David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Filesystem-level keyring for fscrypt |
| 4 | * |
| 5 | * Copyright 2019 Google LLC |
| 6 | */ |
| 7 | |
| 8 | /* |
| 9 | * This file implements management of fscrypt master keys in the |
| 10 | * filesystem-level keyring, including the ioctls: |
| 11 | * |
| 12 | * - FS_IOC_ADD_ENCRYPTION_KEY |
| 13 | * - FS_IOC_REMOVE_ENCRYPTION_KEY |
| 14 | * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS |
| 15 | * - FS_IOC_GET_ENCRYPTION_KEY_STATUS |
| 16 | * |
| 17 | * See the "User API" section of Documentation/filesystems/fscrypt.rst for more |
| 18 | * information about these ioctls. |
| 19 | */ |
| 20 | |
| 21 | #include <crypto/skcipher.h> |
| 22 | #include <linux/key-type.h> |
| 23 | #include <linux/seq_file.h> |
| 24 | |
| 25 | #include "fscrypt_private.h" |
| 26 | |
| 27 | static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) |
| 28 | { |
| 29 | fscrypt_destroy_hkdf(&secret->hkdf); |
| 30 | memzero_explicit(secret, sizeof(*secret)); |
| 31 | } |
| 32 | |
| 33 | static void move_master_key_secret(struct fscrypt_master_key_secret *dst, |
| 34 | struct fscrypt_master_key_secret *src) |
| 35 | { |
| 36 | memcpy(dst, src, sizeof(*dst)); |
| 37 | memzero_explicit(src, sizeof(*src)); |
| 38 | } |
| 39 | |
| 40 | static void free_master_key(struct fscrypt_master_key *mk) |
| 41 | { |
| 42 | size_t i; |
| 43 | |
| 44 | wipe_master_key_secret(&mk->mk_secret); |
| 45 | |
| 46 | for (i = 0; i < ARRAY_SIZE(mk->mk_mode_keys); i++) |
| 47 | crypto_free_skcipher(mk->mk_mode_keys[i]); |
| 48 | |
| 49 | key_put(mk->mk_users); |
| 50 | kzfree(mk); |
| 51 | } |
| 52 | |
| 53 | static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) |
| 54 | { |
| 55 | if (spec->__reserved) |
| 56 | return false; |
| 57 | return master_key_spec_len(spec) != 0; |
| 58 | } |
| 59 | |
| 60 | static int fscrypt_key_instantiate(struct key *key, |
| 61 | struct key_preparsed_payload *prep) |
| 62 | { |
| 63 | key->payload.data[0] = (struct fscrypt_master_key *)prep->data; |
| 64 | return 0; |
| 65 | } |
| 66 | |
| 67 | static void fscrypt_key_destroy(struct key *key) |
| 68 | { |
| 69 | free_master_key(key->payload.data[0]); |
| 70 | } |
| 71 | |
| 72 | static void fscrypt_key_describe(const struct key *key, struct seq_file *m) |
| 73 | { |
| 74 | seq_puts(m, key->description); |
| 75 | |
| 76 | if (key_is_positive(key)) { |
| 77 | const struct fscrypt_master_key *mk = key->payload.data[0]; |
| 78 | |
| 79 | if (!is_master_key_secret_present(&mk->mk_secret)) |
| 80 | seq_puts(m, ": secret removed"); |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | /* |
| 85 | * Type of key in ->s_master_keys. Each key of this type represents a master |
| 86 | * key which has been added to the filesystem. Its payload is a |
| 87 | * 'struct fscrypt_master_key'. The "." prefix in the key type name prevents |
| 88 | * users from adding keys of this type via the keyrings syscalls rather than via |
| 89 | * the intended method of FS_IOC_ADD_ENCRYPTION_KEY. |
| 90 | */ |
| 91 | static struct key_type key_type_fscrypt = { |
| 92 | .name = "._fscrypt", |
| 93 | .instantiate = fscrypt_key_instantiate, |
| 94 | .destroy = fscrypt_key_destroy, |
| 95 | .describe = fscrypt_key_describe, |
| 96 | }; |
| 97 | |
| 98 | static int fscrypt_user_key_instantiate(struct key *key, |
| 99 | struct key_preparsed_payload *prep) |
| 100 | { |
| 101 | /* |
| 102 | * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for |
| 103 | * each key, regardless of the exact key size. The amount of memory |
| 104 | * actually used is greater than the size of the raw key anyway. |
| 105 | */ |
| 106 | return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE); |
| 107 | } |
| 108 | |
| 109 | static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) |
| 110 | { |
| 111 | seq_puts(m, key->description); |
| 112 | } |
| 113 | |
| 114 | /* |
| 115 | * Type of key in ->mk_users. Each key of this type represents a particular |
| 116 | * user who has added a particular master key. |
| 117 | * |
| 118 | * Note that the name of this key type really should be something like |
| 119 | * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen |
| 120 | * mainly for simplicity of presentation in /proc/keys when read by a non-root |
| 121 | * user. And it is expected to be rare that a key is actually added by multiple |
| 122 | * users, since users should keep their encryption keys confidential. |
| 123 | */ |
| 124 | static struct key_type key_type_fscrypt_user = { |
| 125 | .name = ".fscrypt", |
| 126 | .instantiate = fscrypt_user_key_instantiate, |
| 127 | .describe = fscrypt_user_key_describe, |
| 128 | }; |
| 129 | |
| 130 | /* Search ->s_master_keys or ->mk_users */ |
| 131 | static struct key *search_fscrypt_keyring(struct key *keyring, |
| 132 | struct key_type *type, |
| 133 | const char *description) |
| 134 | { |
| 135 | /* |
| 136 | * We need to mark the keyring reference as "possessed" so that we |
| 137 | * acquire permission to search it, via the KEY_POS_SEARCH permission. |
| 138 | */ |
| 139 | key_ref_t keyref = make_key_ref(keyring, true /* possessed */); |
| 140 | |
| 141 | keyref = keyring_search(keyref, type, description, false); |
| 142 | if (IS_ERR(keyref)) { |
| 143 | if (PTR_ERR(keyref) == -EAGAIN || /* not found */ |
| 144 | PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ |
| 145 | keyref = ERR_PTR(-ENOKEY); |
| 146 | return ERR_CAST(keyref); |
| 147 | } |
| 148 | return key_ref_to_ptr(keyref); |
| 149 | } |
| 150 | |
| 151 | #define FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE \ |
| 152 | (CONST_STRLEN("fscrypt-") + FIELD_SIZEOF(struct super_block, s_id)) |
| 153 | |
| 154 | #define FSCRYPT_MK_DESCRIPTION_SIZE (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + 1) |
| 155 | |
| 156 | #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ |
| 157 | (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ |
| 158 | CONST_STRLEN("-users") + 1) |
| 159 | |
| 160 | #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ |
| 161 | (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) |
| 162 | |
| 163 | static void format_fs_keyring_description( |
| 164 | char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE], |
| 165 | const struct super_block *sb) |
| 166 | { |
| 167 | sprintf(description, "fscrypt-%s", sb->s_id); |
| 168 | } |
| 169 | |
| 170 | static void format_mk_description( |
| 171 | char description[FSCRYPT_MK_DESCRIPTION_SIZE], |
| 172 | const struct fscrypt_key_specifier *mk_spec) |
| 173 | { |
| 174 | sprintf(description, "%*phN", |
| 175 | master_key_spec_len(mk_spec), (u8 *)&mk_spec->u); |
| 176 | } |
| 177 | |
| 178 | static void format_mk_users_keyring_description( |
| 179 | char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], |
| 180 | const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) |
| 181 | { |
| 182 | sprintf(description, "fscrypt-%*phN-users", |
| 183 | FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); |
| 184 | } |
| 185 | |
| 186 | static void format_mk_user_description( |
| 187 | char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], |
| 188 | const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) |
| 189 | { |
| 190 | |
| 191 | sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, |
| 192 | mk_identifier, __kuid_val(current_fsuid())); |
| 193 | } |
| 194 | |
| 195 | /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ |
| 196 | static int allocate_filesystem_keyring(struct super_block *sb) |
| 197 | { |
| 198 | char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE]; |
| 199 | struct key *keyring; |
| 200 | |
| 201 | if (sb->s_master_keys) |
| 202 | return 0; |
| 203 | |
| 204 | format_fs_keyring_description(description, sb); |
| 205 | keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, |
| 206 | current_cred(), KEY_POS_SEARCH | |
| 207 | KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, |
| 208 | KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); |
| 209 | if (IS_ERR(keyring)) |
| 210 | return PTR_ERR(keyring); |
| 211 | |
| 212 | /* Pairs with READ_ONCE() in fscrypt_find_master_key() */ |
| 213 | smp_store_release(&sb->s_master_keys, keyring); |
| 214 | return 0; |
| 215 | } |
| 216 | |
| 217 | void fscrypt_sb_free(struct super_block *sb) |
| 218 | { |
| 219 | key_put(sb->s_master_keys); |
| 220 | sb->s_master_keys = NULL; |
| 221 | } |
| 222 | |
| 223 | /* |
| 224 | * Find the specified master key in ->s_master_keys. |
| 225 | * Returns ERR_PTR(-ENOKEY) if not found. |
| 226 | */ |
| 227 | struct key *fscrypt_find_master_key(struct super_block *sb, |
| 228 | const struct fscrypt_key_specifier *mk_spec) |
| 229 | { |
| 230 | struct key *keyring; |
| 231 | char description[FSCRYPT_MK_DESCRIPTION_SIZE]; |
| 232 | |
| 233 | /* pairs with smp_store_release() in allocate_filesystem_keyring() */ |
| 234 | keyring = READ_ONCE(sb->s_master_keys); |
| 235 | if (keyring == NULL) |
| 236 | return ERR_PTR(-ENOKEY); /* No keyring yet, so no keys yet. */ |
| 237 | |
| 238 | format_mk_description(description, mk_spec); |
| 239 | return search_fscrypt_keyring(keyring, &key_type_fscrypt, description); |
| 240 | } |
| 241 | |
| 242 | static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) |
| 243 | { |
| 244 | char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; |
| 245 | struct key *keyring; |
| 246 | |
| 247 | format_mk_users_keyring_description(description, |
| 248 | mk->mk_spec.u.identifier); |
| 249 | keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, |
| 250 | current_cred(), KEY_POS_SEARCH | |
| 251 | KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, |
| 252 | KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); |
| 253 | if (IS_ERR(keyring)) |
| 254 | return PTR_ERR(keyring); |
| 255 | |
| 256 | mk->mk_users = keyring; |
| 257 | return 0; |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | * Find the current user's "key" in the master key's ->mk_users. |
| 262 | * Returns ERR_PTR(-ENOKEY) if not found. |
| 263 | */ |
| 264 | static struct key *find_master_key_user(struct fscrypt_master_key *mk) |
| 265 | { |
| 266 | char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; |
| 267 | |
| 268 | format_mk_user_description(description, mk->mk_spec.u.identifier); |
| 269 | return search_fscrypt_keyring(mk->mk_users, &key_type_fscrypt_user, |
| 270 | description); |
| 271 | } |
| 272 | |
| 273 | /* |
| 274 | * Give the current user a "key" in ->mk_users. This charges the user's quota |
| 275 | * and marks the master key as added by the current user, so that it cannot be |
| 276 | * removed by another user with the key. Either the master key's key->sem must |
| 277 | * be held for write, or the master key must be still undergoing initialization. |
| 278 | */ |
| 279 | static int add_master_key_user(struct fscrypt_master_key *mk) |
| 280 | { |
| 281 | char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; |
| 282 | struct key *mk_user; |
| 283 | int err; |
| 284 | |
| 285 | format_mk_user_description(description, mk->mk_spec.u.identifier); |
| 286 | mk_user = key_alloc(&key_type_fscrypt_user, description, |
| 287 | current_fsuid(), current_gid(), current_cred(), |
| 288 | KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); |
| 289 | if (IS_ERR(mk_user)) |
| 290 | return PTR_ERR(mk_user); |
| 291 | |
| 292 | err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); |
| 293 | key_put(mk_user); |
| 294 | return err; |
| 295 | } |
| 296 | |
| 297 | /* |
| 298 | * Remove the current user's "key" from ->mk_users. |
| 299 | * The master key's key->sem must be held for write. |
| 300 | * |
| 301 | * Returns 0 if removed, -ENOKEY if not found, or another -errno code. |
| 302 | */ |
| 303 | static int remove_master_key_user(struct fscrypt_master_key *mk) |
| 304 | { |
| 305 | struct key *mk_user; |
| 306 | int err; |
| 307 | |
| 308 | mk_user = find_master_key_user(mk); |
| 309 | if (IS_ERR(mk_user)) |
| 310 | return PTR_ERR(mk_user); |
| 311 | err = key_unlink(mk->mk_users, mk_user); |
| 312 | key_put(mk_user); |
| 313 | return err; |
| 314 | } |
| 315 | |
| 316 | /* |
| 317 | * Allocate a new fscrypt_master_key which contains the given secret, set it as |
| 318 | * the payload of a new 'struct key' of type fscrypt, and link the 'struct key' |
| 319 | * into the given keyring. Synchronized by fscrypt_add_key_mutex. |
| 320 | */ |
| 321 | static int add_new_master_key(struct fscrypt_master_key_secret *secret, |
| 322 | const struct fscrypt_key_specifier *mk_spec, |
| 323 | struct key *keyring) |
| 324 | { |
| 325 | struct fscrypt_master_key *mk; |
| 326 | char description[FSCRYPT_MK_DESCRIPTION_SIZE]; |
| 327 | struct key *key; |
| 328 | int err; |
| 329 | |
| 330 | mk = kzalloc(sizeof(*mk), GFP_KERNEL); |
| 331 | if (!mk) |
| 332 | return -ENOMEM; |
| 333 | |
| 334 | mk->mk_spec = *mk_spec; |
| 335 | |
| 336 | move_master_key_secret(&mk->mk_secret, secret); |
| 337 | init_rwsem(&mk->mk_secret_sem); |
| 338 | |
| 339 | refcount_set(&mk->mk_refcount, 1); /* secret is present */ |
| 340 | INIT_LIST_HEAD(&mk->mk_decrypted_inodes); |
| 341 | spin_lock_init(&mk->mk_decrypted_inodes_lock); |
| 342 | |
| 343 | if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { |
| 344 | err = allocate_master_key_users_keyring(mk); |
| 345 | if (err) |
| 346 | goto out_free_mk; |
| 347 | err = add_master_key_user(mk); |
| 348 | if (err) |
| 349 | goto out_free_mk; |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * Note that we don't charge this key to anyone's quota, since when |
| 354 | * ->mk_users is in use those keys are charged instead, and otherwise |
| 355 | * (when ->mk_users isn't in use) only root can add these keys. |
| 356 | */ |
| 357 | format_mk_description(description, mk_spec); |
| 358 | key = key_alloc(&key_type_fscrypt, description, |
| 359 | GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(), |
| 360 | KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_VIEW, |
| 361 | KEY_ALLOC_NOT_IN_QUOTA, NULL); |
| 362 | if (IS_ERR(key)) { |
| 363 | err = PTR_ERR(key); |
| 364 | goto out_free_mk; |
| 365 | } |
| 366 | err = key_instantiate_and_link(key, mk, sizeof(*mk), keyring, NULL); |
| 367 | key_put(key); |
| 368 | if (err) |
| 369 | goto out_free_mk; |
| 370 | |
| 371 | return 0; |
| 372 | |
| 373 | out_free_mk: |
| 374 | free_master_key(mk); |
| 375 | return err; |
| 376 | } |
| 377 | |
| 378 | #define KEY_DEAD 1 |
| 379 | |
| 380 | static int add_existing_master_key(struct fscrypt_master_key *mk, |
| 381 | struct fscrypt_master_key_secret *secret) |
| 382 | { |
| 383 | struct key *mk_user; |
| 384 | bool rekey; |
| 385 | int err; |
| 386 | |
| 387 | /* |
| 388 | * If the current user is already in ->mk_users, then there's nothing to |
| 389 | * do. (Not applicable for v1 policy keys, which have NULL ->mk_users.) |
| 390 | */ |
| 391 | if (mk->mk_users) { |
| 392 | mk_user = find_master_key_user(mk); |
| 393 | if (mk_user != ERR_PTR(-ENOKEY)) { |
| 394 | if (IS_ERR(mk_user)) |
| 395 | return PTR_ERR(mk_user); |
| 396 | key_put(mk_user); |
| 397 | return 0; |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | /* If we'll be re-adding ->mk_secret, try to take the reference. */ |
| 402 | rekey = !is_master_key_secret_present(&mk->mk_secret); |
| 403 | if (rekey && !refcount_inc_not_zero(&mk->mk_refcount)) |
| 404 | return KEY_DEAD; |
| 405 | |
| 406 | /* Add the current user to ->mk_users, if applicable. */ |
| 407 | if (mk->mk_users) { |
| 408 | err = add_master_key_user(mk); |
| 409 | if (err) { |
| 410 | if (rekey && refcount_dec_and_test(&mk->mk_refcount)) |
| 411 | return KEY_DEAD; |
| 412 | return err; |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | /* Re-add the secret if needed. */ |
| 417 | if (rekey) { |
| 418 | down_write(&mk->mk_secret_sem); |
| 419 | move_master_key_secret(&mk->mk_secret, secret); |
| 420 | up_write(&mk->mk_secret_sem); |
| 421 | } |
| 422 | return 0; |
| 423 | } |
| 424 | |
| 425 | static int add_master_key(struct super_block *sb, |
| 426 | struct fscrypt_master_key_secret *secret, |
| 427 | const struct fscrypt_key_specifier *mk_spec) |
| 428 | { |
| 429 | static DEFINE_MUTEX(fscrypt_add_key_mutex); |
| 430 | struct key *key; |
| 431 | int err; |
| 432 | |
| 433 | mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ |
| 434 | retry: |
| 435 | key = fscrypt_find_master_key(sb, mk_spec); |
| 436 | if (IS_ERR(key)) { |
| 437 | err = PTR_ERR(key); |
| 438 | if (err != -ENOKEY) |
| 439 | goto out_unlock; |
| 440 | /* Didn't find the key in ->s_master_keys. Add it. */ |
| 441 | err = allocate_filesystem_keyring(sb); |
| 442 | if (err) |
| 443 | goto out_unlock; |
| 444 | err = add_new_master_key(secret, mk_spec, sb->s_master_keys); |
| 445 | } else { |
| 446 | /* |
| 447 | * Found the key in ->s_master_keys. Re-add the secret if |
| 448 | * needed, and add the user to ->mk_users if needed. |
| 449 | */ |
| 450 | down_write(&key->sem); |
| 451 | err = add_existing_master_key(key->payload.data[0], secret); |
| 452 | up_write(&key->sem); |
| 453 | if (err == KEY_DEAD) { |
| 454 | /* Key being removed or needs to be removed */ |
| 455 | key_invalidate(key); |
| 456 | key_put(key); |
| 457 | goto retry; |
| 458 | } |
| 459 | key_put(key); |
| 460 | } |
| 461 | out_unlock: |
| 462 | mutex_unlock(&fscrypt_add_key_mutex); |
| 463 | return err; |
| 464 | } |
| 465 | |
| 466 | /* |
| 467 | * Add a master encryption key to the filesystem, causing all files which were |
| 468 | * encrypted with it to appear "unlocked" (decrypted) when accessed. |
| 469 | * |
| 470 | * When adding a key for use by v1 encryption policies, this ioctl is |
| 471 | * privileged, and userspace must provide the 'key_descriptor'. |
| 472 | * |
| 473 | * When adding a key for use by v2+ encryption policies, this ioctl is |
| 474 | * unprivileged. This is needed, in general, to allow non-root users to use |
| 475 | * encryption without encountering the visibility problems of process-subscribed |
| 476 | * keyrings and the inability to properly remove keys. This works by having |
| 477 | * each key identified by its cryptographically secure hash --- the |
| 478 | * 'key_identifier'. The cryptographic hash ensures that a malicious user |
| 479 | * cannot add the wrong key for a given identifier. Furthermore, each added key |
| 480 | * is charged to the appropriate user's quota for the keyrings service, which |
| 481 | * prevents a malicious user from adding too many keys. Finally, we forbid a |
| 482 | * user from removing a key while other users have added it too, which prevents |
| 483 | * a user who knows another user's key from causing a denial-of-service by |
| 484 | * removing it at an inopportune time. (We tolerate that a user who knows a key |
| 485 | * can prevent other users from removing it.) |
| 486 | * |
| 487 | * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of |
| 488 | * Documentation/filesystems/fscrypt.rst. |
| 489 | */ |
| 490 | int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) |
| 491 | { |
| 492 | struct super_block *sb = file_inode(filp)->i_sb; |
| 493 | struct fscrypt_add_key_arg __user *uarg = _uarg; |
| 494 | struct fscrypt_add_key_arg arg; |
| 495 | struct fscrypt_master_key_secret secret; |
| 496 | int err; |
| 497 | |
| 498 | if (copy_from_user(&arg, uarg, sizeof(arg))) |
| 499 | return -EFAULT; |
| 500 | |
| 501 | if (!valid_key_spec(&arg.key_spec)) |
| 502 | return -EINVAL; |
| 503 | |
| 504 | if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || |
| 505 | arg.raw_size > FSCRYPT_MAX_KEY_SIZE) |
| 506 | return -EINVAL; |
| 507 | |
| 508 | if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) |
| 509 | return -EINVAL; |
| 510 | |
| 511 | memset(&secret, 0, sizeof(secret)); |
| 512 | secret.size = arg.raw_size; |
| 513 | err = -EFAULT; |
| 514 | if (copy_from_user(secret.raw, uarg->raw, secret.size)) |
| 515 | goto out_wipe_secret; |
| 516 | |
| 517 | switch (arg.key_spec.type) { |
| 518 | case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: |
| 519 | /* |
| 520 | * Only root can add keys that are identified by an arbitrary |
| 521 | * descriptor rather than by a cryptographic hash --- since |
| 522 | * otherwise a malicious user could add the wrong key. |
| 523 | */ |
| 524 | err = -EACCES; |
| 525 | if (!capable(CAP_SYS_ADMIN)) |
| 526 | goto out_wipe_secret; |
| 527 | break; |
| 528 | case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: |
| 529 | err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size); |
| 530 | if (err) |
| 531 | goto out_wipe_secret; |
| 532 | |
| 533 | /* |
| 534 | * Now that the HKDF context is initialized, the raw key is no |
| 535 | * longer needed. |
| 536 | */ |
| 537 | memzero_explicit(secret.raw, secret.size); |
| 538 | |
| 539 | /* Calculate the key identifier and return it to userspace. */ |
| 540 | err = fscrypt_hkdf_expand(&secret.hkdf, |
| 541 | HKDF_CONTEXT_KEY_IDENTIFIER, |
| 542 | NULL, 0, arg.key_spec.u.identifier, |
| 543 | FSCRYPT_KEY_IDENTIFIER_SIZE); |
| 544 | if (err) |
| 545 | goto out_wipe_secret; |
| 546 | err = -EFAULT; |
| 547 | if (copy_to_user(uarg->key_spec.u.identifier, |
| 548 | arg.key_spec.u.identifier, |
| 549 | FSCRYPT_KEY_IDENTIFIER_SIZE)) |
| 550 | goto out_wipe_secret; |
| 551 | break; |
| 552 | default: |
| 553 | WARN_ON(1); |
| 554 | err = -EINVAL; |
| 555 | goto out_wipe_secret; |
| 556 | } |
| 557 | |
| 558 | err = add_master_key(sb, &secret, &arg.key_spec); |
| 559 | out_wipe_secret: |
| 560 | wipe_master_key_secret(&secret); |
| 561 | return err; |
| 562 | } |
| 563 | EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); |
| 564 | |
| 565 | /* |
| 566 | * Verify that the current user has added a master key with the given identifier |
| 567 | * (returns -ENOKEY if not). This is needed to prevent a user from encrypting |
| 568 | * their files using some other user's key which they don't actually know. |
| 569 | * Cryptographically this isn't much of a problem, but the semantics of this |
| 570 | * would be a bit weird, so it's best to just forbid it. |
| 571 | * |
| 572 | * The system administrator (CAP_FOWNER) can override this, which should be |
| 573 | * enough for any use cases where encryption policies are being set using keys |
| 574 | * that were chosen ahead of time but aren't available at the moment. |
| 575 | * |
| 576 | * Note that the key may have already removed by the time this returns, but |
| 577 | * that's okay; we just care whether the key was there at some point. |
| 578 | * |
| 579 | * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code |
| 580 | */ |
| 581 | int fscrypt_verify_key_added(struct super_block *sb, |
| 582 | const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) |
| 583 | { |
| 584 | struct fscrypt_key_specifier mk_spec; |
| 585 | struct key *key, *mk_user; |
| 586 | struct fscrypt_master_key *mk; |
| 587 | int err; |
| 588 | |
| 589 | mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; |
| 590 | memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); |
| 591 | |
| 592 | key = fscrypt_find_master_key(sb, &mk_spec); |
| 593 | if (IS_ERR(key)) { |
| 594 | err = PTR_ERR(key); |
| 595 | goto out; |
| 596 | } |
| 597 | mk = key->payload.data[0]; |
| 598 | mk_user = find_master_key_user(mk); |
| 599 | if (IS_ERR(mk_user)) { |
| 600 | err = PTR_ERR(mk_user); |
| 601 | } else { |
| 602 | key_put(mk_user); |
| 603 | err = 0; |
| 604 | } |
| 605 | key_put(key); |
| 606 | out: |
| 607 | if (err == -ENOKEY && capable(CAP_FOWNER)) |
| 608 | err = 0; |
| 609 | return err; |
| 610 | } |
| 611 | |
| 612 | /* |
| 613 | * Try to evict the inode's dentries from the dentry cache. If the inode is a |
| 614 | * directory, then it can have at most one dentry; however, that dentry may be |
| 615 | * pinned by child dentries, so first try to evict the children too. |
| 616 | */ |
| 617 | static void shrink_dcache_inode(struct inode *inode) |
| 618 | { |
| 619 | struct dentry *dentry; |
| 620 | |
| 621 | if (S_ISDIR(inode->i_mode)) { |
| 622 | dentry = d_find_any_alias(inode); |
| 623 | if (dentry) { |
| 624 | shrink_dcache_parent(dentry); |
| 625 | dput(dentry); |
| 626 | } |
| 627 | } |
| 628 | d_prune_aliases(inode); |
| 629 | } |
| 630 | |
| 631 | static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) |
| 632 | { |
| 633 | struct fscrypt_info *ci; |
| 634 | struct inode *inode; |
| 635 | struct inode *toput_inode = NULL; |
| 636 | |
| 637 | spin_lock(&mk->mk_decrypted_inodes_lock); |
| 638 | |
| 639 | list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { |
| 640 | inode = ci->ci_inode; |
| 641 | spin_lock(&inode->i_lock); |
| 642 | if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { |
| 643 | spin_unlock(&inode->i_lock); |
| 644 | continue; |
| 645 | } |
| 646 | __iget(inode); |
| 647 | spin_unlock(&inode->i_lock); |
| 648 | spin_unlock(&mk->mk_decrypted_inodes_lock); |
| 649 | |
| 650 | shrink_dcache_inode(inode); |
| 651 | iput(toput_inode); |
| 652 | toput_inode = inode; |
| 653 | |
| 654 | spin_lock(&mk->mk_decrypted_inodes_lock); |
| 655 | } |
| 656 | |
| 657 | spin_unlock(&mk->mk_decrypted_inodes_lock); |
| 658 | iput(toput_inode); |
| 659 | } |
| 660 | |
| 661 | static int check_for_busy_inodes(struct super_block *sb, |
| 662 | struct fscrypt_master_key *mk) |
| 663 | { |
| 664 | struct list_head *pos; |
| 665 | size_t busy_count = 0; |
| 666 | unsigned long ino; |
| 667 | struct dentry *dentry; |
| 668 | char _path[256]; |
| 669 | char *path = NULL; |
| 670 | |
| 671 | spin_lock(&mk->mk_decrypted_inodes_lock); |
| 672 | |
| 673 | list_for_each(pos, &mk->mk_decrypted_inodes) |
| 674 | busy_count++; |
| 675 | |
| 676 | if (busy_count == 0) { |
| 677 | spin_unlock(&mk->mk_decrypted_inodes_lock); |
| 678 | return 0; |
| 679 | } |
| 680 | |
| 681 | { |
| 682 | /* select an example file to show for debugging purposes */ |
| 683 | struct inode *inode = |
| 684 | list_first_entry(&mk->mk_decrypted_inodes, |
| 685 | struct fscrypt_info, |
| 686 | ci_master_key_link)->ci_inode; |
| 687 | ino = inode->i_ino; |
| 688 | dentry = d_find_alias(inode); |
| 689 | } |
| 690 | spin_unlock(&mk->mk_decrypted_inodes_lock); |
| 691 | |
| 692 | if (dentry) { |
| 693 | path = dentry_path(dentry, _path, sizeof(_path)); |
| 694 | dput(dentry); |
| 695 | } |
| 696 | if (IS_ERR_OR_NULL(path)) |
| 697 | path = "(unknown)"; |
| 698 | |
| 699 | fscrypt_warn(NULL, |
| 700 | "%s: %zu inode(s) still busy after removing key with %s %*phN, including ino %lu (%s)", |
| 701 | sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), |
| 702 | master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, |
| 703 | ino, path); |
| 704 | return -EBUSY; |
| 705 | } |
| 706 | |
| 707 | static int try_to_lock_encrypted_files(struct super_block *sb, |
| 708 | struct fscrypt_master_key *mk) |
| 709 | { |
| 710 | int err1; |
| 711 | int err2; |
| 712 | |
| 713 | /* |
| 714 | * An inode can't be evicted while it is dirty or has dirty pages. |
| 715 | * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. |
| 716 | * |
| 717 | * Just do it the easy way: call sync_filesystem(). It's overkill, but |
| 718 | * it works, and it's more important to minimize the amount of caches we |
| 719 | * drop than the amount of data we sync. Also, unprivileged users can |
| 720 | * already call sync_filesystem() via sys_syncfs() or sys_sync(). |
| 721 | */ |
| 722 | down_read(&sb->s_umount); |
| 723 | err1 = sync_filesystem(sb); |
| 724 | up_read(&sb->s_umount); |
| 725 | /* If a sync error occurs, still try to evict as much as possible. */ |
| 726 | |
| 727 | /* |
| 728 | * Inodes are pinned by their dentries, so we have to evict their |
| 729 | * dentries. shrink_dcache_sb() would suffice, but would be overkill |
| 730 | * and inappropriate for use by unprivileged users. So instead go |
| 731 | * through the inodes' alias lists and try to evict each dentry. |
| 732 | */ |
| 733 | evict_dentries_for_decrypted_inodes(mk); |
| 734 | |
| 735 | /* |
| 736 | * evict_dentries_for_decrypted_inodes() already iput() each inode in |
| 737 | * the list; any inodes for which that dropped the last reference will |
| 738 | * have been evicted due to fscrypt_drop_inode() detecting the key |
| 739 | * removal and telling the VFS to evict the inode. So to finish, we |
| 740 | * just need to check whether any inodes couldn't be evicted. |
| 741 | */ |
| 742 | err2 = check_for_busy_inodes(sb, mk); |
| 743 | |
| 744 | return err1 ?: err2; |
| 745 | } |
| 746 | |
| 747 | /* |
| 748 | * Try to remove an fscrypt master encryption key. |
| 749 | * |
| 750 | * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's |
| 751 | * claim to the key, then removes the key itself if no other users have claims. |
| 752 | * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the |
| 753 | * key itself. |
| 754 | * |
| 755 | * To "remove the key itself", first we wipe the actual master key secret, so |
| 756 | * that no more inodes can be unlocked with it. Then we try to evict all cached |
| 757 | * inodes that had been unlocked with the key. |
| 758 | * |
| 759 | * If all inodes were evicted, then we unlink the fscrypt_master_key from the |
| 760 | * keyring. Otherwise it remains in the keyring in the "incompletely removed" |
| 761 | * state (without the actual secret key) where it tracks the list of remaining |
| 762 | * inodes. Userspace can execute the ioctl again later to retry eviction, or |
| 763 | * alternatively can re-add the secret key again. |
| 764 | * |
| 765 | * For more details, see the "Removing keys" section of |
| 766 | * Documentation/filesystems/fscrypt.rst. |
| 767 | */ |
| 768 | static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) |
| 769 | { |
| 770 | struct super_block *sb = file_inode(filp)->i_sb; |
| 771 | struct fscrypt_remove_key_arg __user *uarg = _uarg; |
| 772 | struct fscrypt_remove_key_arg arg; |
| 773 | struct key *key; |
| 774 | struct fscrypt_master_key *mk; |
| 775 | u32 status_flags = 0; |
| 776 | int err; |
| 777 | bool dead; |
| 778 | |
| 779 | if (copy_from_user(&arg, uarg, sizeof(arg))) |
| 780 | return -EFAULT; |
| 781 | |
| 782 | if (!valid_key_spec(&arg.key_spec)) |
| 783 | return -EINVAL; |
| 784 | |
| 785 | if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) |
| 786 | return -EINVAL; |
| 787 | |
| 788 | /* |
| 789 | * Only root can add and remove keys that are identified by an arbitrary |
| 790 | * descriptor rather than by a cryptographic hash. |
| 791 | */ |
| 792 | if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && |
| 793 | !capable(CAP_SYS_ADMIN)) |
| 794 | return -EACCES; |
| 795 | |
| 796 | /* Find the key being removed. */ |
| 797 | key = fscrypt_find_master_key(sb, &arg.key_spec); |
| 798 | if (IS_ERR(key)) |
| 799 | return PTR_ERR(key); |
| 800 | mk = key->payload.data[0]; |
| 801 | |
| 802 | down_write(&key->sem); |
| 803 | |
| 804 | /* If relevant, remove current user's (or all users) claim to the key */ |
| 805 | if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { |
| 806 | if (all_users) |
| 807 | err = keyring_clear(mk->mk_users); |
| 808 | else |
| 809 | err = remove_master_key_user(mk); |
| 810 | if (err) { |
| 811 | up_write(&key->sem); |
| 812 | goto out_put_key; |
| 813 | } |
| 814 | if (mk->mk_users->keys.nr_leaves_on_tree != 0) { |
| 815 | /* |
| 816 | * Other users have still added the key too. We removed |
| 817 | * the current user's claim to the key, but we still |
| 818 | * can't remove the key itself. |
| 819 | */ |
| 820 | status_flags |= |
| 821 | FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; |
| 822 | err = 0; |
| 823 | up_write(&key->sem); |
| 824 | goto out_put_key; |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | /* No user claims remaining. Go ahead and wipe the secret. */ |
| 829 | dead = false; |
| 830 | if (is_master_key_secret_present(&mk->mk_secret)) { |
| 831 | down_write(&mk->mk_secret_sem); |
| 832 | wipe_master_key_secret(&mk->mk_secret); |
| 833 | dead = refcount_dec_and_test(&mk->mk_refcount); |
| 834 | up_write(&mk->mk_secret_sem); |
| 835 | } |
| 836 | up_write(&key->sem); |
| 837 | if (dead) { |
| 838 | /* |
| 839 | * No inodes reference the key, and we wiped the secret, so the |
| 840 | * key object is free to be removed from the keyring. |
| 841 | */ |
| 842 | key_invalidate(key); |
| 843 | err = 0; |
| 844 | } else { |
| 845 | /* Some inodes still reference this key; try to evict them. */ |
| 846 | err = try_to_lock_encrypted_files(sb, mk); |
| 847 | if (err == -EBUSY) { |
| 848 | status_flags |= |
| 849 | FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; |
| 850 | err = 0; |
| 851 | } |
| 852 | } |
| 853 | /* |
| 854 | * We return 0 if we successfully did something: removed a claim to the |
| 855 | * key, wiped the secret, or tried locking the files again. Users need |
| 856 | * to check the informational status flags if they care whether the key |
| 857 | * has been fully removed including all files locked. |
| 858 | */ |
| 859 | out_put_key: |
| 860 | key_put(key); |
| 861 | if (err == 0) |
| 862 | err = put_user(status_flags, &uarg->removal_status_flags); |
| 863 | return err; |
| 864 | } |
| 865 | |
| 866 | int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) |
| 867 | { |
| 868 | return do_remove_key(filp, uarg, false); |
| 869 | } |
| 870 | EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); |
| 871 | |
| 872 | int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) |
| 873 | { |
| 874 | if (!capable(CAP_SYS_ADMIN)) |
| 875 | return -EACCES; |
| 876 | return do_remove_key(filp, uarg, true); |
| 877 | } |
| 878 | EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); |
| 879 | |
| 880 | /* |
| 881 | * Retrieve the status of an fscrypt master encryption key. |
| 882 | * |
| 883 | * We set ->status to indicate whether the key is absent, present, or |
| 884 | * incompletely removed. "Incompletely removed" means that the master key |
| 885 | * secret has been removed, but some files which had been unlocked with it are |
| 886 | * still in use. This field allows applications to easily determine the state |
| 887 | * of an encrypted directory without using a hack such as trying to open a |
| 888 | * regular file in it (which can confuse the "incompletely removed" state with |
| 889 | * absent or present). |
| 890 | * |
| 891 | * In addition, for v2 policy keys we allow applications to determine, via |
| 892 | * ->status_flags and ->user_count, whether the key has been added by the |
| 893 | * current user, by other users, or by both. Most applications should not need |
| 894 | * this, since ordinarily only one user should know a given key. However, if a |
| 895 | * secret key is shared by multiple users, applications may wish to add an |
| 896 | * already-present key to prevent other users from removing it. This ioctl can |
| 897 | * be used to check whether that really is the case before the work is done to |
| 898 | * add the key --- which might e.g. require prompting the user for a passphrase. |
| 899 | * |
| 900 | * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of |
| 901 | * Documentation/filesystems/fscrypt.rst. |
| 902 | */ |
| 903 | int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) |
| 904 | { |
| 905 | struct super_block *sb = file_inode(filp)->i_sb; |
| 906 | struct fscrypt_get_key_status_arg arg; |
| 907 | struct key *key; |
| 908 | struct fscrypt_master_key *mk; |
| 909 | int err; |
| 910 | |
| 911 | if (copy_from_user(&arg, uarg, sizeof(arg))) |
| 912 | return -EFAULT; |
| 913 | |
| 914 | if (!valid_key_spec(&arg.key_spec)) |
| 915 | return -EINVAL; |
| 916 | |
| 917 | if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) |
| 918 | return -EINVAL; |
| 919 | |
| 920 | arg.status_flags = 0; |
| 921 | arg.user_count = 0; |
| 922 | memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); |
| 923 | |
| 924 | key = fscrypt_find_master_key(sb, &arg.key_spec); |
| 925 | if (IS_ERR(key)) { |
| 926 | if (key != ERR_PTR(-ENOKEY)) |
| 927 | return PTR_ERR(key); |
| 928 | arg.status = FSCRYPT_KEY_STATUS_ABSENT; |
| 929 | err = 0; |
| 930 | goto out; |
| 931 | } |
| 932 | mk = key->payload.data[0]; |
| 933 | down_read(&key->sem); |
| 934 | |
| 935 | if (!is_master_key_secret_present(&mk->mk_secret)) { |
| 936 | arg.status = FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED; |
| 937 | err = 0; |
| 938 | goto out_release_key; |
| 939 | } |
| 940 | |
| 941 | arg.status = FSCRYPT_KEY_STATUS_PRESENT; |
| 942 | if (mk->mk_users) { |
| 943 | struct key *mk_user; |
| 944 | |
| 945 | arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; |
| 946 | mk_user = find_master_key_user(mk); |
| 947 | if (!IS_ERR(mk_user)) { |
| 948 | arg.status_flags |= |
| 949 | FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; |
| 950 | key_put(mk_user); |
| 951 | } else if (mk_user != ERR_PTR(-ENOKEY)) { |
| 952 | err = PTR_ERR(mk_user); |
| 953 | goto out_release_key; |
| 954 | } |
| 955 | } |
| 956 | err = 0; |
| 957 | out_release_key: |
| 958 | up_read(&key->sem); |
| 959 | key_put(key); |
| 960 | out: |
| 961 | if (!err && copy_to_user(uarg, &arg, sizeof(arg))) |
| 962 | err = -EFAULT; |
| 963 | return err; |
| 964 | } |
| 965 | EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); |
| 966 | |
| 967 | int __init fscrypt_init_keyring(void) |
| 968 | { |
| 969 | int err; |
| 970 | |
| 971 | err = register_key_type(&key_type_fscrypt); |
| 972 | if (err) |
| 973 | return err; |
| 974 | |
| 975 | err = register_key_type(&key_type_fscrypt_user); |
| 976 | if (err) |
| 977 | goto err_unregister_fscrypt; |
| 978 | |
| 979 | return 0; |
| 980 | |
| 981 | err_unregister_fscrypt: |
| 982 | unregister_key_type(&key_type_fscrypt); |
| 983 | return err; |
| 984 | } |