David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Copyright (C) 2005,2006,2007,2008 IBM Corporation |
| 4 | * |
| 5 | * Authors: |
| 6 | * Mimi Zohar <zohar@us.ibm.com> |
| 7 | * Kylene Hall <kjhall@us.ibm.com> |
| 8 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 9 | * File: ima_crypto.c |
| 10 | * Calculates md5/sha1 file hash, template hash, boot-aggreate hash |
| 11 | */ |
| 12 | |
| 13 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 14 | |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/moduleparam.h> |
| 17 | #include <linux/ratelimit.h> |
| 18 | #include <linux/file.h> |
| 19 | #include <linux/crypto.h> |
| 20 | #include <linux/scatterlist.h> |
| 21 | #include <linux/err.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <crypto/hash.h> |
| 24 | |
| 25 | #include "ima.h" |
| 26 | |
| 27 | /* minimum file size for ahash use */ |
| 28 | static unsigned long ima_ahash_minsize; |
| 29 | module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644); |
| 30 | MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use"); |
| 31 | |
| 32 | /* default is 0 - 1 page. */ |
| 33 | static int ima_maxorder; |
| 34 | static unsigned int ima_bufsize = PAGE_SIZE; |
| 35 | |
| 36 | static int param_set_bufsize(const char *val, const struct kernel_param *kp) |
| 37 | { |
| 38 | unsigned long long size; |
| 39 | int order; |
| 40 | |
| 41 | size = memparse(val, NULL); |
| 42 | order = get_order(size); |
| 43 | if (order >= MAX_ORDER) |
| 44 | return -EINVAL; |
| 45 | ima_maxorder = order; |
| 46 | ima_bufsize = PAGE_SIZE << order; |
| 47 | return 0; |
| 48 | } |
| 49 | |
| 50 | static const struct kernel_param_ops param_ops_bufsize = { |
| 51 | .set = param_set_bufsize, |
| 52 | .get = param_get_uint, |
| 53 | }; |
| 54 | #define param_check_bufsize(name, p) __param_check(name, p, unsigned int) |
| 55 | |
| 56 | module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644); |
| 57 | MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size"); |
| 58 | |
| 59 | static struct crypto_shash *ima_shash_tfm; |
| 60 | static struct crypto_ahash *ima_ahash_tfm; |
| 61 | |
| 62 | int __init ima_init_crypto(void) |
| 63 | { |
| 64 | long rc; |
| 65 | |
| 66 | ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0); |
| 67 | if (IS_ERR(ima_shash_tfm)) { |
| 68 | rc = PTR_ERR(ima_shash_tfm); |
| 69 | pr_err("Can not allocate %s (reason: %ld)\n", |
| 70 | hash_algo_name[ima_hash_algo], rc); |
| 71 | return rc; |
| 72 | } |
| 73 | pr_info("Allocated hash algorithm: %s\n", |
| 74 | hash_algo_name[ima_hash_algo]); |
| 75 | return 0; |
| 76 | } |
| 77 | |
| 78 | static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo) |
| 79 | { |
| 80 | struct crypto_shash *tfm = ima_shash_tfm; |
| 81 | int rc; |
| 82 | |
| 83 | if (algo < 0 || algo >= HASH_ALGO__LAST) |
| 84 | algo = ima_hash_algo; |
| 85 | |
| 86 | if (algo != ima_hash_algo) { |
| 87 | tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0); |
| 88 | if (IS_ERR(tfm)) { |
| 89 | rc = PTR_ERR(tfm); |
| 90 | pr_err("Can not allocate %s (reason: %d)\n", |
| 91 | hash_algo_name[algo], rc); |
| 92 | } |
| 93 | } |
| 94 | return tfm; |
| 95 | } |
| 96 | |
| 97 | static void ima_free_tfm(struct crypto_shash *tfm) |
| 98 | { |
| 99 | if (tfm != ima_shash_tfm) |
| 100 | crypto_free_shash(tfm); |
| 101 | } |
| 102 | |
| 103 | /** |
| 104 | * ima_alloc_pages() - Allocate contiguous pages. |
| 105 | * @max_size: Maximum amount of memory to allocate. |
| 106 | * @allocated_size: Returned size of actual allocation. |
| 107 | * @last_warn: Should the min_size allocation warn or not. |
| 108 | * |
| 109 | * Tries to do opportunistic allocation for memory first trying to allocate |
| 110 | * max_size amount of memory and then splitting that until zero order is |
| 111 | * reached. Allocation is tried without generating allocation warnings unless |
| 112 | * last_warn is set. Last_warn set affects only last allocation of zero order. |
| 113 | * |
| 114 | * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL) |
| 115 | * |
| 116 | * Return pointer to allocated memory, or NULL on failure. |
| 117 | */ |
| 118 | static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size, |
| 119 | int last_warn) |
| 120 | { |
| 121 | void *ptr; |
| 122 | int order = ima_maxorder; |
| 123 | gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY; |
| 124 | |
| 125 | if (order) |
| 126 | order = min(get_order(max_size), order); |
| 127 | |
| 128 | for (; order; order--) { |
| 129 | ptr = (void *)__get_free_pages(gfp_mask, order); |
| 130 | if (ptr) { |
| 131 | *allocated_size = PAGE_SIZE << order; |
| 132 | return ptr; |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | /* order is zero - one page */ |
| 137 | |
| 138 | gfp_mask = GFP_KERNEL; |
| 139 | |
| 140 | if (!last_warn) |
| 141 | gfp_mask |= __GFP_NOWARN; |
| 142 | |
| 143 | ptr = (void *)__get_free_pages(gfp_mask, 0); |
| 144 | if (ptr) { |
| 145 | *allocated_size = PAGE_SIZE; |
| 146 | return ptr; |
| 147 | } |
| 148 | |
| 149 | *allocated_size = 0; |
| 150 | return NULL; |
| 151 | } |
| 152 | |
| 153 | /** |
| 154 | * ima_free_pages() - Free pages allocated by ima_alloc_pages(). |
| 155 | * @ptr: Pointer to allocated pages. |
| 156 | * @size: Size of allocated buffer. |
| 157 | */ |
| 158 | static void ima_free_pages(void *ptr, size_t size) |
| 159 | { |
| 160 | if (!ptr) |
| 161 | return; |
| 162 | free_pages((unsigned long)ptr, get_order(size)); |
| 163 | } |
| 164 | |
| 165 | static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo) |
| 166 | { |
| 167 | struct crypto_ahash *tfm = ima_ahash_tfm; |
| 168 | int rc; |
| 169 | |
| 170 | if (algo < 0 || algo >= HASH_ALGO__LAST) |
| 171 | algo = ima_hash_algo; |
| 172 | |
| 173 | if (algo != ima_hash_algo || !tfm) { |
| 174 | tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0); |
| 175 | if (!IS_ERR(tfm)) { |
| 176 | if (algo == ima_hash_algo) |
| 177 | ima_ahash_tfm = tfm; |
| 178 | } else { |
| 179 | rc = PTR_ERR(tfm); |
| 180 | pr_err("Can not allocate %s (reason: %d)\n", |
| 181 | hash_algo_name[algo], rc); |
| 182 | } |
| 183 | } |
| 184 | return tfm; |
| 185 | } |
| 186 | |
| 187 | static void ima_free_atfm(struct crypto_ahash *tfm) |
| 188 | { |
| 189 | if (tfm != ima_ahash_tfm) |
| 190 | crypto_free_ahash(tfm); |
| 191 | } |
| 192 | |
| 193 | static inline int ahash_wait(int err, struct crypto_wait *wait) |
| 194 | { |
| 195 | |
| 196 | err = crypto_wait_req(err, wait); |
| 197 | |
| 198 | if (err) |
| 199 | pr_crit_ratelimited("ahash calculation failed: err: %d\n", err); |
| 200 | |
| 201 | return err; |
| 202 | } |
| 203 | |
| 204 | static int ima_calc_file_hash_atfm(struct file *file, |
| 205 | struct ima_digest_data *hash, |
| 206 | struct crypto_ahash *tfm) |
| 207 | { |
| 208 | loff_t i_size, offset; |
| 209 | char *rbuf[2] = { NULL, }; |
| 210 | int rc, rbuf_len, active = 0, ahash_rc = 0; |
| 211 | struct ahash_request *req; |
| 212 | struct scatterlist sg[1]; |
| 213 | struct crypto_wait wait; |
| 214 | size_t rbuf_size[2]; |
| 215 | |
| 216 | hash->length = crypto_ahash_digestsize(tfm); |
| 217 | |
| 218 | req = ahash_request_alloc(tfm, GFP_KERNEL); |
| 219 | if (!req) |
| 220 | return -ENOMEM; |
| 221 | |
| 222 | crypto_init_wait(&wait); |
| 223 | ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | |
| 224 | CRYPTO_TFM_REQ_MAY_SLEEP, |
| 225 | crypto_req_done, &wait); |
| 226 | |
| 227 | rc = ahash_wait(crypto_ahash_init(req), &wait); |
| 228 | if (rc) |
| 229 | goto out1; |
| 230 | |
| 231 | i_size = i_size_read(file_inode(file)); |
| 232 | |
| 233 | if (i_size == 0) |
| 234 | goto out2; |
| 235 | |
| 236 | /* |
| 237 | * Try to allocate maximum size of memory. |
| 238 | * Fail if even a single page cannot be allocated. |
| 239 | */ |
| 240 | rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1); |
| 241 | if (!rbuf[0]) { |
| 242 | rc = -ENOMEM; |
| 243 | goto out1; |
| 244 | } |
| 245 | |
| 246 | /* Only allocate one buffer if that is enough. */ |
| 247 | if (i_size > rbuf_size[0]) { |
| 248 | /* |
| 249 | * Try to allocate secondary buffer. If that fails fallback to |
| 250 | * using single buffering. Use previous memory allocation size |
| 251 | * as baseline for possible allocation size. |
| 252 | */ |
| 253 | rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0], |
| 254 | &rbuf_size[1], 0); |
| 255 | } |
| 256 | |
| 257 | for (offset = 0; offset < i_size; offset += rbuf_len) { |
| 258 | if (!rbuf[1] && offset) { |
| 259 | /* Not using two buffers, and it is not the first |
| 260 | * read/request, wait for the completion of the |
| 261 | * previous ahash_update() request. |
| 262 | */ |
| 263 | rc = ahash_wait(ahash_rc, &wait); |
| 264 | if (rc) |
| 265 | goto out3; |
| 266 | } |
| 267 | /* read buffer */ |
| 268 | rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]); |
| 269 | rc = integrity_kernel_read(file, offset, rbuf[active], |
| 270 | rbuf_len); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 271 | if (rc != rbuf_len) { |
| 272 | if (rc >= 0) |
| 273 | rc = -EINVAL; |
| 274 | /* |
| 275 | * Forward current rc, do not overwrite with return value |
| 276 | * from ahash_wait() |
| 277 | */ |
| 278 | ahash_wait(ahash_rc, &wait); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 279 | goto out3; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 280 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 281 | |
| 282 | if (rbuf[1] && offset) { |
| 283 | /* Using two buffers, and it is not the first |
| 284 | * read/request, wait for the completion of the |
| 285 | * previous ahash_update() request. |
| 286 | */ |
| 287 | rc = ahash_wait(ahash_rc, &wait); |
| 288 | if (rc) |
| 289 | goto out3; |
| 290 | } |
| 291 | |
| 292 | sg_init_one(&sg[0], rbuf[active], rbuf_len); |
| 293 | ahash_request_set_crypt(req, sg, NULL, rbuf_len); |
| 294 | |
| 295 | ahash_rc = crypto_ahash_update(req); |
| 296 | |
| 297 | if (rbuf[1]) |
| 298 | active = !active; /* swap buffers, if we use two */ |
| 299 | } |
| 300 | /* wait for the last update request to complete */ |
| 301 | rc = ahash_wait(ahash_rc, &wait); |
| 302 | out3: |
| 303 | ima_free_pages(rbuf[0], rbuf_size[0]); |
| 304 | ima_free_pages(rbuf[1], rbuf_size[1]); |
| 305 | out2: |
| 306 | if (!rc) { |
| 307 | ahash_request_set_crypt(req, NULL, hash->digest, 0); |
| 308 | rc = ahash_wait(crypto_ahash_final(req), &wait); |
| 309 | } |
| 310 | out1: |
| 311 | ahash_request_free(req); |
| 312 | return rc; |
| 313 | } |
| 314 | |
| 315 | static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash) |
| 316 | { |
| 317 | struct crypto_ahash *tfm; |
| 318 | int rc; |
| 319 | |
| 320 | tfm = ima_alloc_atfm(hash->algo); |
| 321 | if (IS_ERR(tfm)) |
| 322 | return PTR_ERR(tfm); |
| 323 | |
| 324 | rc = ima_calc_file_hash_atfm(file, hash, tfm); |
| 325 | |
| 326 | ima_free_atfm(tfm); |
| 327 | |
| 328 | return rc; |
| 329 | } |
| 330 | |
| 331 | static int ima_calc_file_hash_tfm(struct file *file, |
| 332 | struct ima_digest_data *hash, |
| 333 | struct crypto_shash *tfm) |
| 334 | { |
| 335 | loff_t i_size, offset = 0; |
| 336 | char *rbuf; |
| 337 | int rc; |
| 338 | SHASH_DESC_ON_STACK(shash, tfm); |
| 339 | |
| 340 | shash->tfm = tfm; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 341 | |
| 342 | hash->length = crypto_shash_digestsize(tfm); |
| 343 | |
| 344 | rc = crypto_shash_init(shash); |
| 345 | if (rc != 0) |
| 346 | return rc; |
| 347 | |
| 348 | i_size = i_size_read(file_inode(file)); |
| 349 | |
| 350 | if (i_size == 0) |
| 351 | goto out; |
| 352 | |
| 353 | rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL); |
| 354 | if (!rbuf) |
| 355 | return -ENOMEM; |
| 356 | |
| 357 | while (offset < i_size) { |
| 358 | int rbuf_len; |
| 359 | |
| 360 | rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE); |
| 361 | if (rbuf_len < 0) { |
| 362 | rc = rbuf_len; |
| 363 | break; |
| 364 | } |
| 365 | if (rbuf_len == 0) |
| 366 | break; |
| 367 | offset += rbuf_len; |
| 368 | |
| 369 | rc = crypto_shash_update(shash, rbuf, rbuf_len); |
| 370 | if (rc) |
| 371 | break; |
| 372 | } |
| 373 | kfree(rbuf); |
| 374 | out: |
| 375 | if (!rc) |
| 376 | rc = crypto_shash_final(shash, hash->digest); |
| 377 | return rc; |
| 378 | } |
| 379 | |
| 380 | static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash) |
| 381 | { |
| 382 | struct crypto_shash *tfm; |
| 383 | int rc; |
| 384 | |
| 385 | tfm = ima_alloc_tfm(hash->algo); |
| 386 | if (IS_ERR(tfm)) |
| 387 | return PTR_ERR(tfm); |
| 388 | |
| 389 | rc = ima_calc_file_hash_tfm(file, hash, tfm); |
| 390 | |
| 391 | ima_free_tfm(tfm); |
| 392 | |
| 393 | return rc; |
| 394 | } |
| 395 | |
| 396 | /* |
| 397 | * ima_calc_file_hash - calculate file hash |
| 398 | * |
| 399 | * Asynchronous hash (ahash) allows using HW acceleration for calculating |
| 400 | * a hash. ahash performance varies for different data sizes on different |
| 401 | * crypto accelerators. shash performance might be better for smaller files. |
| 402 | * The 'ima.ahash_minsize' module parameter allows specifying the best |
| 403 | * minimum file size for using ahash on the system. |
| 404 | * |
| 405 | * If the ima.ahash_minsize parameter is not specified, this function uses |
| 406 | * shash for the hash calculation. If ahash fails, it falls back to using |
| 407 | * shash. |
| 408 | */ |
| 409 | int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash) |
| 410 | { |
| 411 | loff_t i_size; |
| 412 | int rc; |
| 413 | struct file *f = file; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 414 | bool new_file_instance = false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 415 | |
| 416 | /* |
| 417 | * For consistency, fail file's opened with the O_DIRECT flag on |
| 418 | * filesystems mounted with/without DAX option. |
| 419 | */ |
| 420 | if (file->f_flags & O_DIRECT) { |
| 421 | hash->length = hash_digest_size[ima_hash_algo]; |
| 422 | hash->algo = ima_hash_algo; |
| 423 | return -EINVAL; |
| 424 | } |
| 425 | |
| 426 | /* Open a new file instance in O_RDONLY if we cannot read */ |
| 427 | if (!(file->f_mode & FMODE_READ)) { |
| 428 | int flags = file->f_flags & ~(O_WRONLY | O_APPEND | |
| 429 | O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL); |
| 430 | flags |= O_RDONLY; |
| 431 | f = dentry_open(&file->f_path, flags, file->f_cred); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 432 | if (IS_ERR(f)) |
| 433 | return PTR_ERR(f); |
| 434 | |
| 435 | new_file_instance = true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 436 | } |
| 437 | |
| 438 | i_size = i_size_read(file_inode(f)); |
| 439 | |
| 440 | if (ima_ahash_minsize && i_size >= ima_ahash_minsize) { |
| 441 | rc = ima_calc_file_ahash(f, hash); |
| 442 | if (!rc) |
| 443 | goto out; |
| 444 | } |
| 445 | |
| 446 | rc = ima_calc_file_shash(f, hash); |
| 447 | out: |
| 448 | if (new_file_instance) |
| 449 | fput(f); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 450 | return rc; |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | * Calculate the hash of template data |
| 455 | */ |
| 456 | static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data, |
| 457 | struct ima_template_desc *td, |
| 458 | int num_fields, |
| 459 | struct ima_digest_data *hash, |
| 460 | struct crypto_shash *tfm) |
| 461 | { |
| 462 | SHASH_DESC_ON_STACK(shash, tfm); |
| 463 | int rc, i; |
| 464 | |
| 465 | shash->tfm = tfm; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 466 | |
| 467 | hash->length = crypto_shash_digestsize(tfm); |
| 468 | |
| 469 | rc = crypto_shash_init(shash); |
| 470 | if (rc != 0) |
| 471 | return rc; |
| 472 | |
| 473 | for (i = 0; i < num_fields; i++) { |
| 474 | u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 }; |
| 475 | u8 *data_to_hash = field_data[i].data; |
| 476 | u32 datalen = field_data[i].len; |
| 477 | u32 datalen_to_hash = |
| 478 | !ima_canonical_fmt ? datalen : cpu_to_le32(datalen); |
| 479 | |
| 480 | if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) { |
| 481 | rc = crypto_shash_update(shash, |
| 482 | (const u8 *) &datalen_to_hash, |
| 483 | sizeof(datalen_to_hash)); |
| 484 | if (rc) |
| 485 | break; |
| 486 | } else if (strcmp(td->fields[i]->field_id, "n") == 0) { |
| 487 | memcpy(buffer, data_to_hash, datalen); |
| 488 | data_to_hash = buffer; |
| 489 | datalen = IMA_EVENT_NAME_LEN_MAX + 1; |
| 490 | } |
| 491 | rc = crypto_shash_update(shash, data_to_hash, datalen); |
| 492 | if (rc) |
| 493 | break; |
| 494 | } |
| 495 | |
| 496 | if (!rc) |
| 497 | rc = crypto_shash_final(shash, hash->digest); |
| 498 | |
| 499 | return rc; |
| 500 | } |
| 501 | |
| 502 | int ima_calc_field_array_hash(struct ima_field_data *field_data, |
| 503 | struct ima_template_desc *desc, int num_fields, |
| 504 | struct ima_digest_data *hash) |
| 505 | { |
| 506 | struct crypto_shash *tfm; |
| 507 | int rc; |
| 508 | |
| 509 | tfm = ima_alloc_tfm(hash->algo); |
| 510 | if (IS_ERR(tfm)) |
| 511 | return PTR_ERR(tfm); |
| 512 | |
| 513 | rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields, |
| 514 | hash, tfm); |
| 515 | |
| 516 | ima_free_tfm(tfm); |
| 517 | |
| 518 | return rc; |
| 519 | } |
| 520 | |
| 521 | static int calc_buffer_ahash_atfm(const void *buf, loff_t len, |
| 522 | struct ima_digest_data *hash, |
| 523 | struct crypto_ahash *tfm) |
| 524 | { |
| 525 | struct ahash_request *req; |
| 526 | struct scatterlist sg; |
| 527 | struct crypto_wait wait; |
| 528 | int rc, ahash_rc = 0; |
| 529 | |
| 530 | hash->length = crypto_ahash_digestsize(tfm); |
| 531 | |
| 532 | req = ahash_request_alloc(tfm, GFP_KERNEL); |
| 533 | if (!req) |
| 534 | return -ENOMEM; |
| 535 | |
| 536 | crypto_init_wait(&wait); |
| 537 | ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | |
| 538 | CRYPTO_TFM_REQ_MAY_SLEEP, |
| 539 | crypto_req_done, &wait); |
| 540 | |
| 541 | rc = ahash_wait(crypto_ahash_init(req), &wait); |
| 542 | if (rc) |
| 543 | goto out; |
| 544 | |
| 545 | sg_init_one(&sg, buf, len); |
| 546 | ahash_request_set_crypt(req, &sg, NULL, len); |
| 547 | |
| 548 | ahash_rc = crypto_ahash_update(req); |
| 549 | |
| 550 | /* wait for the update request to complete */ |
| 551 | rc = ahash_wait(ahash_rc, &wait); |
| 552 | if (!rc) { |
| 553 | ahash_request_set_crypt(req, NULL, hash->digest, 0); |
| 554 | rc = ahash_wait(crypto_ahash_final(req), &wait); |
| 555 | } |
| 556 | out: |
| 557 | ahash_request_free(req); |
| 558 | return rc; |
| 559 | } |
| 560 | |
| 561 | static int calc_buffer_ahash(const void *buf, loff_t len, |
| 562 | struct ima_digest_data *hash) |
| 563 | { |
| 564 | struct crypto_ahash *tfm; |
| 565 | int rc; |
| 566 | |
| 567 | tfm = ima_alloc_atfm(hash->algo); |
| 568 | if (IS_ERR(tfm)) |
| 569 | return PTR_ERR(tfm); |
| 570 | |
| 571 | rc = calc_buffer_ahash_atfm(buf, len, hash, tfm); |
| 572 | |
| 573 | ima_free_atfm(tfm); |
| 574 | |
| 575 | return rc; |
| 576 | } |
| 577 | |
| 578 | static int calc_buffer_shash_tfm(const void *buf, loff_t size, |
| 579 | struct ima_digest_data *hash, |
| 580 | struct crypto_shash *tfm) |
| 581 | { |
| 582 | SHASH_DESC_ON_STACK(shash, tfm); |
| 583 | unsigned int len; |
| 584 | int rc; |
| 585 | |
| 586 | shash->tfm = tfm; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 587 | |
| 588 | hash->length = crypto_shash_digestsize(tfm); |
| 589 | |
| 590 | rc = crypto_shash_init(shash); |
| 591 | if (rc != 0) |
| 592 | return rc; |
| 593 | |
| 594 | while (size) { |
| 595 | len = size < PAGE_SIZE ? size : PAGE_SIZE; |
| 596 | rc = crypto_shash_update(shash, buf, len); |
| 597 | if (rc) |
| 598 | break; |
| 599 | buf += len; |
| 600 | size -= len; |
| 601 | } |
| 602 | |
| 603 | if (!rc) |
| 604 | rc = crypto_shash_final(shash, hash->digest); |
| 605 | return rc; |
| 606 | } |
| 607 | |
| 608 | static int calc_buffer_shash(const void *buf, loff_t len, |
| 609 | struct ima_digest_data *hash) |
| 610 | { |
| 611 | struct crypto_shash *tfm; |
| 612 | int rc; |
| 613 | |
| 614 | tfm = ima_alloc_tfm(hash->algo); |
| 615 | if (IS_ERR(tfm)) |
| 616 | return PTR_ERR(tfm); |
| 617 | |
| 618 | rc = calc_buffer_shash_tfm(buf, len, hash, tfm); |
| 619 | |
| 620 | ima_free_tfm(tfm); |
| 621 | return rc; |
| 622 | } |
| 623 | |
| 624 | int ima_calc_buffer_hash(const void *buf, loff_t len, |
| 625 | struct ima_digest_data *hash) |
| 626 | { |
| 627 | int rc; |
| 628 | |
| 629 | if (ima_ahash_minsize && len >= ima_ahash_minsize) { |
| 630 | rc = calc_buffer_ahash(buf, len, hash); |
| 631 | if (!rc) |
| 632 | return 0; |
| 633 | } |
| 634 | |
| 635 | return calc_buffer_shash(buf, len, hash); |
| 636 | } |
| 637 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 638 | static void ima_pcrread(u32 idx, struct tpm_digest *d) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 639 | { |
| 640 | if (!ima_tpm_chip) |
| 641 | return; |
| 642 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 643 | if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 644 | pr_err("Error Communicating to TPM chip\n"); |
| 645 | } |
| 646 | |
| 647 | /* |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 648 | * The boot_aggregate is a cumulative hash over TPM registers 0 - 7. With |
| 649 | * TPM 1.2 the boot_aggregate was based on reading the SHA1 PCRs, but with |
| 650 | * TPM 2.0 hash agility, TPM chips could support multiple TPM PCR banks, |
| 651 | * allowing firmware to configure and enable different banks. |
| 652 | * |
| 653 | * Knowing which TPM bank is read to calculate the boot_aggregate digest |
| 654 | * needs to be conveyed to a verifier. For this reason, use the same |
| 655 | * hash algorithm for reading the TPM PCRs as for calculating the boot |
| 656 | * aggregate digest as stored in the measurement list. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 657 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 658 | static int ima_calc_boot_aggregate_tfm(char *digest, u16 alg_id, |
| 659 | struct crypto_shash *tfm) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 660 | { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 661 | struct tpm_digest d = { .alg_id = alg_id, .digest = {0} }; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 662 | int rc; |
| 663 | u32 i; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 664 | SHASH_DESC_ON_STACK(shash, tfm); |
| 665 | |
| 666 | shash->tfm = tfm; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 667 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 668 | pr_devel("calculating the boot-aggregate based on TPM bank: %04x\n", |
| 669 | d.alg_id); |
| 670 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 671 | rc = crypto_shash_init(shash); |
| 672 | if (rc != 0) |
| 673 | return rc; |
| 674 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 675 | /* cumulative digest over TPM registers 0-7 */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 676 | for (i = TPM_PCR0; i < TPM_PCR8; i++) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 677 | ima_pcrread(i, &d); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 678 | /* now accumulate with current aggregate */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 679 | rc = crypto_shash_update(shash, d.digest, |
| 680 | crypto_shash_digestsize(tfm)); |
| 681 | if (rc != 0) |
| 682 | return rc; |
| 683 | } |
| 684 | /* |
| 685 | * Extend cumulative digest over TPM registers 8-9, which contain |
| 686 | * measurement for the kernel command line (reg. 8) and image (reg. 9) |
| 687 | * in a typical PCR allocation. Registers 8-9 are only included in |
| 688 | * non-SHA1 boot_aggregate digests to avoid ambiguity. |
| 689 | */ |
| 690 | if (alg_id != TPM_ALG_SHA1) { |
| 691 | for (i = TPM_PCR8; i < TPM_PCR10; i++) { |
| 692 | ima_pcrread(i, &d); |
| 693 | rc = crypto_shash_update(shash, d.digest, |
| 694 | crypto_shash_digestsize(tfm)); |
| 695 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 696 | } |
| 697 | if (!rc) |
| 698 | crypto_shash_final(shash, digest); |
| 699 | return rc; |
| 700 | } |
| 701 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 702 | int ima_calc_boot_aggregate(struct ima_digest_data *hash) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 703 | { |
| 704 | struct crypto_shash *tfm; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 705 | u16 crypto_id, alg_id; |
| 706 | int rc, i, bank_idx = -1; |
| 707 | |
| 708 | for (i = 0; i < ima_tpm_chip->nr_allocated_banks; i++) { |
| 709 | crypto_id = ima_tpm_chip->allocated_banks[i].crypto_id; |
| 710 | if (crypto_id == hash->algo) { |
| 711 | bank_idx = i; |
| 712 | break; |
| 713 | } |
| 714 | |
| 715 | if (crypto_id == HASH_ALGO_SHA256) |
| 716 | bank_idx = i; |
| 717 | |
| 718 | if (bank_idx == -1 && crypto_id == HASH_ALGO_SHA1) |
| 719 | bank_idx = i; |
| 720 | } |
| 721 | |
| 722 | if (bank_idx == -1) { |
| 723 | pr_err("No suitable TPM algorithm for boot aggregate\n"); |
| 724 | return 0; |
| 725 | } |
| 726 | |
| 727 | hash->algo = ima_tpm_chip->allocated_banks[bank_idx].crypto_id; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 728 | |
| 729 | tfm = ima_alloc_tfm(hash->algo); |
| 730 | if (IS_ERR(tfm)) |
| 731 | return PTR_ERR(tfm); |
| 732 | |
| 733 | hash->length = crypto_shash_digestsize(tfm); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 734 | alg_id = ima_tpm_chip->allocated_banks[bank_idx].alg_id; |
| 735 | rc = ima_calc_boot_aggregate_tfm(hash->digest, alg_id, tfm); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 736 | |
| 737 | ima_free_tfm(tfm); |
| 738 | |
| 739 | return rc; |
| 740 | } |