Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _ASM_X86_SEGMENT_H |
| 3 | #define _ASM_X86_SEGMENT_H |
| 4 | |
| 5 | #include <linux/const.h> |
| 6 | #include <asm/alternative.h> |
| 7 | |
| 8 | /* |
| 9 | * Constructor for a conventional segment GDT (or LDT) entry. |
| 10 | * This is a macro so it can be used in initializers. |
| 11 | */ |
| 12 | #define GDT_ENTRY(flags, base, limit) \ |
| 13 | ((((base) & _AC(0xff000000,ULL)) << (56-24)) | \ |
| 14 | (((flags) & _AC(0x0000f0ff,ULL)) << 40) | \ |
| 15 | (((limit) & _AC(0x000f0000,ULL)) << (48-16)) | \ |
| 16 | (((base) & _AC(0x00ffffff,ULL)) << 16) | \ |
| 17 | (((limit) & _AC(0x0000ffff,ULL)))) |
| 18 | |
| 19 | /* Simple and small GDT entries for booting only: */ |
| 20 | |
| 21 | #define GDT_ENTRY_BOOT_CS 2 |
| 22 | #define GDT_ENTRY_BOOT_DS 3 |
| 23 | #define GDT_ENTRY_BOOT_TSS 4 |
| 24 | #define __BOOT_CS (GDT_ENTRY_BOOT_CS*8) |
| 25 | #define __BOOT_DS (GDT_ENTRY_BOOT_DS*8) |
| 26 | #define __BOOT_TSS (GDT_ENTRY_BOOT_TSS*8) |
| 27 | |
| 28 | /* |
| 29 | * Bottom two bits of selector give the ring |
| 30 | * privilege level |
| 31 | */ |
| 32 | #define SEGMENT_RPL_MASK 0x3 |
| 33 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 34 | /* |
| 35 | * When running on Xen PV, the actual privilege level of the kernel is 1, |
| 36 | * not 0. Testing the Requested Privilege Level in a segment selector to |
| 37 | * determine whether the context is user mode or kernel mode with |
| 38 | * SEGMENT_RPL_MASK is wrong because the PV kernel's privilege level |
| 39 | * matches the 0x3 mask. |
| 40 | * |
| 41 | * Testing with USER_SEGMENT_RPL_MASK is valid for both native and Xen PV |
| 42 | * kernels because privilege level 2 is never used. |
| 43 | */ |
| 44 | #define USER_SEGMENT_RPL_MASK 0x2 |
| 45 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 46 | /* User mode is privilege level 3: */ |
| 47 | #define USER_RPL 0x3 |
| 48 | |
| 49 | /* Bit 2 is Table Indicator (TI): selects between LDT or GDT */ |
| 50 | #define SEGMENT_TI_MASK 0x4 |
| 51 | /* LDT segment has TI set ... */ |
| 52 | #define SEGMENT_LDT 0x4 |
| 53 | /* ... GDT has it cleared */ |
| 54 | #define SEGMENT_GDT 0x0 |
| 55 | |
| 56 | #define GDT_ENTRY_INVALID_SEG 0 |
| 57 | |
| 58 | #ifdef CONFIG_X86_32 |
| 59 | /* |
| 60 | * The layout of the per-CPU GDT under Linux: |
| 61 | * |
| 62 | * 0 - null <=== cacheline #1 |
| 63 | * 1 - reserved |
| 64 | * 2 - reserved |
| 65 | * 3 - reserved |
| 66 | * |
| 67 | * 4 - unused <=== cacheline #2 |
| 68 | * 5 - unused |
| 69 | * |
| 70 | * ------- start of TLS (Thread-Local Storage) segments: |
| 71 | * |
| 72 | * 6 - TLS segment #1 [ glibc's TLS segment ] |
| 73 | * 7 - TLS segment #2 [ Wine's %fs Win32 segment ] |
| 74 | * 8 - TLS segment #3 <=== cacheline #3 |
| 75 | * 9 - reserved |
| 76 | * 10 - reserved |
| 77 | * 11 - reserved |
| 78 | * |
| 79 | * ------- start of kernel segments: |
| 80 | * |
| 81 | * 12 - kernel code segment <=== cacheline #4 |
| 82 | * 13 - kernel data segment |
| 83 | * 14 - default user CS |
| 84 | * 15 - default user DS |
| 85 | * 16 - TSS <=== cacheline #5 |
| 86 | * 17 - LDT |
| 87 | * 18 - PNPBIOS support (16->32 gate) |
| 88 | * 19 - PNPBIOS support |
| 89 | * 20 - PNPBIOS support <=== cacheline #6 |
| 90 | * 21 - PNPBIOS support |
| 91 | * 22 - PNPBIOS support |
| 92 | * 23 - APM BIOS support |
| 93 | * 24 - APM BIOS support <=== cacheline #7 |
| 94 | * 25 - APM BIOS support |
| 95 | * |
| 96 | * 26 - ESPFIX small SS |
| 97 | * 27 - per-cpu [ offset to per-cpu data area ] |
| 98 | * 28 - stack_canary-20 [ for stack protector ] <=== cacheline #8 |
| 99 | * 29 - unused |
| 100 | * 30 - unused |
| 101 | * 31 - TSS for double fault handler |
| 102 | */ |
| 103 | #define GDT_ENTRY_TLS_MIN 6 |
| 104 | #define GDT_ENTRY_TLS_MAX (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1) |
| 105 | |
| 106 | #define GDT_ENTRY_KERNEL_CS 12 |
| 107 | #define GDT_ENTRY_KERNEL_DS 13 |
| 108 | #define GDT_ENTRY_DEFAULT_USER_CS 14 |
| 109 | #define GDT_ENTRY_DEFAULT_USER_DS 15 |
| 110 | #define GDT_ENTRY_TSS 16 |
| 111 | #define GDT_ENTRY_LDT 17 |
| 112 | #define GDT_ENTRY_PNPBIOS_CS32 18 |
| 113 | #define GDT_ENTRY_PNPBIOS_CS16 19 |
| 114 | #define GDT_ENTRY_PNPBIOS_DS 20 |
| 115 | #define GDT_ENTRY_PNPBIOS_TS1 21 |
| 116 | #define GDT_ENTRY_PNPBIOS_TS2 22 |
| 117 | #define GDT_ENTRY_APMBIOS_BASE 23 |
| 118 | |
| 119 | #define GDT_ENTRY_ESPFIX_SS 26 |
| 120 | #define GDT_ENTRY_PERCPU 27 |
| 121 | #define GDT_ENTRY_STACK_CANARY 28 |
| 122 | |
| 123 | #define GDT_ENTRY_DOUBLEFAULT_TSS 31 |
| 124 | |
| 125 | /* |
| 126 | * Number of entries in the GDT table: |
| 127 | */ |
| 128 | #define GDT_ENTRIES 32 |
| 129 | |
| 130 | /* |
| 131 | * Segment selector values corresponding to the above entries: |
| 132 | */ |
| 133 | |
| 134 | #define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8) |
| 135 | #define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8) |
| 136 | #define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3) |
| 137 | #define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3) |
| 138 | #define __ESPFIX_SS (GDT_ENTRY_ESPFIX_SS*8) |
| 139 | |
| 140 | /* segment for calling fn: */ |
| 141 | #define PNP_CS32 (GDT_ENTRY_PNPBIOS_CS32*8) |
| 142 | /* code segment for BIOS: */ |
| 143 | #define PNP_CS16 (GDT_ENTRY_PNPBIOS_CS16*8) |
| 144 | |
| 145 | /* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */ |
| 146 | #define SEGMENT_IS_PNP_CODE(x) (((x) & 0xf4) == PNP_CS32) |
| 147 | |
| 148 | /* data segment for BIOS: */ |
| 149 | #define PNP_DS (GDT_ENTRY_PNPBIOS_DS*8) |
| 150 | /* transfer data segment: */ |
| 151 | #define PNP_TS1 (GDT_ENTRY_PNPBIOS_TS1*8) |
| 152 | /* another data segment: */ |
| 153 | #define PNP_TS2 (GDT_ENTRY_PNPBIOS_TS2*8) |
| 154 | |
| 155 | #ifdef CONFIG_SMP |
| 156 | # define __KERNEL_PERCPU (GDT_ENTRY_PERCPU*8) |
| 157 | #else |
| 158 | # define __KERNEL_PERCPU 0 |
| 159 | #endif |
| 160 | |
| 161 | #ifdef CONFIG_STACKPROTECTOR |
| 162 | # define __KERNEL_STACK_CANARY (GDT_ENTRY_STACK_CANARY*8) |
| 163 | #else |
| 164 | # define __KERNEL_STACK_CANARY 0 |
| 165 | #endif |
| 166 | |
| 167 | #else /* 64-bit: */ |
| 168 | |
| 169 | #include <asm/cache.h> |
| 170 | |
| 171 | #define GDT_ENTRY_KERNEL32_CS 1 |
| 172 | #define GDT_ENTRY_KERNEL_CS 2 |
| 173 | #define GDT_ENTRY_KERNEL_DS 3 |
| 174 | |
| 175 | /* |
| 176 | * We cannot use the same code segment descriptor for user and kernel mode, |
| 177 | * not even in long flat mode, because of different DPL. |
| 178 | * |
| 179 | * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes |
| 180 | * selectors: |
| 181 | * |
| 182 | * if returning to 32-bit userspace: cs = STAR.SYSRET_CS, |
| 183 | * if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16, |
| 184 | * |
| 185 | * ss = STAR.SYSRET_CS+8 (in either case) |
| 186 | * |
| 187 | * thus USER_DS should be between 32-bit and 64-bit code selectors: |
| 188 | */ |
| 189 | #define GDT_ENTRY_DEFAULT_USER32_CS 4 |
| 190 | #define GDT_ENTRY_DEFAULT_USER_DS 5 |
| 191 | #define GDT_ENTRY_DEFAULT_USER_CS 6 |
| 192 | |
| 193 | /* Needs two entries */ |
| 194 | #define GDT_ENTRY_TSS 8 |
| 195 | /* Needs two entries */ |
| 196 | #define GDT_ENTRY_LDT 10 |
| 197 | |
| 198 | #define GDT_ENTRY_TLS_MIN 12 |
| 199 | #define GDT_ENTRY_TLS_MAX 14 |
| 200 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 201 | #define GDT_ENTRY_CPUNODE 15 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 202 | |
| 203 | /* |
| 204 | * Number of entries in the GDT table: |
| 205 | */ |
| 206 | #define GDT_ENTRIES 16 |
| 207 | |
| 208 | /* |
| 209 | * Segment selector values corresponding to the above entries: |
| 210 | * |
| 211 | * Note, selectors also need to have a correct RPL, |
| 212 | * expressed with the +3 value for user-space selectors: |
| 213 | */ |
| 214 | #define __KERNEL32_CS (GDT_ENTRY_KERNEL32_CS*8) |
| 215 | #define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8) |
| 216 | #define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8) |
| 217 | #define __USER32_CS (GDT_ENTRY_DEFAULT_USER32_CS*8 + 3) |
| 218 | #define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3) |
| 219 | #define __USER32_DS __USER_DS |
| 220 | #define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 221 | #define __CPUNODE_SEG (GDT_ENTRY_CPUNODE*8 + 3) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 222 | |
| 223 | #endif |
| 224 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 225 | #ifndef CONFIG_PARAVIRT_XXL |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 226 | # define get_kernel_rpl() 0 |
| 227 | #endif |
| 228 | |
| 229 | #define IDT_ENTRIES 256 |
| 230 | #define NUM_EXCEPTION_VECTORS 32 |
| 231 | |
| 232 | /* Bitmask of exception vectors which push an error code on the stack: */ |
| 233 | #define EXCEPTION_ERRCODE_MASK 0x00027d00 |
| 234 | |
| 235 | #define GDT_SIZE (GDT_ENTRIES*8) |
| 236 | #define GDT_ENTRY_TLS_ENTRIES 3 |
| 237 | #define TLS_SIZE (GDT_ENTRY_TLS_ENTRIES* 8) |
| 238 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 239 | #ifdef CONFIG_X86_64 |
| 240 | |
| 241 | /* Bit size and mask of CPU number stored in the per CPU data (and TSC_AUX) */ |
| 242 | #define VDSO_CPUNODE_BITS 12 |
| 243 | #define VDSO_CPUNODE_MASK 0xfff |
| 244 | |
| 245 | #ifndef __ASSEMBLY__ |
| 246 | |
| 247 | /* Helper functions to store/load CPU and node numbers */ |
| 248 | |
| 249 | static inline unsigned long vdso_encode_cpunode(int cpu, unsigned long node) |
| 250 | { |
| 251 | return (node << VDSO_CPUNODE_BITS) | cpu; |
| 252 | } |
| 253 | |
| 254 | static inline void vdso_read_cpunode(unsigned *cpu, unsigned *node) |
| 255 | { |
| 256 | unsigned int p; |
| 257 | |
| 258 | /* |
| 259 | * Load CPU and node number from the GDT. LSL is faster than RDTSCP |
| 260 | * and works on all CPUs. This is volatile so that it orders |
| 261 | * correctly with respect to barrier() and to keep GCC from cleverly |
| 262 | * hoisting it out of the calling function. |
| 263 | * |
| 264 | * If RDPID is available, use it. |
| 265 | */ |
| 266 | alternative_io ("lsl %[seg],%[p]", |
| 267 | ".byte 0xf3,0x0f,0xc7,0xf8", /* RDPID %eax/rax */ |
| 268 | X86_FEATURE_RDPID, |
| 269 | [p] "=a" (p), [seg] "r" (__CPUNODE_SEG)); |
| 270 | |
| 271 | if (cpu) |
| 272 | *cpu = (p & VDSO_CPUNODE_MASK); |
| 273 | if (node) |
| 274 | *node = (p >> VDSO_CPUNODE_BITS); |
| 275 | } |
| 276 | |
| 277 | #endif /* !__ASSEMBLY__ */ |
| 278 | #endif /* CONFIG_X86_64 */ |
| 279 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 280 | #ifdef __KERNEL__ |
| 281 | |
| 282 | /* |
| 283 | * early_idt_handler_array is an array of entry points referenced in the |
| 284 | * early IDT. For simplicity, it's a real array with one entry point |
| 285 | * every nine bytes. That leaves room for an optional 'push $0' if the |
| 286 | * vector has no error code (two bytes), a 'push $vector_number' (two |
| 287 | * bytes), and a jump to the common entry code (up to five bytes). |
| 288 | */ |
| 289 | #define EARLY_IDT_HANDLER_SIZE 9 |
| 290 | |
| 291 | /* |
| 292 | * xen_early_idt_handler_array is for Xen pv guests: for each entry in |
| 293 | * early_idt_handler_array it contains a prequel in the form of |
| 294 | * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to |
| 295 | * max 8 bytes. |
| 296 | */ |
| 297 | #define XEN_EARLY_IDT_HANDLER_SIZE 8 |
| 298 | |
| 299 | #ifndef __ASSEMBLY__ |
| 300 | |
| 301 | extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE]; |
| 302 | extern void early_ignore_irq(void); |
| 303 | |
| 304 | #if defined(CONFIG_X86_64) && defined(CONFIG_XEN_PV) |
| 305 | extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE]; |
| 306 | #endif |
| 307 | |
| 308 | /* |
| 309 | * Load a segment. Fall back on loading the zero segment if something goes |
| 310 | * wrong. This variant assumes that loading zero fully clears the segment. |
| 311 | * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any |
| 312 | * failure to fully clear the cached descriptor is only observable for |
| 313 | * FS and GS. |
| 314 | */ |
| 315 | #define __loadsegment_simple(seg, value) \ |
| 316 | do { \ |
| 317 | unsigned short __val = (value); \ |
| 318 | \ |
| 319 | asm volatile(" \n" \ |
| 320 | "1: movl %k0,%%" #seg " \n" \ |
| 321 | \ |
| 322 | ".section .fixup,\"ax\" \n" \ |
| 323 | "2: xorl %k0,%k0 \n" \ |
| 324 | " jmp 1b \n" \ |
| 325 | ".previous \n" \ |
| 326 | \ |
| 327 | _ASM_EXTABLE(1b, 2b) \ |
| 328 | \ |
| 329 | : "+r" (__val) : : "memory"); \ |
| 330 | } while (0) |
| 331 | |
| 332 | #define __loadsegment_ss(value) __loadsegment_simple(ss, (value)) |
| 333 | #define __loadsegment_ds(value) __loadsegment_simple(ds, (value)) |
| 334 | #define __loadsegment_es(value) __loadsegment_simple(es, (value)) |
| 335 | |
| 336 | #ifdef CONFIG_X86_32 |
| 337 | |
| 338 | /* |
| 339 | * On 32-bit systems, the hidden parts of FS and GS are unobservable if |
| 340 | * the selector is NULL, so there's no funny business here. |
| 341 | */ |
| 342 | #define __loadsegment_fs(value) __loadsegment_simple(fs, (value)) |
| 343 | #define __loadsegment_gs(value) __loadsegment_simple(gs, (value)) |
| 344 | |
| 345 | #else |
| 346 | |
| 347 | static inline void __loadsegment_fs(unsigned short value) |
| 348 | { |
| 349 | asm volatile(" \n" |
| 350 | "1: movw %0, %%fs \n" |
| 351 | "2: \n" |
| 352 | |
| 353 | _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs) |
| 354 | |
| 355 | : : "rm" (value) : "memory"); |
| 356 | } |
| 357 | |
| 358 | /* __loadsegment_gs is intentionally undefined. Use load_gs_index instead. */ |
| 359 | |
| 360 | #endif |
| 361 | |
| 362 | #define loadsegment(seg, value) __loadsegment_ ## seg (value) |
| 363 | |
| 364 | /* |
| 365 | * Save a segment register away: |
| 366 | */ |
| 367 | #define savesegment(seg, value) \ |
| 368 | asm("mov %%" #seg ",%0":"=r" (value) : : "memory") |
| 369 | |
| 370 | /* |
| 371 | * x86-32 user GS accessors: |
| 372 | */ |
| 373 | #ifdef CONFIG_X86_32 |
| 374 | # ifdef CONFIG_X86_32_LAZY_GS |
| 375 | # define get_user_gs(regs) (u16)({ unsigned long v; savesegment(gs, v); v; }) |
| 376 | # define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v)) |
| 377 | # define task_user_gs(tsk) ((tsk)->thread.gs) |
| 378 | # define lazy_save_gs(v) savesegment(gs, (v)) |
| 379 | # define lazy_load_gs(v) loadsegment(gs, (v)) |
| 380 | # else /* X86_32_LAZY_GS */ |
| 381 | # define get_user_gs(regs) (u16)((regs)->gs) |
| 382 | # define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0) |
| 383 | # define task_user_gs(tsk) (task_pt_regs(tsk)->gs) |
| 384 | # define lazy_save_gs(v) do { } while (0) |
| 385 | # define lazy_load_gs(v) do { } while (0) |
| 386 | # endif /* X86_32_LAZY_GS */ |
| 387 | #endif /* X86_32 */ |
| 388 | |
| 389 | #endif /* !__ASSEMBLY__ */ |
| 390 | #endif /* __KERNEL__ */ |
| 391 | |
| 392 | #endif /* _ASM_X86_SEGMENT_H */ |