Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2007 Oracle. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/slab.h> |
| 7 | #include <linux/blkdev.h> |
| 8 | #include <linux/writeback.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 9 | #include <linux/sched/mm.h> |
| 10 | #include "misc.h" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 11 | #include "ctree.h" |
| 12 | #include "transaction.h" |
| 13 | #include "btrfs_inode.h" |
| 14 | #include "extent_io.h" |
| 15 | #include "disk-io.h" |
| 16 | #include "compression.h" |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 17 | #include "delalloc-space.h" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 18 | |
| 19 | static struct kmem_cache *btrfs_ordered_extent_cache; |
| 20 | |
| 21 | static u64 entry_end(struct btrfs_ordered_extent *entry) |
| 22 | { |
| 23 | if (entry->file_offset + entry->len < entry->file_offset) |
| 24 | return (u64)-1; |
| 25 | return entry->file_offset + entry->len; |
| 26 | } |
| 27 | |
| 28 | /* returns NULL if the insertion worked, or it returns the node it did find |
| 29 | * in the tree |
| 30 | */ |
| 31 | static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, |
| 32 | struct rb_node *node) |
| 33 | { |
| 34 | struct rb_node **p = &root->rb_node; |
| 35 | struct rb_node *parent = NULL; |
| 36 | struct btrfs_ordered_extent *entry; |
| 37 | |
| 38 | while (*p) { |
| 39 | parent = *p; |
| 40 | entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); |
| 41 | |
| 42 | if (file_offset < entry->file_offset) |
| 43 | p = &(*p)->rb_left; |
| 44 | else if (file_offset >= entry_end(entry)) |
| 45 | p = &(*p)->rb_right; |
| 46 | else |
| 47 | return parent; |
| 48 | } |
| 49 | |
| 50 | rb_link_node(node, parent, p); |
| 51 | rb_insert_color(node, root); |
| 52 | return NULL; |
| 53 | } |
| 54 | |
| 55 | static void ordered_data_tree_panic(struct inode *inode, int errno, |
| 56 | u64 offset) |
| 57 | { |
| 58 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 59 | btrfs_panic(fs_info, errno, |
| 60 | "Inconsistency in ordered tree at offset %llu", offset); |
| 61 | } |
| 62 | |
| 63 | /* |
| 64 | * look for a given offset in the tree, and if it can't be found return the |
| 65 | * first lesser offset |
| 66 | */ |
| 67 | static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, |
| 68 | struct rb_node **prev_ret) |
| 69 | { |
| 70 | struct rb_node *n = root->rb_node; |
| 71 | struct rb_node *prev = NULL; |
| 72 | struct rb_node *test; |
| 73 | struct btrfs_ordered_extent *entry; |
| 74 | struct btrfs_ordered_extent *prev_entry = NULL; |
| 75 | |
| 76 | while (n) { |
| 77 | entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); |
| 78 | prev = n; |
| 79 | prev_entry = entry; |
| 80 | |
| 81 | if (file_offset < entry->file_offset) |
| 82 | n = n->rb_left; |
| 83 | else if (file_offset >= entry_end(entry)) |
| 84 | n = n->rb_right; |
| 85 | else |
| 86 | return n; |
| 87 | } |
| 88 | if (!prev_ret) |
| 89 | return NULL; |
| 90 | |
| 91 | while (prev && file_offset >= entry_end(prev_entry)) { |
| 92 | test = rb_next(prev); |
| 93 | if (!test) |
| 94 | break; |
| 95 | prev_entry = rb_entry(test, struct btrfs_ordered_extent, |
| 96 | rb_node); |
| 97 | if (file_offset < entry_end(prev_entry)) |
| 98 | break; |
| 99 | |
| 100 | prev = test; |
| 101 | } |
| 102 | if (prev) |
| 103 | prev_entry = rb_entry(prev, struct btrfs_ordered_extent, |
| 104 | rb_node); |
| 105 | while (prev && file_offset < entry_end(prev_entry)) { |
| 106 | test = rb_prev(prev); |
| 107 | if (!test) |
| 108 | break; |
| 109 | prev_entry = rb_entry(test, struct btrfs_ordered_extent, |
| 110 | rb_node); |
| 111 | prev = test; |
| 112 | } |
| 113 | *prev_ret = prev; |
| 114 | return NULL; |
| 115 | } |
| 116 | |
| 117 | /* |
| 118 | * helper to check if a given offset is inside a given entry |
| 119 | */ |
| 120 | static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) |
| 121 | { |
| 122 | if (file_offset < entry->file_offset || |
| 123 | entry->file_offset + entry->len <= file_offset) |
| 124 | return 0; |
| 125 | return 1; |
| 126 | } |
| 127 | |
| 128 | static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, |
| 129 | u64 len) |
| 130 | { |
| 131 | if (file_offset + len <= entry->file_offset || |
| 132 | entry->file_offset + entry->len <= file_offset) |
| 133 | return 0; |
| 134 | return 1; |
| 135 | } |
| 136 | |
| 137 | /* |
| 138 | * look find the first ordered struct that has this offset, otherwise |
| 139 | * the first one less than this offset |
| 140 | */ |
| 141 | static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, |
| 142 | u64 file_offset) |
| 143 | { |
| 144 | struct rb_root *root = &tree->tree; |
| 145 | struct rb_node *prev = NULL; |
| 146 | struct rb_node *ret; |
| 147 | struct btrfs_ordered_extent *entry; |
| 148 | |
| 149 | if (tree->last) { |
| 150 | entry = rb_entry(tree->last, struct btrfs_ordered_extent, |
| 151 | rb_node); |
| 152 | if (offset_in_entry(entry, file_offset)) |
| 153 | return tree->last; |
| 154 | } |
| 155 | ret = __tree_search(root, file_offset, &prev); |
| 156 | if (!ret) |
| 157 | ret = prev; |
| 158 | if (ret) |
| 159 | tree->last = ret; |
| 160 | return ret; |
| 161 | } |
| 162 | |
| 163 | /* allocate and add a new ordered_extent into the per-inode tree. |
| 164 | * file_offset is the logical offset in the file |
| 165 | * |
| 166 | * start is the disk block number of an extent already reserved in the |
| 167 | * extent allocation tree |
| 168 | * |
| 169 | * len is the length of the extent |
| 170 | * |
| 171 | * The tree is given a single reference on the ordered extent that was |
| 172 | * inserted. |
| 173 | */ |
| 174 | static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, |
| 175 | u64 start, u64 len, u64 disk_len, |
| 176 | int type, int dio, int compress_type) |
| 177 | { |
| 178 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 179 | struct btrfs_root *root = BTRFS_I(inode)->root; |
| 180 | struct btrfs_ordered_inode_tree *tree; |
| 181 | struct rb_node *node; |
| 182 | struct btrfs_ordered_extent *entry; |
| 183 | |
| 184 | tree = &BTRFS_I(inode)->ordered_tree; |
| 185 | entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); |
| 186 | if (!entry) |
| 187 | return -ENOMEM; |
| 188 | |
| 189 | entry->file_offset = file_offset; |
| 190 | entry->start = start; |
| 191 | entry->len = len; |
| 192 | entry->disk_len = disk_len; |
| 193 | entry->bytes_left = len; |
| 194 | entry->inode = igrab(inode); |
| 195 | entry->compress_type = compress_type; |
| 196 | entry->truncated_len = (u64)-1; |
| 197 | if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) |
| 198 | set_bit(type, &entry->flags); |
| 199 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 200 | if (dio) { |
| 201 | percpu_counter_add_batch(&fs_info->dio_bytes, len, |
| 202 | fs_info->delalloc_batch); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 203 | set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 204 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 205 | |
| 206 | /* one ref for the tree */ |
| 207 | refcount_set(&entry->refs, 1); |
| 208 | init_waitqueue_head(&entry->wait); |
| 209 | INIT_LIST_HEAD(&entry->list); |
| 210 | INIT_LIST_HEAD(&entry->root_extent_list); |
| 211 | INIT_LIST_HEAD(&entry->work_list); |
| 212 | init_completion(&entry->completion); |
| 213 | INIT_LIST_HEAD(&entry->log_list); |
| 214 | INIT_LIST_HEAD(&entry->trans_list); |
| 215 | |
| 216 | trace_btrfs_ordered_extent_add(inode, entry); |
| 217 | |
| 218 | spin_lock_irq(&tree->lock); |
| 219 | node = tree_insert(&tree->tree, file_offset, |
| 220 | &entry->rb_node); |
| 221 | if (node) |
| 222 | ordered_data_tree_panic(inode, -EEXIST, file_offset); |
| 223 | spin_unlock_irq(&tree->lock); |
| 224 | |
| 225 | spin_lock(&root->ordered_extent_lock); |
| 226 | list_add_tail(&entry->root_extent_list, |
| 227 | &root->ordered_extents); |
| 228 | root->nr_ordered_extents++; |
| 229 | if (root->nr_ordered_extents == 1) { |
| 230 | spin_lock(&fs_info->ordered_root_lock); |
| 231 | BUG_ON(!list_empty(&root->ordered_root)); |
| 232 | list_add_tail(&root->ordered_root, &fs_info->ordered_roots); |
| 233 | spin_unlock(&fs_info->ordered_root_lock); |
| 234 | } |
| 235 | spin_unlock(&root->ordered_extent_lock); |
| 236 | |
| 237 | /* |
| 238 | * We don't need the count_max_extents here, we can assume that all of |
| 239 | * that work has been done at higher layers, so this is truly the |
| 240 | * smallest the extent is going to get. |
| 241 | */ |
| 242 | spin_lock(&BTRFS_I(inode)->lock); |
| 243 | btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); |
| 244 | spin_unlock(&BTRFS_I(inode)->lock); |
| 245 | |
| 246 | return 0; |
| 247 | } |
| 248 | |
| 249 | int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, |
| 250 | u64 start, u64 len, u64 disk_len, int type) |
| 251 | { |
| 252 | return __btrfs_add_ordered_extent(inode, file_offset, start, len, |
| 253 | disk_len, type, 0, |
| 254 | BTRFS_COMPRESS_NONE); |
| 255 | } |
| 256 | |
| 257 | int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, |
| 258 | u64 start, u64 len, u64 disk_len, int type) |
| 259 | { |
| 260 | return __btrfs_add_ordered_extent(inode, file_offset, start, len, |
| 261 | disk_len, type, 1, |
| 262 | BTRFS_COMPRESS_NONE); |
| 263 | } |
| 264 | |
| 265 | int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, |
| 266 | u64 start, u64 len, u64 disk_len, |
| 267 | int type, int compress_type) |
| 268 | { |
| 269 | return __btrfs_add_ordered_extent(inode, file_offset, start, len, |
| 270 | disk_len, type, 0, |
| 271 | compress_type); |
| 272 | } |
| 273 | |
| 274 | /* |
| 275 | * Add a struct btrfs_ordered_sum into the list of checksums to be inserted |
| 276 | * when an ordered extent is finished. If the list covers more than one |
| 277 | * ordered extent, it is split across multiples. |
| 278 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 279 | void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 280 | struct btrfs_ordered_sum *sum) |
| 281 | { |
| 282 | struct btrfs_ordered_inode_tree *tree; |
| 283 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 284 | tree = &BTRFS_I(entry->inode)->ordered_tree; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 285 | spin_lock_irq(&tree->lock); |
| 286 | list_add_tail(&sum->list, &entry->list); |
| 287 | spin_unlock_irq(&tree->lock); |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * this is used to account for finished IO across a given range |
| 292 | * of the file. The IO may span ordered extents. If |
| 293 | * a given ordered_extent is completely done, 1 is returned, otherwise |
| 294 | * 0. |
| 295 | * |
| 296 | * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used |
| 297 | * to make sure this function only returns 1 once for a given ordered extent. |
| 298 | * |
| 299 | * file_offset is updated to one byte past the range that is recorded as |
| 300 | * complete. This allows you to walk forward in the file. |
| 301 | */ |
| 302 | int btrfs_dec_test_first_ordered_pending(struct inode *inode, |
| 303 | struct btrfs_ordered_extent **cached, |
| 304 | u64 *file_offset, u64 io_size, int uptodate) |
| 305 | { |
| 306 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 307 | struct btrfs_ordered_inode_tree *tree; |
| 308 | struct rb_node *node; |
| 309 | struct btrfs_ordered_extent *entry = NULL; |
| 310 | int ret; |
| 311 | unsigned long flags; |
| 312 | u64 dec_end; |
| 313 | u64 dec_start; |
| 314 | u64 to_dec; |
| 315 | |
| 316 | tree = &BTRFS_I(inode)->ordered_tree; |
| 317 | spin_lock_irqsave(&tree->lock, flags); |
| 318 | node = tree_search(tree, *file_offset); |
| 319 | if (!node) { |
| 320 | ret = 1; |
| 321 | goto out; |
| 322 | } |
| 323 | |
| 324 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 325 | if (!offset_in_entry(entry, *file_offset)) { |
| 326 | ret = 1; |
| 327 | goto out; |
| 328 | } |
| 329 | |
| 330 | dec_start = max(*file_offset, entry->file_offset); |
| 331 | dec_end = min(*file_offset + io_size, entry->file_offset + |
| 332 | entry->len); |
| 333 | *file_offset = dec_end; |
| 334 | if (dec_start > dec_end) { |
| 335 | btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu", |
| 336 | dec_start, dec_end); |
| 337 | } |
| 338 | to_dec = dec_end - dec_start; |
| 339 | if (to_dec > entry->bytes_left) { |
| 340 | btrfs_crit(fs_info, |
| 341 | "bad ordered accounting left %llu size %llu", |
| 342 | entry->bytes_left, to_dec); |
| 343 | } |
| 344 | entry->bytes_left -= to_dec; |
| 345 | if (!uptodate) |
| 346 | set_bit(BTRFS_ORDERED_IOERR, &entry->flags); |
| 347 | |
| 348 | if (entry->bytes_left == 0) { |
| 349 | ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); |
| 350 | /* test_and_set_bit implies a barrier */ |
| 351 | cond_wake_up_nomb(&entry->wait); |
| 352 | } else { |
| 353 | ret = 1; |
| 354 | } |
| 355 | out: |
| 356 | if (!ret && cached && entry) { |
| 357 | *cached = entry; |
| 358 | refcount_inc(&entry->refs); |
| 359 | } |
| 360 | spin_unlock_irqrestore(&tree->lock, flags); |
| 361 | return ret == 0; |
| 362 | } |
| 363 | |
| 364 | /* |
| 365 | * this is used to account for finished IO across a given range |
| 366 | * of the file. The IO should not span ordered extents. If |
| 367 | * a given ordered_extent is completely done, 1 is returned, otherwise |
| 368 | * 0. |
| 369 | * |
| 370 | * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used |
| 371 | * to make sure this function only returns 1 once for a given ordered extent. |
| 372 | */ |
| 373 | int btrfs_dec_test_ordered_pending(struct inode *inode, |
| 374 | struct btrfs_ordered_extent **cached, |
| 375 | u64 file_offset, u64 io_size, int uptodate) |
| 376 | { |
| 377 | struct btrfs_ordered_inode_tree *tree; |
| 378 | struct rb_node *node; |
| 379 | struct btrfs_ordered_extent *entry = NULL; |
| 380 | unsigned long flags; |
| 381 | int ret; |
| 382 | |
| 383 | tree = &BTRFS_I(inode)->ordered_tree; |
| 384 | spin_lock_irqsave(&tree->lock, flags); |
| 385 | if (cached && *cached) { |
| 386 | entry = *cached; |
| 387 | goto have_entry; |
| 388 | } |
| 389 | |
| 390 | node = tree_search(tree, file_offset); |
| 391 | if (!node) { |
| 392 | ret = 1; |
| 393 | goto out; |
| 394 | } |
| 395 | |
| 396 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 397 | have_entry: |
| 398 | if (!offset_in_entry(entry, file_offset)) { |
| 399 | ret = 1; |
| 400 | goto out; |
| 401 | } |
| 402 | |
| 403 | if (io_size > entry->bytes_left) { |
| 404 | btrfs_crit(BTRFS_I(inode)->root->fs_info, |
| 405 | "bad ordered accounting left %llu size %llu", |
| 406 | entry->bytes_left, io_size); |
| 407 | } |
| 408 | entry->bytes_left -= io_size; |
| 409 | if (!uptodate) |
| 410 | set_bit(BTRFS_ORDERED_IOERR, &entry->flags); |
| 411 | |
| 412 | if (entry->bytes_left == 0) { |
| 413 | ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); |
| 414 | /* test_and_set_bit implies a barrier */ |
| 415 | cond_wake_up_nomb(&entry->wait); |
| 416 | } else { |
| 417 | ret = 1; |
| 418 | } |
| 419 | out: |
| 420 | if (!ret && cached && entry) { |
| 421 | *cached = entry; |
| 422 | refcount_inc(&entry->refs); |
| 423 | } |
| 424 | spin_unlock_irqrestore(&tree->lock, flags); |
| 425 | return ret == 0; |
| 426 | } |
| 427 | |
| 428 | /* |
| 429 | * used to drop a reference on an ordered extent. This will free |
| 430 | * the extent if the last reference is dropped |
| 431 | */ |
| 432 | void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) |
| 433 | { |
| 434 | struct list_head *cur; |
| 435 | struct btrfs_ordered_sum *sum; |
| 436 | |
| 437 | trace_btrfs_ordered_extent_put(entry->inode, entry); |
| 438 | |
| 439 | if (refcount_dec_and_test(&entry->refs)) { |
| 440 | ASSERT(list_empty(&entry->log_list)); |
| 441 | ASSERT(list_empty(&entry->trans_list)); |
| 442 | ASSERT(list_empty(&entry->root_extent_list)); |
| 443 | ASSERT(RB_EMPTY_NODE(&entry->rb_node)); |
| 444 | if (entry->inode) |
| 445 | btrfs_add_delayed_iput(entry->inode); |
| 446 | while (!list_empty(&entry->list)) { |
| 447 | cur = entry->list.next; |
| 448 | sum = list_entry(cur, struct btrfs_ordered_sum, list); |
| 449 | list_del(&sum->list); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 450 | kvfree(sum); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 451 | } |
| 452 | kmem_cache_free(btrfs_ordered_extent_cache, entry); |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | /* |
| 457 | * remove an ordered extent from the tree. No references are dropped |
| 458 | * and waiters are woken up. |
| 459 | */ |
| 460 | void btrfs_remove_ordered_extent(struct inode *inode, |
| 461 | struct btrfs_ordered_extent *entry) |
| 462 | { |
| 463 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 464 | struct btrfs_ordered_inode_tree *tree; |
| 465 | struct btrfs_inode *btrfs_inode = BTRFS_I(inode); |
| 466 | struct btrfs_root *root = btrfs_inode->root; |
| 467 | struct rb_node *node; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 468 | |
| 469 | /* This is paired with btrfs_add_ordered_extent. */ |
| 470 | spin_lock(&btrfs_inode->lock); |
| 471 | btrfs_mod_outstanding_extents(btrfs_inode, -1); |
| 472 | spin_unlock(&btrfs_inode->lock); |
| 473 | if (root != fs_info->tree_root) |
| 474 | btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false); |
| 475 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 476 | if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) |
| 477 | percpu_counter_add_batch(&fs_info->dio_bytes, -entry->len, |
| 478 | fs_info->delalloc_batch); |
| 479 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 480 | tree = &btrfs_inode->ordered_tree; |
| 481 | spin_lock_irq(&tree->lock); |
| 482 | node = &entry->rb_node; |
| 483 | rb_erase(node, &tree->tree); |
| 484 | RB_CLEAR_NODE(node); |
| 485 | if (tree->last == node) |
| 486 | tree->last = NULL; |
| 487 | set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 488 | spin_unlock_irq(&tree->lock); |
| 489 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 490 | spin_lock(&root->ordered_extent_lock); |
| 491 | list_del_init(&entry->root_extent_list); |
| 492 | root->nr_ordered_extents--; |
| 493 | |
| 494 | trace_btrfs_ordered_extent_remove(inode, entry); |
| 495 | |
| 496 | if (!root->nr_ordered_extents) { |
| 497 | spin_lock(&fs_info->ordered_root_lock); |
| 498 | BUG_ON(list_empty(&root->ordered_root)); |
| 499 | list_del_init(&root->ordered_root); |
| 500 | spin_unlock(&fs_info->ordered_root_lock); |
| 501 | } |
| 502 | spin_unlock(&root->ordered_extent_lock); |
| 503 | wake_up(&entry->wait); |
| 504 | } |
| 505 | |
| 506 | static void btrfs_run_ordered_extent_work(struct btrfs_work *work) |
| 507 | { |
| 508 | struct btrfs_ordered_extent *ordered; |
| 509 | |
| 510 | ordered = container_of(work, struct btrfs_ordered_extent, flush_work); |
| 511 | btrfs_start_ordered_extent(ordered->inode, ordered, 1); |
| 512 | complete(&ordered->completion); |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * wait for all the ordered extents in a root. This is done when balancing |
| 517 | * space between drives. |
| 518 | */ |
| 519 | u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, |
| 520 | const u64 range_start, const u64 range_len) |
| 521 | { |
| 522 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 523 | LIST_HEAD(splice); |
| 524 | LIST_HEAD(skipped); |
| 525 | LIST_HEAD(works); |
| 526 | struct btrfs_ordered_extent *ordered, *next; |
| 527 | u64 count = 0; |
| 528 | const u64 range_end = range_start + range_len; |
| 529 | |
| 530 | mutex_lock(&root->ordered_extent_mutex); |
| 531 | spin_lock(&root->ordered_extent_lock); |
| 532 | list_splice_init(&root->ordered_extents, &splice); |
| 533 | while (!list_empty(&splice) && nr) { |
| 534 | ordered = list_first_entry(&splice, struct btrfs_ordered_extent, |
| 535 | root_extent_list); |
| 536 | |
| 537 | if (range_end <= ordered->start || |
| 538 | ordered->start + ordered->disk_len <= range_start) { |
| 539 | list_move_tail(&ordered->root_extent_list, &skipped); |
| 540 | cond_resched_lock(&root->ordered_extent_lock); |
| 541 | continue; |
| 542 | } |
| 543 | |
| 544 | list_move_tail(&ordered->root_extent_list, |
| 545 | &root->ordered_extents); |
| 546 | refcount_inc(&ordered->refs); |
| 547 | spin_unlock(&root->ordered_extent_lock); |
| 548 | |
| 549 | btrfs_init_work(&ordered->flush_work, |
| 550 | btrfs_flush_delalloc_helper, |
| 551 | btrfs_run_ordered_extent_work, NULL, NULL); |
| 552 | list_add_tail(&ordered->work_list, &works); |
| 553 | btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); |
| 554 | |
| 555 | cond_resched(); |
| 556 | spin_lock(&root->ordered_extent_lock); |
| 557 | if (nr != U64_MAX) |
| 558 | nr--; |
| 559 | count++; |
| 560 | } |
| 561 | list_splice_tail(&skipped, &root->ordered_extents); |
| 562 | list_splice_tail(&splice, &root->ordered_extents); |
| 563 | spin_unlock(&root->ordered_extent_lock); |
| 564 | |
| 565 | list_for_each_entry_safe(ordered, next, &works, work_list) { |
| 566 | list_del_init(&ordered->work_list); |
| 567 | wait_for_completion(&ordered->completion); |
| 568 | btrfs_put_ordered_extent(ordered); |
| 569 | cond_resched(); |
| 570 | } |
| 571 | mutex_unlock(&root->ordered_extent_mutex); |
| 572 | |
| 573 | return count; |
| 574 | } |
| 575 | |
| 576 | u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, |
| 577 | const u64 range_start, const u64 range_len) |
| 578 | { |
| 579 | struct btrfs_root *root; |
| 580 | struct list_head splice; |
| 581 | u64 total_done = 0; |
| 582 | u64 done; |
| 583 | |
| 584 | INIT_LIST_HEAD(&splice); |
| 585 | |
| 586 | mutex_lock(&fs_info->ordered_operations_mutex); |
| 587 | spin_lock(&fs_info->ordered_root_lock); |
| 588 | list_splice_init(&fs_info->ordered_roots, &splice); |
| 589 | while (!list_empty(&splice) && nr) { |
| 590 | root = list_first_entry(&splice, struct btrfs_root, |
| 591 | ordered_root); |
| 592 | root = btrfs_grab_fs_root(root); |
| 593 | BUG_ON(!root); |
| 594 | list_move_tail(&root->ordered_root, |
| 595 | &fs_info->ordered_roots); |
| 596 | spin_unlock(&fs_info->ordered_root_lock); |
| 597 | |
| 598 | done = btrfs_wait_ordered_extents(root, nr, |
| 599 | range_start, range_len); |
| 600 | btrfs_put_fs_root(root); |
| 601 | total_done += done; |
| 602 | |
| 603 | spin_lock(&fs_info->ordered_root_lock); |
| 604 | if (nr != U64_MAX) { |
| 605 | nr -= done; |
| 606 | } |
| 607 | } |
| 608 | list_splice_tail(&splice, &fs_info->ordered_roots); |
| 609 | spin_unlock(&fs_info->ordered_root_lock); |
| 610 | mutex_unlock(&fs_info->ordered_operations_mutex); |
| 611 | |
| 612 | return total_done; |
| 613 | } |
| 614 | |
| 615 | /* |
| 616 | * Used to start IO or wait for a given ordered extent to finish. |
| 617 | * |
| 618 | * If wait is one, this effectively waits on page writeback for all the pages |
| 619 | * in the extent, and it waits on the io completion code to insert |
| 620 | * metadata into the btree corresponding to the extent |
| 621 | */ |
| 622 | void btrfs_start_ordered_extent(struct inode *inode, |
| 623 | struct btrfs_ordered_extent *entry, |
| 624 | int wait) |
| 625 | { |
| 626 | u64 start = entry->file_offset; |
| 627 | u64 end = start + entry->len - 1; |
| 628 | |
| 629 | trace_btrfs_ordered_extent_start(inode, entry); |
| 630 | |
| 631 | /* |
| 632 | * pages in the range can be dirty, clean or writeback. We |
| 633 | * start IO on any dirty ones so the wait doesn't stall waiting |
| 634 | * for the flusher thread to find them |
| 635 | */ |
| 636 | if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) |
| 637 | filemap_fdatawrite_range(inode->i_mapping, start, end); |
| 638 | if (wait) { |
| 639 | wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, |
| 640 | &entry->flags)); |
| 641 | } |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * Used to wait on ordered extents across a large range of bytes. |
| 646 | */ |
| 647 | int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) |
| 648 | { |
| 649 | int ret = 0; |
| 650 | int ret_wb = 0; |
| 651 | u64 end; |
| 652 | u64 orig_end; |
| 653 | struct btrfs_ordered_extent *ordered; |
| 654 | |
| 655 | if (start + len < start) { |
| 656 | orig_end = INT_LIMIT(loff_t); |
| 657 | } else { |
| 658 | orig_end = start + len - 1; |
| 659 | if (orig_end > INT_LIMIT(loff_t)) |
| 660 | orig_end = INT_LIMIT(loff_t); |
| 661 | } |
| 662 | |
| 663 | /* start IO across the range first to instantiate any delalloc |
| 664 | * extents |
| 665 | */ |
| 666 | ret = btrfs_fdatawrite_range(inode, start, orig_end); |
| 667 | if (ret) |
| 668 | return ret; |
| 669 | |
| 670 | /* |
| 671 | * If we have a writeback error don't return immediately. Wait first |
| 672 | * for any ordered extents that haven't completed yet. This is to make |
| 673 | * sure no one can dirty the same page ranges and call writepages() |
| 674 | * before the ordered extents complete - to avoid failures (-EEXIST) |
| 675 | * when adding the new ordered extents to the ordered tree. |
| 676 | */ |
| 677 | ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); |
| 678 | |
| 679 | end = orig_end; |
| 680 | while (1) { |
| 681 | ordered = btrfs_lookup_first_ordered_extent(inode, end); |
| 682 | if (!ordered) |
| 683 | break; |
| 684 | if (ordered->file_offset > orig_end) { |
| 685 | btrfs_put_ordered_extent(ordered); |
| 686 | break; |
| 687 | } |
| 688 | if (ordered->file_offset + ordered->len <= start) { |
| 689 | btrfs_put_ordered_extent(ordered); |
| 690 | break; |
| 691 | } |
| 692 | btrfs_start_ordered_extent(inode, ordered, 1); |
| 693 | end = ordered->file_offset; |
| 694 | if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) |
| 695 | ret = -EIO; |
| 696 | btrfs_put_ordered_extent(ordered); |
| 697 | if (ret || end == 0 || end == start) |
| 698 | break; |
| 699 | end--; |
| 700 | } |
| 701 | return ret_wb ? ret_wb : ret; |
| 702 | } |
| 703 | |
| 704 | /* |
| 705 | * find an ordered extent corresponding to file_offset. return NULL if |
| 706 | * nothing is found, otherwise take a reference on the extent and return it |
| 707 | */ |
| 708 | struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, |
| 709 | u64 file_offset) |
| 710 | { |
| 711 | struct btrfs_ordered_inode_tree *tree; |
| 712 | struct rb_node *node; |
| 713 | struct btrfs_ordered_extent *entry = NULL; |
| 714 | |
| 715 | tree = &BTRFS_I(inode)->ordered_tree; |
| 716 | spin_lock_irq(&tree->lock); |
| 717 | node = tree_search(tree, file_offset); |
| 718 | if (!node) |
| 719 | goto out; |
| 720 | |
| 721 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 722 | if (!offset_in_entry(entry, file_offset)) |
| 723 | entry = NULL; |
| 724 | if (entry) |
| 725 | refcount_inc(&entry->refs); |
| 726 | out: |
| 727 | spin_unlock_irq(&tree->lock); |
| 728 | return entry; |
| 729 | } |
| 730 | |
| 731 | /* Since the DIO code tries to lock a wide area we need to look for any ordered |
| 732 | * extents that exist in the range, rather than just the start of the range. |
| 733 | */ |
| 734 | struct btrfs_ordered_extent *btrfs_lookup_ordered_range( |
| 735 | struct btrfs_inode *inode, u64 file_offset, u64 len) |
| 736 | { |
| 737 | struct btrfs_ordered_inode_tree *tree; |
| 738 | struct rb_node *node; |
| 739 | struct btrfs_ordered_extent *entry = NULL; |
| 740 | |
| 741 | tree = &inode->ordered_tree; |
| 742 | spin_lock_irq(&tree->lock); |
| 743 | node = tree_search(tree, file_offset); |
| 744 | if (!node) { |
| 745 | node = tree_search(tree, file_offset + len); |
| 746 | if (!node) |
| 747 | goto out; |
| 748 | } |
| 749 | |
| 750 | while (1) { |
| 751 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 752 | if (range_overlaps(entry, file_offset, len)) |
| 753 | break; |
| 754 | |
| 755 | if (entry->file_offset >= file_offset + len) { |
| 756 | entry = NULL; |
| 757 | break; |
| 758 | } |
| 759 | entry = NULL; |
| 760 | node = rb_next(node); |
| 761 | if (!node) |
| 762 | break; |
| 763 | } |
| 764 | out: |
| 765 | if (entry) |
| 766 | refcount_inc(&entry->refs); |
| 767 | spin_unlock_irq(&tree->lock); |
| 768 | return entry; |
| 769 | } |
| 770 | |
| 771 | /* |
| 772 | * lookup and return any extent before 'file_offset'. NULL is returned |
| 773 | * if none is found |
| 774 | */ |
| 775 | struct btrfs_ordered_extent * |
| 776 | btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) |
| 777 | { |
| 778 | struct btrfs_ordered_inode_tree *tree; |
| 779 | struct rb_node *node; |
| 780 | struct btrfs_ordered_extent *entry = NULL; |
| 781 | |
| 782 | tree = &BTRFS_I(inode)->ordered_tree; |
| 783 | spin_lock_irq(&tree->lock); |
| 784 | node = tree_search(tree, file_offset); |
| 785 | if (!node) |
| 786 | goto out; |
| 787 | |
| 788 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 789 | refcount_inc(&entry->refs); |
| 790 | out: |
| 791 | spin_unlock_irq(&tree->lock); |
| 792 | return entry; |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * After an extent is done, call this to conditionally update the on disk |
| 797 | * i_size. i_size is updated to cover any fully written part of the file. |
| 798 | */ |
| 799 | int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, |
| 800 | struct btrfs_ordered_extent *ordered) |
| 801 | { |
| 802 | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; |
| 803 | u64 disk_i_size; |
| 804 | u64 new_i_size; |
| 805 | u64 i_size = i_size_read(inode); |
| 806 | struct rb_node *node; |
| 807 | struct rb_node *prev = NULL; |
| 808 | struct btrfs_ordered_extent *test; |
| 809 | int ret = 1; |
| 810 | u64 orig_offset = offset; |
| 811 | |
| 812 | spin_lock_irq(&tree->lock); |
| 813 | if (ordered) { |
| 814 | offset = entry_end(ordered); |
| 815 | if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) |
| 816 | offset = min(offset, |
| 817 | ordered->file_offset + |
| 818 | ordered->truncated_len); |
| 819 | } else { |
| 820 | offset = ALIGN(offset, btrfs_inode_sectorsize(inode)); |
| 821 | } |
| 822 | disk_i_size = BTRFS_I(inode)->disk_i_size; |
| 823 | |
| 824 | /* |
| 825 | * truncate file. |
| 826 | * If ordered is not NULL, then this is called from endio and |
| 827 | * disk_i_size will be updated by either truncate itself or any |
| 828 | * in-flight IOs which are inside the disk_i_size. |
| 829 | * |
| 830 | * Because btrfs_setsize() may set i_size with disk_i_size if truncate |
| 831 | * fails somehow, we need to make sure we have a precise disk_i_size by |
| 832 | * updating it as usual. |
| 833 | * |
| 834 | */ |
| 835 | if (!ordered && disk_i_size > i_size) { |
| 836 | BTRFS_I(inode)->disk_i_size = orig_offset; |
| 837 | ret = 0; |
| 838 | goto out; |
| 839 | } |
| 840 | |
| 841 | /* |
| 842 | * if the disk i_size is already at the inode->i_size, or |
| 843 | * this ordered extent is inside the disk i_size, we're done |
| 844 | */ |
| 845 | if (disk_i_size == i_size) |
| 846 | goto out; |
| 847 | |
| 848 | /* |
| 849 | * We still need to update disk_i_size if outstanding_isize is greater |
| 850 | * than disk_i_size. |
| 851 | */ |
| 852 | if (offset <= disk_i_size && |
| 853 | (!ordered || ordered->outstanding_isize <= disk_i_size)) |
| 854 | goto out; |
| 855 | |
| 856 | /* |
| 857 | * walk backward from this ordered extent to disk_i_size. |
| 858 | * if we find an ordered extent then we can't update disk i_size |
| 859 | * yet |
| 860 | */ |
| 861 | if (ordered) { |
| 862 | node = rb_prev(&ordered->rb_node); |
| 863 | } else { |
| 864 | prev = tree_search(tree, offset); |
| 865 | /* |
| 866 | * we insert file extents without involving ordered struct, |
| 867 | * so there should be no ordered struct cover this offset |
| 868 | */ |
| 869 | if (prev) { |
| 870 | test = rb_entry(prev, struct btrfs_ordered_extent, |
| 871 | rb_node); |
| 872 | BUG_ON(offset_in_entry(test, offset)); |
| 873 | } |
| 874 | node = prev; |
| 875 | } |
| 876 | for (; node; node = rb_prev(node)) { |
| 877 | test = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 878 | |
| 879 | /* We treat this entry as if it doesn't exist */ |
| 880 | if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) |
| 881 | continue; |
| 882 | |
| 883 | if (entry_end(test) <= disk_i_size) |
| 884 | break; |
| 885 | if (test->file_offset >= i_size) |
| 886 | break; |
| 887 | |
| 888 | /* |
| 889 | * We don't update disk_i_size now, so record this undealt |
| 890 | * i_size. Or we will not know the real i_size. |
| 891 | */ |
| 892 | if (test->outstanding_isize < offset) |
| 893 | test->outstanding_isize = offset; |
| 894 | if (ordered && |
| 895 | ordered->outstanding_isize > test->outstanding_isize) |
| 896 | test->outstanding_isize = ordered->outstanding_isize; |
| 897 | goto out; |
| 898 | } |
| 899 | new_i_size = min_t(u64, offset, i_size); |
| 900 | |
| 901 | /* |
| 902 | * Some ordered extents may completed before the current one, and |
| 903 | * we hold the real i_size in ->outstanding_isize. |
| 904 | */ |
| 905 | if (ordered && ordered->outstanding_isize > new_i_size) |
| 906 | new_i_size = min_t(u64, ordered->outstanding_isize, i_size); |
| 907 | BTRFS_I(inode)->disk_i_size = new_i_size; |
| 908 | ret = 0; |
| 909 | out: |
| 910 | /* |
| 911 | * We need to do this because we can't remove ordered extents until |
| 912 | * after the i_disk_size has been updated and then the inode has been |
| 913 | * updated to reflect the change, so we need to tell anybody who finds |
| 914 | * this ordered extent that we've already done all the real work, we |
| 915 | * just haven't completed all the other work. |
| 916 | */ |
| 917 | if (ordered) |
| 918 | set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); |
| 919 | spin_unlock_irq(&tree->lock); |
| 920 | return ret; |
| 921 | } |
| 922 | |
| 923 | /* |
| 924 | * search the ordered extents for one corresponding to 'offset' and |
| 925 | * try to find a checksum. This is used because we allow pages to |
| 926 | * be reclaimed before their checksum is actually put into the btree |
| 927 | */ |
| 928 | int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 929 | u8 *sum, int len) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 930 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 931 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 932 | struct btrfs_ordered_sum *ordered_sum; |
| 933 | struct btrfs_ordered_extent *ordered; |
| 934 | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; |
| 935 | unsigned long num_sectors; |
| 936 | unsigned long i; |
| 937 | u32 sectorsize = btrfs_inode_sectorsize(inode); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 938 | const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 939 | int index = 0; |
| 940 | |
| 941 | ordered = btrfs_lookup_ordered_extent(inode, offset); |
| 942 | if (!ordered) |
| 943 | return 0; |
| 944 | |
| 945 | spin_lock_irq(&tree->lock); |
| 946 | list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { |
| 947 | if (disk_bytenr >= ordered_sum->bytenr && |
| 948 | disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { |
| 949 | i = (disk_bytenr - ordered_sum->bytenr) >> |
| 950 | inode->i_sb->s_blocksize_bits; |
| 951 | num_sectors = ordered_sum->len >> |
| 952 | inode->i_sb->s_blocksize_bits; |
| 953 | num_sectors = min_t(int, len - index, num_sectors - i); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 954 | memcpy(sum + index, ordered_sum->sums + i * csum_size, |
| 955 | num_sectors * csum_size); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 956 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 957 | index += (int)num_sectors * csum_size; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 958 | if (index == len) |
| 959 | goto out; |
| 960 | disk_bytenr += num_sectors * sectorsize; |
| 961 | } |
| 962 | } |
| 963 | out: |
| 964 | spin_unlock_irq(&tree->lock); |
| 965 | btrfs_put_ordered_extent(ordered); |
| 966 | return index; |
| 967 | } |
| 968 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 969 | /* |
| 970 | * btrfs_flush_ordered_range - Lock the passed range and ensures all pending |
| 971 | * ordered extents in it are run to completion. |
| 972 | * |
| 973 | * @tree: IO tree used for locking out other users of the range |
| 974 | * @inode: Inode whose ordered tree is to be searched |
| 975 | * @start: Beginning of range to flush |
| 976 | * @end: Last byte of range to lock |
| 977 | * @cached_state: If passed, will return the extent state responsible for the |
| 978 | * locked range. It's the caller's responsibility to free the cached state. |
| 979 | * |
| 980 | * This function always returns with the given range locked, ensuring after it's |
| 981 | * called no order extent can be pending. |
| 982 | */ |
| 983 | void btrfs_lock_and_flush_ordered_range(struct extent_io_tree *tree, |
| 984 | struct btrfs_inode *inode, u64 start, |
| 985 | u64 end, |
| 986 | struct extent_state **cached_state) |
| 987 | { |
| 988 | struct btrfs_ordered_extent *ordered; |
| 989 | struct extent_state *cache = NULL; |
| 990 | struct extent_state **cachedp = &cache; |
| 991 | |
| 992 | if (cached_state) |
| 993 | cachedp = cached_state; |
| 994 | |
| 995 | while (1) { |
| 996 | lock_extent_bits(tree, start, end, cachedp); |
| 997 | ordered = btrfs_lookup_ordered_range(inode, start, |
| 998 | end - start + 1); |
| 999 | if (!ordered) { |
| 1000 | /* |
| 1001 | * If no external cached_state has been passed then |
| 1002 | * decrement the extra ref taken for cachedp since we |
| 1003 | * aren't exposing it outside of this function |
| 1004 | */ |
| 1005 | if (!cached_state) |
| 1006 | refcount_dec(&cache->refs); |
| 1007 | break; |
| 1008 | } |
| 1009 | unlock_extent_cached(tree, start, end, cachedp); |
| 1010 | btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); |
| 1011 | btrfs_put_ordered_extent(ordered); |
| 1012 | } |
| 1013 | } |
| 1014 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1015 | int __init ordered_data_init(void) |
| 1016 | { |
| 1017 | btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", |
| 1018 | sizeof(struct btrfs_ordered_extent), 0, |
| 1019 | SLAB_MEM_SPREAD, |
| 1020 | NULL); |
| 1021 | if (!btrfs_ordered_extent_cache) |
| 1022 | return -ENOMEM; |
| 1023 | |
| 1024 | return 0; |
| 1025 | } |
| 1026 | |
| 1027 | void __cold ordered_data_exit(void) |
| 1028 | { |
| 1029 | kmem_cache_destroy(btrfs_ordered_extent_cache); |
| 1030 | } |