Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * linux/arch/alpha/kernel/pci_iommu.c |
| 4 | */ |
| 5 | |
| 6 | #include <linux/kernel.h> |
| 7 | #include <linux/mm.h> |
| 8 | #include <linux/pci.h> |
| 9 | #include <linux/gfp.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 10 | #include <linux/memblock.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 11 | #include <linux/export.h> |
| 12 | #include <linux/scatterlist.h> |
| 13 | #include <linux/log2.h> |
| 14 | #include <linux/dma-mapping.h> |
| 15 | #include <linux/iommu-helper.h> |
| 16 | |
| 17 | #include <asm/io.h> |
| 18 | #include <asm/hwrpb.h> |
| 19 | |
| 20 | #include "proto.h" |
| 21 | #include "pci_impl.h" |
| 22 | |
| 23 | |
| 24 | #define DEBUG_ALLOC 0 |
| 25 | #if DEBUG_ALLOC > 0 |
| 26 | # define DBGA(args...) printk(KERN_DEBUG args) |
| 27 | #else |
| 28 | # define DBGA(args...) |
| 29 | #endif |
| 30 | #if DEBUG_ALLOC > 1 |
| 31 | # define DBGA2(args...) printk(KERN_DEBUG args) |
| 32 | #else |
| 33 | # define DBGA2(args...) |
| 34 | #endif |
| 35 | |
| 36 | #define DEBUG_NODIRECT 0 |
| 37 | |
| 38 | #define ISA_DMA_MASK 0x00ffffff |
| 39 | |
| 40 | static inline unsigned long |
| 41 | mk_iommu_pte(unsigned long paddr) |
| 42 | { |
| 43 | return (paddr >> (PAGE_SHIFT-1)) | 1; |
| 44 | } |
| 45 | |
| 46 | /* Return the minimum of MAX or the first power of two larger |
| 47 | than main memory. */ |
| 48 | |
| 49 | unsigned long |
| 50 | size_for_memory(unsigned long max) |
| 51 | { |
| 52 | unsigned long mem = max_low_pfn << PAGE_SHIFT; |
| 53 | if (mem < max) |
| 54 | max = roundup_pow_of_two(mem); |
| 55 | return max; |
| 56 | } |
| 57 | |
| 58 | struct pci_iommu_arena * __init |
| 59 | iommu_arena_new_node(int nid, struct pci_controller *hose, dma_addr_t base, |
| 60 | unsigned long window_size, unsigned long align) |
| 61 | { |
| 62 | unsigned long mem_size; |
| 63 | struct pci_iommu_arena *arena; |
| 64 | |
| 65 | mem_size = window_size / (PAGE_SIZE / sizeof(unsigned long)); |
| 66 | |
| 67 | /* Note that the TLB lookup logic uses bitwise concatenation, |
| 68 | not addition, so the required arena alignment is based on |
| 69 | the size of the window. Retain the align parameter so that |
| 70 | particular systems can over-align the arena. */ |
| 71 | if (align < mem_size) |
| 72 | align = mem_size; |
| 73 | |
| 74 | |
| 75 | #ifdef CONFIG_DISCONTIGMEM |
| 76 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 77 | arena = memblock_alloc_node(sizeof(*arena), align, nid); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 78 | if (!NODE_DATA(nid) || !arena) { |
| 79 | printk("%s: couldn't allocate arena from node %d\n" |
| 80 | " falling back to system-wide allocation\n", |
| 81 | __func__, nid); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 82 | arena = memblock_alloc(sizeof(*arena), SMP_CACHE_BYTES); |
| 83 | if (!arena) |
| 84 | panic("%s: Failed to allocate %zu bytes\n", __func__, |
| 85 | sizeof(*arena)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 86 | } |
| 87 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 88 | arena->ptes = memblock_alloc_node(sizeof(*arena), align, nid); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 89 | if (!NODE_DATA(nid) || !arena->ptes) { |
| 90 | printk("%s: couldn't allocate arena ptes from node %d\n" |
| 91 | " falling back to system-wide allocation\n", |
| 92 | __func__, nid); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 93 | arena->ptes = memblock_alloc(mem_size, align); |
| 94 | if (!arena->ptes) |
| 95 | panic("%s: Failed to allocate %lu bytes align=0x%lx\n", |
| 96 | __func__, mem_size, align); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 97 | } |
| 98 | |
| 99 | #else /* CONFIG_DISCONTIGMEM */ |
| 100 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 101 | arena = memblock_alloc(sizeof(*arena), SMP_CACHE_BYTES); |
| 102 | if (!arena) |
| 103 | panic("%s: Failed to allocate %zu bytes\n", __func__, |
| 104 | sizeof(*arena)); |
| 105 | arena->ptes = memblock_alloc(mem_size, align); |
| 106 | if (!arena->ptes) |
| 107 | panic("%s: Failed to allocate %lu bytes align=0x%lx\n", |
| 108 | __func__, mem_size, align); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 109 | |
| 110 | #endif /* CONFIG_DISCONTIGMEM */ |
| 111 | |
| 112 | spin_lock_init(&arena->lock); |
| 113 | arena->hose = hose; |
| 114 | arena->dma_base = base; |
| 115 | arena->size = window_size; |
| 116 | arena->next_entry = 0; |
| 117 | |
| 118 | /* Align allocations to a multiple of a page size. Not needed |
| 119 | unless there are chip bugs. */ |
| 120 | arena->align_entry = 1; |
| 121 | |
| 122 | return arena; |
| 123 | } |
| 124 | |
| 125 | struct pci_iommu_arena * __init |
| 126 | iommu_arena_new(struct pci_controller *hose, dma_addr_t base, |
| 127 | unsigned long window_size, unsigned long align) |
| 128 | { |
| 129 | return iommu_arena_new_node(0, hose, base, window_size, align); |
| 130 | } |
| 131 | |
| 132 | /* Must be called with the arena lock held */ |
| 133 | static long |
| 134 | iommu_arena_find_pages(struct device *dev, struct pci_iommu_arena *arena, |
| 135 | long n, long mask) |
| 136 | { |
| 137 | unsigned long *ptes; |
| 138 | long i, p, nent; |
| 139 | int pass = 0; |
| 140 | unsigned long base; |
| 141 | unsigned long boundary_size; |
| 142 | |
| 143 | base = arena->dma_base >> PAGE_SHIFT; |
| 144 | if (dev) { |
| 145 | boundary_size = dma_get_seg_boundary(dev) + 1; |
| 146 | boundary_size >>= PAGE_SHIFT; |
| 147 | } else { |
| 148 | boundary_size = 1UL << (32 - PAGE_SHIFT); |
| 149 | } |
| 150 | |
| 151 | /* Search forward for the first mask-aligned sequence of N free ptes */ |
| 152 | ptes = arena->ptes; |
| 153 | nent = arena->size >> PAGE_SHIFT; |
| 154 | p = ALIGN(arena->next_entry, mask + 1); |
| 155 | i = 0; |
| 156 | |
| 157 | again: |
| 158 | while (i < n && p+i < nent) { |
| 159 | if (!i && iommu_is_span_boundary(p, n, base, boundary_size)) { |
| 160 | p = ALIGN(p + 1, mask + 1); |
| 161 | goto again; |
| 162 | } |
| 163 | |
| 164 | if (ptes[p+i]) |
| 165 | p = ALIGN(p + i + 1, mask + 1), i = 0; |
| 166 | else |
| 167 | i = i + 1; |
| 168 | } |
| 169 | |
| 170 | if (i < n) { |
| 171 | if (pass < 1) { |
| 172 | /* |
| 173 | * Reached the end. Flush the TLB and restart |
| 174 | * the search from the beginning. |
| 175 | */ |
| 176 | alpha_mv.mv_pci_tbi(arena->hose, 0, -1); |
| 177 | |
| 178 | pass++; |
| 179 | p = 0; |
| 180 | i = 0; |
| 181 | goto again; |
| 182 | } else |
| 183 | return -1; |
| 184 | } |
| 185 | |
| 186 | /* Success. It's the responsibility of the caller to mark them |
| 187 | in use before releasing the lock */ |
| 188 | return p; |
| 189 | } |
| 190 | |
| 191 | static long |
| 192 | iommu_arena_alloc(struct device *dev, struct pci_iommu_arena *arena, long n, |
| 193 | unsigned int align) |
| 194 | { |
| 195 | unsigned long flags; |
| 196 | unsigned long *ptes; |
| 197 | long i, p, mask; |
| 198 | |
| 199 | spin_lock_irqsave(&arena->lock, flags); |
| 200 | |
| 201 | /* Search for N empty ptes */ |
| 202 | ptes = arena->ptes; |
| 203 | mask = max(align, arena->align_entry) - 1; |
| 204 | p = iommu_arena_find_pages(dev, arena, n, mask); |
| 205 | if (p < 0) { |
| 206 | spin_unlock_irqrestore(&arena->lock, flags); |
| 207 | return -1; |
| 208 | } |
| 209 | |
| 210 | /* Success. Mark them all in use, ie not zero and invalid |
| 211 | for the iommu tlb that could load them from under us. |
| 212 | The chip specific bits will fill this in with something |
| 213 | kosher when we return. */ |
| 214 | for (i = 0; i < n; ++i) |
| 215 | ptes[p+i] = IOMMU_INVALID_PTE; |
| 216 | |
| 217 | arena->next_entry = p + n; |
| 218 | spin_unlock_irqrestore(&arena->lock, flags); |
| 219 | |
| 220 | return p; |
| 221 | } |
| 222 | |
| 223 | static void |
| 224 | iommu_arena_free(struct pci_iommu_arena *arena, long ofs, long n) |
| 225 | { |
| 226 | unsigned long *p; |
| 227 | long i; |
| 228 | |
| 229 | p = arena->ptes + ofs; |
| 230 | for (i = 0; i < n; ++i) |
| 231 | p[i] = 0; |
| 232 | } |
| 233 | |
| 234 | /* |
| 235 | * True if the machine supports DAC addressing, and DEV can |
| 236 | * make use of it given MASK. |
| 237 | */ |
| 238 | static int pci_dac_dma_supported(struct pci_dev *dev, u64 mask) |
| 239 | { |
| 240 | dma_addr_t dac_offset = alpha_mv.pci_dac_offset; |
| 241 | int ok = 1; |
| 242 | |
| 243 | /* If this is not set, the machine doesn't support DAC at all. */ |
| 244 | if (dac_offset == 0) |
| 245 | ok = 0; |
| 246 | |
| 247 | /* The device has to be able to address our DAC bit. */ |
| 248 | if ((dac_offset & dev->dma_mask) != dac_offset) |
| 249 | ok = 0; |
| 250 | |
| 251 | /* If both conditions above are met, we are fine. */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 252 | DBGA("pci_dac_dma_supported %s from %ps\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 253 | ok ? "yes" : "no", __builtin_return_address(0)); |
| 254 | |
| 255 | return ok; |
| 256 | } |
| 257 | |
| 258 | /* Map a single buffer of the indicated size for PCI DMA in streaming |
| 259 | mode. The 32-bit PCI bus mastering address to use is returned. |
| 260 | Once the device is given the dma address, the device owns this memory |
| 261 | until either pci_unmap_single or pci_dma_sync_single is performed. */ |
| 262 | |
| 263 | static dma_addr_t |
| 264 | pci_map_single_1(struct pci_dev *pdev, void *cpu_addr, size_t size, |
| 265 | int dac_allowed) |
| 266 | { |
| 267 | struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose; |
| 268 | dma_addr_t max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; |
| 269 | struct pci_iommu_arena *arena; |
| 270 | long npages, dma_ofs, i; |
| 271 | unsigned long paddr; |
| 272 | dma_addr_t ret; |
| 273 | unsigned int align = 0; |
| 274 | struct device *dev = pdev ? &pdev->dev : NULL; |
| 275 | |
| 276 | paddr = __pa(cpu_addr); |
| 277 | |
| 278 | #if !DEBUG_NODIRECT |
| 279 | /* First check to see if we can use the direct map window. */ |
| 280 | if (paddr + size + __direct_map_base - 1 <= max_dma |
| 281 | && paddr + size <= __direct_map_size) { |
| 282 | ret = paddr + __direct_map_base; |
| 283 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 284 | DBGA2("pci_map_single: [%p,%zx] -> direct %llx from %ps\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 285 | cpu_addr, size, ret, __builtin_return_address(0)); |
| 286 | |
| 287 | return ret; |
| 288 | } |
| 289 | #endif |
| 290 | |
| 291 | /* Next, use DAC if selected earlier. */ |
| 292 | if (dac_allowed) { |
| 293 | ret = paddr + alpha_mv.pci_dac_offset; |
| 294 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 295 | DBGA2("pci_map_single: [%p,%zx] -> DAC %llx from %ps\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 296 | cpu_addr, size, ret, __builtin_return_address(0)); |
| 297 | |
| 298 | return ret; |
| 299 | } |
| 300 | |
| 301 | /* If the machine doesn't define a pci_tbi routine, we have to |
| 302 | assume it doesn't support sg mapping, and, since we tried to |
| 303 | use direct_map above, it now must be considered an error. */ |
| 304 | if (! alpha_mv.mv_pci_tbi) { |
| 305 | printk_once(KERN_WARNING "pci_map_single: no HW sg\n"); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 306 | return DMA_MAPPING_ERROR; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 307 | } |
| 308 | |
| 309 | arena = hose->sg_pci; |
| 310 | if (!arena || arena->dma_base + arena->size - 1 > max_dma) |
| 311 | arena = hose->sg_isa; |
| 312 | |
| 313 | npages = iommu_num_pages(paddr, size, PAGE_SIZE); |
| 314 | |
| 315 | /* Force allocation to 64KB boundary for ISA bridges. */ |
| 316 | if (pdev && pdev == isa_bridge) |
| 317 | align = 8; |
| 318 | dma_ofs = iommu_arena_alloc(dev, arena, npages, align); |
| 319 | if (dma_ofs < 0) { |
| 320 | printk(KERN_WARNING "pci_map_single failed: " |
| 321 | "could not allocate dma page tables\n"); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 322 | return DMA_MAPPING_ERROR; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 323 | } |
| 324 | |
| 325 | paddr &= PAGE_MASK; |
| 326 | for (i = 0; i < npages; ++i, paddr += PAGE_SIZE) |
| 327 | arena->ptes[i + dma_ofs] = mk_iommu_pte(paddr); |
| 328 | |
| 329 | ret = arena->dma_base + dma_ofs * PAGE_SIZE; |
| 330 | ret += (unsigned long)cpu_addr & ~PAGE_MASK; |
| 331 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 332 | DBGA2("pci_map_single: [%p,%zx] np %ld -> sg %llx from %ps\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 333 | cpu_addr, size, npages, ret, __builtin_return_address(0)); |
| 334 | |
| 335 | return ret; |
| 336 | } |
| 337 | |
| 338 | /* Helper for generic DMA-mapping functions. */ |
| 339 | static struct pci_dev *alpha_gendev_to_pci(struct device *dev) |
| 340 | { |
| 341 | if (dev && dev_is_pci(dev)) |
| 342 | return to_pci_dev(dev); |
| 343 | |
| 344 | /* Assume that non-PCI devices asking for DMA are either ISA or EISA, |
| 345 | BUG() otherwise. */ |
| 346 | BUG_ON(!isa_bridge); |
| 347 | |
| 348 | /* Assume non-busmaster ISA DMA when dma_mask is not set (the ISA |
| 349 | bridge is bus master then). */ |
| 350 | if (!dev || !dev->dma_mask || !*dev->dma_mask) |
| 351 | return isa_bridge; |
| 352 | |
| 353 | /* For EISA bus masters, return isa_bridge (it might have smaller |
| 354 | dma_mask due to wiring limitations). */ |
| 355 | if (*dev->dma_mask >= isa_bridge->dma_mask) |
| 356 | return isa_bridge; |
| 357 | |
| 358 | /* This assumes ISA bus master with dma_mask 0xffffff. */ |
| 359 | return NULL; |
| 360 | } |
| 361 | |
| 362 | static dma_addr_t alpha_pci_map_page(struct device *dev, struct page *page, |
| 363 | unsigned long offset, size_t size, |
| 364 | enum dma_data_direction dir, |
| 365 | unsigned long attrs) |
| 366 | { |
| 367 | struct pci_dev *pdev = alpha_gendev_to_pci(dev); |
| 368 | int dac_allowed; |
| 369 | |
| 370 | BUG_ON(dir == PCI_DMA_NONE); |
| 371 | |
| 372 | dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0; |
| 373 | return pci_map_single_1(pdev, (char *)page_address(page) + offset, |
| 374 | size, dac_allowed); |
| 375 | } |
| 376 | |
| 377 | /* Unmap a single streaming mode DMA translation. The DMA_ADDR and |
| 378 | SIZE must match what was provided for in a previous pci_map_single |
| 379 | call. All other usages are undefined. After this call, reads by |
| 380 | the cpu to the buffer are guaranteed to see whatever the device |
| 381 | wrote there. */ |
| 382 | |
| 383 | static void alpha_pci_unmap_page(struct device *dev, dma_addr_t dma_addr, |
| 384 | size_t size, enum dma_data_direction dir, |
| 385 | unsigned long attrs) |
| 386 | { |
| 387 | unsigned long flags; |
| 388 | struct pci_dev *pdev = alpha_gendev_to_pci(dev); |
| 389 | struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose; |
| 390 | struct pci_iommu_arena *arena; |
| 391 | long dma_ofs, npages; |
| 392 | |
| 393 | BUG_ON(dir == PCI_DMA_NONE); |
| 394 | |
| 395 | if (dma_addr >= __direct_map_base |
| 396 | && dma_addr < __direct_map_base + __direct_map_size) { |
| 397 | /* Nothing to do. */ |
| 398 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 399 | DBGA2("pci_unmap_single: direct [%llx,%zx] from %ps\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 400 | dma_addr, size, __builtin_return_address(0)); |
| 401 | |
| 402 | return; |
| 403 | } |
| 404 | |
| 405 | if (dma_addr > 0xffffffff) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 406 | DBGA2("pci64_unmap_single: DAC [%llx,%zx] from %ps\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 407 | dma_addr, size, __builtin_return_address(0)); |
| 408 | return; |
| 409 | } |
| 410 | |
| 411 | arena = hose->sg_pci; |
| 412 | if (!arena || dma_addr < arena->dma_base) |
| 413 | arena = hose->sg_isa; |
| 414 | |
| 415 | dma_ofs = (dma_addr - arena->dma_base) >> PAGE_SHIFT; |
| 416 | if (dma_ofs * PAGE_SIZE >= arena->size) { |
| 417 | printk(KERN_ERR "Bogus pci_unmap_single: dma_addr %llx " |
| 418 | " base %llx size %x\n", |
| 419 | dma_addr, arena->dma_base, arena->size); |
| 420 | return; |
| 421 | BUG(); |
| 422 | } |
| 423 | |
| 424 | npages = iommu_num_pages(dma_addr, size, PAGE_SIZE); |
| 425 | |
| 426 | spin_lock_irqsave(&arena->lock, flags); |
| 427 | |
| 428 | iommu_arena_free(arena, dma_ofs, npages); |
| 429 | |
| 430 | /* If we're freeing ptes above the `next_entry' pointer (they |
| 431 | may have snuck back into the TLB since the last wrap flush), |
| 432 | we need to flush the TLB before reallocating the latter. */ |
| 433 | if (dma_ofs >= arena->next_entry) |
| 434 | alpha_mv.mv_pci_tbi(hose, dma_addr, dma_addr + size - 1); |
| 435 | |
| 436 | spin_unlock_irqrestore(&arena->lock, flags); |
| 437 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 438 | DBGA2("pci_unmap_single: sg [%llx,%zx] np %ld from %ps\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 439 | dma_addr, size, npages, __builtin_return_address(0)); |
| 440 | } |
| 441 | |
| 442 | /* Allocate and map kernel buffer using consistent mode DMA for PCI |
| 443 | device. Returns non-NULL cpu-view pointer to the buffer if |
| 444 | successful and sets *DMA_ADDRP to the pci side dma address as well, |
| 445 | else DMA_ADDRP is undefined. */ |
| 446 | |
| 447 | static void *alpha_pci_alloc_coherent(struct device *dev, size_t size, |
| 448 | dma_addr_t *dma_addrp, gfp_t gfp, |
| 449 | unsigned long attrs) |
| 450 | { |
| 451 | struct pci_dev *pdev = alpha_gendev_to_pci(dev); |
| 452 | void *cpu_addr; |
| 453 | long order = get_order(size); |
| 454 | |
| 455 | gfp &= ~GFP_DMA; |
| 456 | |
| 457 | try_again: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 458 | cpu_addr = (void *)__get_free_pages(gfp | __GFP_ZERO, order); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 459 | if (! cpu_addr) { |
| 460 | printk(KERN_INFO "pci_alloc_consistent: " |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 461 | "get_free_pages failed from %ps\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 462 | __builtin_return_address(0)); |
| 463 | /* ??? Really atomic allocation? Otherwise we could play |
| 464 | with vmalloc and sg if we can't find contiguous memory. */ |
| 465 | return NULL; |
| 466 | } |
| 467 | memset(cpu_addr, 0, size); |
| 468 | |
| 469 | *dma_addrp = pci_map_single_1(pdev, cpu_addr, size, 0); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 470 | if (*dma_addrp == DMA_MAPPING_ERROR) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 471 | free_pages((unsigned long)cpu_addr, order); |
| 472 | if (alpha_mv.mv_pci_tbi || (gfp & GFP_DMA)) |
| 473 | return NULL; |
| 474 | /* The address doesn't fit required mask and we |
| 475 | do not have iommu. Try again with GFP_DMA. */ |
| 476 | gfp |= GFP_DMA; |
| 477 | goto try_again; |
| 478 | } |
| 479 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 480 | DBGA2("pci_alloc_consistent: %zx -> [%p,%llx] from %ps\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 481 | size, cpu_addr, *dma_addrp, __builtin_return_address(0)); |
| 482 | |
| 483 | return cpu_addr; |
| 484 | } |
| 485 | |
| 486 | /* Free and unmap a consistent DMA buffer. CPU_ADDR and DMA_ADDR must |
| 487 | be values that were returned from pci_alloc_consistent. SIZE must |
| 488 | be the same as what as passed into pci_alloc_consistent. |
| 489 | References to the memory and mappings associated with CPU_ADDR or |
| 490 | DMA_ADDR past this call are illegal. */ |
| 491 | |
| 492 | static void alpha_pci_free_coherent(struct device *dev, size_t size, |
| 493 | void *cpu_addr, dma_addr_t dma_addr, |
| 494 | unsigned long attrs) |
| 495 | { |
| 496 | struct pci_dev *pdev = alpha_gendev_to_pci(dev); |
| 497 | pci_unmap_single(pdev, dma_addr, size, PCI_DMA_BIDIRECTIONAL); |
| 498 | free_pages((unsigned long)cpu_addr, get_order(size)); |
| 499 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 500 | DBGA2("pci_free_consistent: [%llx,%zx] from %ps\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 501 | dma_addr, size, __builtin_return_address(0)); |
| 502 | } |
| 503 | |
| 504 | /* Classify the elements of the scatterlist. Write dma_address |
| 505 | of each element with: |
| 506 | 0 : Followers all physically adjacent. |
| 507 | 1 : Followers all virtually adjacent. |
| 508 | -1 : Not leader, physically adjacent to previous. |
| 509 | -2 : Not leader, virtually adjacent to previous. |
| 510 | Write dma_length of each leader with the combined lengths of |
| 511 | the mergable followers. */ |
| 512 | |
| 513 | #define SG_ENT_VIRT_ADDRESS(SG) (sg_virt((SG))) |
| 514 | #define SG_ENT_PHYS_ADDRESS(SG) __pa(SG_ENT_VIRT_ADDRESS(SG)) |
| 515 | |
| 516 | static void |
| 517 | sg_classify(struct device *dev, struct scatterlist *sg, struct scatterlist *end, |
| 518 | int virt_ok) |
| 519 | { |
| 520 | unsigned long next_paddr; |
| 521 | struct scatterlist *leader; |
| 522 | long leader_flag, leader_length; |
| 523 | unsigned int max_seg_size; |
| 524 | |
| 525 | leader = sg; |
| 526 | leader_flag = 0; |
| 527 | leader_length = leader->length; |
| 528 | next_paddr = SG_ENT_PHYS_ADDRESS(leader) + leader_length; |
| 529 | |
| 530 | /* we will not marge sg without device. */ |
| 531 | max_seg_size = dev ? dma_get_max_seg_size(dev) : 0; |
| 532 | for (++sg; sg < end; ++sg) { |
| 533 | unsigned long addr, len; |
| 534 | addr = SG_ENT_PHYS_ADDRESS(sg); |
| 535 | len = sg->length; |
| 536 | |
| 537 | if (leader_length + len > max_seg_size) |
| 538 | goto new_segment; |
| 539 | |
| 540 | if (next_paddr == addr) { |
| 541 | sg->dma_address = -1; |
| 542 | leader_length += len; |
| 543 | } else if (((next_paddr | addr) & ~PAGE_MASK) == 0 && virt_ok) { |
| 544 | sg->dma_address = -2; |
| 545 | leader_flag = 1; |
| 546 | leader_length += len; |
| 547 | } else { |
| 548 | new_segment: |
| 549 | leader->dma_address = leader_flag; |
| 550 | leader->dma_length = leader_length; |
| 551 | leader = sg; |
| 552 | leader_flag = 0; |
| 553 | leader_length = len; |
| 554 | } |
| 555 | |
| 556 | next_paddr = addr + len; |
| 557 | } |
| 558 | |
| 559 | leader->dma_address = leader_flag; |
| 560 | leader->dma_length = leader_length; |
| 561 | } |
| 562 | |
| 563 | /* Given a scatterlist leader, choose an allocation method and fill |
| 564 | in the blanks. */ |
| 565 | |
| 566 | static int |
| 567 | sg_fill(struct device *dev, struct scatterlist *leader, struct scatterlist *end, |
| 568 | struct scatterlist *out, struct pci_iommu_arena *arena, |
| 569 | dma_addr_t max_dma, int dac_allowed) |
| 570 | { |
| 571 | unsigned long paddr = SG_ENT_PHYS_ADDRESS(leader); |
| 572 | long size = leader->dma_length; |
| 573 | struct scatterlist *sg; |
| 574 | unsigned long *ptes; |
| 575 | long npages, dma_ofs, i; |
| 576 | |
| 577 | #if !DEBUG_NODIRECT |
| 578 | /* If everything is physically contiguous, and the addresses |
| 579 | fall into the direct-map window, use it. */ |
| 580 | if (leader->dma_address == 0 |
| 581 | && paddr + size + __direct_map_base - 1 <= max_dma |
| 582 | && paddr + size <= __direct_map_size) { |
| 583 | out->dma_address = paddr + __direct_map_base; |
| 584 | out->dma_length = size; |
| 585 | |
| 586 | DBGA(" sg_fill: [%p,%lx] -> direct %llx\n", |
| 587 | __va(paddr), size, out->dma_address); |
| 588 | |
| 589 | return 0; |
| 590 | } |
| 591 | #endif |
| 592 | |
| 593 | /* If physically contiguous and DAC is available, use it. */ |
| 594 | if (leader->dma_address == 0 && dac_allowed) { |
| 595 | out->dma_address = paddr + alpha_mv.pci_dac_offset; |
| 596 | out->dma_length = size; |
| 597 | |
| 598 | DBGA(" sg_fill: [%p,%lx] -> DAC %llx\n", |
| 599 | __va(paddr), size, out->dma_address); |
| 600 | |
| 601 | return 0; |
| 602 | } |
| 603 | |
| 604 | /* Otherwise, we'll use the iommu to make the pages virtually |
| 605 | contiguous. */ |
| 606 | |
| 607 | paddr &= ~PAGE_MASK; |
| 608 | npages = iommu_num_pages(paddr, size, PAGE_SIZE); |
| 609 | dma_ofs = iommu_arena_alloc(dev, arena, npages, 0); |
| 610 | if (dma_ofs < 0) { |
| 611 | /* If we attempted a direct map above but failed, die. */ |
| 612 | if (leader->dma_address == 0) |
| 613 | return -1; |
| 614 | |
| 615 | /* Otherwise, break up the remaining virtually contiguous |
| 616 | hunks into individual direct maps and retry. */ |
| 617 | sg_classify(dev, leader, end, 0); |
| 618 | return sg_fill(dev, leader, end, out, arena, max_dma, dac_allowed); |
| 619 | } |
| 620 | |
| 621 | out->dma_address = arena->dma_base + dma_ofs*PAGE_SIZE + paddr; |
| 622 | out->dma_length = size; |
| 623 | |
| 624 | DBGA(" sg_fill: [%p,%lx] -> sg %llx np %ld\n", |
| 625 | __va(paddr), size, out->dma_address, npages); |
| 626 | |
| 627 | /* All virtually contiguous. We need to find the length of each |
| 628 | physically contiguous subsegment to fill in the ptes. */ |
| 629 | ptes = &arena->ptes[dma_ofs]; |
| 630 | sg = leader; |
| 631 | do { |
| 632 | #if DEBUG_ALLOC > 0 |
| 633 | struct scatterlist *last_sg = sg; |
| 634 | #endif |
| 635 | |
| 636 | size = sg->length; |
| 637 | paddr = SG_ENT_PHYS_ADDRESS(sg); |
| 638 | |
| 639 | while (sg+1 < end && (int) sg[1].dma_address == -1) { |
| 640 | size += sg[1].length; |
| 641 | sg++; |
| 642 | } |
| 643 | |
| 644 | npages = iommu_num_pages(paddr, size, PAGE_SIZE); |
| 645 | |
| 646 | paddr &= PAGE_MASK; |
| 647 | for (i = 0; i < npages; ++i, paddr += PAGE_SIZE) |
| 648 | *ptes++ = mk_iommu_pte(paddr); |
| 649 | |
| 650 | #if DEBUG_ALLOC > 0 |
| 651 | DBGA(" (%ld) [%p,%x] np %ld\n", |
| 652 | last_sg - leader, SG_ENT_VIRT_ADDRESS(last_sg), |
| 653 | last_sg->length, npages); |
| 654 | while (++last_sg <= sg) { |
| 655 | DBGA(" (%ld) [%p,%x] cont\n", |
| 656 | last_sg - leader, SG_ENT_VIRT_ADDRESS(last_sg), |
| 657 | last_sg->length); |
| 658 | } |
| 659 | #endif |
| 660 | } while (++sg < end && (int) sg->dma_address < 0); |
| 661 | |
| 662 | return 1; |
| 663 | } |
| 664 | |
| 665 | static int alpha_pci_map_sg(struct device *dev, struct scatterlist *sg, |
| 666 | int nents, enum dma_data_direction dir, |
| 667 | unsigned long attrs) |
| 668 | { |
| 669 | struct pci_dev *pdev = alpha_gendev_to_pci(dev); |
| 670 | struct scatterlist *start, *end, *out; |
| 671 | struct pci_controller *hose; |
| 672 | struct pci_iommu_arena *arena; |
| 673 | dma_addr_t max_dma; |
| 674 | int dac_allowed; |
| 675 | |
| 676 | BUG_ON(dir == PCI_DMA_NONE); |
| 677 | |
| 678 | dac_allowed = dev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0; |
| 679 | |
| 680 | /* Fast path single entry scatterlists. */ |
| 681 | if (nents == 1) { |
| 682 | sg->dma_length = sg->length; |
| 683 | sg->dma_address |
| 684 | = pci_map_single_1(pdev, SG_ENT_VIRT_ADDRESS(sg), |
| 685 | sg->length, dac_allowed); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 686 | return sg->dma_address != DMA_MAPPING_ERROR; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 687 | } |
| 688 | |
| 689 | start = sg; |
| 690 | end = sg + nents; |
| 691 | |
| 692 | /* First, prepare information about the entries. */ |
| 693 | sg_classify(dev, sg, end, alpha_mv.mv_pci_tbi != 0); |
| 694 | |
| 695 | /* Second, figure out where we're going to map things. */ |
| 696 | if (alpha_mv.mv_pci_tbi) { |
| 697 | hose = pdev ? pdev->sysdata : pci_isa_hose; |
| 698 | max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; |
| 699 | arena = hose->sg_pci; |
| 700 | if (!arena || arena->dma_base + arena->size - 1 > max_dma) |
| 701 | arena = hose->sg_isa; |
| 702 | } else { |
| 703 | max_dma = -1; |
| 704 | arena = NULL; |
| 705 | hose = NULL; |
| 706 | } |
| 707 | |
| 708 | /* Third, iterate over the scatterlist leaders and allocate |
| 709 | dma space as needed. */ |
| 710 | for (out = sg; sg < end; ++sg) { |
| 711 | if ((int) sg->dma_address < 0) |
| 712 | continue; |
| 713 | if (sg_fill(dev, sg, end, out, arena, max_dma, dac_allowed) < 0) |
| 714 | goto error; |
| 715 | out++; |
| 716 | } |
| 717 | |
| 718 | /* Mark the end of the list for pci_unmap_sg. */ |
| 719 | if (out < end) |
| 720 | out->dma_length = 0; |
| 721 | |
| 722 | if (out - start == 0) |
| 723 | printk(KERN_WARNING "pci_map_sg failed: no entries?\n"); |
| 724 | DBGA("pci_map_sg: %ld entries\n", out - start); |
| 725 | |
| 726 | return out - start; |
| 727 | |
| 728 | error: |
| 729 | printk(KERN_WARNING "pci_map_sg failed: " |
| 730 | "could not allocate dma page tables\n"); |
| 731 | |
| 732 | /* Some allocation failed while mapping the scatterlist |
| 733 | entries. Unmap them now. */ |
| 734 | if (out > start) |
| 735 | pci_unmap_sg(pdev, start, out - start, dir); |
| 736 | return 0; |
| 737 | } |
| 738 | |
| 739 | /* Unmap a set of streaming mode DMA translations. Again, cpu read |
| 740 | rules concerning calls here are the same as for pci_unmap_single() |
| 741 | above. */ |
| 742 | |
| 743 | static void alpha_pci_unmap_sg(struct device *dev, struct scatterlist *sg, |
| 744 | int nents, enum dma_data_direction dir, |
| 745 | unsigned long attrs) |
| 746 | { |
| 747 | struct pci_dev *pdev = alpha_gendev_to_pci(dev); |
| 748 | unsigned long flags; |
| 749 | struct pci_controller *hose; |
| 750 | struct pci_iommu_arena *arena; |
| 751 | struct scatterlist *end; |
| 752 | dma_addr_t max_dma; |
| 753 | dma_addr_t fbeg, fend; |
| 754 | |
| 755 | BUG_ON(dir == PCI_DMA_NONE); |
| 756 | |
| 757 | if (! alpha_mv.mv_pci_tbi) |
| 758 | return; |
| 759 | |
| 760 | hose = pdev ? pdev->sysdata : pci_isa_hose; |
| 761 | max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; |
| 762 | arena = hose->sg_pci; |
| 763 | if (!arena || arena->dma_base + arena->size - 1 > max_dma) |
| 764 | arena = hose->sg_isa; |
| 765 | |
| 766 | fbeg = -1, fend = 0; |
| 767 | |
| 768 | spin_lock_irqsave(&arena->lock, flags); |
| 769 | |
| 770 | for (end = sg + nents; sg < end; ++sg) { |
| 771 | dma_addr_t addr; |
| 772 | size_t size; |
| 773 | long npages, ofs; |
| 774 | dma_addr_t tend; |
| 775 | |
| 776 | addr = sg->dma_address; |
| 777 | size = sg->dma_length; |
| 778 | if (!size) |
| 779 | break; |
| 780 | |
| 781 | if (addr > 0xffffffff) { |
| 782 | /* It's a DAC address -- nothing to do. */ |
| 783 | DBGA(" (%ld) DAC [%llx,%zx]\n", |
| 784 | sg - end + nents, addr, size); |
| 785 | continue; |
| 786 | } |
| 787 | |
| 788 | if (addr >= __direct_map_base |
| 789 | && addr < __direct_map_base + __direct_map_size) { |
| 790 | /* Nothing to do. */ |
| 791 | DBGA(" (%ld) direct [%llx,%zx]\n", |
| 792 | sg - end + nents, addr, size); |
| 793 | continue; |
| 794 | } |
| 795 | |
| 796 | DBGA(" (%ld) sg [%llx,%zx]\n", |
| 797 | sg - end + nents, addr, size); |
| 798 | |
| 799 | npages = iommu_num_pages(addr, size, PAGE_SIZE); |
| 800 | ofs = (addr - arena->dma_base) >> PAGE_SHIFT; |
| 801 | iommu_arena_free(arena, ofs, npages); |
| 802 | |
| 803 | tend = addr + size - 1; |
| 804 | if (fbeg > addr) fbeg = addr; |
| 805 | if (fend < tend) fend = tend; |
| 806 | } |
| 807 | |
| 808 | /* If we're freeing ptes above the `next_entry' pointer (they |
| 809 | may have snuck back into the TLB since the last wrap flush), |
| 810 | we need to flush the TLB before reallocating the latter. */ |
| 811 | if ((fend - arena->dma_base) >> PAGE_SHIFT >= arena->next_entry) |
| 812 | alpha_mv.mv_pci_tbi(hose, fbeg, fend); |
| 813 | |
| 814 | spin_unlock_irqrestore(&arena->lock, flags); |
| 815 | |
| 816 | DBGA("pci_unmap_sg: %ld entries\n", nents - (end - sg)); |
| 817 | } |
| 818 | |
| 819 | /* Return whether the given PCI device DMA address mask can be |
| 820 | supported properly. */ |
| 821 | |
| 822 | static int alpha_pci_supported(struct device *dev, u64 mask) |
| 823 | { |
| 824 | struct pci_dev *pdev = alpha_gendev_to_pci(dev); |
| 825 | struct pci_controller *hose; |
| 826 | struct pci_iommu_arena *arena; |
| 827 | |
| 828 | /* If there exists a direct map, and the mask fits either |
| 829 | the entire direct mapped space or the total system memory as |
| 830 | shifted by the map base */ |
| 831 | if (__direct_map_size != 0 |
| 832 | && (__direct_map_base + __direct_map_size - 1 <= mask || |
| 833 | __direct_map_base + (max_low_pfn << PAGE_SHIFT) - 1 <= mask)) |
| 834 | return 1; |
| 835 | |
| 836 | /* Check that we have a scatter-gather arena that fits. */ |
| 837 | hose = pdev ? pdev->sysdata : pci_isa_hose; |
| 838 | arena = hose->sg_isa; |
| 839 | if (arena && arena->dma_base + arena->size - 1 <= mask) |
| 840 | return 1; |
| 841 | arena = hose->sg_pci; |
| 842 | if (arena && arena->dma_base + arena->size - 1 <= mask) |
| 843 | return 1; |
| 844 | |
| 845 | /* As last resort try ZONE_DMA. */ |
| 846 | if (!__direct_map_base && MAX_DMA_ADDRESS - IDENT_ADDR - 1 <= mask) |
| 847 | return 1; |
| 848 | |
| 849 | return 0; |
| 850 | } |
| 851 | |
| 852 | |
| 853 | /* |
| 854 | * AGP GART extensions to the IOMMU |
| 855 | */ |
| 856 | int |
| 857 | iommu_reserve(struct pci_iommu_arena *arena, long pg_count, long align_mask) |
| 858 | { |
| 859 | unsigned long flags; |
| 860 | unsigned long *ptes; |
| 861 | long i, p; |
| 862 | |
| 863 | if (!arena) return -EINVAL; |
| 864 | |
| 865 | spin_lock_irqsave(&arena->lock, flags); |
| 866 | |
| 867 | /* Search for N empty ptes. */ |
| 868 | ptes = arena->ptes; |
| 869 | p = iommu_arena_find_pages(NULL, arena, pg_count, align_mask); |
| 870 | if (p < 0) { |
| 871 | spin_unlock_irqrestore(&arena->lock, flags); |
| 872 | return -1; |
| 873 | } |
| 874 | |
| 875 | /* Success. Mark them all reserved (ie not zero and invalid) |
| 876 | for the iommu tlb that could load them from under us. |
| 877 | They will be filled in with valid bits by _bind() */ |
| 878 | for (i = 0; i < pg_count; ++i) |
| 879 | ptes[p+i] = IOMMU_RESERVED_PTE; |
| 880 | |
| 881 | arena->next_entry = p + pg_count; |
| 882 | spin_unlock_irqrestore(&arena->lock, flags); |
| 883 | |
| 884 | return p; |
| 885 | } |
| 886 | |
| 887 | int |
| 888 | iommu_release(struct pci_iommu_arena *arena, long pg_start, long pg_count) |
| 889 | { |
| 890 | unsigned long *ptes; |
| 891 | long i; |
| 892 | |
| 893 | if (!arena) return -EINVAL; |
| 894 | |
| 895 | ptes = arena->ptes; |
| 896 | |
| 897 | /* Make sure they're all reserved first... */ |
| 898 | for(i = pg_start; i < pg_start + pg_count; i++) |
| 899 | if (ptes[i] != IOMMU_RESERVED_PTE) |
| 900 | return -EBUSY; |
| 901 | |
| 902 | iommu_arena_free(arena, pg_start, pg_count); |
| 903 | return 0; |
| 904 | } |
| 905 | |
| 906 | int |
| 907 | iommu_bind(struct pci_iommu_arena *arena, long pg_start, long pg_count, |
| 908 | struct page **pages) |
| 909 | { |
| 910 | unsigned long flags; |
| 911 | unsigned long *ptes; |
| 912 | long i, j; |
| 913 | |
| 914 | if (!arena) return -EINVAL; |
| 915 | |
| 916 | spin_lock_irqsave(&arena->lock, flags); |
| 917 | |
| 918 | ptes = arena->ptes; |
| 919 | |
| 920 | for(j = pg_start; j < pg_start + pg_count; j++) { |
| 921 | if (ptes[j] != IOMMU_RESERVED_PTE) { |
| 922 | spin_unlock_irqrestore(&arena->lock, flags); |
| 923 | return -EBUSY; |
| 924 | } |
| 925 | } |
| 926 | |
| 927 | for(i = 0, j = pg_start; i < pg_count; i++, j++) |
| 928 | ptes[j] = mk_iommu_pte(page_to_phys(pages[i])); |
| 929 | |
| 930 | spin_unlock_irqrestore(&arena->lock, flags); |
| 931 | |
| 932 | return 0; |
| 933 | } |
| 934 | |
| 935 | int |
| 936 | iommu_unbind(struct pci_iommu_arena *arena, long pg_start, long pg_count) |
| 937 | { |
| 938 | unsigned long *p; |
| 939 | long i; |
| 940 | |
| 941 | if (!arena) return -EINVAL; |
| 942 | |
| 943 | p = arena->ptes + pg_start; |
| 944 | for(i = 0; i < pg_count; i++) |
| 945 | p[i] = IOMMU_RESERVED_PTE; |
| 946 | |
| 947 | return 0; |
| 948 | } |
| 949 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 950 | const struct dma_map_ops alpha_pci_ops = { |
| 951 | .alloc = alpha_pci_alloc_coherent, |
| 952 | .free = alpha_pci_free_coherent, |
| 953 | .map_page = alpha_pci_map_page, |
| 954 | .unmap_page = alpha_pci_unmap_page, |
| 955 | .map_sg = alpha_pci_map_sg, |
| 956 | .unmap_sg = alpha_pci_unmap_sg, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 957 | .dma_supported = alpha_pci_supported, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 958 | .mmap = dma_common_mmap, |
| 959 | .get_sgtable = dma_common_get_sgtable, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 960 | }; |
| 961 | EXPORT_SYMBOL(alpha_pci_ops); |