David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | #include <linux/atomic.h> |
| 3 | #include <linux/mmu_context.h> |
| 4 | #include <linux/percpu.h> |
| 5 | #include <linux/spinlock.h> |
| 6 | |
| 7 | static DEFINE_RAW_SPINLOCK(cpu_mmid_lock); |
| 8 | |
| 9 | static atomic64_t mmid_version; |
| 10 | static unsigned int num_mmids; |
| 11 | static unsigned long *mmid_map; |
| 12 | |
| 13 | static DEFINE_PER_CPU(u64, reserved_mmids); |
| 14 | static cpumask_t tlb_flush_pending; |
| 15 | |
| 16 | static bool asid_versions_eq(int cpu, u64 a, u64 b) |
| 17 | { |
| 18 | return ((a ^ b) & asid_version_mask(cpu)) == 0; |
| 19 | } |
| 20 | |
| 21 | void get_new_mmu_context(struct mm_struct *mm) |
| 22 | { |
| 23 | unsigned int cpu; |
| 24 | u64 asid; |
| 25 | |
| 26 | /* |
| 27 | * This function is specific to ASIDs, and should not be called when |
| 28 | * MMIDs are in use. |
| 29 | */ |
| 30 | if (WARN_ON(IS_ENABLED(CONFIG_DEBUG_VM) && cpu_has_mmid)) |
| 31 | return; |
| 32 | |
| 33 | cpu = smp_processor_id(); |
| 34 | asid = asid_cache(cpu); |
| 35 | |
| 36 | if (!((asid += cpu_asid_inc()) & cpu_asid_mask(&cpu_data[cpu]))) { |
| 37 | if (cpu_has_vtag_icache) |
| 38 | flush_icache_all(); |
| 39 | local_flush_tlb_all(); /* start new asid cycle */ |
| 40 | } |
| 41 | |
| 42 | set_cpu_context(cpu, mm, asid); |
| 43 | asid_cache(cpu) = asid; |
| 44 | } |
| 45 | EXPORT_SYMBOL_GPL(get_new_mmu_context); |
| 46 | |
| 47 | void check_mmu_context(struct mm_struct *mm) |
| 48 | { |
| 49 | unsigned int cpu = smp_processor_id(); |
| 50 | |
| 51 | /* |
| 52 | * This function is specific to ASIDs, and should not be called when |
| 53 | * MMIDs are in use. |
| 54 | */ |
| 55 | if (WARN_ON(IS_ENABLED(CONFIG_DEBUG_VM) && cpu_has_mmid)) |
| 56 | return; |
| 57 | |
| 58 | /* Check if our ASID is of an older version and thus invalid */ |
| 59 | if (!asid_versions_eq(cpu, cpu_context(cpu, mm), asid_cache(cpu))) |
| 60 | get_new_mmu_context(mm); |
| 61 | } |
| 62 | EXPORT_SYMBOL_GPL(check_mmu_context); |
| 63 | |
| 64 | static void flush_context(void) |
| 65 | { |
| 66 | u64 mmid; |
| 67 | int cpu; |
| 68 | |
| 69 | /* Update the list of reserved MMIDs and the MMID bitmap */ |
| 70 | bitmap_clear(mmid_map, 0, num_mmids); |
| 71 | |
| 72 | /* Reserve an MMID for kmap/wired entries */ |
| 73 | __set_bit(MMID_KERNEL_WIRED, mmid_map); |
| 74 | |
| 75 | for_each_possible_cpu(cpu) { |
| 76 | mmid = xchg_relaxed(&cpu_data[cpu].asid_cache, 0); |
| 77 | |
| 78 | /* |
| 79 | * If this CPU has already been through a |
| 80 | * rollover, but hasn't run another task in |
| 81 | * the meantime, we must preserve its reserved |
| 82 | * MMID, as this is the only trace we have of |
| 83 | * the process it is still running. |
| 84 | */ |
| 85 | if (mmid == 0) |
| 86 | mmid = per_cpu(reserved_mmids, cpu); |
| 87 | |
| 88 | __set_bit(mmid & cpu_asid_mask(&cpu_data[cpu]), mmid_map); |
| 89 | per_cpu(reserved_mmids, cpu) = mmid; |
| 90 | } |
| 91 | |
| 92 | /* |
| 93 | * Queue a TLB invalidation for each CPU to perform on next |
| 94 | * context-switch |
| 95 | */ |
| 96 | cpumask_setall(&tlb_flush_pending); |
| 97 | } |
| 98 | |
| 99 | static bool check_update_reserved_mmid(u64 mmid, u64 newmmid) |
| 100 | { |
| 101 | bool hit; |
| 102 | int cpu; |
| 103 | |
| 104 | /* |
| 105 | * Iterate over the set of reserved MMIDs looking for a match. |
| 106 | * If we find one, then we can update our mm to use newmmid |
| 107 | * (i.e. the same MMID in the current generation) but we can't |
| 108 | * exit the loop early, since we need to ensure that all copies |
| 109 | * of the old MMID are updated to reflect the mm. Failure to do |
| 110 | * so could result in us missing the reserved MMID in a future |
| 111 | * generation. |
| 112 | */ |
| 113 | hit = false; |
| 114 | for_each_possible_cpu(cpu) { |
| 115 | if (per_cpu(reserved_mmids, cpu) == mmid) { |
| 116 | hit = true; |
| 117 | per_cpu(reserved_mmids, cpu) = newmmid; |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | return hit; |
| 122 | } |
| 123 | |
| 124 | static u64 get_new_mmid(struct mm_struct *mm) |
| 125 | { |
| 126 | static u32 cur_idx = MMID_KERNEL_WIRED + 1; |
| 127 | u64 mmid, version, mmid_mask; |
| 128 | |
| 129 | mmid = cpu_context(0, mm); |
| 130 | version = atomic64_read(&mmid_version); |
| 131 | mmid_mask = cpu_asid_mask(&boot_cpu_data); |
| 132 | |
| 133 | if (!asid_versions_eq(0, mmid, 0)) { |
| 134 | u64 newmmid = version | (mmid & mmid_mask); |
| 135 | |
| 136 | /* |
| 137 | * If our current MMID was active during a rollover, we |
| 138 | * can continue to use it and this was just a false alarm. |
| 139 | */ |
| 140 | if (check_update_reserved_mmid(mmid, newmmid)) { |
| 141 | mmid = newmmid; |
| 142 | goto set_context; |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * We had a valid MMID in a previous life, so try to re-use |
| 147 | * it if possible. |
| 148 | */ |
| 149 | if (!__test_and_set_bit(mmid & mmid_mask, mmid_map)) { |
| 150 | mmid = newmmid; |
| 151 | goto set_context; |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | /* Allocate a free MMID */ |
| 156 | mmid = find_next_zero_bit(mmid_map, num_mmids, cur_idx); |
| 157 | if (mmid != num_mmids) |
| 158 | goto reserve_mmid; |
| 159 | |
| 160 | /* We're out of MMIDs, so increment the global version */ |
| 161 | version = atomic64_add_return_relaxed(asid_first_version(0), |
| 162 | &mmid_version); |
| 163 | |
| 164 | /* Note currently active MMIDs & mark TLBs as requiring flushes */ |
| 165 | flush_context(); |
| 166 | |
| 167 | /* We have more MMIDs than CPUs, so this will always succeed */ |
| 168 | mmid = find_first_zero_bit(mmid_map, num_mmids); |
| 169 | |
| 170 | reserve_mmid: |
| 171 | __set_bit(mmid, mmid_map); |
| 172 | cur_idx = mmid; |
| 173 | mmid |= version; |
| 174 | set_context: |
| 175 | set_cpu_context(0, mm, mmid); |
| 176 | return mmid; |
| 177 | } |
| 178 | |
| 179 | void check_switch_mmu_context(struct mm_struct *mm) |
| 180 | { |
| 181 | unsigned int cpu = smp_processor_id(); |
| 182 | u64 ctx, old_active_mmid; |
| 183 | unsigned long flags; |
| 184 | |
| 185 | if (!cpu_has_mmid) { |
| 186 | check_mmu_context(mm); |
| 187 | write_c0_entryhi(cpu_asid(cpu, mm)); |
| 188 | goto setup_pgd; |
| 189 | } |
| 190 | |
| 191 | /* |
| 192 | * MMID switch fast-path, to avoid acquiring cpu_mmid_lock when it's |
| 193 | * unnecessary. |
| 194 | * |
| 195 | * The memory ordering here is subtle. If our active_mmids is non-zero |
| 196 | * and the MMID matches the current version, then we update the CPU's |
| 197 | * asid_cache with a relaxed cmpxchg. Racing with a concurrent rollover |
| 198 | * means that either: |
| 199 | * |
| 200 | * - We get a zero back from the cmpxchg and end up waiting on |
| 201 | * cpu_mmid_lock in check_mmu_context(). Taking the lock synchronises |
| 202 | * with the rollover and so we are forced to see the updated |
| 203 | * generation. |
| 204 | * |
| 205 | * - We get a valid MMID back from the cmpxchg, which means the |
| 206 | * relaxed xchg in flush_context will treat us as reserved |
| 207 | * because atomic RmWs are totally ordered for a given location. |
| 208 | */ |
| 209 | ctx = cpu_context(cpu, mm); |
| 210 | old_active_mmid = READ_ONCE(cpu_data[cpu].asid_cache); |
| 211 | if (!old_active_mmid || |
| 212 | !asid_versions_eq(cpu, ctx, atomic64_read(&mmid_version)) || |
| 213 | !cmpxchg_relaxed(&cpu_data[cpu].asid_cache, old_active_mmid, ctx)) { |
| 214 | raw_spin_lock_irqsave(&cpu_mmid_lock, flags); |
| 215 | |
| 216 | ctx = cpu_context(cpu, mm); |
| 217 | if (!asid_versions_eq(cpu, ctx, atomic64_read(&mmid_version))) |
| 218 | ctx = get_new_mmid(mm); |
| 219 | |
| 220 | WRITE_ONCE(cpu_data[cpu].asid_cache, ctx); |
| 221 | raw_spin_unlock_irqrestore(&cpu_mmid_lock, flags); |
| 222 | } |
| 223 | |
| 224 | /* |
| 225 | * Invalidate the local TLB if needed. Note that we must only clear our |
| 226 | * bit in tlb_flush_pending after this is complete, so that the |
| 227 | * cpu_has_shared_ftlb_entries case below isn't misled. |
| 228 | */ |
| 229 | if (cpumask_test_cpu(cpu, &tlb_flush_pending)) { |
| 230 | if (cpu_has_vtag_icache) |
| 231 | flush_icache_all(); |
| 232 | local_flush_tlb_all(); |
| 233 | cpumask_clear_cpu(cpu, &tlb_flush_pending); |
| 234 | } |
| 235 | |
| 236 | write_c0_memorymapid(ctx & cpu_asid_mask(&boot_cpu_data)); |
| 237 | |
| 238 | /* |
| 239 | * If this CPU shares FTLB entries with its siblings and one or more of |
| 240 | * those siblings hasn't yet invalidated its TLB following a version |
| 241 | * increase then we need to invalidate any TLB entries for our MMID |
| 242 | * that we might otherwise pick up from a sibling. |
| 243 | * |
| 244 | * We ifdef on CONFIG_SMP because cpu_sibling_map isn't defined in |
| 245 | * CONFIG_SMP=n kernels. |
| 246 | */ |
| 247 | #ifdef CONFIG_SMP |
| 248 | if (cpu_has_shared_ftlb_entries && |
| 249 | cpumask_intersects(&tlb_flush_pending, &cpu_sibling_map[cpu])) { |
| 250 | /* Ensure we operate on the new MMID */ |
| 251 | mtc0_tlbw_hazard(); |
| 252 | |
| 253 | /* |
| 254 | * Invalidate all TLB entries associated with the new |
| 255 | * MMID, and wait for the invalidation to complete. |
| 256 | */ |
| 257 | ginvt_mmid(); |
| 258 | sync_ginv(); |
| 259 | } |
| 260 | #endif |
| 261 | |
| 262 | setup_pgd: |
| 263 | TLBMISS_HANDLER_SETUP_PGD(mm->pgd); |
| 264 | } |
| 265 | EXPORT_SYMBOL_GPL(check_switch_mmu_context); |
| 266 | |
| 267 | static int mmid_init(void) |
| 268 | { |
| 269 | if (!cpu_has_mmid) |
| 270 | return 0; |
| 271 | |
| 272 | /* |
| 273 | * Expect allocation after rollover to fail if we don't have at least |
| 274 | * one more MMID than CPUs. |
| 275 | */ |
| 276 | num_mmids = asid_first_version(0); |
| 277 | WARN_ON(num_mmids <= num_possible_cpus()); |
| 278 | |
| 279 | atomic64_set(&mmid_version, asid_first_version(0)); |
| 280 | mmid_map = kcalloc(BITS_TO_LONGS(num_mmids), sizeof(*mmid_map), |
| 281 | GFP_KERNEL); |
| 282 | if (!mmid_map) |
| 283 | panic("Failed to allocate bitmap for %u MMIDs\n", num_mmids); |
| 284 | |
| 285 | /* Reserve an MMID for kmap/wired entries */ |
| 286 | __set_bit(MMID_KERNEL_WIRED, mmid_map); |
| 287 | |
| 288 | pr_info("MMID allocator initialised with %u entries\n", num_mmids); |
| 289 | return 0; |
| 290 | } |
| 291 | early_initcall(mmid_init); |