blob: cbe8dabb6479c456ea9f92f64f7a339da183d059 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42#include <linux/kernel.h>
43#include <linux/init.h>
44#include <linux/errno.h>
45#include <linux/syscalls.h>
46#include <linux/compat.h>
47#include <linux/refcount.h>
48#include <linux/uio.h>
49
50#include <linux/sched/signal.h>
51#include <linux/fs.h>
52#include <linux/file.h>
53#include <linux/fdtable.h>
54#include <linux/mm.h>
55#include <linux/mman.h>
56#include <linux/mmu_context.h>
57#include <linux/percpu.h>
58#include <linux/slab.h>
59#include <linux/workqueue.h>
60#include <linux/kthread.h>
61#include <linux/blkdev.h>
62#include <linux/bvec.h>
63#include <linux/net.h>
64#include <net/sock.h>
65#include <net/af_unix.h>
66#include <net/scm.h>
67#include <linux/anon_inodes.h>
68#include <linux/sched/mm.h>
69#include <linux/uaccess.h>
70#include <linux/nospec.h>
71#include <linux/sizes.h>
72#include <linux/hugetlb.h>
73
74#include <uapi/linux/io_uring.h>
75
76#include "internal.h"
77
78#define IORING_MAX_ENTRIES 32768
79#define IORING_MAX_FIXED_FILES 1024
80
81struct io_uring {
82 u32 head ____cacheline_aligned_in_smp;
83 u32 tail ____cacheline_aligned_in_smp;
84};
85
86/*
87 * This data is shared with the application through the mmap at offsets
88 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
89 *
90 * The offsets to the member fields are published through struct
91 * io_sqring_offsets when calling io_uring_setup.
92 */
93struct io_rings {
94 /*
95 * Head and tail offsets into the ring; the offsets need to be
96 * masked to get valid indices.
97 *
98 * The kernel controls head of the sq ring and the tail of the cq ring,
99 * and the application controls tail of the sq ring and the head of the
100 * cq ring.
101 */
102 struct io_uring sq, cq;
103 /*
104 * Bitmasks to apply to head and tail offsets (constant, equals
105 * ring_entries - 1)
106 */
107 u32 sq_ring_mask, cq_ring_mask;
108 /* Ring sizes (constant, power of 2) */
109 u32 sq_ring_entries, cq_ring_entries;
110 /*
111 * Number of invalid entries dropped by the kernel due to
112 * invalid index stored in array
113 *
114 * Written by the kernel, shouldn't be modified by the
115 * application (i.e. get number of "new events" by comparing to
116 * cached value).
117 *
118 * After a new SQ head value was read by the application this
119 * counter includes all submissions that were dropped reaching
120 * the new SQ head (and possibly more).
121 */
122 u32 sq_dropped;
123 /*
124 * Runtime flags
125 *
126 * Written by the kernel, shouldn't be modified by the
127 * application.
128 *
129 * The application needs a full memory barrier before checking
130 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
131 */
132 u32 sq_flags;
133 /*
134 * Number of completion events lost because the queue was full;
135 * this should be avoided by the application by making sure
136 * there are not more requests pending thatn there is space in
137 * the completion queue.
138 *
139 * Written by the kernel, shouldn't be modified by the
140 * application (i.e. get number of "new events" by comparing to
141 * cached value).
142 *
143 * As completion events come in out of order this counter is not
144 * ordered with any other data.
145 */
146 u32 cq_overflow;
147 /*
148 * Ring buffer of completion events.
149 *
150 * The kernel writes completion events fresh every time they are
151 * produced, so the application is allowed to modify pending
152 * entries.
153 */
154 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
155};
156
157struct io_mapped_ubuf {
158 u64 ubuf;
159 size_t len;
160 struct bio_vec *bvec;
161 unsigned int nr_bvecs;
162};
163
164struct async_list {
165 spinlock_t lock;
166 atomic_t cnt;
167 struct list_head list;
168
169 struct file *file;
170 off_t io_start;
171 size_t io_len;
172};
173
174struct io_ring_ctx {
175 struct {
176 struct percpu_ref refs;
177 } ____cacheline_aligned_in_smp;
178
179 struct {
180 unsigned int flags;
181 bool compat;
182 bool account_mem;
183
184 /*
185 * Ring buffer of indices into array of io_uring_sqe, which is
186 * mmapped by the application using the IORING_OFF_SQES offset.
187 *
188 * This indirection could e.g. be used to assign fixed
189 * io_uring_sqe entries to operations and only submit them to
190 * the queue when needed.
191 *
192 * The kernel modifies neither the indices array nor the entries
193 * array.
194 */
195 u32 *sq_array;
196 unsigned cached_sq_head;
197 unsigned sq_entries;
198 unsigned sq_mask;
199 unsigned sq_thread_idle;
200 unsigned cached_sq_dropped;
201 struct io_uring_sqe *sq_sqes;
202
203 struct list_head defer_list;
204 struct list_head timeout_list;
205 } ____cacheline_aligned_in_smp;
206
207 /* IO offload */
208 struct workqueue_struct *sqo_wq[2];
209 struct task_struct *sqo_thread; /* if using sq thread polling */
210 struct mm_struct *sqo_mm;
211 wait_queue_head_t sqo_wait;
212 struct completion sqo_thread_started;
213
214 struct {
215 unsigned cached_cq_tail;
216 atomic_t cached_cq_overflow;
217 unsigned cq_entries;
218 unsigned cq_mask;
219 struct wait_queue_head cq_wait;
220 struct fasync_struct *cq_fasync;
221 struct eventfd_ctx *cq_ev_fd;
222 atomic_t cq_timeouts;
223 } ____cacheline_aligned_in_smp;
224
225 struct io_rings *rings;
226
227 /*
228 * If used, fixed file set. Writers must ensure that ->refs is dead,
229 * readers must ensure that ->refs is alive as long as the file* is
230 * used. Only updated through io_uring_register(2).
231 */
232 struct file **user_files;
233 unsigned nr_user_files;
234
235 /* if used, fixed mapped user buffers */
236 unsigned nr_user_bufs;
237 struct io_mapped_ubuf *user_bufs;
238
239 struct user_struct *user;
240
241 struct cred *creds;
242
243 struct completion ctx_done;
244
245 struct {
246 struct mutex uring_lock;
247 wait_queue_head_t wait;
248 } ____cacheline_aligned_in_smp;
249
250 struct {
251 spinlock_t completion_lock;
252 bool poll_multi_file;
253 /*
254 * ->poll_list is protected by the ctx->uring_lock for
255 * io_uring instances that don't use IORING_SETUP_SQPOLL.
256 * For SQPOLL, only the single threaded io_sq_thread() will
257 * manipulate the list, hence no extra locking is needed there.
258 */
259 struct list_head poll_list;
260 struct list_head cancel_list;
261 } ____cacheline_aligned_in_smp;
262
263 struct async_list pending_async[2];
264
265#if defined(CONFIG_UNIX)
266 struct socket *ring_sock;
267#endif
268};
269
270struct sqe_submit {
271 const struct io_uring_sqe *sqe;
272 unsigned short index;
273 u32 sequence;
274 bool has_user;
275 bool needs_lock;
276 bool needs_fixed_file;
277};
278
279/*
280 * First field must be the file pointer in all the
281 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
282 */
283struct io_poll_iocb {
284 struct file *file;
285 struct wait_queue_head *head;
286 __poll_t events;
287 bool done;
288 bool canceled;
289 struct wait_queue_entry wait;
290};
291
292struct io_timeout {
293 struct file *file;
294 struct hrtimer timer;
295};
296
297/*
298 * NOTE! Each of the iocb union members has the file pointer
299 * as the first entry in their struct definition. So you can
300 * access the file pointer through any of the sub-structs,
301 * or directly as just 'ki_filp' in this struct.
302 */
303struct io_kiocb {
304 union {
305 struct file *file;
306 struct kiocb rw;
307 struct io_poll_iocb poll;
308 struct io_timeout timeout;
309 };
310
311 struct sqe_submit submit;
312
313 struct io_ring_ctx *ctx;
314 struct list_head list;
315 struct list_head link_list;
316 unsigned int flags;
317 refcount_t refs;
318#define REQ_F_NOWAIT 1 /* must not punt to workers */
319#define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
320#define REQ_F_FIXED_FILE 4 /* ctx owns file */
321#define REQ_F_SEQ_PREV 8 /* sequential with previous */
322#define REQ_F_IO_DRAIN 16 /* drain existing IO first */
323#define REQ_F_IO_DRAINED 32 /* drain done */
324#define REQ_F_LINK 64 /* linked sqes */
325#define REQ_F_LINK_DONE 128 /* linked sqes done */
326#define REQ_F_FAIL_LINK 256 /* fail rest of links */
327#define REQ_F_SHADOW_DRAIN 512 /* link-drain shadow req */
328#define REQ_F_TIMEOUT 1024 /* timeout request */
329#define REQ_F_ISREG 2048 /* regular file */
330#define REQ_F_MUST_PUNT 4096 /* must be punted even for NONBLOCK */
331#define REQ_F_TIMEOUT_NOSEQ 8192 /* no timeout sequence */
332 u64 user_data;
333 u32 result;
334 u32 sequence;
335
336 struct work_struct work;
337};
338
339#define IO_PLUG_THRESHOLD 2
340#define IO_IOPOLL_BATCH 8
341
342struct io_submit_state {
343 struct blk_plug plug;
344
345 /*
346 * io_kiocb alloc cache
347 */
348 void *reqs[IO_IOPOLL_BATCH];
349 unsigned int free_reqs;
350 unsigned int cur_req;
351
352 /*
353 * File reference cache
354 */
355 struct file *file;
356 unsigned int fd;
357 unsigned int has_refs;
358 unsigned int used_refs;
359 unsigned int ios_left;
360};
361
362static void io_sq_wq_submit_work(struct work_struct *work);
363static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
364 long res);
365static void __io_free_req(struct io_kiocb *req);
366
367static struct kmem_cache *req_cachep;
368
369static const struct file_operations io_uring_fops;
370
371struct sock *io_uring_get_socket(struct file *file)
372{
373#if defined(CONFIG_UNIX)
374 if (file->f_op == &io_uring_fops) {
375 struct io_ring_ctx *ctx = file->private_data;
376
377 return ctx->ring_sock->sk;
378 }
379#endif
380 return NULL;
381}
382EXPORT_SYMBOL(io_uring_get_socket);
383
384static void io_ring_ctx_ref_free(struct percpu_ref *ref)
385{
386 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
387
388 complete(&ctx->ctx_done);
389}
390
391static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
392{
393 struct io_ring_ctx *ctx;
394 int i;
395
396 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
397 if (!ctx)
398 return NULL;
399
400 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
401 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
402 kfree(ctx);
403 return NULL;
404 }
405
406 ctx->flags = p->flags;
407 init_waitqueue_head(&ctx->cq_wait);
408 init_completion(&ctx->ctx_done);
409 init_completion(&ctx->sqo_thread_started);
410 mutex_init(&ctx->uring_lock);
411 init_waitqueue_head(&ctx->wait);
412 for (i = 0; i < ARRAY_SIZE(ctx->pending_async); i++) {
413 spin_lock_init(&ctx->pending_async[i].lock);
414 INIT_LIST_HEAD(&ctx->pending_async[i].list);
415 atomic_set(&ctx->pending_async[i].cnt, 0);
416 }
417 spin_lock_init(&ctx->completion_lock);
418 INIT_LIST_HEAD(&ctx->poll_list);
419 INIT_LIST_HEAD(&ctx->cancel_list);
420 INIT_LIST_HEAD(&ctx->defer_list);
421 INIT_LIST_HEAD(&ctx->timeout_list);
422 return ctx;
423}
424
425static inline bool __io_sequence_defer(struct io_ring_ctx *ctx,
426 struct io_kiocb *req)
427{
428 return req->sequence != ctx->cached_cq_tail + ctx->cached_sq_dropped
429 + atomic_read(&ctx->cached_cq_overflow);
430}
431
432static inline bool io_sequence_defer(struct io_ring_ctx *ctx,
433 struct io_kiocb *req)
434{
435 if ((req->flags & (REQ_F_IO_DRAIN|REQ_F_IO_DRAINED)) != REQ_F_IO_DRAIN)
436 return false;
437
438 return __io_sequence_defer(ctx, req);
439}
440
441static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx)
442{
443 struct io_kiocb *req;
444
445 req = list_first_entry_or_null(&ctx->defer_list, struct io_kiocb, list);
446 if (req && !io_sequence_defer(ctx, req)) {
447 list_del_init(&req->list);
448 return req;
449 }
450
451 return NULL;
452}
453
454static struct io_kiocb *io_get_timeout_req(struct io_ring_ctx *ctx)
455{
456 struct io_kiocb *req;
457
458 req = list_first_entry_or_null(&ctx->timeout_list, struct io_kiocb, list);
459 if (req) {
460 if (req->flags & REQ_F_TIMEOUT_NOSEQ)
461 return NULL;
462 if (!__io_sequence_defer(ctx, req)) {
463 list_del_init(&req->list);
464 return req;
465 }
466 }
467
468 return NULL;
469}
470
471static void __io_commit_cqring(struct io_ring_ctx *ctx)
472{
473 struct io_rings *rings = ctx->rings;
474
475 if (ctx->cached_cq_tail != READ_ONCE(rings->cq.tail)) {
476 /* order cqe stores with ring update */
477 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
478
479 if (wq_has_sleeper(&ctx->cq_wait)) {
480 wake_up_interruptible(&ctx->cq_wait);
481 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
482 }
483 }
484}
485
486static inline void io_queue_async_work(struct io_ring_ctx *ctx,
487 struct io_kiocb *req)
488{
489 int rw = 0;
490
491 if (req->submit.sqe) {
492 switch (req->submit.sqe->opcode) {
493 case IORING_OP_WRITEV:
494 case IORING_OP_WRITE_FIXED:
495 rw = !(req->rw.ki_flags & IOCB_DIRECT);
496 break;
497 }
498 }
499
500 queue_work(ctx->sqo_wq[rw], &req->work);
501}
502
503static void io_kill_timeout(struct io_kiocb *req)
504{
505 int ret;
506
507 ret = hrtimer_try_to_cancel(&req->timeout.timer);
508 if (ret != -1) {
509 atomic_inc(&req->ctx->cq_timeouts);
510 list_del(&req->list);
511 io_cqring_fill_event(req->ctx, req->user_data, 0);
512 __io_free_req(req);
513 }
514}
515
516static void io_kill_timeouts(struct io_ring_ctx *ctx)
517{
518 struct io_kiocb *req, *tmp;
519
520 spin_lock_irq(&ctx->completion_lock);
521 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list)
522 io_kill_timeout(req);
523 spin_unlock_irq(&ctx->completion_lock);
524}
525
526static void io_commit_cqring(struct io_ring_ctx *ctx)
527{
528 struct io_kiocb *req;
529
530 while ((req = io_get_timeout_req(ctx)) != NULL)
531 io_kill_timeout(req);
532
533 __io_commit_cqring(ctx);
534
535 while ((req = io_get_deferred_req(ctx)) != NULL) {
536 if (req->flags & REQ_F_SHADOW_DRAIN) {
537 /* Just for drain, free it. */
538 __io_free_req(req);
539 continue;
540 }
541 req->flags |= REQ_F_IO_DRAINED;
542 io_queue_async_work(ctx, req);
543 }
544}
545
546static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
547{
548 struct io_rings *rings = ctx->rings;
549 unsigned tail;
550
551 tail = ctx->cached_cq_tail;
552 /*
553 * writes to the cq entry need to come after reading head; the
554 * control dependency is enough as we're using WRITE_ONCE to
555 * fill the cq entry
556 */
557 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
558 return NULL;
559
560 ctx->cached_cq_tail++;
561 return &rings->cqes[tail & ctx->cq_mask];
562}
563
564static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
565 long res)
566{
567 struct io_uring_cqe *cqe;
568
569 /*
570 * If we can't get a cq entry, userspace overflowed the
571 * submission (by quite a lot). Increment the overflow count in
572 * the ring.
573 */
574 cqe = io_get_cqring(ctx);
575 if (cqe) {
576 WRITE_ONCE(cqe->user_data, ki_user_data);
577 WRITE_ONCE(cqe->res, res);
578 WRITE_ONCE(cqe->flags, 0);
579 } else {
580 WRITE_ONCE(ctx->rings->cq_overflow,
581 atomic_inc_return(&ctx->cached_cq_overflow));
582 }
583}
584
585static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
586{
587 if (waitqueue_active(&ctx->wait))
588 wake_up(&ctx->wait);
589 if (waitqueue_active(&ctx->sqo_wait))
590 wake_up(&ctx->sqo_wait);
591 if (ctx->cq_ev_fd)
592 eventfd_signal(ctx->cq_ev_fd, 1);
593}
594
595static void io_cqring_add_event(struct io_ring_ctx *ctx, u64 user_data,
596 long res)
597{
598 unsigned long flags;
599
600 spin_lock_irqsave(&ctx->completion_lock, flags);
601 io_cqring_fill_event(ctx, user_data, res);
602 io_commit_cqring(ctx);
603 spin_unlock_irqrestore(&ctx->completion_lock, flags);
604
605 io_cqring_ev_posted(ctx);
606}
607
608static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
609 struct io_submit_state *state)
610{
611 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
612 struct io_kiocb *req;
613
614 if (!percpu_ref_tryget(&ctx->refs))
615 return NULL;
616
617 if (!state) {
618 req = kmem_cache_alloc(req_cachep, gfp);
619 if (unlikely(!req))
620 goto out;
621 } else if (!state->free_reqs) {
622 size_t sz;
623 int ret;
624
625 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
626 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
627
628 /*
629 * Bulk alloc is all-or-nothing. If we fail to get a batch,
630 * retry single alloc to be on the safe side.
631 */
632 if (unlikely(ret <= 0)) {
633 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
634 if (!state->reqs[0])
635 goto out;
636 ret = 1;
637 }
638 state->free_reqs = ret - 1;
639 state->cur_req = 1;
640 req = state->reqs[0];
641 } else {
642 req = state->reqs[state->cur_req];
643 state->free_reqs--;
644 state->cur_req++;
645 }
646
647 req->file = NULL;
648 req->ctx = ctx;
649 req->flags = 0;
650 /* one is dropped after submission, the other at completion */
651 refcount_set(&req->refs, 2);
652 req->result = 0;
653 return req;
654out:
655 percpu_ref_put(&ctx->refs);
656 return NULL;
657}
658
659static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr)
660{
661 if (*nr) {
662 kmem_cache_free_bulk(req_cachep, *nr, reqs);
663 percpu_ref_put_many(&ctx->refs, *nr);
664 *nr = 0;
665 }
666}
667
668static void __io_free_req(struct io_kiocb *req)
669{
670 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
671 fput(req->file);
672 percpu_ref_put(&req->ctx->refs);
673 kmem_cache_free(req_cachep, req);
674}
675
676static void io_req_link_next(struct io_kiocb *req)
677{
678 struct io_kiocb *nxt;
679
680 /*
681 * The list should never be empty when we are called here. But could
682 * potentially happen if the chain is messed up, check to be on the
683 * safe side.
684 */
685 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb, list);
686 if (nxt) {
687 list_del(&nxt->list);
688 if (!list_empty(&req->link_list)) {
689 INIT_LIST_HEAD(&nxt->link_list);
690 list_splice(&req->link_list, &nxt->link_list);
691 nxt->flags |= REQ_F_LINK;
692 }
693
694 nxt->flags |= REQ_F_LINK_DONE;
695 INIT_WORK(&nxt->work, io_sq_wq_submit_work);
696 io_queue_async_work(req->ctx, nxt);
697 }
698}
699
700/*
701 * Called if REQ_F_LINK is set, and we fail the head request
702 */
703static void io_fail_links(struct io_kiocb *req)
704{
705 struct io_kiocb *link;
706
707 while (!list_empty(&req->link_list)) {
708 link = list_first_entry(&req->link_list, struct io_kiocb, list);
709 list_del(&link->list);
710
711 io_cqring_add_event(req->ctx, link->user_data, -ECANCELED);
712 __io_free_req(link);
713 }
714}
715
716static void io_free_req(struct io_kiocb *req)
717{
718 /*
719 * If LINK is set, we have dependent requests in this chain. If we
720 * didn't fail this request, queue the first one up, moving any other
721 * dependencies to the next request. In case of failure, fail the rest
722 * of the chain.
723 */
724 if (req->flags & REQ_F_LINK) {
725 if (req->flags & REQ_F_FAIL_LINK)
726 io_fail_links(req);
727 else
728 io_req_link_next(req);
729 }
730
731 __io_free_req(req);
732}
733
734static void io_put_req(struct io_kiocb *req)
735{
736 if (refcount_dec_and_test(&req->refs))
737 io_free_req(req);
738}
739
740static unsigned io_cqring_events(struct io_rings *rings)
741{
742 /* See comment at the top of this file */
743 smp_rmb();
744 return READ_ONCE(rings->cq.tail) - READ_ONCE(rings->cq.head);
745}
746
747static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
748{
749 struct io_rings *rings = ctx->rings;
750
751 /* make sure SQ entry isn't read before tail */
752 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
753}
754
755/*
756 * Find and free completed poll iocbs
757 */
758static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
759 struct list_head *done)
760{
761 void *reqs[IO_IOPOLL_BATCH];
762 struct io_kiocb *req;
763 int to_free;
764
765 to_free = 0;
766 while (!list_empty(done)) {
767 req = list_first_entry(done, struct io_kiocb, list);
768 list_del(&req->list);
769
770 io_cqring_fill_event(ctx, req->user_data, req->result);
771 (*nr_events)++;
772
773 if (refcount_dec_and_test(&req->refs)) {
774 /* If we're not using fixed files, we have to pair the
775 * completion part with the file put. Use regular
776 * completions for those, only batch free for fixed
777 * file and non-linked commands.
778 */
779 if ((req->flags & (REQ_F_FIXED_FILE|REQ_F_LINK)) ==
780 REQ_F_FIXED_FILE) {
781 reqs[to_free++] = req;
782 if (to_free == ARRAY_SIZE(reqs))
783 io_free_req_many(ctx, reqs, &to_free);
784 } else {
785 io_free_req(req);
786 }
787 }
788 }
789
790 io_commit_cqring(ctx);
791 io_free_req_many(ctx, reqs, &to_free);
792}
793
794static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
795 long min)
796{
797 struct io_kiocb *req, *tmp;
798 LIST_HEAD(done);
799 bool spin;
800 int ret;
801
802 /*
803 * Only spin for completions if we don't have multiple devices hanging
804 * off our complete list, and we're under the requested amount.
805 */
806 spin = !ctx->poll_multi_file && *nr_events < min;
807
808 ret = 0;
809 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
810 struct kiocb *kiocb = &req->rw;
811
812 /*
813 * Move completed entries to our local list. If we find a
814 * request that requires polling, break out and complete
815 * the done list first, if we have entries there.
816 */
817 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
818 list_move_tail(&req->list, &done);
819 continue;
820 }
821 if (!list_empty(&done))
822 break;
823
824 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
825 if (ret < 0)
826 break;
827
828 if (ret && spin)
829 spin = false;
830 ret = 0;
831 }
832
833 if (!list_empty(&done))
834 io_iopoll_complete(ctx, nr_events, &done);
835
836 return ret;
837}
838
839/*
840 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
841 * non-spinning poll check - we'll still enter the driver poll loop, but only
842 * as a non-spinning completion check.
843 */
844static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
845 long min)
846{
847 while (!list_empty(&ctx->poll_list) && !need_resched()) {
848 int ret;
849
850 ret = io_do_iopoll(ctx, nr_events, min);
851 if (ret < 0)
852 return ret;
853 if (!min || *nr_events >= min)
854 return 0;
855 }
856
857 return 1;
858}
859
860/*
861 * We can't just wait for polled events to come to us, we have to actively
862 * find and complete them.
863 */
864static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
865{
866 if (!(ctx->flags & IORING_SETUP_IOPOLL))
867 return;
868
869 mutex_lock(&ctx->uring_lock);
870 while (!list_empty(&ctx->poll_list)) {
871 unsigned int nr_events = 0;
872
873 io_iopoll_getevents(ctx, &nr_events, 1);
874
875 /*
876 * Ensure we allow local-to-the-cpu processing to take place,
877 * in this case we need to ensure that we reap all events.
878 */
879 cond_resched();
880 }
881 mutex_unlock(&ctx->uring_lock);
882}
883
884static int __io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
885 long min)
886{
887 int iters = 0, ret = 0;
888
889 do {
890 int tmin = 0;
891
892 /*
893 * Don't enter poll loop if we already have events pending.
894 * If we do, we can potentially be spinning for commands that
895 * already triggered a CQE (eg in error).
896 */
897 if (io_cqring_events(ctx->rings))
898 break;
899
900 /*
901 * If a submit got punted to a workqueue, we can have the
902 * application entering polling for a command before it gets
903 * issued. That app will hold the uring_lock for the duration
904 * of the poll right here, so we need to take a breather every
905 * now and then to ensure that the issue has a chance to add
906 * the poll to the issued list. Otherwise we can spin here
907 * forever, while the workqueue is stuck trying to acquire the
908 * very same mutex.
909 */
910 if (!(++iters & 7)) {
911 mutex_unlock(&ctx->uring_lock);
912 mutex_lock(&ctx->uring_lock);
913 }
914
915 if (*nr_events < min)
916 tmin = min - *nr_events;
917
918 ret = io_iopoll_getevents(ctx, nr_events, tmin);
919 if (ret <= 0)
920 break;
921 ret = 0;
922 } while (min && !*nr_events && !need_resched());
923
924 return ret;
925}
926
927static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
928 long min)
929{
930 int ret;
931
932 /*
933 * We disallow the app entering submit/complete with polling, but we
934 * still need to lock the ring to prevent racing with polled issue
935 * that got punted to a workqueue.
936 */
937 mutex_lock(&ctx->uring_lock);
938 ret = __io_iopoll_check(ctx, nr_events, min);
939 mutex_unlock(&ctx->uring_lock);
940 return ret;
941}
942
943static void kiocb_end_write(struct io_kiocb *req)
944{
945 /*
946 * Tell lockdep we inherited freeze protection from submission
947 * thread.
948 */
949 if (req->flags & REQ_F_ISREG) {
950 struct inode *inode = file_inode(req->file);
951
952 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
953 }
954 file_end_write(req->file);
955}
956
957static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
958{
959 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
960
961 if (kiocb->ki_flags & IOCB_WRITE)
962 kiocb_end_write(req);
963
964 if ((req->flags & REQ_F_LINK) && res != req->result)
965 req->flags |= REQ_F_FAIL_LINK;
966 io_cqring_add_event(req->ctx, req->user_data, res);
967 io_put_req(req);
968}
969
970static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
971{
972 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
973
974 if (kiocb->ki_flags & IOCB_WRITE)
975 kiocb_end_write(req);
976
977 if ((req->flags & REQ_F_LINK) && res != req->result)
978 req->flags |= REQ_F_FAIL_LINK;
979 req->result = res;
980 if (res != -EAGAIN)
981 req->flags |= REQ_F_IOPOLL_COMPLETED;
982}
983
984/*
985 * After the iocb has been issued, it's safe to be found on the poll list.
986 * Adding the kiocb to the list AFTER submission ensures that we don't
987 * find it from a io_iopoll_getevents() thread before the issuer is done
988 * accessing the kiocb cookie.
989 */
990static void io_iopoll_req_issued(struct io_kiocb *req)
991{
992 struct io_ring_ctx *ctx = req->ctx;
993
994 /*
995 * Track whether we have multiple files in our lists. This will impact
996 * how we do polling eventually, not spinning if we're on potentially
997 * different devices.
998 */
999 if (list_empty(&ctx->poll_list)) {
1000 ctx->poll_multi_file = false;
1001 } else if (!ctx->poll_multi_file) {
1002 struct io_kiocb *list_req;
1003
1004 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
1005 list);
1006 if (list_req->rw.ki_filp != req->rw.ki_filp)
1007 ctx->poll_multi_file = true;
1008 }
1009
1010 /*
1011 * For fast devices, IO may have already completed. If it has, add
1012 * it to the front so we find it first.
1013 */
1014 if (req->flags & REQ_F_IOPOLL_COMPLETED)
1015 list_add(&req->list, &ctx->poll_list);
1016 else
1017 list_add_tail(&req->list, &ctx->poll_list);
1018}
1019
1020static void io_file_put(struct io_submit_state *state)
1021{
1022 if (state->file) {
1023 int diff = state->has_refs - state->used_refs;
1024
1025 if (diff)
1026 fput_many(state->file, diff);
1027 state->file = NULL;
1028 }
1029}
1030
1031/*
1032 * Get as many references to a file as we have IOs left in this submission,
1033 * assuming most submissions are for one file, or at least that each file
1034 * has more than one submission.
1035 */
1036static struct file *io_file_get(struct io_submit_state *state, int fd)
1037{
1038 if (!state)
1039 return fget(fd);
1040
1041 if (state->file) {
1042 if (state->fd == fd) {
1043 state->used_refs++;
1044 state->ios_left--;
1045 return state->file;
1046 }
1047 io_file_put(state);
1048 }
1049 state->file = fget_many(fd, state->ios_left);
1050 if (!state->file)
1051 return NULL;
1052
1053 state->fd = fd;
1054 state->has_refs = state->ios_left;
1055 state->used_refs = 1;
1056 state->ios_left--;
1057 return state->file;
1058}
1059
1060/*
1061 * If we tracked the file through the SCM inflight mechanism, we could support
1062 * any file. For now, just ensure that anything potentially problematic is done
1063 * inline.
1064 */
1065static bool io_file_supports_async(struct file *file)
1066{
1067 umode_t mode = file_inode(file)->i_mode;
1068
1069 if (S_ISBLK(mode) || S_ISCHR(mode))
1070 return true;
1071 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
1072 return true;
1073
1074 return false;
1075}
1076
1077static int io_prep_rw(struct io_kiocb *req, const struct sqe_submit *s,
1078 bool force_nonblock)
1079{
1080 const struct io_uring_sqe *sqe = s->sqe;
1081 struct io_ring_ctx *ctx = req->ctx;
1082 struct kiocb *kiocb = &req->rw;
1083 unsigned ioprio;
1084 int ret;
1085
1086 if (!req->file)
1087 return -EBADF;
1088
1089 if (S_ISREG(file_inode(req->file)->i_mode))
1090 req->flags |= REQ_F_ISREG;
1091
1092 /*
1093 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
1094 * we know to async punt it even if it was opened O_NONBLOCK
1095 */
1096 if (force_nonblock && !io_file_supports_async(req->file)) {
1097 req->flags |= REQ_F_MUST_PUNT;
1098 return -EAGAIN;
1099 }
1100
1101 kiocb->ki_pos = READ_ONCE(sqe->off);
1102 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
1103 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
1104
1105 ioprio = READ_ONCE(sqe->ioprio);
1106 if (ioprio) {
1107 ret = ioprio_check_cap(ioprio);
1108 if (ret)
1109 return ret;
1110
1111 kiocb->ki_ioprio = ioprio;
1112 } else
1113 kiocb->ki_ioprio = get_current_ioprio();
1114
1115 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
1116 if (unlikely(ret))
1117 return ret;
1118
1119 /* don't allow async punt if RWF_NOWAIT was requested */
1120 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
1121 (req->file->f_flags & O_NONBLOCK))
1122 req->flags |= REQ_F_NOWAIT;
1123
1124 if (force_nonblock)
1125 kiocb->ki_flags |= IOCB_NOWAIT;
1126
1127 if (ctx->flags & IORING_SETUP_IOPOLL) {
1128 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
1129 !kiocb->ki_filp->f_op->iopoll)
1130 return -EOPNOTSUPP;
1131
1132 kiocb->ki_flags |= IOCB_HIPRI;
1133 kiocb->ki_complete = io_complete_rw_iopoll;
1134 req->result = 0;
1135 } else {
1136 if (kiocb->ki_flags & IOCB_HIPRI)
1137 return -EINVAL;
1138 kiocb->ki_complete = io_complete_rw;
1139 }
1140 return 0;
1141}
1142
1143static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
1144{
1145 switch (ret) {
1146 case -EIOCBQUEUED:
1147 break;
1148 case -ERESTARTSYS:
1149 case -ERESTARTNOINTR:
1150 case -ERESTARTNOHAND:
1151 case -ERESTART_RESTARTBLOCK:
1152 /*
1153 * We can't just restart the syscall, since previously
1154 * submitted sqes may already be in progress. Just fail this
1155 * IO with EINTR.
1156 */
1157 ret = -EINTR;
1158 /* fall through */
1159 default:
1160 kiocb->ki_complete(kiocb, ret, 0);
1161 }
1162}
1163
1164static int io_import_fixed(struct io_ring_ctx *ctx, int rw,
1165 const struct io_uring_sqe *sqe,
1166 struct iov_iter *iter)
1167{
1168 size_t len = READ_ONCE(sqe->len);
1169 struct io_mapped_ubuf *imu;
1170 unsigned index, buf_index;
1171 size_t offset;
1172 u64 buf_addr;
1173
1174 /* attempt to use fixed buffers without having provided iovecs */
1175 if (unlikely(!ctx->user_bufs))
1176 return -EFAULT;
1177
1178 buf_index = READ_ONCE(sqe->buf_index);
1179 if (unlikely(buf_index >= ctx->nr_user_bufs))
1180 return -EFAULT;
1181
1182 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
1183 imu = &ctx->user_bufs[index];
1184 buf_addr = READ_ONCE(sqe->addr);
1185
1186 /* overflow */
1187 if (buf_addr + len < buf_addr)
1188 return -EFAULT;
1189 /* not inside the mapped region */
1190 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
1191 return -EFAULT;
1192
1193 /*
1194 * May not be a start of buffer, set size appropriately
1195 * and advance us to the beginning.
1196 */
1197 offset = buf_addr - imu->ubuf;
1198 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
1199
1200 if (offset) {
1201 /*
1202 * Don't use iov_iter_advance() here, as it's really slow for
1203 * using the latter parts of a big fixed buffer - it iterates
1204 * over each segment manually. We can cheat a bit here, because
1205 * we know that:
1206 *
1207 * 1) it's a BVEC iter, we set it up
1208 * 2) all bvecs are PAGE_SIZE in size, except potentially the
1209 * first and last bvec
1210 *
1211 * So just find our index, and adjust the iterator afterwards.
1212 * If the offset is within the first bvec (or the whole first
1213 * bvec, just use iov_iter_advance(). This makes it easier
1214 * since we can just skip the first segment, which may not
1215 * be PAGE_SIZE aligned.
1216 */
1217 const struct bio_vec *bvec = imu->bvec;
1218
1219 if (offset <= bvec->bv_len) {
1220 iov_iter_advance(iter, offset);
1221 } else {
1222 unsigned long seg_skip;
1223
1224 /* skip first vec */
1225 offset -= bvec->bv_len;
1226 seg_skip = 1 + (offset >> PAGE_SHIFT);
1227
1228 iter->bvec = bvec + seg_skip;
1229 iter->nr_segs -= seg_skip;
1230 iter->count -= bvec->bv_len + offset;
1231 iter->iov_offset = offset & ~PAGE_MASK;
1232 }
1233 }
1234
1235 return len;
1236}
1237
1238static ssize_t io_import_iovec(struct io_ring_ctx *ctx, int rw,
1239 const struct sqe_submit *s, struct iovec **iovec,
1240 struct iov_iter *iter)
1241{
1242 const struct io_uring_sqe *sqe = s->sqe;
1243 void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
1244 size_t sqe_len = READ_ONCE(sqe->len);
1245 u8 opcode;
1246
1247 /*
1248 * We're reading ->opcode for the second time, but the first read
1249 * doesn't care whether it's _FIXED or not, so it doesn't matter
1250 * whether ->opcode changes concurrently. The first read does care
1251 * about whether it is a READ or a WRITE, so we don't trust this read
1252 * for that purpose and instead let the caller pass in the read/write
1253 * flag.
1254 */
1255 opcode = READ_ONCE(sqe->opcode);
1256 if (opcode == IORING_OP_READ_FIXED ||
1257 opcode == IORING_OP_WRITE_FIXED) {
1258 ssize_t ret = io_import_fixed(ctx, rw, sqe, iter);
1259 *iovec = NULL;
1260 return ret;
1261 }
1262
1263 if (!s->has_user)
1264 return -EFAULT;
1265
1266#ifdef CONFIG_COMPAT
1267 if (ctx->compat)
1268 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
1269 iovec, iter);
1270#endif
1271
1272 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
1273}
1274
1275static inline bool io_should_merge(struct async_list *al, struct kiocb *kiocb)
1276{
1277 if (al->file == kiocb->ki_filp) {
1278 off_t start, end;
1279
1280 /*
1281 * Allow merging if we're anywhere in the range of the same
1282 * page. Generally this happens for sub-page reads or writes,
1283 * and it's beneficial to allow the first worker to bring the
1284 * page in and the piggy backed work can then work on the
1285 * cached page.
1286 */
1287 start = al->io_start & PAGE_MASK;
1288 end = (al->io_start + al->io_len + PAGE_SIZE - 1) & PAGE_MASK;
1289 if (kiocb->ki_pos >= start && kiocb->ki_pos <= end)
1290 return true;
1291 }
1292
1293 al->file = NULL;
1294 return false;
1295}
1296
1297/*
1298 * Make a note of the last file/offset/direction we punted to async
1299 * context. We'll use this information to see if we can piggy back a
1300 * sequential request onto the previous one, if it's still hasn't been
1301 * completed by the async worker.
1302 */
1303static void io_async_list_note(int rw, struct io_kiocb *req, size_t len)
1304{
1305 struct async_list *async_list = &req->ctx->pending_async[rw];
1306 struct kiocb *kiocb = &req->rw;
1307 struct file *filp = kiocb->ki_filp;
1308
1309 if (io_should_merge(async_list, kiocb)) {
1310 unsigned long max_bytes;
1311
1312 /* Use 8x RA size as a decent limiter for both reads/writes */
1313 max_bytes = filp->f_ra.ra_pages << (PAGE_SHIFT + 3);
1314 if (!max_bytes)
1315 max_bytes = VM_READAHEAD_PAGES << (PAGE_SHIFT + 3);
1316
1317 /* If max len are exceeded, reset the state */
1318 if (async_list->io_len + len <= max_bytes) {
1319 req->flags |= REQ_F_SEQ_PREV;
1320 async_list->io_len += len;
1321 } else {
1322 async_list->file = NULL;
1323 }
1324 }
1325
1326 /* New file? Reset state. */
1327 if (async_list->file != filp) {
1328 async_list->io_start = kiocb->ki_pos;
1329 async_list->io_len = len;
1330 async_list->file = filp;
1331 }
1332}
1333
1334/*
1335 * For files that don't have ->read_iter() and ->write_iter(), handle them
1336 * by looping over ->read() or ->write() manually.
1337 */
1338static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
1339 struct iov_iter *iter)
1340{
1341 ssize_t ret = 0;
1342
1343 /*
1344 * Don't support polled IO through this interface, and we can't
1345 * support non-blocking either. For the latter, this just causes
1346 * the kiocb to be handled from an async context.
1347 */
1348 if (kiocb->ki_flags & IOCB_HIPRI)
1349 return -EOPNOTSUPP;
1350 if (kiocb->ki_flags & IOCB_NOWAIT)
1351 return -EAGAIN;
1352
1353 while (iov_iter_count(iter)) {
1354 struct iovec iovec = iov_iter_iovec(iter);
1355 ssize_t nr;
1356
1357 if (rw == READ) {
1358 nr = file->f_op->read(file, iovec.iov_base,
1359 iovec.iov_len, &kiocb->ki_pos);
1360 } else {
1361 nr = file->f_op->write(file, iovec.iov_base,
1362 iovec.iov_len, &kiocb->ki_pos);
1363 }
1364
1365 if (nr < 0) {
1366 if (!ret)
1367 ret = nr;
1368 break;
1369 }
1370 ret += nr;
1371 if (nr != iovec.iov_len)
1372 break;
1373 iov_iter_advance(iter, nr);
1374 }
1375
1376 return ret;
1377}
1378
1379static int io_read(struct io_kiocb *req, const struct sqe_submit *s,
1380 bool force_nonblock)
1381{
1382 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1383 struct kiocb *kiocb = &req->rw;
1384 struct iov_iter iter;
1385 struct file *file;
1386 size_t iov_count;
1387 ssize_t read_size, ret;
1388
1389 ret = io_prep_rw(req, s, force_nonblock);
1390 if (ret)
1391 return ret;
1392 file = kiocb->ki_filp;
1393
1394 if (unlikely(!(file->f_mode & FMODE_READ)))
1395 return -EBADF;
1396
1397 ret = io_import_iovec(req->ctx, READ, s, &iovec, &iter);
1398 if (ret < 0)
1399 return ret;
1400
1401 read_size = ret;
1402 if (req->flags & REQ_F_LINK)
1403 req->result = read_size;
1404
1405 iov_count = iov_iter_count(&iter);
1406 ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_count);
1407 if (!ret) {
1408 ssize_t ret2;
1409
1410 if (file->f_op->read_iter)
1411 ret2 = call_read_iter(file, kiocb, &iter);
1412 else
1413 ret2 = loop_rw_iter(READ, file, kiocb, &iter);
1414
1415 /*
1416 * In case of a short read, punt to async. This can happen
1417 * if we have data partially cached. Alternatively we can
1418 * return the short read, in which case the application will
1419 * need to issue another SQE and wait for it. That SQE will
1420 * need async punt anyway, so it's more efficient to do it
1421 * here.
1422 */
1423 if (force_nonblock && !(req->flags & REQ_F_NOWAIT) &&
1424 (req->flags & REQ_F_ISREG) &&
1425 ret2 > 0 && ret2 < read_size)
1426 ret2 = -EAGAIN;
1427 /* Catch -EAGAIN return for forced non-blocking submission */
1428 if (!force_nonblock || ret2 != -EAGAIN) {
1429 io_rw_done(kiocb, ret2);
1430 } else {
1431 /*
1432 * If ->needs_lock is true, we're already in async
1433 * context.
1434 */
1435 if (!s->needs_lock)
1436 io_async_list_note(READ, req, iov_count);
1437 ret = -EAGAIN;
1438 }
1439 }
1440 kfree(iovec);
1441 return ret;
1442}
1443
1444static int io_write(struct io_kiocb *req, const struct sqe_submit *s,
1445 bool force_nonblock)
1446{
1447 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1448 struct kiocb *kiocb = &req->rw;
1449 struct iov_iter iter;
1450 struct file *file;
1451 size_t iov_count;
1452 ssize_t ret;
1453
1454 ret = io_prep_rw(req, s, force_nonblock);
1455 if (ret)
1456 return ret;
1457
1458 file = kiocb->ki_filp;
1459 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1460 return -EBADF;
1461
1462 ret = io_import_iovec(req->ctx, WRITE, s, &iovec, &iter);
1463 if (ret < 0)
1464 return ret;
1465
1466 if (req->flags & REQ_F_LINK)
1467 req->result = ret;
1468
1469 iov_count = iov_iter_count(&iter);
1470
1471 ret = -EAGAIN;
1472 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT)) {
1473 /* If ->needs_lock is true, we're already in async context. */
1474 if (!s->needs_lock)
1475 io_async_list_note(WRITE, req, iov_count);
1476 goto out_free;
1477 }
1478
1479 ret = rw_verify_area(WRITE, file, &kiocb->ki_pos, iov_count);
1480 if (!ret) {
1481 ssize_t ret2;
1482
1483 /*
1484 * Open-code file_start_write here to grab freeze protection,
1485 * which will be released by another thread in
1486 * io_complete_rw(). Fool lockdep by telling it the lock got
1487 * released so that it doesn't complain about the held lock when
1488 * we return to userspace.
1489 */
1490 if (req->flags & REQ_F_ISREG) {
1491 __sb_start_write(file_inode(file)->i_sb,
1492 SB_FREEZE_WRITE, true);
1493 __sb_writers_release(file_inode(file)->i_sb,
1494 SB_FREEZE_WRITE);
1495 }
1496 kiocb->ki_flags |= IOCB_WRITE;
1497
1498 if (file->f_op->write_iter)
1499 ret2 = call_write_iter(file, kiocb, &iter);
1500 else
1501 ret2 = loop_rw_iter(WRITE, file, kiocb, &iter);
1502 if (!force_nonblock || ret2 != -EAGAIN) {
1503 io_rw_done(kiocb, ret2);
1504 } else {
1505 /*
1506 * If ->needs_lock is true, we're already in async
1507 * context.
1508 */
1509 if (!s->needs_lock)
1510 io_async_list_note(WRITE, req, iov_count);
1511 ret = -EAGAIN;
1512 }
1513 }
1514out_free:
1515 kfree(iovec);
1516 return ret;
1517}
1518
1519/*
1520 * IORING_OP_NOP just posts a completion event, nothing else.
1521 */
1522static int io_nop(struct io_kiocb *req, u64 user_data)
1523{
1524 struct io_ring_ctx *ctx = req->ctx;
1525 long err = 0;
1526
1527 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1528 return -EINVAL;
1529
1530 io_cqring_add_event(ctx, user_data, err);
1531 io_put_req(req);
1532 return 0;
1533}
1534
1535static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1536{
1537 struct io_ring_ctx *ctx = req->ctx;
1538
1539 if (!req->file)
1540 return -EBADF;
1541
1542 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1543 return -EINVAL;
1544 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1545 return -EINVAL;
1546
1547 return 0;
1548}
1549
1550static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1551 bool force_nonblock)
1552{
1553 loff_t sqe_off = READ_ONCE(sqe->off);
1554 loff_t sqe_len = READ_ONCE(sqe->len);
1555 loff_t end = sqe_off + sqe_len;
1556 unsigned fsync_flags;
1557 int ret;
1558
1559 fsync_flags = READ_ONCE(sqe->fsync_flags);
1560 if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC))
1561 return -EINVAL;
1562
1563 ret = io_prep_fsync(req, sqe);
1564 if (ret)
1565 return ret;
1566
1567 /* fsync always requires a blocking context */
1568 if (force_nonblock)
1569 return -EAGAIN;
1570
1571 ret = vfs_fsync_range(req->rw.ki_filp, sqe_off,
1572 end > 0 ? end : LLONG_MAX,
1573 fsync_flags & IORING_FSYNC_DATASYNC);
1574
1575 if (ret < 0 && (req->flags & REQ_F_LINK))
1576 req->flags |= REQ_F_FAIL_LINK;
1577 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1578 io_put_req(req);
1579 return 0;
1580}
1581
1582static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1583{
1584 struct io_ring_ctx *ctx = req->ctx;
1585 int ret = 0;
1586
1587 if (!req->file)
1588 return -EBADF;
1589
1590 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1591 return -EINVAL;
1592 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1593 return -EINVAL;
1594
1595 return ret;
1596}
1597
1598static int io_sync_file_range(struct io_kiocb *req,
1599 const struct io_uring_sqe *sqe,
1600 bool force_nonblock)
1601{
1602 loff_t sqe_off;
1603 loff_t sqe_len;
1604 unsigned flags;
1605 int ret;
1606
1607 ret = io_prep_sfr(req, sqe);
1608 if (ret)
1609 return ret;
1610
1611 /* sync_file_range always requires a blocking context */
1612 if (force_nonblock)
1613 return -EAGAIN;
1614
1615 sqe_off = READ_ONCE(sqe->off);
1616 sqe_len = READ_ONCE(sqe->len);
1617 flags = READ_ONCE(sqe->sync_range_flags);
1618
1619 ret = sync_file_range(req->rw.ki_filp, sqe_off, sqe_len, flags);
1620
1621 if (ret < 0 && (req->flags & REQ_F_LINK))
1622 req->flags |= REQ_F_FAIL_LINK;
1623 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1624 io_put_req(req);
1625 return 0;
1626}
1627
1628#if defined(CONFIG_NET)
1629static int io_send_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1630 bool force_nonblock,
1631 long (*fn)(struct socket *, struct user_msghdr __user *,
1632 unsigned int))
1633{
1634 struct socket *sock;
1635 int ret;
1636
1637 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1638 return -EINVAL;
1639
1640 sock = sock_from_file(req->file, &ret);
1641 if (sock) {
1642 struct user_msghdr __user *msg;
1643 unsigned flags;
1644
1645 flags = READ_ONCE(sqe->msg_flags);
1646 if (flags & MSG_DONTWAIT)
1647 req->flags |= REQ_F_NOWAIT;
1648 else if (force_nonblock)
1649 flags |= MSG_DONTWAIT;
1650
1651 msg = (struct user_msghdr __user *) (unsigned long)
1652 READ_ONCE(sqe->addr);
1653
1654 ret = fn(sock, msg, flags);
1655 if (force_nonblock && ret == -EAGAIN)
1656 return ret;
1657 }
1658
1659 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1660 io_put_req(req);
1661 return 0;
1662}
1663#endif
1664
1665static int io_sendmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1666 bool force_nonblock)
1667{
1668#if defined(CONFIG_NET)
1669 return io_send_recvmsg(req, sqe, force_nonblock, __sys_sendmsg_sock);
1670#else
1671 return -EOPNOTSUPP;
1672#endif
1673}
1674
1675static int io_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1676 bool force_nonblock)
1677{
1678#if defined(CONFIG_NET)
1679 return io_send_recvmsg(req, sqe, force_nonblock, __sys_recvmsg_sock);
1680#else
1681 return -EOPNOTSUPP;
1682#endif
1683}
1684
1685static void io_poll_remove_one(struct io_kiocb *req)
1686{
1687 struct io_poll_iocb *poll = &req->poll;
1688
1689 spin_lock(&poll->head->lock);
1690 WRITE_ONCE(poll->canceled, true);
1691 if (!list_empty(&poll->wait.entry)) {
1692 list_del_init(&poll->wait.entry);
1693 io_queue_async_work(req->ctx, req);
1694 }
1695 spin_unlock(&poll->head->lock);
1696
1697 list_del_init(&req->list);
1698}
1699
1700static void io_poll_remove_all(struct io_ring_ctx *ctx)
1701{
1702 struct io_kiocb *req;
1703
1704 spin_lock_irq(&ctx->completion_lock);
1705 while (!list_empty(&ctx->cancel_list)) {
1706 req = list_first_entry(&ctx->cancel_list, struct io_kiocb,list);
1707 io_poll_remove_one(req);
1708 }
1709 spin_unlock_irq(&ctx->completion_lock);
1710}
1711
1712/*
1713 * Find a running poll command that matches one specified in sqe->addr,
1714 * and remove it if found.
1715 */
1716static int io_poll_remove(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1717{
1718 struct io_ring_ctx *ctx = req->ctx;
1719 struct io_kiocb *poll_req, *next;
1720 int ret = -ENOENT;
1721
1722 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1723 return -EINVAL;
1724 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
1725 sqe->poll_events)
1726 return -EINVAL;
1727
1728 spin_lock_irq(&ctx->completion_lock);
1729 list_for_each_entry_safe(poll_req, next, &ctx->cancel_list, list) {
1730 if (READ_ONCE(sqe->addr) == poll_req->user_data) {
1731 io_poll_remove_one(poll_req);
1732 ret = 0;
1733 break;
1734 }
1735 }
1736 spin_unlock_irq(&ctx->completion_lock);
1737
1738 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1739 io_put_req(req);
1740 return 0;
1741}
1742
1743static void io_poll_complete(struct io_ring_ctx *ctx, struct io_kiocb *req,
1744 __poll_t mask)
1745{
1746 req->poll.done = true;
1747 io_cqring_fill_event(ctx, req->user_data, mangle_poll(mask));
1748 io_commit_cqring(ctx);
1749}
1750
1751static void io_poll_complete_work(struct work_struct *work)
1752{
1753 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1754 struct io_poll_iocb *poll = &req->poll;
1755 struct poll_table_struct pt = { ._key = poll->events };
1756 struct io_ring_ctx *ctx = req->ctx;
1757 const struct cred *old_cred;
1758 __poll_t mask = 0;
1759
1760 old_cred = override_creds(ctx->creds);
1761
1762 if (!READ_ONCE(poll->canceled))
1763 mask = vfs_poll(poll->file, &pt) & poll->events;
1764
1765 /*
1766 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1767 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1768 * synchronize with them. In the cancellation case the list_del_init
1769 * itself is not actually needed, but harmless so we keep it in to
1770 * avoid further branches in the fast path.
1771 */
1772 spin_lock_irq(&ctx->completion_lock);
1773 if (!mask && !READ_ONCE(poll->canceled)) {
1774 add_wait_queue(poll->head, &poll->wait);
1775 spin_unlock_irq(&ctx->completion_lock);
1776 goto out;
1777 }
1778 list_del_init(&req->list);
1779 io_poll_complete(ctx, req, mask);
1780 spin_unlock_irq(&ctx->completion_lock);
1781
1782 io_cqring_ev_posted(ctx);
1783 io_put_req(req);
1784out:
1785 revert_creds(old_cred);
1786}
1787
1788static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1789 void *key)
1790{
1791 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
1792 wait);
1793 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
1794 struct io_ring_ctx *ctx = req->ctx;
1795 __poll_t mask = key_to_poll(key);
1796 unsigned long flags;
1797
1798 /* for instances that support it check for an event match first: */
1799 if (mask && !(mask & poll->events))
1800 return 0;
1801
1802 list_del_init(&poll->wait.entry);
1803
1804 if (mask && spin_trylock_irqsave(&ctx->completion_lock, flags)) {
1805 list_del(&req->list);
1806 io_poll_complete(ctx, req, mask);
1807 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1808
1809 io_cqring_ev_posted(ctx);
1810 io_put_req(req);
1811 } else {
1812 io_queue_async_work(ctx, req);
1813 }
1814
1815 return 1;
1816}
1817
1818struct io_poll_table {
1819 struct poll_table_struct pt;
1820 struct io_kiocb *req;
1821 int error;
1822};
1823
1824static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1825 struct poll_table_struct *p)
1826{
1827 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
1828
1829 if (unlikely(pt->req->poll.head)) {
1830 pt->error = -EINVAL;
1831 return;
1832 }
1833
1834 pt->error = 0;
1835 pt->req->poll.head = head;
1836 add_wait_queue(head, &pt->req->poll.wait);
1837}
1838
1839static int io_poll_add(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1840{
1841 struct io_poll_iocb *poll = &req->poll;
1842 struct io_ring_ctx *ctx = req->ctx;
1843 struct io_poll_table ipt;
1844 bool cancel = false;
1845 __poll_t mask;
1846 u16 events;
1847
1848 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1849 return -EINVAL;
1850 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
1851 return -EINVAL;
1852 if (!poll->file)
1853 return -EBADF;
1854
1855 req->submit.sqe = NULL;
1856 INIT_WORK(&req->work, io_poll_complete_work);
1857 events = READ_ONCE(sqe->poll_events);
1858 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
1859
1860 poll->head = NULL;
1861 poll->done = false;
1862 poll->canceled = false;
1863
1864 ipt.pt._qproc = io_poll_queue_proc;
1865 ipt.pt._key = poll->events;
1866 ipt.req = req;
1867 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1868
1869 /* initialized the list so that we can do list_empty checks */
1870 INIT_LIST_HEAD(&poll->wait.entry);
1871 init_waitqueue_func_entry(&poll->wait, io_poll_wake);
1872
1873 INIT_LIST_HEAD(&req->list);
1874
1875 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
1876
1877 spin_lock_irq(&ctx->completion_lock);
1878 if (likely(poll->head)) {
1879 spin_lock(&poll->head->lock);
1880 if (unlikely(list_empty(&poll->wait.entry))) {
1881 if (ipt.error)
1882 cancel = true;
1883 ipt.error = 0;
1884 mask = 0;
1885 }
1886 if (mask || ipt.error)
1887 list_del_init(&poll->wait.entry);
1888 else if (cancel)
1889 WRITE_ONCE(poll->canceled, true);
1890 else if (!poll->done) /* actually waiting for an event */
1891 list_add_tail(&req->list, &ctx->cancel_list);
1892 spin_unlock(&poll->head->lock);
1893 }
1894 if (mask) { /* no async, we'd stolen it */
1895 ipt.error = 0;
1896 io_poll_complete(ctx, req, mask);
1897 }
1898 spin_unlock_irq(&ctx->completion_lock);
1899
1900 if (mask) {
1901 io_cqring_ev_posted(ctx);
1902 io_put_req(req);
1903 }
1904 return ipt.error;
1905}
1906
1907static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
1908{
1909 struct io_ring_ctx *ctx;
1910 struct io_kiocb *req, *prev;
1911 unsigned long flags;
1912
1913 req = container_of(timer, struct io_kiocb, timeout.timer);
1914 ctx = req->ctx;
1915 atomic_inc(&ctx->cq_timeouts);
1916
1917 spin_lock_irqsave(&ctx->completion_lock, flags);
1918 /*
1919 * Adjust the reqs sequence before the current one because it
1920 * will consume a slot in the cq_ring and the the cq_tail pointer
1921 * will be increased, otherwise other timeout reqs may return in
1922 * advance without waiting for enough wait_nr.
1923 */
1924 prev = req;
1925 list_for_each_entry_continue_reverse(prev, &ctx->timeout_list, list)
1926 prev->sequence++;
1927 list_del(&req->list);
1928
1929 io_cqring_fill_event(ctx, req->user_data, -ETIME);
1930 io_commit_cqring(ctx);
1931 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1932
1933 io_cqring_ev_posted(ctx);
1934
1935 io_put_req(req);
1936 return HRTIMER_NORESTART;
1937}
1938
1939static int io_timeout(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1940{
1941 unsigned count;
1942 struct io_ring_ctx *ctx = req->ctx;
1943 struct list_head *entry;
1944 struct timespec64 ts;
1945 unsigned span = 0;
1946
1947 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1948 return -EINVAL;
1949 if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->timeout_flags ||
1950 sqe->len != 1)
1951 return -EINVAL;
1952
1953 if (get_timespec64(&ts, u64_to_user_ptr(sqe->addr)))
1954 return -EFAULT;
1955
1956 req->flags |= REQ_F_TIMEOUT;
1957
1958 /*
1959 * sqe->off holds how many events that need to occur for this
1960 * timeout event to be satisfied. If it isn't set, then this is
1961 * a pure timeout request, sequence isn't used.
1962 */
1963 count = READ_ONCE(sqe->off);
1964 if (!count) {
1965 req->flags |= REQ_F_TIMEOUT_NOSEQ;
1966 spin_lock_irq(&ctx->completion_lock);
1967 entry = ctx->timeout_list.prev;
1968 goto add;
1969 }
1970
1971 req->sequence = ctx->cached_sq_head + count - 1;
1972 /* reuse it to store the count */
1973 req->submit.sequence = count;
1974
1975 /*
1976 * Insertion sort, ensuring the first entry in the list is always
1977 * the one we need first.
1978 */
1979 spin_lock_irq(&ctx->completion_lock);
1980 list_for_each_prev(entry, &ctx->timeout_list) {
1981 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list);
1982 unsigned nxt_sq_head;
1983 long long tmp, tmp_nxt;
1984
1985 if (nxt->flags & REQ_F_TIMEOUT_NOSEQ)
1986 continue;
1987
1988 /*
1989 * Since cached_sq_head + count - 1 can overflow, use type long
1990 * long to store it.
1991 */
1992 tmp = (long long)ctx->cached_sq_head + count - 1;
1993 nxt_sq_head = nxt->sequence - nxt->submit.sequence + 1;
1994 tmp_nxt = (long long)nxt_sq_head + nxt->submit.sequence - 1;
1995
1996 /*
1997 * cached_sq_head may overflow, and it will never overflow twice
1998 * once there is some timeout req still be valid.
1999 */
2000 if (ctx->cached_sq_head < nxt_sq_head)
2001 tmp += UINT_MAX;
2002
2003 if (tmp > tmp_nxt)
2004 break;
2005
2006 /*
2007 * Sequence of reqs after the insert one and itself should
2008 * be adjusted because each timeout req consumes a slot.
2009 */
2010 span++;
2011 nxt->sequence++;
2012 }
2013 req->sequence -= span;
2014add:
2015 list_add(&req->list, entry);
2016 spin_unlock_irq(&ctx->completion_lock);
2017
2018 hrtimer_init(&req->timeout.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2019 req->timeout.timer.function = io_timeout_fn;
2020 hrtimer_start(&req->timeout.timer, timespec64_to_ktime(ts),
2021 HRTIMER_MODE_REL);
2022 return 0;
2023}
2024
2025static int io_req_defer(struct io_ring_ctx *ctx, struct io_kiocb *req,
2026 const struct io_uring_sqe *sqe)
2027{
2028 struct io_uring_sqe *sqe_copy;
2029
2030 if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list))
2031 return 0;
2032
2033 sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
2034 if (!sqe_copy)
2035 return -EAGAIN;
2036
2037 spin_lock_irq(&ctx->completion_lock);
2038 if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list)) {
2039 spin_unlock_irq(&ctx->completion_lock);
2040 kfree(sqe_copy);
2041 return 0;
2042 }
2043
2044 memcpy(sqe_copy, sqe, sizeof(*sqe_copy));
2045 req->submit.sqe = sqe_copy;
2046
2047 INIT_WORK(&req->work, io_sq_wq_submit_work);
2048 list_add_tail(&req->list, &ctx->defer_list);
2049 spin_unlock_irq(&ctx->completion_lock);
2050 return -EIOCBQUEUED;
2051}
2052
2053static int __io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2054 const struct sqe_submit *s, bool force_nonblock)
2055{
2056 int ret, opcode;
2057
2058 req->user_data = READ_ONCE(s->sqe->user_data);
2059
2060 if (unlikely(s->index >= ctx->sq_entries))
2061 return -EINVAL;
2062
2063 opcode = READ_ONCE(s->sqe->opcode);
2064 switch (opcode) {
2065 case IORING_OP_NOP:
2066 ret = io_nop(req, req->user_data);
2067 break;
2068 case IORING_OP_READV:
2069 if (unlikely(s->sqe->buf_index))
2070 return -EINVAL;
2071 ret = io_read(req, s, force_nonblock);
2072 break;
2073 case IORING_OP_WRITEV:
2074 if (unlikely(s->sqe->buf_index))
2075 return -EINVAL;
2076 ret = io_write(req, s, force_nonblock);
2077 break;
2078 case IORING_OP_READ_FIXED:
2079 ret = io_read(req, s, force_nonblock);
2080 break;
2081 case IORING_OP_WRITE_FIXED:
2082 ret = io_write(req, s, force_nonblock);
2083 break;
2084 case IORING_OP_FSYNC:
2085 ret = io_fsync(req, s->sqe, force_nonblock);
2086 break;
2087 case IORING_OP_POLL_ADD:
2088 ret = io_poll_add(req, s->sqe);
2089 break;
2090 case IORING_OP_POLL_REMOVE:
2091 ret = io_poll_remove(req, s->sqe);
2092 break;
2093 case IORING_OP_SYNC_FILE_RANGE:
2094 ret = io_sync_file_range(req, s->sqe, force_nonblock);
2095 break;
2096 case IORING_OP_SENDMSG:
2097 ret = io_sendmsg(req, s->sqe, force_nonblock);
2098 break;
2099 case IORING_OP_RECVMSG:
2100 ret = io_recvmsg(req, s->sqe, force_nonblock);
2101 break;
2102 case IORING_OP_TIMEOUT:
2103 ret = io_timeout(req, s->sqe);
2104 break;
2105 default:
2106 ret = -EINVAL;
2107 break;
2108 }
2109
2110 if (ret)
2111 return ret;
2112
2113 if (ctx->flags & IORING_SETUP_IOPOLL) {
2114 if (req->result == -EAGAIN)
2115 return -EAGAIN;
2116
2117 /* workqueue context doesn't hold uring_lock, grab it now */
2118 if (s->needs_lock)
2119 mutex_lock(&ctx->uring_lock);
2120 io_iopoll_req_issued(req);
2121 if (s->needs_lock)
2122 mutex_unlock(&ctx->uring_lock);
2123 }
2124
2125 return 0;
2126}
2127
2128static struct async_list *io_async_list_from_sqe(struct io_ring_ctx *ctx,
2129 const struct io_uring_sqe *sqe)
2130{
2131 switch (sqe->opcode) {
2132 case IORING_OP_READV:
2133 case IORING_OP_READ_FIXED:
2134 return &ctx->pending_async[READ];
2135 case IORING_OP_WRITEV:
2136 case IORING_OP_WRITE_FIXED:
2137 return &ctx->pending_async[WRITE];
2138 default:
2139 return NULL;
2140 }
2141}
2142
2143static inline bool io_sqe_needs_user(const struct io_uring_sqe *sqe)
2144{
2145 u8 opcode = READ_ONCE(sqe->opcode);
2146
2147 return !(opcode == IORING_OP_READ_FIXED ||
2148 opcode == IORING_OP_WRITE_FIXED);
2149}
2150
2151static void io_sq_wq_submit_work(struct work_struct *work)
2152{
2153 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2154 struct io_ring_ctx *ctx = req->ctx;
2155 struct mm_struct *cur_mm = NULL;
2156 struct async_list *async_list;
2157 const struct cred *old_cred;
2158 LIST_HEAD(req_list);
2159 mm_segment_t old_fs;
2160 int ret;
2161
2162 old_cred = override_creds(ctx->creds);
2163 async_list = io_async_list_from_sqe(ctx, req->submit.sqe);
2164restart:
2165 do {
2166 struct sqe_submit *s = &req->submit;
2167 const struct io_uring_sqe *sqe = s->sqe;
2168 unsigned int flags = req->flags;
2169
2170 /* Ensure we clear previously set non-block flag */
2171 req->rw.ki_flags &= ~IOCB_NOWAIT;
2172
2173 ret = 0;
2174 if (io_sqe_needs_user(sqe) && !cur_mm) {
2175 if (!mmget_not_zero(ctx->sqo_mm)) {
2176 ret = -EFAULT;
2177 } else {
2178 cur_mm = ctx->sqo_mm;
2179 use_mm(cur_mm);
2180 old_fs = get_fs();
2181 set_fs(USER_DS);
2182 }
2183 }
2184
2185 if (!ret) {
2186 s->has_user = cur_mm != NULL;
2187 s->needs_lock = true;
2188 do {
2189 ret = __io_submit_sqe(ctx, req, s, false);
2190 /*
2191 * We can get EAGAIN for polled IO even though
2192 * we're forcing a sync submission from here,
2193 * since we can't wait for request slots on the
2194 * block side.
2195 */
2196 if (ret != -EAGAIN)
2197 break;
2198 cond_resched();
2199 } while (1);
2200 }
2201
2202 /* drop submission reference */
2203 io_put_req(req);
2204
2205 if (ret) {
2206 io_cqring_add_event(ctx, sqe->user_data, ret);
2207 io_put_req(req);
2208 }
2209
2210 /* async context always use a copy of the sqe */
2211 kfree(sqe);
2212
2213 /* req from defer and link list needn't decrease async cnt */
2214 if (flags & (REQ_F_IO_DRAINED | REQ_F_LINK_DONE))
2215 goto out;
2216
2217 if (!async_list)
2218 break;
2219 if (!list_empty(&req_list)) {
2220 req = list_first_entry(&req_list, struct io_kiocb,
2221 list);
2222 list_del(&req->list);
2223 continue;
2224 }
2225 if (list_empty(&async_list->list))
2226 break;
2227
2228 req = NULL;
2229 spin_lock(&async_list->lock);
2230 if (list_empty(&async_list->list)) {
2231 spin_unlock(&async_list->lock);
2232 break;
2233 }
2234 list_splice_init(&async_list->list, &req_list);
2235 spin_unlock(&async_list->lock);
2236
2237 req = list_first_entry(&req_list, struct io_kiocb, list);
2238 list_del(&req->list);
2239 } while (req);
2240
2241 /*
2242 * Rare case of racing with a submitter. If we find the count has
2243 * dropped to zero AND we have pending work items, then restart
2244 * the processing. This is a tiny race window.
2245 */
2246 if (async_list) {
2247 ret = atomic_dec_return(&async_list->cnt);
2248 while (!ret && !list_empty(&async_list->list)) {
2249 spin_lock(&async_list->lock);
2250 atomic_inc(&async_list->cnt);
2251 list_splice_init(&async_list->list, &req_list);
2252 spin_unlock(&async_list->lock);
2253
2254 if (!list_empty(&req_list)) {
2255 req = list_first_entry(&req_list,
2256 struct io_kiocb, list);
2257 list_del(&req->list);
2258 goto restart;
2259 }
2260 ret = atomic_dec_return(&async_list->cnt);
2261 }
2262 }
2263
2264out:
2265 if (cur_mm) {
2266 set_fs(old_fs);
2267 unuse_mm(cur_mm);
2268 mmput(cur_mm);
2269 }
2270 revert_creds(old_cred);
2271}
2272
2273/*
2274 * See if we can piggy back onto previously submitted work, that is still
2275 * running. We currently only allow this if the new request is sequential
2276 * to the previous one we punted.
2277 */
2278static bool io_add_to_prev_work(struct async_list *list, struct io_kiocb *req)
2279{
2280 bool ret;
2281
2282 if (!list)
2283 return false;
2284 if (!(req->flags & REQ_F_SEQ_PREV))
2285 return false;
2286 if (!atomic_read(&list->cnt))
2287 return false;
2288
2289 ret = true;
2290 spin_lock(&list->lock);
2291 list_add_tail(&req->list, &list->list);
2292 /*
2293 * Ensure we see a simultaneous modification from io_sq_wq_submit_work()
2294 */
2295 smp_mb();
2296 if (!atomic_read(&list->cnt)) {
2297 list_del_init(&req->list);
2298 ret = false;
2299 }
2300 spin_unlock(&list->lock);
2301 return ret;
2302}
2303
2304static bool io_op_needs_file(const struct io_uring_sqe *sqe)
2305{
2306 int op = READ_ONCE(sqe->opcode);
2307
2308 switch (op) {
2309 case IORING_OP_NOP:
2310 case IORING_OP_POLL_REMOVE:
2311 case IORING_OP_TIMEOUT:
2312 return false;
2313 default:
2314 return true;
2315 }
2316}
2317
2318static int io_req_set_file(struct io_ring_ctx *ctx, const struct sqe_submit *s,
2319 struct io_submit_state *state, struct io_kiocb *req)
2320{
2321 unsigned flags;
2322 int fd;
2323
2324 flags = READ_ONCE(s->sqe->flags);
2325 fd = READ_ONCE(s->sqe->fd);
2326
2327 if (flags & IOSQE_IO_DRAIN)
2328 req->flags |= REQ_F_IO_DRAIN;
2329 /*
2330 * All io need record the previous position, if LINK vs DARIN,
2331 * it can be used to mark the position of the first IO in the
2332 * link list.
2333 */
2334 req->sequence = s->sequence;
2335
2336 if (!io_op_needs_file(s->sqe))
2337 return 0;
2338
2339 if (flags & IOSQE_FIXED_FILE) {
2340 if (unlikely(!ctx->user_files ||
2341 (unsigned) fd >= ctx->nr_user_files))
2342 return -EBADF;
2343 req->file = ctx->user_files[fd];
2344 req->flags |= REQ_F_FIXED_FILE;
2345 } else {
2346 if (s->needs_fixed_file)
2347 return -EBADF;
2348 req->file = io_file_get(state, fd);
2349 if (unlikely(!req->file))
2350 return -EBADF;
2351 }
2352
2353 return 0;
2354}
2355
2356static int __io_queue_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2357 struct sqe_submit *s)
2358{
2359 int ret;
2360
2361 ret = __io_submit_sqe(ctx, req, s, true);
2362
2363 /*
2364 * We async punt it if the file wasn't marked NOWAIT, or if the file
2365 * doesn't support non-blocking read/write attempts
2366 */
2367 if (ret == -EAGAIN && (!(req->flags & REQ_F_NOWAIT) ||
2368 (req->flags & REQ_F_MUST_PUNT))) {
2369 struct io_uring_sqe *sqe_copy;
2370
2371 sqe_copy = kmemdup(s->sqe, sizeof(*sqe_copy), GFP_KERNEL);
2372 if (sqe_copy) {
2373 struct async_list *list;
2374
2375 s->sqe = sqe_copy;
2376 memcpy(&req->submit, s, sizeof(*s));
2377 list = io_async_list_from_sqe(ctx, s->sqe);
2378 if (!io_add_to_prev_work(list, req)) {
2379 if (list)
2380 atomic_inc(&list->cnt);
2381 INIT_WORK(&req->work, io_sq_wq_submit_work);
2382 io_queue_async_work(ctx, req);
2383 }
2384
2385 /*
2386 * Queued up for async execution, worker will release
2387 * submit reference when the iocb is actually submitted.
2388 */
2389 return 0;
2390 }
2391 }
2392
2393 /* drop submission reference */
2394 io_put_req(req);
2395
2396 /* and drop final reference, if we failed */
2397 if (ret) {
2398 io_cqring_add_event(ctx, req->user_data, ret);
2399 if (req->flags & REQ_F_LINK)
2400 req->flags |= REQ_F_FAIL_LINK;
2401 io_put_req(req);
2402 }
2403
2404 return ret;
2405}
2406
2407static int io_queue_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2408 struct sqe_submit *s)
2409{
2410 int ret;
2411
2412 ret = io_req_defer(ctx, req, s->sqe);
2413 if (ret) {
2414 if (ret != -EIOCBQUEUED) {
2415 io_free_req(req);
2416 io_cqring_add_event(ctx, s->sqe->user_data, ret);
2417 }
2418 return 0;
2419 }
2420
2421 return __io_queue_sqe(ctx, req, s);
2422}
2423
2424static int io_queue_link_head(struct io_ring_ctx *ctx, struct io_kiocb *req,
2425 struct sqe_submit *s, struct io_kiocb *shadow)
2426{
2427 int ret;
2428 int need_submit = false;
2429
2430 if (!shadow)
2431 return io_queue_sqe(ctx, req, s);
2432
2433 /*
2434 * Mark the first IO in link list as DRAIN, let all the following
2435 * IOs enter the defer list. all IO needs to be completed before link
2436 * list.
2437 */
2438 req->flags |= REQ_F_IO_DRAIN;
2439 ret = io_req_defer(ctx, req, s->sqe);
2440 if (ret) {
2441 if (ret != -EIOCBQUEUED) {
2442 io_free_req(req);
2443 __io_free_req(shadow);
2444 io_cqring_add_event(ctx, s->sqe->user_data, ret);
2445 return 0;
2446 }
2447 } else {
2448 /*
2449 * If ret == 0 means that all IOs in front of link io are
2450 * running done. let's queue link head.
2451 */
2452 need_submit = true;
2453 }
2454
2455 /* Insert shadow req to defer_list, blocking next IOs */
2456 spin_lock_irq(&ctx->completion_lock);
2457 list_add_tail(&shadow->list, &ctx->defer_list);
2458 spin_unlock_irq(&ctx->completion_lock);
2459
2460 if (need_submit)
2461 return __io_queue_sqe(ctx, req, s);
2462
2463 return 0;
2464}
2465
2466#define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK)
2467
2468static void io_submit_sqe(struct io_ring_ctx *ctx, struct sqe_submit *s,
2469 struct io_submit_state *state, struct io_kiocb **link)
2470{
2471 struct io_uring_sqe *sqe_copy;
2472 struct io_kiocb *req;
2473 int ret;
2474
2475 /* enforce forwards compatibility on users */
2476 if (unlikely(s->sqe->flags & ~SQE_VALID_FLAGS)) {
2477 ret = -EINVAL;
2478 goto err;
2479 }
2480
2481 req = io_get_req(ctx, state);
2482 if (unlikely(!req)) {
2483 ret = -EAGAIN;
2484 goto err;
2485 }
2486
2487 ret = io_req_set_file(ctx, s, state, req);
2488 if (unlikely(ret)) {
2489err_req:
2490 io_free_req(req);
2491err:
2492 io_cqring_add_event(ctx, s->sqe->user_data, ret);
2493 return;
2494 }
2495
2496 req->user_data = s->sqe->user_data;
2497
2498 /*
2499 * If we already have a head request, queue this one for async
2500 * submittal once the head completes. If we don't have a head but
2501 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2502 * submitted sync once the chain is complete. If none of those
2503 * conditions are true (normal request), then just queue it.
2504 */
2505 if (*link) {
2506 struct io_kiocb *prev = *link;
2507
2508 sqe_copy = kmemdup(s->sqe, sizeof(*sqe_copy), GFP_KERNEL);
2509 if (!sqe_copy) {
2510 ret = -EAGAIN;
2511 goto err_req;
2512 }
2513
2514 s->sqe = sqe_copy;
2515 memcpy(&req->submit, s, sizeof(*s));
2516 list_add_tail(&req->list, &prev->link_list);
2517 } else if (s->sqe->flags & IOSQE_IO_LINK) {
2518 req->flags |= REQ_F_LINK;
2519
2520 memcpy(&req->submit, s, sizeof(*s));
2521 INIT_LIST_HEAD(&req->link_list);
2522 *link = req;
2523 } else {
2524 io_queue_sqe(ctx, req, s);
2525 }
2526}
2527
2528/*
2529 * Batched submission is done, ensure local IO is flushed out.
2530 */
2531static void io_submit_state_end(struct io_submit_state *state)
2532{
2533 blk_finish_plug(&state->plug);
2534 io_file_put(state);
2535 if (state->free_reqs)
2536 kmem_cache_free_bulk(req_cachep, state->free_reqs,
2537 &state->reqs[state->cur_req]);
2538}
2539
2540/*
2541 * Start submission side cache.
2542 */
2543static void io_submit_state_start(struct io_submit_state *state,
2544 struct io_ring_ctx *ctx, unsigned max_ios)
2545{
2546 blk_start_plug(&state->plug);
2547 state->free_reqs = 0;
2548 state->file = NULL;
2549 state->ios_left = max_ios;
2550}
2551
2552static void io_commit_sqring(struct io_ring_ctx *ctx)
2553{
2554 struct io_rings *rings = ctx->rings;
2555
2556 if (ctx->cached_sq_head != READ_ONCE(rings->sq.head)) {
2557 /*
2558 * Ensure any loads from the SQEs are done at this point,
2559 * since once we write the new head, the application could
2560 * write new data to them.
2561 */
2562 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2563 }
2564}
2565
2566/*
2567 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
2568 * that is mapped by userspace. This means that care needs to be taken to
2569 * ensure that reads are stable, as we cannot rely on userspace always
2570 * being a good citizen. If members of the sqe are validated and then later
2571 * used, it's important that those reads are done through READ_ONCE() to
2572 * prevent a re-load down the line.
2573 */
2574static bool io_get_sqring(struct io_ring_ctx *ctx, struct sqe_submit *s)
2575{
2576 struct io_rings *rings = ctx->rings;
2577 u32 *sq_array = ctx->sq_array;
2578 unsigned head;
2579
2580 /*
2581 * The cached sq head (or cq tail) serves two purposes:
2582 *
2583 * 1) allows us to batch the cost of updating the user visible
2584 * head updates.
2585 * 2) allows the kernel side to track the head on its own, even
2586 * though the application is the one updating it.
2587 */
2588 head = ctx->cached_sq_head;
2589 /* make sure SQ entry isn't read before tail */
2590 if (head == smp_load_acquire(&rings->sq.tail))
2591 return false;
2592
2593 head = READ_ONCE(sq_array[head & ctx->sq_mask]);
2594 if (head < ctx->sq_entries) {
2595 s->index = head;
2596 s->sqe = &ctx->sq_sqes[head];
2597 s->sequence = ctx->cached_sq_head;
2598 ctx->cached_sq_head++;
2599 return true;
2600 }
2601
2602 /* drop invalid entries */
2603 ctx->cached_sq_head++;
2604 ctx->cached_sq_dropped++;
2605 WRITE_ONCE(rings->sq_dropped, ctx->cached_sq_dropped);
2606 return false;
2607}
2608
2609static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr,
2610 bool has_user, bool mm_fault)
2611{
2612 struct io_submit_state state, *statep = NULL;
2613 struct io_kiocb *link = NULL;
2614 struct io_kiocb *shadow_req = NULL;
2615 bool prev_was_link = false;
2616 int i, submitted = 0;
2617
2618 if (nr > IO_PLUG_THRESHOLD) {
2619 io_submit_state_start(&state, ctx, nr);
2620 statep = &state;
2621 }
2622
2623 for (i = 0; i < nr; i++) {
2624 struct sqe_submit s;
2625
2626 if (!io_get_sqring(ctx, &s))
2627 break;
2628
2629 /*
2630 * If previous wasn't linked and we have a linked command,
2631 * that's the end of the chain. Submit the previous link.
2632 */
2633 if (!prev_was_link && link) {
2634 io_queue_link_head(ctx, link, &link->submit, shadow_req);
2635 link = NULL;
2636 shadow_req = NULL;
2637 }
2638 prev_was_link = (s.sqe->flags & IOSQE_IO_LINK) != 0;
2639
2640 if (link && (s.sqe->flags & IOSQE_IO_DRAIN)) {
2641 if (!shadow_req) {
2642 shadow_req = io_get_req(ctx, NULL);
2643 if (unlikely(!shadow_req))
2644 goto out;
2645 shadow_req->flags |= (REQ_F_IO_DRAIN | REQ_F_SHADOW_DRAIN);
2646 refcount_dec(&shadow_req->refs);
2647 }
2648 shadow_req->sequence = s.sequence;
2649 }
2650
2651out:
2652 if (unlikely(mm_fault)) {
2653 io_cqring_add_event(ctx, s.sqe->user_data,
2654 -EFAULT);
2655 } else {
2656 s.has_user = has_user;
2657 s.needs_lock = true;
2658 s.needs_fixed_file = true;
2659 io_submit_sqe(ctx, &s, statep, &link);
2660 submitted++;
2661 }
2662 }
2663
2664 if (link)
2665 io_queue_link_head(ctx, link, &link->submit, shadow_req);
2666 if (statep)
2667 io_submit_state_end(&state);
2668
2669 return submitted;
2670}
2671
2672static int io_sq_thread(void *data)
2673{
2674 struct io_ring_ctx *ctx = data;
2675 struct mm_struct *cur_mm = NULL;
2676 const struct cred *old_cred;
2677 mm_segment_t old_fs;
2678 DEFINE_WAIT(wait);
2679 unsigned inflight;
2680 unsigned long timeout;
2681
2682 complete(&ctx->sqo_thread_started);
2683
2684 old_fs = get_fs();
2685 set_fs(USER_DS);
2686 old_cred = override_creds(ctx->creds);
2687
2688 timeout = inflight = 0;
2689 while (!kthread_should_park()) {
2690 bool mm_fault = false;
2691 unsigned int to_submit;
2692
2693 if (inflight) {
2694 unsigned nr_events = 0;
2695
2696 if (ctx->flags & IORING_SETUP_IOPOLL) {
2697 /*
2698 * inflight is the count of the maximum possible
2699 * entries we submitted, but it can be smaller
2700 * if we dropped some of them. If we don't have
2701 * poll entries available, then we know that we
2702 * have nothing left to poll for. Reset the
2703 * inflight count to zero in that case.
2704 */
2705 mutex_lock(&ctx->uring_lock);
2706 if (!list_empty(&ctx->poll_list))
2707 __io_iopoll_check(ctx, &nr_events, 0);
2708 else
2709 inflight = 0;
2710 mutex_unlock(&ctx->uring_lock);
2711 } else {
2712 /*
2713 * Normal IO, just pretend everything completed.
2714 * We don't have to poll completions for that.
2715 */
2716 nr_events = inflight;
2717 }
2718
2719 inflight -= nr_events;
2720 if (!inflight)
2721 timeout = jiffies + ctx->sq_thread_idle;
2722 }
2723
2724 to_submit = io_sqring_entries(ctx);
2725 if (!to_submit) {
2726 /*
2727 * We're polling. If we're within the defined idle
2728 * period, then let us spin without work before going
2729 * to sleep.
2730 */
2731 if (inflight || !time_after(jiffies, timeout)) {
2732 cond_resched();
2733 continue;
2734 }
2735
2736 /*
2737 * Drop cur_mm before scheduling, we can't hold it for
2738 * long periods (or over schedule()). Do this before
2739 * adding ourselves to the waitqueue, as the unuse/drop
2740 * may sleep.
2741 */
2742 if (cur_mm) {
2743 unuse_mm(cur_mm);
2744 mmput(cur_mm);
2745 cur_mm = NULL;
2746 }
2747
2748 prepare_to_wait(&ctx->sqo_wait, &wait,
2749 TASK_INTERRUPTIBLE);
2750
2751 /* Tell userspace we may need a wakeup call */
2752 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
2753 /* make sure to read SQ tail after writing flags */
2754 smp_mb();
2755
2756 to_submit = io_sqring_entries(ctx);
2757 if (!to_submit) {
2758 if (kthread_should_park()) {
2759 finish_wait(&ctx->sqo_wait, &wait);
2760 break;
2761 }
2762 if (signal_pending(current))
2763 flush_signals(current);
2764 schedule();
2765 finish_wait(&ctx->sqo_wait, &wait);
2766
2767 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
2768 continue;
2769 }
2770 finish_wait(&ctx->sqo_wait, &wait);
2771
2772 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
2773 }
2774
2775 /* Unless all new commands are FIXED regions, grab mm */
2776 if (!cur_mm) {
2777 mm_fault = !mmget_not_zero(ctx->sqo_mm);
2778 if (!mm_fault) {
2779 use_mm(ctx->sqo_mm);
2780 cur_mm = ctx->sqo_mm;
2781 }
2782 }
2783
2784 to_submit = min(to_submit, ctx->sq_entries);
2785 inflight += io_submit_sqes(ctx, to_submit, cur_mm != NULL,
2786 mm_fault);
2787
2788 /* Commit SQ ring head once we've consumed all SQEs */
2789 io_commit_sqring(ctx);
2790 }
2791
2792 set_fs(old_fs);
2793 if (cur_mm) {
2794 unuse_mm(cur_mm);
2795 mmput(cur_mm);
2796 }
2797 revert_creds(old_cred);
2798
2799 kthread_parkme();
2800
2801 return 0;
2802}
2803
2804static int io_ring_submit(struct io_ring_ctx *ctx, unsigned int to_submit)
2805{
2806 struct io_submit_state state, *statep = NULL;
2807 struct io_kiocb *link = NULL;
2808 struct io_kiocb *shadow_req = NULL;
2809 bool prev_was_link = false;
2810 int i, submit = 0;
2811
2812 if (to_submit > IO_PLUG_THRESHOLD) {
2813 io_submit_state_start(&state, ctx, to_submit);
2814 statep = &state;
2815 }
2816
2817 for (i = 0; i < to_submit; i++) {
2818 struct sqe_submit s;
2819
2820 if (!io_get_sqring(ctx, &s))
2821 break;
2822
2823 /*
2824 * If previous wasn't linked and we have a linked command,
2825 * that's the end of the chain. Submit the previous link.
2826 */
2827 if (!prev_was_link && link) {
2828 io_queue_link_head(ctx, link, &link->submit, shadow_req);
2829 link = NULL;
2830 shadow_req = NULL;
2831 }
2832 prev_was_link = (s.sqe->flags & IOSQE_IO_LINK) != 0;
2833
2834 if (link && (s.sqe->flags & IOSQE_IO_DRAIN)) {
2835 if (!shadow_req) {
2836 shadow_req = io_get_req(ctx, NULL);
2837 if (unlikely(!shadow_req))
2838 goto out;
2839 shadow_req->flags |= (REQ_F_IO_DRAIN | REQ_F_SHADOW_DRAIN);
2840 refcount_dec(&shadow_req->refs);
2841 }
2842 shadow_req->sequence = s.sequence;
2843 }
2844
2845out:
2846 s.has_user = true;
2847 s.needs_lock = false;
2848 s.needs_fixed_file = false;
2849 submit++;
2850 io_submit_sqe(ctx, &s, statep, &link);
2851 }
2852
2853 if (link)
2854 io_queue_link_head(ctx, link, &link->submit, shadow_req);
2855 if (statep)
2856 io_submit_state_end(statep);
2857
2858 io_commit_sqring(ctx);
2859
2860 return submit;
2861}
2862
2863struct io_wait_queue {
2864 struct wait_queue_entry wq;
2865 struct io_ring_ctx *ctx;
2866 unsigned to_wait;
2867 unsigned nr_timeouts;
2868};
2869
2870static inline bool io_should_wake(struct io_wait_queue *iowq)
2871{
2872 struct io_ring_ctx *ctx = iowq->ctx;
2873
2874 /*
2875 * Wake up if we have enough events, or if a timeout occured since we
2876 * started waiting. For timeouts, we always want to return to userspace,
2877 * regardless of event count.
2878 */
2879 return io_cqring_events(ctx->rings) >= iowq->to_wait ||
2880 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2881}
2882
2883static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2884 int wake_flags, void *key)
2885{
2886 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2887 wq);
2888
2889 if (!io_should_wake(iowq))
2890 return -1;
2891
2892 return autoremove_wake_function(curr, mode, wake_flags, key);
2893}
2894
2895/*
2896 * Wait until events become available, if we don't already have some. The
2897 * application must reap them itself, as they reside on the shared cq ring.
2898 */
2899static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2900 const sigset_t __user *sig, size_t sigsz)
2901{
2902 struct io_wait_queue iowq = {
2903 .wq = {
2904 .private = current,
2905 .func = io_wake_function,
2906 .entry = LIST_HEAD_INIT(iowq.wq.entry),
2907 },
2908 .ctx = ctx,
2909 .to_wait = min_events,
2910 };
2911 struct io_rings *rings = ctx->rings;
2912 int ret;
2913
2914 if (io_cqring_events(rings) >= min_events)
2915 return 0;
2916
2917 if (sig) {
2918#ifdef CONFIG_COMPAT
2919 if (in_compat_syscall())
2920 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2921 sigsz);
2922 else
2923#endif
2924 ret = set_user_sigmask(sig, sigsz);
2925
2926 if (ret)
2927 return ret;
2928 }
2929
2930 ret = 0;
2931 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2932 do {
2933 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
2934 TASK_INTERRUPTIBLE);
2935 if (io_should_wake(&iowq))
2936 break;
2937 schedule();
2938 if (signal_pending(current)) {
2939 ret = -ERESTARTSYS;
2940 break;
2941 }
2942 } while (1);
2943 finish_wait(&ctx->wait, &iowq.wq);
2944
2945 restore_saved_sigmask_unless(ret == -ERESTARTSYS);
2946 if (ret == -ERESTARTSYS)
2947 ret = -EINTR;
2948
2949 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2950}
2951
2952static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
2953{
2954#if defined(CONFIG_UNIX)
2955 if (ctx->ring_sock) {
2956 struct sock *sock = ctx->ring_sock->sk;
2957 struct sk_buff *skb;
2958
2959 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
2960 kfree_skb(skb);
2961 }
2962#else
2963 int i;
2964
2965 for (i = 0; i < ctx->nr_user_files; i++)
2966 fput(ctx->user_files[i]);
2967#endif
2968}
2969
2970static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
2971{
2972 if (!ctx->user_files)
2973 return -ENXIO;
2974
2975 __io_sqe_files_unregister(ctx);
2976 kfree(ctx->user_files);
2977 ctx->user_files = NULL;
2978 ctx->nr_user_files = 0;
2979 return 0;
2980}
2981
2982static void io_sq_thread_stop(struct io_ring_ctx *ctx)
2983{
2984 if (ctx->sqo_thread) {
2985 wait_for_completion(&ctx->sqo_thread_started);
2986 /*
2987 * The park is a bit of a work-around, without it we get
2988 * warning spews on shutdown with SQPOLL set and affinity
2989 * set to a single CPU.
2990 */
2991 kthread_park(ctx->sqo_thread);
2992 kthread_stop(ctx->sqo_thread);
2993 ctx->sqo_thread = NULL;
2994 }
2995}
2996
2997static void io_finish_async(struct io_ring_ctx *ctx)
2998{
2999 int i;
3000
3001 io_sq_thread_stop(ctx);
3002
3003 for (i = 0; i < ARRAY_SIZE(ctx->sqo_wq); i++) {
3004 if (ctx->sqo_wq[i]) {
3005 destroy_workqueue(ctx->sqo_wq[i]);
3006 ctx->sqo_wq[i] = NULL;
3007 }
3008 }
3009}
3010
3011#if defined(CONFIG_UNIX)
3012static void io_destruct_skb(struct sk_buff *skb)
3013{
3014 struct io_ring_ctx *ctx = skb->sk->sk_user_data;
3015 int i;
3016
3017 for (i = 0; i < ARRAY_SIZE(ctx->sqo_wq); i++)
3018 if (ctx->sqo_wq[i])
3019 flush_workqueue(ctx->sqo_wq[i]);
3020
3021 unix_destruct_scm(skb);
3022}
3023
3024/*
3025 * Ensure the UNIX gc is aware of our file set, so we are certain that
3026 * the io_uring can be safely unregistered on process exit, even if we have
3027 * loops in the file referencing.
3028 */
3029static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
3030{
3031 struct sock *sk = ctx->ring_sock->sk;
3032 struct scm_fp_list *fpl;
3033 struct sk_buff *skb;
3034 int i;
3035
3036 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
3037 unsigned long inflight = ctx->user->unix_inflight + nr;
3038
3039 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
3040 return -EMFILE;
3041 }
3042
3043 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
3044 if (!fpl)
3045 return -ENOMEM;
3046
3047 skb = alloc_skb(0, GFP_KERNEL);
3048 if (!skb) {
3049 kfree(fpl);
3050 return -ENOMEM;
3051 }
3052
3053 skb->sk = sk;
3054 skb->destructor = io_destruct_skb;
3055
3056 fpl->user = get_uid(ctx->user);
3057 for (i = 0; i < nr; i++) {
3058 fpl->fp[i] = get_file(ctx->user_files[i + offset]);
3059 unix_inflight(fpl->user, fpl->fp[i]);
3060 }
3061
3062 fpl->max = fpl->count = nr;
3063 UNIXCB(skb).fp = fpl;
3064 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
3065 skb_queue_head(&sk->sk_receive_queue, skb);
3066
3067 for (i = 0; i < nr; i++)
3068 fput(fpl->fp[i]);
3069
3070 return 0;
3071}
3072
3073/*
3074 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
3075 * causes regular reference counting to break down. We rely on the UNIX
3076 * garbage collection to take care of this problem for us.
3077 */
3078static int io_sqe_files_scm(struct io_ring_ctx *ctx)
3079{
3080 unsigned left, total;
3081 int ret = 0;
3082
3083 total = 0;
3084 left = ctx->nr_user_files;
3085 while (left) {
3086 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
3087
3088 ret = __io_sqe_files_scm(ctx, this_files, total);
3089 if (ret)
3090 break;
3091 left -= this_files;
3092 total += this_files;
3093 }
3094
3095 if (!ret)
3096 return 0;
3097
3098 while (total < ctx->nr_user_files) {
3099 fput(ctx->user_files[total]);
3100 total++;
3101 }
3102
3103 return ret;
3104}
3105#else
3106static int io_sqe_files_scm(struct io_ring_ctx *ctx)
3107{
3108 return 0;
3109}
3110#endif
3111
3112static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
3113 unsigned nr_args)
3114{
3115 __s32 __user *fds = (__s32 __user *) arg;
3116 int fd, ret = 0;
3117 unsigned i;
3118
3119 if (ctx->user_files)
3120 return -EBUSY;
3121 if (!nr_args)
3122 return -EINVAL;
3123 if (nr_args > IORING_MAX_FIXED_FILES)
3124 return -EMFILE;
3125
3126 ctx->user_files = kcalloc(nr_args, sizeof(struct file *), GFP_KERNEL);
3127 if (!ctx->user_files)
3128 return -ENOMEM;
3129
3130 for (i = 0; i < nr_args; i++) {
3131 ret = -EFAULT;
3132 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
3133 break;
3134
3135 ctx->user_files[i] = fget(fd);
3136
3137 ret = -EBADF;
3138 if (!ctx->user_files[i])
3139 break;
3140 /*
3141 * Don't allow io_uring instances to be registered. If UNIX
3142 * isn't enabled, then this causes a reference cycle and this
3143 * instance can never get freed. If UNIX is enabled we'll
3144 * handle it just fine, but there's still no point in allowing
3145 * a ring fd as it doesn't support regular read/write anyway.
3146 */
3147 if (ctx->user_files[i]->f_op == &io_uring_fops) {
3148 fput(ctx->user_files[i]);
3149 break;
3150 }
3151 ctx->nr_user_files++;
3152 ret = 0;
3153 }
3154
3155 if (ret) {
3156 for (i = 0; i < ctx->nr_user_files; i++)
3157 fput(ctx->user_files[i]);
3158
3159 kfree(ctx->user_files);
3160 ctx->user_files = NULL;
3161 ctx->nr_user_files = 0;
3162 return ret;
3163 }
3164
3165 ret = io_sqe_files_scm(ctx);
3166 if (ret)
3167 io_sqe_files_unregister(ctx);
3168
3169 return ret;
3170}
3171
3172static int io_sq_offload_start(struct io_ring_ctx *ctx,
3173 struct io_uring_params *p)
3174{
3175 int ret;
3176
3177 init_waitqueue_head(&ctx->sqo_wait);
3178 mmgrab(current->mm);
3179 ctx->sqo_mm = current->mm;
3180
3181 if (ctx->flags & IORING_SETUP_SQPOLL) {
3182 ret = -EPERM;
3183 if (!capable(CAP_SYS_ADMIN))
3184 goto err;
3185
3186 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
3187 if (!ctx->sq_thread_idle)
3188 ctx->sq_thread_idle = HZ;
3189
3190 if (p->flags & IORING_SETUP_SQ_AFF) {
3191 int cpu = p->sq_thread_cpu;
3192
3193 ret = -EINVAL;
3194 if (cpu >= nr_cpu_ids)
3195 goto err;
3196 if (!cpu_online(cpu))
3197 goto err;
3198
3199 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
3200 ctx, cpu,
3201 "io_uring-sq");
3202 } else {
3203 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
3204 "io_uring-sq");
3205 }
3206 if (IS_ERR(ctx->sqo_thread)) {
3207 ret = PTR_ERR(ctx->sqo_thread);
3208 ctx->sqo_thread = NULL;
3209 goto err;
3210 }
3211 wake_up_process(ctx->sqo_thread);
3212 } else if (p->flags & IORING_SETUP_SQ_AFF) {
3213 /* Can't have SQ_AFF without SQPOLL */
3214 ret = -EINVAL;
3215 goto err;
3216 }
3217
3218 /* Do QD, or 2 * CPUS, whatever is smallest */
3219 ctx->sqo_wq[0] = alloc_workqueue("io_ring-wq",
3220 WQ_UNBOUND | WQ_FREEZABLE,
3221 min(ctx->sq_entries - 1, 2 * num_online_cpus()));
3222 if (!ctx->sqo_wq[0]) {
3223 ret = -ENOMEM;
3224 goto err;
3225 }
3226
3227 /*
3228 * This is for buffered writes, where we want to limit the parallelism
3229 * due to file locking in file systems. As "normal" buffered writes
3230 * should parellelize on writeout quite nicely, limit us to having 2
3231 * pending. This avoids massive contention on the inode when doing
3232 * buffered async writes.
3233 */
3234 ctx->sqo_wq[1] = alloc_workqueue("io_ring-write-wq",
3235 WQ_UNBOUND | WQ_FREEZABLE, 2);
3236 if (!ctx->sqo_wq[1]) {
3237 ret = -ENOMEM;
3238 goto err;
3239 }
3240
3241 return 0;
3242err:
3243 io_finish_async(ctx);
3244 mmdrop(ctx->sqo_mm);
3245 ctx->sqo_mm = NULL;
3246 return ret;
3247}
3248
3249static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
3250{
3251 atomic_long_sub(nr_pages, &user->locked_vm);
3252}
3253
3254static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
3255{
3256 unsigned long page_limit, cur_pages, new_pages;
3257
3258 /* Don't allow more pages than we can safely lock */
3259 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
3260
3261 do {
3262 cur_pages = atomic_long_read(&user->locked_vm);
3263 new_pages = cur_pages + nr_pages;
3264 if (new_pages > page_limit)
3265 return -ENOMEM;
3266 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
3267 new_pages) != cur_pages);
3268
3269 return 0;
3270}
3271
3272static void io_mem_free(void *ptr)
3273{
3274 struct page *page;
3275
3276 if (!ptr)
3277 return;
3278
3279 page = virt_to_head_page(ptr);
3280 if (put_page_testzero(page))
3281 free_compound_page(page);
3282}
3283
3284static void *io_mem_alloc(size_t size)
3285{
3286 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
3287 __GFP_NORETRY;
3288
3289 return (void *) __get_free_pages(gfp_flags, get_order(size));
3290}
3291
3292static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
3293 size_t *sq_offset)
3294{
3295 struct io_rings *rings;
3296 size_t off, sq_array_size;
3297
3298 off = struct_size(rings, cqes, cq_entries);
3299 if (off == SIZE_MAX)
3300 return SIZE_MAX;
3301
3302#ifdef CONFIG_SMP
3303 off = ALIGN(off, SMP_CACHE_BYTES);
3304 if (off == 0)
3305 return SIZE_MAX;
3306#endif
3307
3308 sq_array_size = array_size(sizeof(u32), sq_entries);
3309 if (sq_array_size == SIZE_MAX)
3310 return SIZE_MAX;
3311
3312 if (check_add_overflow(off, sq_array_size, &off))
3313 return SIZE_MAX;
3314
3315 if (sq_offset)
3316 *sq_offset = off;
3317
3318 return off;
3319}
3320
3321static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
3322{
3323 size_t pages;
3324
3325 pages = (size_t)1 << get_order(
3326 rings_size(sq_entries, cq_entries, NULL));
3327 pages += (size_t)1 << get_order(
3328 array_size(sizeof(struct io_uring_sqe), sq_entries));
3329
3330 return pages;
3331}
3332
3333static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
3334{
3335 int i, j;
3336
3337 if (!ctx->user_bufs)
3338 return -ENXIO;
3339
3340 for (i = 0; i < ctx->nr_user_bufs; i++) {
3341 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
3342
3343 for (j = 0; j < imu->nr_bvecs; j++)
3344 put_user_page(imu->bvec[j].bv_page);
3345
3346 if (ctx->account_mem)
3347 io_unaccount_mem(ctx->user, imu->nr_bvecs);
3348 kvfree(imu->bvec);
3349 imu->nr_bvecs = 0;
3350 }
3351
3352 kfree(ctx->user_bufs);
3353 ctx->user_bufs = NULL;
3354 ctx->nr_user_bufs = 0;
3355 return 0;
3356}
3357
3358static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
3359 void __user *arg, unsigned index)
3360{
3361 struct iovec __user *src;
3362
3363#ifdef CONFIG_COMPAT
3364 if (ctx->compat) {
3365 struct compat_iovec __user *ciovs;
3366 struct compat_iovec ciov;
3367
3368 ciovs = (struct compat_iovec __user *) arg;
3369 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
3370 return -EFAULT;
3371
3372 dst->iov_base = (void __user *) (unsigned long) ciov.iov_base;
3373 dst->iov_len = ciov.iov_len;
3374 return 0;
3375 }
3376#endif
3377 src = (struct iovec __user *) arg;
3378 if (copy_from_user(dst, &src[index], sizeof(*dst)))
3379 return -EFAULT;
3380 return 0;
3381}
3382
3383static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
3384 unsigned nr_args)
3385{
3386 struct vm_area_struct **vmas = NULL;
3387 struct page **pages = NULL;
3388 int i, j, got_pages = 0;
3389 int ret = -EINVAL;
3390
3391 if (ctx->user_bufs)
3392 return -EBUSY;
3393 if (!nr_args || nr_args > UIO_MAXIOV)
3394 return -EINVAL;
3395
3396 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
3397 GFP_KERNEL);
3398 if (!ctx->user_bufs)
3399 return -ENOMEM;
3400
3401 for (i = 0; i < nr_args; i++) {
3402 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
3403 unsigned long off, start, end, ubuf;
3404 int pret, nr_pages;
3405 struct iovec iov;
3406 size_t size;
3407
3408 ret = io_copy_iov(ctx, &iov, arg, i);
3409 if (ret)
3410 goto err;
3411
3412 /*
3413 * Don't impose further limits on the size and buffer
3414 * constraints here, we'll -EINVAL later when IO is
3415 * submitted if they are wrong.
3416 */
3417 ret = -EFAULT;
3418 if (!iov.iov_base || !iov.iov_len)
3419 goto err;
3420
3421 /* arbitrary limit, but we need something */
3422 if (iov.iov_len > SZ_1G)
3423 goto err;
3424
3425 ubuf = (unsigned long) iov.iov_base;
3426 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3427 start = ubuf >> PAGE_SHIFT;
3428 nr_pages = end - start;
3429
3430 if (ctx->account_mem) {
3431 ret = io_account_mem(ctx->user, nr_pages);
3432 if (ret)
3433 goto err;
3434 }
3435
3436 ret = 0;
3437 if (!pages || nr_pages > got_pages) {
3438 kfree(vmas);
3439 kfree(pages);
3440 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
3441 GFP_KERNEL);
3442 vmas = kvmalloc_array(nr_pages,
3443 sizeof(struct vm_area_struct *),
3444 GFP_KERNEL);
3445 if (!pages || !vmas) {
3446 ret = -ENOMEM;
3447 if (ctx->account_mem)
3448 io_unaccount_mem(ctx->user, nr_pages);
3449 goto err;
3450 }
3451 got_pages = nr_pages;
3452 }
3453
3454 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
3455 GFP_KERNEL);
3456 ret = -ENOMEM;
3457 if (!imu->bvec) {
3458 if (ctx->account_mem)
3459 io_unaccount_mem(ctx->user, nr_pages);
3460 goto err;
3461 }
3462
3463 ret = 0;
3464 down_read(&current->mm->mmap_sem);
3465 pret = get_user_pages(ubuf, nr_pages,
3466 FOLL_WRITE | FOLL_LONGTERM,
3467 pages, vmas);
3468 if (pret == nr_pages) {
3469 /* don't support file backed memory */
3470 for (j = 0; j < nr_pages; j++) {
3471 struct vm_area_struct *vma = vmas[j];
3472
3473 if (vma->vm_file &&
3474 !is_file_hugepages(vma->vm_file)) {
3475 ret = -EOPNOTSUPP;
3476 break;
3477 }
3478 }
3479 } else {
3480 ret = pret < 0 ? pret : -EFAULT;
3481 }
3482 up_read(&current->mm->mmap_sem);
3483 if (ret) {
3484 /*
3485 * if we did partial map, or found file backed vmas,
3486 * release any pages we did get
3487 */
3488 if (pret > 0)
3489 put_user_pages(pages, pret);
3490 if (ctx->account_mem)
3491 io_unaccount_mem(ctx->user, nr_pages);
3492 kvfree(imu->bvec);
3493 goto err;
3494 }
3495
3496 off = ubuf & ~PAGE_MASK;
3497 size = iov.iov_len;
3498 for (j = 0; j < nr_pages; j++) {
3499 size_t vec_len;
3500
3501 vec_len = min_t(size_t, size, PAGE_SIZE - off);
3502 imu->bvec[j].bv_page = pages[j];
3503 imu->bvec[j].bv_len = vec_len;
3504 imu->bvec[j].bv_offset = off;
3505 off = 0;
3506 size -= vec_len;
3507 }
3508 /* store original address for later verification */
3509 imu->ubuf = ubuf;
3510 imu->len = iov.iov_len;
3511 imu->nr_bvecs = nr_pages;
3512
3513 ctx->nr_user_bufs++;
3514 }
3515 kvfree(pages);
3516 kvfree(vmas);
3517 return 0;
3518err:
3519 kvfree(pages);
3520 kvfree(vmas);
3521 io_sqe_buffer_unregister(ctx);
3522 return ret;
3523}
3524
3525static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
3526{
3527 __s32 __user *fds = arg;
3528 int fd;
3529
3530 if (ctx->cq_ev_fd)
3531 return -EBUSY;
3532
3533 if (copy_from_user(&fd, fds, sizeof(*fds)))
3534 return -EFAULT;
3535
3536 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
3537 if (IS_ERR(ctx->cq_ev_fd)) {
3538 int ret = PTR_ERR(ctx->cq_ev_fd);
3539 ctx->cq_ev_fd = NULL;
3540 return ret;
3541 }
3542
3543 return 0;
3544}
3545
3546static int io_eventfd_unregister(struct io_ring_ctx *ctx)
3547{
3548 if (ctx->cq_ev_fd) {
3549 eventfd_ctx_put(ctx->cq_ev_fd);
3550 ctx->cq_ev_fd = NULL;
3551 return 0;
3552 }
3553
3554 return -ENXIO;
3555}
3556
3557static void io_ring_ctx_free(struct io_ring_ctx *ctx)
3558{
3559 io_finish_async(ctx);
3560 if (ctx->sqo_mm)
3561 mmdrop(ctx->sqo_mm);
3562
3563 io_iopoll_reap_events(ctx);
3564 io_sqe_buffer_unregister(ctx);
3565 io_sqe_files_unregister(ctx);
3566 io_eventfd_unregister(ctx);
3567
3568#if defined(CONFIG_UNIX)
3569 if (ctx->ring_sock) {
3570 ctx->ring_sock->file = NULL; /* so that iput() is called */
3571 sock_release(ctx->ring_sock);
3572 }
3573#endif
3574
3575 io_mem_free(ctx->rings);
3576 io_mem_free(ctx->sq_sqes);
3577
3578 percpu_ref_exit(&ctx->refs);
3579 if (ctx->account_mem)
3580 io_unaccount_mem(ctx->user,
3581 ring_pages(ctx->sq_entries, ctx->cq_entries));
3582 free_uid(ctx->user);
3583 if (ctx->creds)
3584 put_cred(ctx->creds);
3585 kfree(ctx);
3586}
3587
3588static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3589{
3590 struct io_ring_ctx *ctx = file->private_data;
3591 __poll_t mask = 0;
3592
3593 poll_wait(file, &ctx->cq_wait, wait);
3594 /*
3595 * synchronizes with barrier from wq_has_sleeper call in
3596 * io_commit_cqring
3597 */
3598 smp_rmb();
3599 if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head !=
3600 ctx->rings->sq_ring_entries)
3601 mask |= EPOLLOUT | EPOLLWRNORM;
3602 if (READ_ONCE(ctx->rings->cq.head) != ctx->cached_cq_tail)
3603 mask |= EPOLLIN | EPOLLRDNORM;
3604
3605 return mask;
3606}
3607
3608static int io_uring_fasync(int fd, struct file *file, int on)
3609{
3610 struct io_ring_ctx *ctx = file->private_data;
3611
3612 return fasync_helper(fd, file, on, &ctx->cq_fasync);
3613}
3614
3615static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3616{
3617 mutex_lock(&ctx->uring_lock);
3618 percpu_ref_kill(&ctx->refs);
3619 mutex_unlock(&ctx->uring_lock);
3620
3621 io_kill_timeouts(ctx);
3622 io_poll_remove_all(ctx);
3623 io_iopoll_reap_events(ctx);
3624 wait_for_completion(&ctx->ctx_done);
3625 io_ring_ctx_free(ctx);
3626}
3627
3628static int io_uring_release(struct inode *inode, struct file *file)
3629{
3630 struct io_ring_ctx *ctx = file->private_data;
3631
3632 file->private_data = NULL;
3633 io_ring_ctx_wait_and_kill(ctx);
3634 return 0;
3635}
3636
3637static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3638{
3639 loff_t offset = (loff_t) vma->vm_pgoff << PAGE_SHIFT;
3640 unsigned long sz = vma->vm_end - vma->vm_start;
3641 struct io_ring_ctx *ctx = file->private_data;
3642 unsigned long pfn;
3643 struct page *page;
3644 void *ptr;
3645
3646 switch (offset) {
3647 case IORING_OFF_SQ_RING:
3648 case IORING_OFF_CQ_RING:
3649 ptr = ctx->rings;
3650 break;
3651 case IORING_OFF_SQES:
3652 ptr = ctx->sq_sqes;
3653 break;
3654 default:
3655 return -EINVAL;
3656 }
3657
3658 page = virt_to_head_page(ptr);
3659 if (sz > page_size(page))
3660 return -EINVAL;
3661
3662 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3663 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3664}
3665
3666SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3667 u32, min_complete, u32, flags, const sigset_t __user *, sig,
3668 size_t, sigsz)
3669{
3670 struct io_ring_ctx *ctx;
3671 long ret = -EBADF;
3672 int submitted = 0;
3673 struct fd f;
3674
3675 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
3676 return -EINVAL;
3677
3678 f = fdget(fd);
3679 if (!f.file)
3680 return -EBADF;
3681
3682 ret = -EOPNOTSUPP;
3683 if (f.file->f_op != &io_uring_fops)
3684 goto out_fput;
3685
3686 ret = -ENXIO;
3687 ctx = f.file->private_data;
3688 if (!percpu_ref_tryget(&ctx->refs))
3689 goto out_fput;
3690
3691 /*
3692 * For SQ polling, the thread will do all submissions and completions.
3693 * Just return the requested submit count, and wake the thread if
3694 * we were asked to.
3695 */
3696 ret = 0;
3697 if (ctx->flags & IORING_SETUP_SQPOLL) {
3698 if (flags & IORING_ENTER_SQ_WAKEUP)
3699 wake_up(&ctx->sqo_wait);
3700 submitted = to_submit;
3701 } else if (to_submit) {
3702 to_submit = min(to_submit, ctx->sq_entries);
3703
3704 mutex_lock(&ctx->uring_lock);
3705 submitted = io_ring_submit(ctx, to_submit);
3706 mutex_unlock(&ctx->uring_lock);
3707 }
3708 if (flags & IORING_ENTER_GETEVENTS) {
3709 unsigned nr_events = 0;
3710
3711 min_complete = min(min_complete, ctx->cq_entries);
3712
3713 if (ctx->flags & IORING_SETUP_IOPOLL) {
3714 ret = io_iopoll_check(ctx, &nr_events, min_complete);
3715 } else {
3716 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
3717 }
3718 }
3719
3720 percpu_ref_put(&ctx->refs);
3721out_fput:
3722 fdput(f);
3723 return submitted ? submitted : ret;
3724}
3725
3726static const struct file_operations io_uring_fops = {
3727 .release = io_uring_release,
3728 .mmap = io_uring_mmap,
3729 .poll = io_uring_poll,
3730 .fasync = io_uring_fasync,
3731};
3732
3733static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3734 struct io_uring_params *p)
3735{
3736 struct io_rings *rings;
3737 size_t size, sq_array_offset;
3738
3739 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
3740 if (size == SIZE_MAX)
3741 return -EOVERFLOW;
3742
3743 rings = io_mem_alloc(size);
3744 if (!rings)
3745 return -ENOMEM;
3746
3747 ctx->rings = rings;
3748 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3749 rings->sq_ring_mask = p->sq_entries - 1;
3750 rings->cq_ring_mask = p->cq_entries - 1;
3751 rings->sq_ring_entries = p->sq_entries;
3752 rings->cq_ring_entries = p->cq_entries;
3753 ctx->sq_mask = rings->sq_ring_mask;
3754 ctx->cq_mask = rings->cq_ring_mask;
3755 ctx->sq_entries = rings->sq_ring_entries;
3756 ctx->cq_entries = rings->cq_ring_entries;
3757
3758 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3759 if (size == SIZE_MAX)
3760 return -EOVERFLOW;
3761
3762 ctx->sq_sqes = io_mem_alloc(size);
3763 if (!ctx->sq_sqes)
3764 return -ENOMEM;
3765
3766 return 0;
3767}
3768
3769/*
3770 * Allocate an anonymous fd, this is what constitutes the application
3771 * visible backing of an io_uring instance. The application mmaps this
3772 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3773 * we have to tie this fd to a socket for file garbage collection purposes.
3774 */
3775static int io_uring_get_fd(struct io_ring_ctx *ctx)
3776{
3777 struct file *file;
3778 int ret;
3779
3780#if defined(CONFIG_UNIX)
3781 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3782 &ctx->ring_sock);
3783 if (ret)
3784 return ret;
3785#endif
3786
3787 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3788 if (ret < 0)
3789 goto err;
3790
3791 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
3792 O_RDWR | O_CLOEXEC);
3793 if (IS_ERR(file)) {
3794 put_unused_fd(ret);
3795 ret = PTR_ERR(file);
3796 goto err;
3797 }
3798
3799#if defined(CONFIG_UNIX)
3800 ctx->ring_sock->file = file;
3801 ctx->ring_sock->sk->sk_user_data = ctx;
3802#endif
3803 fd_install(ret, file);
3804 return ret;
3805err:
3806#if defined(CONFIG_UNIX)
3807 sock_release(ctx->ring_sock);
3808 ctx->ring_sock = NULL;
3809#endif
3810 return ret;
3811}
3812
3813static int io_uring_create(unsigned entries, struct io_uring_params *p)
3814{
3815 struct user_struct *user = NULL;
3816 struct io_ring_ctx *ctx;
3817 bool account_mem;
3818 int ret;
3819
3820 if (!entries || entries > IORING_MAX_ENTRIES)
3821 return -EINVAL;
3822
3823 /*
3824 * Use twice as many entries for the CQ ring. It's possible for the
3825 * application to drive a higher depth than the size of the SQ ring,
3826 * since the sqes are only used at submission time. This allows for
3827 * some flexibility in overcommitting a bit.
3828 */
3829 p->sq_entries = roundup_pow_of_two(entries);
3830 p->cq_entries = 2 * p->sq_entries;
3831
3832 user = get_uid(current_user());
3833 account_mem = !capable(CAP_IPC_LOCK);
3834
3835 if (account_mem) {
3836 ret = io_account_mem(user,
3837 ring_pages(p->sq_entries, p->cq_entries));
3838 if (ret) {
3839 free_uid(user);
3840 return ret;
3841 }
3842 }
3843
3844 ctx = io_ring_ctx_alloc(p);
3845 if (!ctx) {
3846 if (account_mem)
3847 io_unaccount_mem(user, ring_pages(p->sq_entries,
3848 p->cq_entries));
3849 free_uid(user);
3850 return -ENOMEM;
3851 }
3852 ctx->compat = in_compat_syscall();
3853 ctx->account_mem = account_mem;
3854 ctx->user = user;
3855
3856 ctx->creds = prepare_creds();
3857 if (!ctx->creds) {
3858 ret = -ENOMEM;
3859 goto err;
3860 }
3861
3862 ret = io_allocate_scq_urings(ctx, p);
3863 if (ret)
3864 goto err;
3865
3866 ret = io_sq_offload_start(ctx, p);
3867 if (ret)
3868 goto err;
3869
3870 memset(&p->sq_off, 0, sizeof(p->sq_off));
3871 p->sq_off.head = offsetof(struct io_rings, sq.head);
3872 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3873 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3874 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3875 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3876 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3877 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3878
3879 memset(&p->cq_off, 0, sizeof(p->cq_off));
3880 p->cq_off.head = offsetof(struct io_rings, cq.head);
3881 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3882 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3883 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3884 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3885 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3886
3887 /*
3888 * Install ring fd as the very last thing, so we don't risk someone
3889 * having closed it before we finish setup
3890 */
3891 ret = io_uring_get_fd(ctx);
3892 if (ret < 0)
3893 goto err;
3894
3895 p->features = IORING_FEAT_SINGLE_MMAP;
3896 return ret;
3897err:
3898 io_ring_ctx_wait_and_kill(ctx);
3899 return ret;
3900}
3901
3902/*
3903 * Sets up an aio uring context, and returns the fd. Applications asks for a
3904 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3905 * params structure passed in.
3906 */
3907static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3908{
3909 struct io_uring_params p;
3910 long ret;
3911 int i;
3912
3913 if (copy_from_user(&p, params, sizeof(p)))
3914 return -EFAULT;
3915 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3916 if (p.resv[i])
3917 return -EINVAL;
3918 }
3919
3920 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3921 IORING_SETUP_SQ_AFF))
3922 return -EINVAL;
3923
3924 ret = io_uring_create(entries, &p);
3925 if (ret < 0)
3926 return ret;
3927
3928 if (copy_to_user(params, &p, sizeof(p)))
3929 return -EFAULT;
3930
3931 return ret;
3932}
3933
3934SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3935 struct io_uring_params __user *, params)
3936{
3937 return io_uring_setup(entries, params);
3938}
3939
3940static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3941 void __user *arg, unsigned nr_args)
3942 __releases(ctx->uring_lock)
3943 __acquires(ctx->uring_lock)
3944{
3945 int ret;
3946
3947 /*
3948 * We're inside the ring mutex, if the ref is already dying, then
3949 * someone else killed the ctx or is already going through
3950 * io_uring_register().
3951 */
3952 if (percpu_ref_is_dying(&ctx->refs))
3953 return -ENXIO;
3954
3955 percpu_ref_kill(&ctx->refs);
3956
3957 /*
3958 * Drop uring mutex before waiting for references to exit. If another
3959 * thread is currently inside io_uring_enter() it might need to grab
3960 * the uring_lock to make progress. If we hold it here across the drain
3961 * wait, then we can deadlock. It's safe to drop the mutex here, since
3962 * no new references will come in after we've killed the percpu ref.
3963 */
3964 mutex_unlock(&ctx->uring_lock);
3965 wait_for_completion(&ctx->ctx_done);
3966 mutex_lock(&ctx->uring_lock);
3967
3968 switch (opcode) {
3969 case IORING_REGISTER_BUFFERS:
3970 ret = io_sqe_buffer_register(ctx, arg, nr_args);
3971 break;
3972 case IORING_UNREGISTER_BUFFERS:
3973 ret = -EINVAL;
3974 if (arg || nr_args)
3975 break;
3976 ret = io_sqe_buffer_unregister(ctx);
3977 break;
3978 case IORING_REGISTER_FILES:
3979 ret = io_sqe_files_register(ctx, arg, nr_args);
3980 break;
3981 case IORING_UNREGISTER_FILES:
3982 ret = -EINVAL;
3983 if (arg || nr_args)
3984 break;
3985 ret = io_sqe_files_unregister(ctx);
3986 break;
3987 case IORING_REGISTER_EVENTFD:
3988 ret = -EINVAL;
3989 if (nr_args != 1)
3990 break;
3991 ret = io_eventfd_register(ctx, arg);
3992 break;
3993 case IORING_UNREGISTER_EVENTFD:
3994 ret = -EINVAL;
3995 if (arg || nr_args)
3996 break;
3997 ret = io_eventfd_unregister(ctx);
3998 break;
3999 default:
4000 ret = -EINVAL;
4001 break;
4002 }
4003
4004 /* bring the ctx back to life */
4005 reinit_completion(&ctx->ctx_done);
4006 percpu_ref_reinit(&ctx->refs);
4007 return ret;
4008}
4009
4010SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4011 void __user *, arg, unsigned int, nr_args)
4012{
4013 struct io_ring_ctx *ctx;
4014 long ret = -EBADF;
4015 struct fd f;
4016
4017 f = fdget(fd);
4018 if (!f.file)
4019 return -EBADF;
4020
4021 ret = -EOPNOTSUPP;
4022 if (f.file->f_op != &io_uring_fops)
4023 goto out_fput;
4024
4025 ctx = f.file->private_data;
4026
4027 mutex_lock(&ctx->uring_lock);
4028 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4029 mutex_unlock(&ctx->uring_lock);
4030out_fput:
4031 fdput(f);
4032 return ret;
4033}
4034
4035static int __init io_uring_init(void)
4036{
4037 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
4038 return 0;
4039};
4040__initcall(io_uring_init);