |
| 81 | * RESOLUTION: Clock resolution is used to round up timer and interval |
| 82 | * times, NOT to report clock times, which are reported with as |
| 83 | * much resolution as the system can muster. In some cases this |
| 84 | * resolution may depend on the underlying clock hardware and |
| 85 | * may not be quantifiable until run time, and only then is the |
| 86 | * necessary code is written. The standard says we should say |
| 87 | * something about this issue in the documentation... |
| 88 | * |
| 89 | * FUNCTIONS: The CLOCKs structure defines possible functions to |
| 90 | * handle various clock functions. |
| 91 | * |
| 92 | * The standard POSIX timer management code assumes the |
| 93 | * following: 1.) The k_itimer struct (sched.h) is used for |
| 94 | * the timer. 2.) The list, it_lock, it_clock, it_id and |
| 95 | * it_pid fields are not modified by timer code. |
| 96 | * |
| 97 | * Permissions: It is assumed that the clock_settime() function defined |
| 98 | * for each clock will take care of permission checks. Some |
| 99 | * clocks may be set able by any user (i.e. local process |
| 100 | * clocks) others not. Currently the only set able clock we |
| 101 | * have is CLOCK_REALTIME and its high res counter part, both of |
| 102 | * which we beg off on and pass to do_sys_settimeofday(). |
| 103 | */ |
| 104 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); |
| 105 | |
| 106 | #define lock_timer(tid, flags) \ |
| 107 | ({ struct k_itimer *__timr; \ |
| 108 | __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ |
| 109 | __timr; \ |
| 110 | }) |
| 111 | |
| 112 | static int hash(struct signal_struct *sig, unsigned int nr) |
| 113 | { |
| 114 | return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); |
| 115 | } |
| 116 | |
| 117 | static struct k_itimer *__posix_timers_find(struct hlist_head *head, |
| 118 | struct signal_struct *sig, |
| 119 | timer_t id) |
| 120 | { |
| 121 | struct k_itimer *timer; |
| 122 | |
| 123 | hlist_for_each_entry_rcu(timer, head, t_hash) { |
| 124 | if ((timer->it_signal == sig) && (timer->it_id == id)) |
| 125 | return timer; |
| 126 | } |
| 127 | return NULL; |
| 128 | } |
| 129 | |
| 130 | static struct k_itimer *posix_timer_by_id(timer_t id) |
| 131 | { |
| 132 | struct signal_struct *sig = current->signal; |
| 133 | struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; |
| 134 | |
| 135 | return __posix_timers_find(head, sig, id); |
| 136 | } |
| 137 | |
| 138 | static int posix_timer_add(struct k_itimer *timer) |
| 139 | { |
| 140 | struct signal_struct *sig = current->signal; |
| 141 | int first_free_id = sig->posix_timer_id; |
| 142 | struct hlist_head *head; |
| 143 | int ret = -ENOENT; |
| 144 | |
| 145 | do { |
| 146 | spin_lock(&hash_lock); |
| 147 | head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; |
| 148 | if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { |
| 149 | hlist_add_head_rcu(&timer->t_hash, head); |
| 150 | ret = sig->posix_timer_id; |
| 151 | } |
| 152 | if (++sig->posix_timer_id < 0) |
| 153 | sig->posix_timer_id = 0; |
| 154 | if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) |
| 155 | /* Loop over all possible ids completed */ |
| 156 | ret = -EAGAIN; |
| 157 | spin_unlock(&hash_lock); |
| 158 | } while (ret == -ENOENT); |
| 159 | return ret; |
| 160 | } |
| 161 | |
| 162 | static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) |
| 163 | { |
| 164 | spin_unlock_irqrestore(&timr->it_lock, flags); |
| 165 | } |
| 166 | |
| 167 | /* Get clock_realtime */ |
| 168 | static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp) |
| 169 | { |
| 170 | ktime_get_real_ts64(tp); |
| 171 | return 0; |
| 172 | } |
| 173 | |
| 174 | /* Set clock_realtime */ |
| 175 | static int posix_clock_realtime_set(const clockid_t which_clock, |
| 176 | const struct timespec64 *tp) |
| 177 | { |
| 178 | return do_sys_settimeofday64(tp, NULL); |
| 179 | } |
| 180 | |
| 181 | static int posix_clock_realtime_adj(const clockid_t which_clock, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 182 | struct __kernel_timex *t) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 183 | { |
| 184 | return do_adjtimex(t); |
| 185 | } |
| 186 | |
| 187 | /* |
| 188 | * Get monotonic time for posix timers |
| 189 | */ |
| 190 | static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp) |
| 191 | { |
| 192 | ktime_get_ts64(tp); |
| 193 | return 0; |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * Get monotonic-raw time for posix timers |
| 198 | */ |
| 199 | static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) |
| 200 | { |
| 201 | ktime_get_raw_ts64(tp); |
| 202 | return 0; |
| 203 | } |
| 204 | |
| 205 | |
| 206 | static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) |
| 207 | { |
| 208 | ktime_get_coarse_real_ts64(tp); |
| 209 | return 0; |
| 210 | } |
| 211 | |
| 212 | static int posix_get_monotonic_coarse(clockid_t which_clock, |
| 213 | struct timespec64 *tp) |
| 214 | { |
| 215 | ktime_get_coarse_ts64(tp); |
| 216 | return 0; |
| 217 | } |
| 218 | |
| 219 | static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) |
| 220 | { |
| 221 | *tp = ktime_to_timespec64(KTIME_LOW_RES); |
| 222 | return 0; |
| 223 | } |
| 224 | |
| 225 | static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp) |
| 226 | { |
| 227 | ktime_get_boottime_ts64(tp); |
| 228 | return 0; |
| 229 | } |
| 230 | |
| 231 | static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp) |
| 232 | { |
| 233 | ktime_get_clocktai_ts64(tp); |
| 234 | return 0; |
| 235 | } |
| 236 | |
| 237 | static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) |
| 238 | { |
| 239 | tp->tv_sec = 0; |
| 240 | tp->tv_nsec = hrtimer_resolution; |
| 241 | return 0; |
| 242 | } |
| 243 | |
| 244 | /* |
| 245 | * Initialize everything, well, just everything in Posix clocks/timers ;) |
| 246 | */ |
| 247 | static __init int init_posix_timers(void) |
| 248 | { |
| 249 | posix_timers_cache = kmem_cache_create("posix_timers_cache", |
| 250 | sizeof (struct k_itimer), 0, SLAB_PANIC, |
| 251 | NULL); |
| 252 | return 0; |
| 253 | } |
| 254 | __initcall(init_posix_timers); |
| 255 | |
| 256 | /* |
| 257 | * The siginfo si_overrun field and the return value of timer_getoverrun(2) |
| 258 | * are of type int. Clamp the overrun value to INT_MAX |
| 259 | */ |
| 260 | static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval) |
| 261 | { |
| 262 | s64 sum = timr->it_overrun_last + (s64)baseval; |
| 263 | |
| 264 | return sum > (s64)INT_MAX ? INT_MAX : (int)sum; |
| 265 | } |
| 266 | |
| 267 | static void common_hrtimer_rearm(struct k_itimer *timr) |
| 268 | { |
| 269 | struct hrtimer *timer = &timr->it.real.timer; |
| 270 | |
| 271 | timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(), |
| 272 | timr->it_interval); |
| 273 | hrtimer_restart(timer); |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | * This function is exported for use by the signal deliver code. It is |
| 278 | * called just prior to the info block being released and passes that |
| 279 | * block to us. It's function is to update the overrun entry AND to |
| 280 | * restart the timer. It should only be called if the timer is to be |
| 281 | * restarted (i.e. we have flagged this in the sys_private entry of the |
| 282 | * info block). |
| 283 | * |
| 284 | * To protect against the timer going away while the interrupt is queued, |
| 285 | * we require that the it_requeue_pending flag be set. |
| 286 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 287 | void posixtimer_rearm(struct kernel_siginfo *info) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 288 | { |
| 289 | struct k_itimer *timr; |
| 290 | unsigned long flags; |
| 291 | |
| 292 | timr = lock_timer(info->si_tid, &flags); |
| 293 | if (!timr) |
| 294 | return; |
| 295 | |
| 296 | if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) { |
| 297 | timr->kclock->timer_rearm(timr); |
| 298 | |
| 299 | timr->it_active = 1; |
| 300 | timr->it_overrun_last = timr->it_overrun; |
| 301 | timr->it_overrun = -1LL; |
| 302 | ++timr->it_requeue_pending; |
| 303 | |
| 304 | info->si_overrun = timer_overrun_to_int(timr, info->si_overrun); |
| 305 | } |
| 306 | |
| 307 | unlock_timer(timr, flags); |
| 308 | } |
| 309 | |
| 310 | int posix_timer_event(struct k_itimer *timr, int si_private) |
| 311 | { |
| 312 | enum pid_type type; |
| 313 | int ret = -1; |
| 314 | /* |
| 315 | * FIXME: if ->sigq is queued we can race with |
| 316 | * dequeue_signal()->posixtimer_rearm(). |
| 317 | * |
| 318 | * If dequeue_signal() sees the "right" value of |
| 319 | * si_sys_private it calls posixtimer_rearm(). |
| 320 | * We re-queue ->sigq and drop ->it_lock(). |
| 321 | * posixtimer_rearm() locks the timer |
| 322 | * and re-schedules it while ->sigq is pending. |
| 323 | * Not really bad, but not that we want. |
| 324 | */ |
| 325 | timr->sigq->info.si_sys_private = si_private; |
| 326 | |
| 327 | type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID; |
| 328 | ret = send_sigqueue(timr->sigq, timr->it_pid, type); |
| 329 | /* If we failed to send the signal the timer stops. */ |
| 330 | return ret > 0; |
| 331 | } |
| 332 | |
| 333 | /* |
| 334 | * This function gets called when a POSIX.1b interval timer expires. It |
| 335 | * is used as a callback from the kernel internal timer. The |
| 336 | * run_timer_list code ALWAYS calls with interrupts on. |
| 337 | |
| 338 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. |
| 339 | */ |
| 340 | static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) |
| 341 | { |
| 342 | struct k_itimer *timr; |
| 343 | unsigned long flags; |
| 344 | int si_private = 0; |
| 345 | enum hrtimer_restart ret = HRTIMER_NORESTART; |
| 346 | |
| 347 | timr = container_of(timer, struct k_itimer, it.real.timer); |
| 348 | spin_lock_irqsave(&timr->it_lock, flags); |
| 349 | |
| 350 | timr->it_active = 0; |
| 351 | if (timr->it_interval != 0) |
| 352 | si_private = ++timr->it_requeue_pending; |
| 353 | |
| 354 | if (posix_timer_event(timr, si_private)) { |
| 355 | /* |
| 356 | * signal was not sent because of sig_ignor |
| 357 | * we will not get a call back to restart it AND |
| 358 | * it should be restarted. |
| 359 | */ |
| 360 | if (timr->it_interval != 0) { |
| 361 | ktime_t now = hrtimer_cb_get_time(timer); |
| 362 | |
| 363 | /* |
| 364 | * FIXME: What we really want, is to stop this |
| 365 | * timer completely and restart it in case the |
| 366 | * SIG_IGN is removed. This is a non trivial |
| 367 | * change which involves sighand locking |
| 368 | * (sigh !), which we don't want to do late in |
| 369 | * the release cycle. |
| 370 | * |
| 371 | * For now we just let timers with an interval |
| 372 | * less than a jiffie expire every jiffie to |
| 373 | * avoid softirq starvation in case of SIG_IGN |
| 374 | * and a very small interval, which would put |
| 375 | * the timer right back on the softirq pending |
| 376 | * list. By moving now ahead of time we trick |
| 377 | * hrtimer_forward() to expire the timer |
| 378 | * later, while we still maintain the overrun |
| 379 | * accuracy, but have some inconsistency in |
| 380 | * the timer_gettime() case. This is at least |
| 381 | * better than a starved softirq. A more |
| 382 | * complex fix which solves also another related |
| 383 | * inconsistency is already in the pipeline. |
| 384 | */ |
| 385 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 386 | { |
| 387 | ktime_t kj = NSEC_PER_SEC / HZ; |
| 388 | |
| 389 | if (timr->it_interval < kj) |
| 390 | now = ktime_add(now, kj); |
| 391 | } |
| 392 | #endif |
| 393 | timr->it_overrun += hrtimer_forward(timer, now, |
| 394 | timr->it_interval); |
| 395 | ret = HRTIMER_RESTART; |
| 396 | ++timr->it_requeue_pending; |
| 397 | timr->it_active = 1; |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | unlock_timer(timr, flags); |
| 402 | return ret; |
| 403 | } |
| 404 | |
| 405 | static struct pid *good_sigevent(sigevent_t * event) |
| 406 | { |
| 407 | struct pid *pid = task_tgid(current); |
| 408 | struct task_struct *rtn; |
| 409 | |
| 410 | switch (event->sigev_notify) { |
| 411 | case SIGEV_SIGNAL | SIGEV_THREAD_ID: |
| 412 | pid = find_vpid(event->sigev_notify_thread_id); |
| 413 | rtn = pid_task(pid, PIDTYPE_PID); |
| 414 | if (!rtn || !same_thread_group(rtn, current)) |
| 415 | return NULL; |
| 416 | /* FALLTHRU */ |
| 417 | case SIGEV_SIGNAL: |
| 418 | case SIGEV_THREAD: |
| 419 | if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) |
| 420 | return NULL; |
| 421 | /* FALLTHRU */ |
| 422 | case SIGEV_NONE: |
| 423 | return pid; |
| 424 | default: |
| 425 | return NULL; |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | static struct k_itimer * alloc_posix_timer(void) |
| 430 | { |
| 431 | struct k_itimer *tmr; |
| 432 | tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); |
| 433 | if (!tmr) |
| 434 | return tmr; |
| 435 | if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { |
| 436 | kmem_cache_free(posix_timers_cache, tmr); |
| 437 | return NULL; |
| 438 | } |
| 439 | clear_siginfo(&tmr->sigq->info); |
| 440 | return tmr; |
| 441 | } |
| 442 | |
| 443 | static void k_itimer_rcu_free(struct rcu_head *head) |
| 444 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 445 | struct k_itimer *tmr = container_of(head, struct k_itimer, rcu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 446 | |
| 447 | kmem_cache_free(posix_timers_cache, tmr); |
| 448 | } |
| 449 | |
| 450 | #define IT_ID_SET 1 |
| 451 | #define IT_ID_NOT_SET 0 |
| 452 | static void release_posix_timer(struct k_itimer *tmr, int it_id_set) |
| 453 | { |
| 454 | if (it_id_set) { |
| 455 | unsigned long flags; |
| 456 | spin_lock_irqsave(&hash_lock, flags); |
| 457 | hlist_del_rcu(&tmr->t_hash); |
| 458 | spin_unlock_irqrestore(&hash_lock, flags); |
| 459 | } |
| 460 | put_pid(tmr->it_pid); |
| 461 | sigqueue_free(tmr->sigq); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 462 | call_rcu(&tmr->rcu, k_itimer_rcu_free); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 463 | } |
| 464 | |
| 465 | static int common_timer_create(struct k_itimer *new_timer) |
| 466 | { |
| 467 | hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); |
| 468 | return 0; |
| 469 | } |
| 470 | |
| 471 | /* Create a POSIX.1b interval timer. */ |
| 472 | static int do_timer_create(clockid_t which_clock, struct sigevent *event, |
| 473 | timer_t __user *created_timer_id) |
| 474 | { |
| 475 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 476 | struct k_itimer *new_timer; |
| 477 | int error, new_timer_id; |
| 478 | int it_id_set = IT_ID_NOT_SET; |
| 479 | |
| 480 | if (!kc) |
| 481 | return -EINVAL; |
| 482 | if (!kc->timer_create) |
| 483 | return -EOPNOTSUPP; |
| 484 | |
| 485 | new_timer = alloc_posix_timer(); |
| 486 | if (unlikely(!new_timer)) |
| 487 | return -EAGAIN; |
| 488 | |
| 489 | spin_lock_init(&new_timer->it_lock); |
| 490 | new_timer_id = posix_timer_add(new_timer); |
| 491 | if (new_timer_id < 0) { |
| 492 | error = new_timer_id; |
| 493 | goto out; |
| 494 | } |
| 495 | |
| 496 | it_id_set = IT_ID_SET; |
| 497 | new_timer->it_id = (timer_t) new_timer_id; |
| 498 | new_timer->it_clock = which_clock; |
| 499 | new_timer->kclock = kc; |
| 500 | new_timer->it_overrun = -1LL; |
| 501 | |
| 502 | if (event) { |
| 503 | rcu_read_lock(); |
| 504 | new_timer->it_pid = get_pid(good_sigevent(event)); |
| 505 | rcu_read_unlock(); |
| 506 | if (!new_timer->it_pid) { |
| 507 | error = -EINVAL; |
| 508 | goto out; |
| 509 | } |
| 510 | new_timer->it_sigev_notify = event->sigev_notify; |
| 511 | new_timer->sigq->info.si_signo = event->sigev_signo; |
| 512 | new_timer->sigq->info.si_value = event->sigev_value; |
| 513 | } else { |
| 514 | new_timer->it_sigev_notify = SIGEV_SIGNAL; |
| 515 | new_timer->sigq->info.si_signo = SIGALRM; |
| 516 | memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); |
| 517 | new_timer->sigq->info.si_value.sival_int = new_timer->it_id; |
| 518 | new_timer->it_pid = get_pid(task_tgid(current)); |
| 519 | } |
| 520 | |
| 521 | new_timer->sigq->info.si_tid = new_timer->it_id; |
| 522 | new_timer->sigq->info.si_code = SI_TIMER; |
| 523 | |
| 524 | if (copy_to_user(created_timer_id, |
| 525 | &new_timer_id, sizeof (new_timer_id))) { |
| 526 | error = -EFAULT; |
| 527 | goto out; |
| 528 | } |
| 529 | |
| 530 | error = kc->timer_create(new_timer); |
| 531 | if (error) |
| 532 | goto out; |
| 533 | |
| 534 | spin_lock_irq(¤t->sighand->siglock); |
| 535 | new_timer->it_signal = current->signal; |
| 536 | list_add(&new_timer->list, ¤t->signal->posix_timers); |
| 537 | spin_unlock_irq(¤t->sighand->siglock); |
| 538 | |
| 539 | return 0; |
| 540 | /* |
| 541 | * In the case of the timer belonging to another task, after |
| 542 | * the task is unlocked, the timer is owned by the other task |
| 543 | * and may cease to exist at any time. Don't use or modify |
| 544 | * new_timer after the unlock call. |
| 545 | */ |
| 546 | out: |
| 547 | release_posix_timer(new_timer, it_id_set); |
| 548 | return error; |
| 549 | } |
| 550 | |
| 551 | SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, |
| 552 | struct sigevent __user *, timer_event_spec, |
| 553 | timer_t __user *, created_timer_id) |
| 554 | { |
| 555 | if (timer_event_spec) { |
| 556 | sigevent_t event; |
| 557 | |
| 558 | if (copy_from_user(&event, timer_event_spec, sizeof (event))) |
| 559 | return -EFAULT; |
| 560 | return do_timer_create(which_clock, &event, created_timer_id); |
| 561 | } |
| 562 | return do_timer_create(which_clock, NULL, created_timer_id); |
| 563 | } |
| 564 | |
| 565 | #ifdef CONFIG_COMPAT |
| 566 | COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, |
| 567 | struct compat_sigevent __user *, timer_event_spec, |
| 568 | timer_t __user *, created_timer_id) |
| 569 | { |
| 570 | if (timer_event_spec) { |
| 571 | sigevent_t event; |
| 572 | |
| 573 | if (get_compat_sigevent(&event, timer_event_spec)) |
| 574 | return -EFAULT; |
| 575 | return do_timer_create(which_clock, &event, created_timer_id); |
| 576 | } |
| 577 | return do_timer_create(which_clock, NULL, created_timer_id); |
| 578 | } |
| 579 | #endif |
| 580 | |
| 581 | /* |
| 582 | * Locking issues: We need to protect the result of the id look up until |
| 583 | * we get the timer locked down so it is not deleted under us. The |
| 584 | * removal is done under the idr spinlock so we use that here to bridge |
| 585 | * the find to the timer lock. To avoid a dead lock, the timer id MUST |
| 586 | * be release with out holding the timer lock. |
| 587 | */ |
| 588 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) |
| 589 | { |
| 590 | struct k_itimer *timr; |
| 591 | |
| 592 | /* |
| 593 | * timer_t could be any type >= int and we want to make sure any |
| 594 | * @timer_id outside positive int range fails lookup. |
| 595 | */ |
| 596 | if ((unsigned long long)timer_id > INT_MAX) |
| 597 | return NULL; |
| 598 | |
| 599 | rcu_read_lock(); |
| 600 | timr = posix_timer_by_id(timer_id); |
| 601 | if (timr) { |
| 602 | spin_lock_irqsave(&timr->it_lock, *flags); |
| 603 | if (timr->it_signal == current->signal) { |
| 604 | rcu_read_unlock(); |
| 605 | return timr; |
| 606 | } |
| 607 | spin_unlock_irqrestore(&timr->it_lock, *flags); |
| 608 | } |
| 609 | rcu_read_unlock(); |
| 610 | |
| 611 | return NULL; |
| 612 | } |
| 613 | |
| 614 | static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) |
| 615 | { |
| 616 | struct hrtimer *timer = &timr->it.real.timer; |
| 617 | |
| 618 | return __hrtimer_expires_remaining_adjusted(timer, now); |
| 619 | } |
| 620 | |
| 621 | static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now) |
| 622 | { |
| 623 | struct hrtimer *timer = &timr->it.real.timer; |
| 624 | |
| 625 | return hrtimer_forward(timer, now, timr->it_interval); |
| 626 | } |
| 627 | |
| 628 | /* |
| 629 | * Get the time remaining on a POSIX.1b interval timer. This function |
| 630 | * is ALWAYS called with spin_lock_irq on the timer, thus it must not |
| 631 | * mess with irq. |
| 632 | * |
| 633 | * We have a couple of messes to clean up here. First there is the case |
| 634 | * of a timer that has a requeue pending. These timers should appear to |
| 635 | * be in the timer list with an expiry as if we were to requeue them |
| 636 | * now. |
| 637 | * |
| 638 | * The second issue is the SIGEV_NONE timer which may be active but is |
| 639 | * not really ever put in the timer list (to save system resources). |
| 640 | * This timer may be expired, and if so, we will do it here. Otherwise |
| 641 | * it is the same as a requeue pending timer WRT to what we should |
| 642 | * report. |
| 643 | */ |
| 644 | void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) |
| 645 | { |
| 646 | const struct k_clock *kc = timr->kclock; |
| 647 | ktime_t now, remaining, iv; |
| 648 | struct timespec64 ts64; |
| 649 | bool sig_none; |
| 650 | |
| 651 | sig_none = timr->it_sigev_notify == SIGEV_NONE; |
| 652 | iv = timr->it_interval; |
| 653 | |
| 654 | /* interval timer ? */ |
| 655 | if (iv) { |
| 656 | cur_setting->it_interval = ktime_to_timespec64(iv); |
| 657 | } else if (!timr->it_active) { |
| 658 | /* |
| 659 | * SIGEV_NONE oneshot timers are never queued. Check them |
| 660 | * below. |
| 661 | */ |
| 662 | if (!sig_none) |
| 663 | return; |
| 664 | } |
| 665 | |
| 666 | /* |
| 667 | * The timespec64 based conversion is suboptimal, but it's not |
| 668 | * worth to implement yet another callback. |
| 669 | */ |
| 670 | kc->clock_get(timr->it_clock, &ts64); |
| 671 | now = timespec64_to_ktime(ts64); |
| 672 | |
| 673 | /* |
| 674 | * When a requeue is pending or this is a SIGEV_NONE timer move the |
| 675 | * expiry time forward by intervals, so expiry is > now. |
| 676 | */ |
| 677 | if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) |
| 678 | timr->it_overrun += kc->timer_forward(timr, now); |
| 679 | |
| 680 | remaining = kc->timer_remaining(timr, now); |
| 681 | /* Return 0 only, when the timer is expired and not pending */ |
| 682 | if (remaining <= 0) { |
| 683 | /* |
| 684 | * A single shot SIGEV_NONE timer must return 0, when |
| 685 | * it is expired ! |
| 686 | */ |
| 687 | if (!sig_none) |
| 688 | cur_setting->it_value.tv_nsec = 1; |
| 689 | } else { |
| 690 | cur_setting->it_value = ktime_to_timespec64(remaining); |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | /* Get the time remaining on a POSIX.1b interval timer. */ |
| 695 | static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) |
| 696 | { |
| 697 | struct k_itimer *timr; |
| 698 | const struct k_clock *kc; |
| 699 | unsigned long flags; |
| 700 | int ret = 0; |
| 701 | |
| 702 | timr = lock_timer(timer_id, &flags); |
| 703 | if (!timr) |
| 704 | return -EINVAL; |
| 705 | |
| 706 | memset(setting, 0, sizeof(*setting)); |
| 707 | kc = timr->kclock; |
| 708 | if (WARN_ON_ONCE(!kc || !kc->timer_get)) |
| 709 | ret = -EINVAL; |
| 710 | else |
| 711 | kc->timer_get(timr, setting); |
| 712 | |
| 713 | unlock_timer(timr, flags); |
| 714 | return ret; |
| 715 | } |
| 716 | |
| 717 | /* Get the time remaining on a POSIX.1b interval timer. */ |
| 718 | SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, |
| 719 | struct __kernel_itimerspec __user *, setting) |
| 720 | { |
| 721 | struct itimerspec64 cur_setting; |
| 722 | |
| 723 | int ret = do_timer_gettime(timer_id, &cur_setting); |
| 724 | if (!ret) { |
| 725 | if (put_itimerspec64(&cur_setting, setting)) |
| 726 | ret = -EFAULT; |
| 727 | } |
| 728 | return ret; |
| 729 | } |
| 730 | |
| 731 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 732 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 733 | SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id, |
| 734 | struct old_itimerspec32 __user *, setting) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 735 | { |
| 736 | struct itimerspec64 cur_setting; |
| 737 | |
| 738 | int ret = do_timer_gettime(timer_id, &cur_setting); |
| 739 | if (!ret) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 740 | if (put_old_itimerspec32(&cur_setting, setting)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 741 | ret = -EFAULT; |
| 742 | } |
| 743 | return ret; |
| 744 | } |
| 745 | |
| 746 | #endif |
| 747 | |
| 748 | /* |
| 749 | * Get the number of overruns of a POSIX.1b interval timer. This is to |
| 750 | * be the overrun of the timer last delivered. At the same time we are |
| 751 | * accumulating overruns on the next timer. The overrun is frozen when |
| 752 | * the signal is delivered, either at the notify time (if the info block |
| 753 | * is not queued) or at the actual delivery time (as we are informed by |
| 754 | * the call back to posixtimer_rearm(). So all we need to do is |
| 755 | * to pick up the frozen overrun. |
| 756 | */ |
| 757 | SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) |
| 758 | { |
| 759 | struct k_itimer *timr; |
| 760 | int overrun; |
| 761 | unsigned long flags; |
| 762 | |
| 763 | timr = lock_timer(timer_id, &flags); |
| 764 | if (!timr) |
| 765 | return -EINVAL; |
| 766 | |
| 767 | overrun = timer_overrun_to_int(timr, 0); |
| 768 | unlock_timer(timr, flags); |
| 769 | |
| 770 | return overrun; |
| 771 | } |
| 772 | |
| 773 | static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, |
| 774 | bool absolute, bool sigev_none) |
| 775 | { |
| 776 | struct hrtimer *timer = &timr->it.real.timer; |
| 777 | enum hrtimer_mode mode; |
| 778 | |
| 779 | mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; |
| 780 | /* |
| 781 | * Posix magic: Relative CLOCK_REALTIME timers are not affected by |
| 782 | * clock modifications, so they become CLOCK_MONOTONIC based under the |
| 783 | * hood. See hrtimer_init(). Update timr->kclock, so the generic |
| 784 | * functions which use timr->kclock->clock_get() work. |
| 785 | * |
| 786 | * Note: it_clock stays unmodified, because the next timer_set() might |
| 787 | * use ABSTIME, so it needs to switch back. |
| 788 | */ |
| 789 | if (timr->it_clock == CLOCK_REALTIME) |
| 790 | timr->kclock = absolute ? &clock_realtime : &clock_monotonic; |
| 791 | |
| 792 | hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); |
| 793 | timr->it.real.timer.function = posix_timer_fn; |
| 794 | |
| 795 | if (!absolute) |
| 796 | expires = ktime_add_safe(expires, timer->base->get_time()); |
| 797 | hrtimer_set_expires(timer, expires); |
| 798 | |
| 799 | if (!sigev_none) |
| 800 | hrtimer_start_expires(timer, HRTIMER_MODE_ABS); |
| 801 | } |
| 802 | |
| 803 | static int common_hrtimer_try_to_cancel(struct k_itimer *timr) |
| 804 | { |
| 805 | return hrtimer_try_to_cancel(&timr->it.real.timer); |
| 806 | } |
| 807 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 808 | static void common_timer_wait_running(struct k_itimer *timer) |
| 809 | { |
| 810 | hrtimer_cancel_wait_running(&timer->it.real.timer); |
| 811 | } |
| 812 | |
| 813 | /* |
| 814 | * On PREEMPT_RT this prevent priority inversion against softirq kthread in |
| 815 | * case it gets preempted while executing a timer callback. See comments in |
| 816 | * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a |
| 817 | * cpu_relax(). |
| 818 | */ |
| 819 | static struct k_itimer *timer_wait_running(struct k_itimer *timer, |
| 820 | unsigned long *flags) |
| 821 | { |
| 822 | const struct k_clock *kc = READ_ONCE(timer->kclock); |
| 823 | timer_t timer_id = READ_ONCE(timer->it_id); |
| 824 | |
| 825 | /* Prevent kfree(timer) after dropping the lock */ |
| 826 | rcu_read_lock(); |
| 827 | unlock_timer(timer, *flags); |
| 828 | |
| 829 | if (!WARN_ON_ONCE(!kc->timer_wait_running)) |
| 830 | kc->timer_wait_running(timer); |
| 831 | |
| 832 | rcu_read_unlock(); |
| 833 | /* Relock the timer. It might be not longer hashed. */ |
| 834 | return lock_timer(timer_id, flags); |
| 835 | } |
| 836 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 837 | /* Set a POSIX.1b interval timer. */ |
| 838 | int common_timer_set(struct k_itimer *timr, int flags, |
| 839 | struct itimerspec64 *new_setting, |
| 840 | struct itimerspec64 *old_setting) |
| 841 | { |
| 842 | const struct k_clock *kc = timr->kclock; |
| 843 | bool sigev_none; |
| 844 | ktime_t expires; |
| 845 | |
| 846 | if (old_setting) |
| 847 | common_timer_get(timr, old_setting); |
| 848 | |
| 849 | /* Prevent rearming by clearing the interval */ |
| 850 | timr->it_interval = 0; |
| 851 | /* |
| 852 | * Careful here. On SMP systems the timer expiry function could be |
| 853 | * active and spinning on timr->it_lock. |
| 854 | */ |
| 855 | if (kc->timer_try_to_cancel(timr) < 0) |
| 856 | return TIMER_RETRY; |
| 857 | |
| 858 | timr->it_active = 0; |
| 859 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & |
| 860 | ~REQUEUE_PENDING; |
| 861 | timr->it_overrun_last = 0; |
| 862 | |
| 863 | /* Switch off the timer when it_value is zero */ |
| 864 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) |
| 865 | return 0; |
| 866 | |
| 867 | timr->it_interval = timespec64_to_ktime(new_setting->it_interval); |
| 868 | expires = timespec64_to_ktime(new_setting->it_value); |
| 869 | sigev_none = timr->it_sigev_notify == SIGEV_NONE; |
| 870 | |
| 871 | kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); |
| 872 | timr->it_active = !sigev_none; |
| 873 | return 0; |
| 874 | } |
| 875 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 876 | static int do_timer_settime(timer_t timer_id, int tmr_flags, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 877 | struct itimerspec64 *new_spec64, |
| 878 | struct itimerspec64 *old_spec64) |
| 879 | { |
| 880 | const struct k_clock *kc; |
| 881 | struct k_itimer *timr; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 882 | unsigned long flags; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 883 | int error = 0; |
| 884 | |
| 885 | if (!timespec64_valid(&new_spec64->it_interval) || |
| 886 | !timespec64_valid(&new_spec64->it_value)) |
| 887 | return -EINVAL; |
| 888 | |
| 889 | if (old_spec64) |
| 890 | memset(old_spec64, 0, sizeof(*old_spec64)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 891 | |
| 892 | timr = lock_timer(timer_id, &flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 893 | retry: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 894 | if (!timr) |
| 895 | return -EINVAL; |
| 896 | |
| 897 | kc = timr->kclock; |
| 898 | if (WARN_ON_ONCE(!kc || !kc->timer_set)) |
| 899 | error = -EINVAL; |
| 900 | else |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 901 | error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 902 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 903 | if (error == TIMER_RETRY) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 904 | // We already got the old time... |
| 905 | old_spec64 = NULL; |
| 906 | /* Unlocks and relocks the timer if it still exists */ |
| 907 | timr = timer_wait_running(timr, &flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 908 | goto retry; |
| 909 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 910 | unlock_timer(timr, flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 911 | |
| 912 | return error; |
| 913 | } |
| 914 | |
| 915 | /* Set a POSIX.1b interval timer */ |
| 916 | SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, |
| 917 | const struct __kernel_itimerspec __user *, new_setting, |
| 918 | struct __kernel_itimerspec __user *, old_setting) |
| 919 | { |
| 920 | struct itimerspec64 new_spec, old_spec; |
| 921 | struct itimerspec64 *rtn = old_setting ? &old_spec : NULL; |
| 922 | int error = 0; |
| 923 | |
| 924 | if (!new_setting) |
| 925 | return -EINVAL; |
| 926 | |
| 927 | if (get_itimerspec64(&new_spec, new_setting)) |
| 928 | return -EFAULT; |
| 929 | |
| 930 | error = do_timer_settime(timer_id, flags, &new_spec, rtn); |
| 931 | if (!error && old_setting) { |
| 932 | if (put_itimerspec64(&old_spec, old_setting)) |
| 933 | error = -EFAULT; |
| 934 | } |
| 935 | return error; |
| 936 | } |
| 937 | |
| 938 | #ifdef CONFIG_COMPAT_32BIT_TIME |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 939 | SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags, |
| 940 | struct old_itimerspec32 __user *, new, |
| 941 | struct old_itimerspec32 __user *, old) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 942 | { |
| 943 | struct itimerspec64 new_spec, old_spec; |
| 944 | struct itimerspec64 *rtn = old ? &old_spec : NULL; |
| 945 | int error = 0; |
| 946 | |
| 947 | if (!new) |
| 948 | return -EINVAL; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 949 | if (get_old_itimerspec32(&new_spec, new)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 950 | return -EFAULT; |
| 951 | |
| 952 | error = do_timer_settime(timer_id, flags, &new_spec, rtn); |
| 953 | if (!error && old) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 954 | if (put_old_itimerspec32(&old_spec, old)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 955 | error = -EFAULT; |
| 956 | } |
| 957 | return error; |
| 958 | } |
| 959 | #endif |
| 960 | |
| 961 | int common_timer_del(struct k_itimer *timer) |
| 962 | { |
| 963 | const struct k_clock *kc = timer->kclock; |
| 964 | |
| 965 | timer->it_interval = 0; |
| 966 | if (kc->timer_try_to_cancel(timer) < 0) |
| 967 | return TIMER_RETRY; |
| 968 | timer->it_active = 0; |
| 969 | return 0; |
| 970 | } |
| 971 | |
| 972 | static inline int timer_delete_hook(struct k_itimer *timer) |
| 973 | { |
| 974 | const struct k_clock *kc = timer->kclock; |
| 975 | |
| 976 | if (WARN_ON_ONCE(!kc || !kc->timer_del)) |
| 977 | return -EINVAL; |
| 978 | return kc->timer_del(timer); |
| 979 | } |
| 980 | |
| 981 | /* Delete a POSIX.1b interval timer. */ |
| 982 | SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) |
| 983 | { |
| 984 | struct k_itimer *timer; |
| 985 | unsigned long flags; |
| 986 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 987 | timer = lock_timer(timer_id, &flags); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 988 | |
| 989 | retry_delete: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 990 | if (!timer) |
| 991 | return -EINVAL; |
| 992 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 993 | if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) { |
| 994 | /* Unlocks and relocks the timer if it still exists */ |
| 995 | timer = timer_wait_running(timer, &flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 996 | goto retry_delete; |
| 997 | } |
| 998 | |
| 999 | spin_lock(¤t->sighand->siglock); |
| 1000 | list_del(&timer->list); |
| 1001 | spin_unlock(¤t->sighand->siglock); |
| 1002 | /* |
| 1003 | * This keeps any tasks waiting on the spin lock from thinking |
| 1004 | * they got something (see the lock code above). |
| 1005 | */ |
| 1006 | timer->it_signal = NULL; |
| 1007 | |
| 1008 | unlock_timer(timer, flags); |
| 1009 | release_posix_timer(timer, IT_ID_SET); |
| 1010 | return 0; |
| 1011 | } |
| 1012 | |
| 1013 | /* |
| 1014 | * return timer owned by the process, used by exit_itimers |
| 1015 | */ |
| 1016 | static void itimer_delete(struct k_itimer *timer) |
| 1017 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1018 | retry_delete: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1019 | spin_lock_irq(&timer->it_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1020 | |
| 1021 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1022 | spin_unlock_irq(&timer->it_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1023 | goto retry_delete; |
| 1024 | } |
| 1025 | list_del(&timer->list); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1026 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1027 | spin_unlock_irq(&timer->it_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1028 | release_posix_timer(timer, IT_ID_SET); |
| 1029 | } |
| 1030 | |
| 1031 | /* |
| 1032 | * This is called by do_exit or de_thread, only when there are no more |
| 1033 | * references to the shared signal_struct. |
| 1034 | */ |
| 1035 | void exit_itimers(struct signal_struct *sig) |
| 1036 | { |
| 1037 | struct k_itimer *tmr; |
| 1038 | |
| 1039 | while (!list_empty(&sig->posix_timers)) { |
| 1040 | tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); |
| 1041 | itimer_delete(tmr); |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, |
| 1046 | const struct __kernel_timespec __user *, tp) |
| 1047 | { |
| 1048 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1049 | struct timespec64 new_tp; |
| 1050 | |
| 1051 | if (!kc || !kc->clock_set) |
| 1052 | return -EINVAL; |
| 1053 | |
| 1054 | if (get_timespec64(&new_tp, tp)) |
| 1055 | return -EFAULT; |
| 1056 | |
| 1057 | return kc->clock_set(which_clock, &new_tp); |
| 1058 | } |
| 1059 | |
| 1060 | SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, |
| 1061 | struct __kernel_timespec __user *, tp) |
| 1062 | { |
| 1063 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1064 | struct timespec64 kernel_tp; |
| 1065 | int error; |
| 1066 | |
| 1067 | if (!kc) |
| 1068 | return -EINVAL; |
| 1069 | |
| 1070 | error = kc->clock_get(which_clock, &kernel_tp); |
| 1071 | |
| 1072 | if (!error && put_timespec64(&kernel_tp, tp)) |
| 1073 | error = -EFAULT; |
| 1074 | |
| 1075 | return error; |
| 1076 | } |
| 1077 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1078 | int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1079 | { |
| 1080 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1081 | |
| 1082 | if (!kc) |
| 1083 | return -EINVAL; |
| 1084 | if (!kc->clock_adj) |
| 1085 | return -EOPNOTSUPP; |
| 1086 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1087 | return kc->clock_adj(which_clock, ktx); |
| 1088 | } |
| 1089 | |
| 1090 | SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, |
| 1091 | struct __kernel_timex __user *, utx) |
| 1092 | { |
| 1093 | struct __kernel_timex ktx; |
| 1094 | int err; |
| 1095 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1096 | if (copy_from_user(&ktx, utx, sizeof(ktx))) |
| 1097 | return -EFAULT; |
| 1098 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1099 | err = do_clock_adjtime(which_clock, &ktx); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1100 | |
| 1101 | if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) |
| 1102 | return -EFAULT; |
| 1103 | |
| 1104 | return err; |
| 1105 | } |
| 1106 | |
| 1107 | SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, |
| 1108 | struct __kernel_timespec __user *, tp) |
| 1109 | { |
| 1110 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1111 | struct timespec64 rtn_tp; |
| 1112 | int error; |
| 1113 | |
| 1114 | if (!kc) |
| 1115 | return -EINVAL; |
| 1116 | |
| 1117 | error = kc->clock_getres(which_clock, &rtn_tp); |
| 1118 | |
| 1119 | if (!error && tp && put_timespec64(&rtn_tp, tp)) |
| 1120 | error = -EFAULT; |
| 1121 | |
| 1122 | return error; |
| 1123 | } |
| 1124 | |
| 1125 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 1126 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1127 | SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock, |
| 1128 | struct old_timespec32 __user *, tp) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1129 | { |
| 1130 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1131 | struct timespec64 ts; |
| 1132 | |
| 1133 | if (!kc || !kc->clock_set) |
| 1134 | return -EINVAL; |
| 1135 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1136 | if (get_old_timespec32(&ts, tp)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1137 | return -EFAULT; |
| 1138 | |
| 1139 | return kc->clock_set(which_clock, &ts); |
| 1140 | } |
| 1141 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1142 | SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock, |
| 1143 | struct old_timespec32 __user *, tp) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1144 | { |
| 1145 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1146 | struct timespec64 ts; |
| 1147 | int err; |
| 1148 | |
| 1149 | if (!kc) |
| 1150 | return -EINVAL; |
| 1151 | |
| 1152 | err = kc->clock_get(which_clock, &ts); |
| 1153 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1154 | if (!err && put_old_timespec32(&ts, tp)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1155 | err = -EFAULT; |
| 1156 | |
| 1157 | return err; |
| 1158 | } |
| 1159 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1160 | SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock, |
| 1161 | struct old_timex32 __user *, utp) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1162 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1163 | struct __kernel_timex ktx; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1164 | int err; |
| 1165 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1166 | err = get_old_timex32(&ktx, utp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1167 | if (err) |
| 1168 | return err; |
| 1169 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1170 | err = do_clock_adjtime(which_clock, &ktx); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1171 | |
| 1172 | if (err >= 0) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1173 | err = put_old_timex32(utp, &ktx); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1174 | |
| 1175 | return err; |
| 1176 | } |
| 1177 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1178 | SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock, |
| 1179 | struct old_timespec32 __user *, tp) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1180 | { |
| 1181 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1182 | struct timespec64 ts; |
| 1183 | int err; |
| 1184 | |
| 1185 | if (!kc) |
| 1186 | return -EINVAL; |
| 1187 | |
| 1188 | err = kc->clock_getres(which_clock, &ts); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1189 | if (!err && tp && put_old_timespec32(&ts, tp)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1190 | return -EFAULT; |
| 1191 | |
| 1192 | return err; |
| 1193 | } |
| 1194 | |
| 1195 | #endif |
| 1196 | |
| 1197 | /* |
| 1198 | * nanosleep for monotonic and realtime clocks |
| 1199 | */ |
| 1200 | static int common_nsleep(const clockid_t which_clock, int flags, |
| 1201 | const struct timespec64 *rqtp) |
| 1202 | { |
| 1203 | return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ? |
| 1204 | HRTIMER_MODE_ABS : HRTIMER_MODE_REL, |
| 1205 | which_clock); |
| 1206 | } |
| 1207 | |
| 1208 | SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, |
| 1209 | const struct __kernel_timespec __user *, rqtp, |
| 1210 | struct __kernel_timespec __user *, rmtp) |
| 1211 | { |
| 1212 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1213 | struct timespec64 t; |
| 1214 | |
| 1215 | if (!kc) |
| 1216 | return -EINVAL; |
| 1217 | if (!kc->nsleep) |
| 1218 | return -EOPNOTSUPP; |
| 1219 | |
| 1220 | if (get_timespec64(&t, rqtp)) |
| 1221 | return -EFAULT; |
| 1222 | |
| 1223 | if (!timespec64_valid(&t)) |
| 1224 | return -EINVAL; |
| 1225 | if (flags & TIMER_ABSTIME) |
| 1226 | rmtp = NULL; |
| 1227 | current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; |
| 1228 | current->restart_block.nanosleep.rmtp = rmtp; |
| 1229 | |
| 1230 | return kc->nsleep(which_clock, flags, &t); |
| 1231 | } |
| 1232 | |
| 1233 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 1234 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1235 | SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags, |
| 1236 | struct old_timespec32 __user *, rqtp, |
| 1237 | struct old_timespec32 __user *, rmtp) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1238 | { |
| 1239 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1240 | struct timespec64 t; |
| 1241 | |
| 1242 | if (!kc) |
| 1243 | return -EINVAL; |
| 1244 | if (!kc->nsleep) |
| 1245 | return -EOPNOTSUPP; |
| 1246 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1247 | if (get_old_timespec32(&t, rqtp)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1248 | return -EFAULT; |
| 1249 | |
| 1250 | if (!timespec64_valid(&t)) |
| 1251 | return -EINVAL; |
| 1252 | if (flags & TIMER_ABSTIME) |
| 1253 | rmtp = NULL; |
| 1254 | current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; |
| 1255 | current->restart_block.nanosleep.compat_rmtp = rmtp; |
| 1256 | |
| 1257 | return kc->nsleep(which_clock, flags, &t); |
| 1258 | } |
| 1259 | |
| 1260 | #endif |
| 1261 | |
| 1262 | static const struct k_clock clock_realtime = { |
| 1263 | .clock_getres = posix_get_hrtimer_res, |
| 1264 | .clock_get = posix_clock_realtime_get, |
| 1265 | .clock_set = posix_clock_realtime_set, |
| 1266 | .clock_adj = posix_clock_realtime_adj, |
| 1267 | .nsleep = common_nsleep, |
| 1268 | .timer_create = common_timer_create, |
| 1269 | .timer_set = common_timer_set, |
| 1270 | .timer_get = common_timer_get, |
| 1271 | .timer_del = common_timer_del, |
| 1272 | .timer_rearm = common_hrtimer_rearm, |
| 1273 | .timer_forward = common_hrtimer_forward, |
| 1274 | .timer_remaining = common_hrtimer_remaining, |
| 1275 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1276 | .timer_wait_running = common_timer_wait_running, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1277 | .timer_arm = common_hrtimer_arm, |
| 1278 | }; |
| 1279 | |
| 1280 | static const struct k_clock clock_monotonic = { |
| 1281 | .clock_getres = posix_get_hrtimer_res, |
| 1282 | .clock_get = posix_ktime_get_ts, |
| 1283 | .nsleep = common_nsleep, |
| 1284 | .timer_create = common_timer_create, |
| 1285 | .timer_set = common_timer_set, |
| 1286 | .timer_get = common_timer_get, |
| 1287 | .timer_del = common_timer_del, |
| 1288 | .timer_rearm = common_hrtimer_rearm, |
| 1289 | .timer_forward = common_hrtimer_forward, |
| 1290 | .timer_remaining = common_hrtimer_remaining, |
| 1291 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1292 | .timer_wait_running = common_timer_wait_running, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1293 | .timer_arm = common_hrtimer_arm, |
| 1294 | }; |
| 1295 | |
| 1296 | static const struct k_clock clock_monotonic_raw = { |
| 1297 | .clock_getres = posix_get_hrtimer_res, |
| 1298 | .clock_get = posix_get_monotonic_raw, |
| 1299 | }; |
| 1300 | |
| 1301 | static const struct k_clock clock_realtime_coarse = { |
| 1302 | .clock_getres = posix_get_coarse_res, |
| 1303 | .clock_get = posix_get_realtime_coarse, |
| 1304 | }; |
| 1305 | |
| 1306 | static const struct k_clock clock_monotonic_coarse = { |
| 1307 | .clock_getres = posix_get_coarse_res, |
| 1308 | .clock_get = posix_get_monotonic_coarse, |
| 1309 | }; |
| 1310 | |
| 1311 | static const struct k_clock clock_tai = { |
| 1312 | .clock_getres = posix_get_hrtimer_res, |
| 1313 | .clock_get = posix_get_tai, |
| 1314 | .nsleep = common_nsleep, |
| 1315 | .timer_create = common_timer_create, |
| 1316 | .timer_set = common_timer_set, |
| 1317 | .timer_get = common_timer_get, |
| 1318 | .timer_del = common_timer_del, |
| 1319 | .timer_rearm = common_hrtimer_rearm, |
| 1320 | .timer_forward = common_hrtimer_forward, |
| 1321 | .timer_remaining = common_hrtimer_remaining, |
| 1322 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1323 | .timer_wait_running = common_timer_wait_running, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1324 | .timer_arm = common_hrtimer_arm, |
| 1325 | }; |
| 1326 | |
| 1327 | static const struct k_clock clock_boottime = { |
| 1328 | .clock_getres = posix_get_hrtimer_res, |
| 1329 | .clock_get = posix_get_boottime, |
| 1330 | .nsleep = common_nsleep, |
| 1331 | .timer_create = common_timer_create, |
| 1332 | .timer_set = common_timer_set, |
| 1333 | .timer_get = common_timer_get, |
| 1334 | .timer_del = common_timer_del, |
| 1335 | .timer_rearm = common_hrtimer_rearm, |
| 1336 | .timer_forward = common_hrtimer_forward, |
| 1337 | .timer_remaining = common_hrtimer_remaining, |
| 1338 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1339 | .timer_wait_running = common_timer_wait_running, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1340 | .timer_arm = common_hrtimer_arm, |
| 1341 | }; |
| 1342 | |
| 1343 | static const struct k_clock * const posix_clocks[] = { |
| 1344 | [CLOCK_REALTIME] = &clock_realtime, |
| 1345 | [CLOCK_MONOTONIC] = &clock_monotonic, |
| 1346 | [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, |
| 1347 | [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, |
| 1348 | [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, |
| 1349 | [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, |
| 1350 | [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, |
| 1351 | [CLOCK_BOOTTIME] = &clock_boottime, |
| 1352 | [CLOCK_REALTIME_ALARM] = &alarm_clock, |
| 1353 | [CLOCK_BOOTTIME_ALARM] = &alarm_clock, |
| 1354 | [CLOCK_TAI] = &clock_tai, |
| 1355 | }; |
| 1356 | |
| 1357 | static const struct k_clock *clockid_to_kclock(const clockid_t id) |
| 1358 | { |
| 1359 | clockid_t idx = id; |
| 1360 | |
| 1361 | if (id < 0) { |
| 1362 | return (id & CLOCKFD_MASK) == CLOCKFD ? |
| 1363 | &clock_posix_dynamic : &clock_posix_cpu; |
| 1364 | } |
| 1365 | |
| 1366 | if (id >= ARRAY_SIZE(posix_clocks)) |
| 1367 | return NULL; |
| 1368 | |
| 1369 | return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; |
| 1370 | } |