Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | BlueZ - Bluetooth protocol stack for Linux |
| 3 | |
| 4 | Copyright (C) 2014 Intel Corporation |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify |
| 7 | it under the terms of the GNU General Public License version 2 as |
| 8 | published by the Free Software Foundation; |
| 9 | |
| 10 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| 11 | OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 12 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. |
| 13 | IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY |
| 14 | CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES |
| 15 | WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 16 | ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 17 | OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 18 | |
| 19 | ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, |
| 20 | COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS |
| 21 | SOFTWARE IS DISCLAIMED. |
| 22 | */ |
| 23 | |
| 24 | #include <linux/sched/signal.h> |
| 25 | |
| 26 | #include <net/bluetooth/bluetooth.h> |
| 27 | #include <net/bluetooth/hci_core.h> |
| 28 | #include <net/bluetooth/mgmt.h> |
| 29 | |
| 30 | #include "smp.h" |
| 31 | #include "hci_request.h" |
| 32 | |
| 33 | #define HCI_REQ_DONE 0 |
| 34 | #define HCI_REQ_PEND 1 |
| 35 | #define HCI_REQ_CANCELED 2 |
| 36 | |
| 37 | void hci_req_init(struct hci_request *req, struct hci_dev *hdev) |
| 38 | { |
| 39 | skb_queue_head_init(&req->cmd_q); |
| 40 | req->hdev = hdev; |
| 41 | req->err = 0; |
| 42 | } |
| 43 | |
| 44 | void hci_req_purge(struct hci_request *req) |
| 45 | { |
| 46 | skb_queue_purge(&req->cmd_q); |
| 47 | } |
| 48 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 49 | bool hci_req_status_pend(struct hci_dev *hdev) |
| 50 | { |
| 51 | return hdev->req_status == HCI_REQ_PEND; |
| 52 | } |
| 53 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 54 | static int req_run(struct hci_request *req, hci_req_complete_t complete, |
| 55 | hci_req_complete_skb_t complete_skb) |
| 56 | { |
| 57 | struct hci_dev *hdev = req->hdev; |
| 58 | struct sk_buff *skb; |
| 59 | unsigned long flags; |
| 60 | |
| 61 | BT_DBG("length %u", skb_queue_len(&req->cmd_q)); |
| 62 | |
| 63 | /* If an error occurred during request building, remove all HCI |
| 64 | * commands queued on the HCI request queue. |
| 65 | */ |
| 66 | if (req->err) { |
| 67 | skb_queue_purge(&req->cmd_q); |
| 68 | return req->err; |
| 69 | } |
| 70 | |
| 71 | /* Do not allow empty requests */ |
| 72 | if (skb_queue_empty(&req->cmd_q)) |
| 73 | return -ENODATA; |
| 74 | |
| 75 | skb = skb_peek_tail(&req->cmd_q); |
| 76 | if (complete) { |
| 77 | bt_cb(skb)->hci.req_complete = complete; |
| 78 | } else if (complete_skb) { |
| 79 | bt_cb(skb)->hci.req_complete_skb = complete_skb; |
| 80 | bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; |
| 81 | } |
| 82 | |
| 83 | spin_lock_irqsave(&hdev->cmd_q.lock, flags); |
| 84 | skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); |
| 85 | spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); |
| 86 | |
| 87 | queue_work(hdev->workqueue, &hdev->cmd_work); |
| 88 | |
| 89 | return 0; |
| 90 | } |
| 91 | |
| 92 | int hci_req_run(struct hci_request *req, hci_req_complete_t complete) |
| 93 | { |
| 94 | return req_run(req, complete, NULL); |
| 95 | } |
| 96 | |
| 97 | int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete) |
| 98 | { |
| 99 | return req_run(req, NULL, complete); |
| 100 | } |
| 101 | |
| 102 | static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, |
| 103 | struct sk_buff *skb) |
| 104 | { |
| 105 | BT_DBG("%s result 0x%2.2x", hdev->name, result); |
| 106 | |
| 107 | if (hdev->req_status == HCI_REQ_PEND) { |
| 108 | hdev->req_result = result; |
| 109 | hdev->req_status = HCI_REQ_DONE; |
| 110 | if (skb) |
| 111 | hdev->req_skb = skb_get(skb); |
| 112 | wake_up_interruptible(&hdev->req_wait_q); |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | void hci_req_sync_cancel(struct hci_dev *hdev, int err) |
| 117 | { |
| 118 | BT_DBG("%s err 0x%2.2x", hdev->name, err); |
| 119 | |
| 120 | if (hdev->req_status == HCI_REQ_PEND) { |
| 121 | hdev->req_result = err; |
| 122 | hdev->req_status = HCI_REQ_CANCELED; |
| 123 | wake_up_interruptible(&hdev->req_wait_q); |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, |
| 128 | const void *param, u8 event, u32 timeout) |
| 129 | { |
| 130 | struct hci_request req; |
| 131 | struct sk_buff *skb; |
| 132 | int err = 0; |
| 133 | |
| 134 | BT_DBG("%s", hdev->name); |
| 135 | |
| 136 | hci_req_init(&req, hdev); |
| 137 | |
| 138 | hci_req_add_ev(&req, opcode, plen, param, event); |
| 139 | |
| 140 | hdev->req_status = HCI_REQ_PEND; |
| 141 | |
| 142 | err = hci_req_run_skb(&req, hci_req_sync_complete); |
| 143 | if (err < 0) |
| 144 | return ERR_PTR(err); |
| 145 | |
| 146 | err = wait_event_interruptible_timeout(hdev->req_wait_q, |
| 147 | hdev->req_status != HCI_REQ_PEND, timeout); |
| 148 | |
| 149 | if (err == -ERESTARTSYS) |
| 150 | return ERR_PTR(-EINTR); |
| 151 | |
| 152 | switch (hdev->req_status) { |
| 153 | case HCI_REQ_DONE: |
| 154 | err = -bt_to_errno(hdev->req_result); |
| 155 | break; |
| 156 | |
| 157 | case HCI_REQ_CANCELED: |
| 158 | err = -hdev->req_result; |
| 159 | break; |
| 160 | |
| 161 | default: |
| 162 | err = -ETIMEDOUT; |
| 163 | break; |
| 164 | } |
| 165 | |
| 166 | hdev->req_status = hdev->req_result = 0; |
| 167 | skb = hdev->req_skb; |
| 168 | hdev->req_skb = NULL; |
| 169 | |
| 170 | BT_DBG("%s end: err %d", hdev->name, err); |
| 171 | |
| 172 | if (err < 0) { |
| 173 | kfree_skb(skb); |
| 174 | return ERR_PTR(err); |
| 175 | } |
| 176 | |
| 177 | if (!skb) |
| 178 | return ERR_PTR(-ENODATA); |
| 179 | |
| 180 | return skb; |
| 181 | } |
| 182 | EXPORT_SYMBOL(__hci_cmd_sync_ev); |
| 183 | |
| 184 | struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, |
| 185 | const void *param, u32 timeout) |
| 186 | { |
| 187 | return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout); |
| 188 | } |
| 189 | EXPORT_SYMBOL(__hci_cmd_sync); |
| 190 | |
| 191 | /* Execute request and wait for completion. */ |
| 192 | int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req, |
| 193 | unsigned long opt), |
| 194 | unsigned long opt, u32 timeout, u8 *hci_status) |
| 195 | { |
| 196 | struct hci_request req; |
| 197 | int err = 0; |
| 198 | |
| 199 | BT_DBG("%s start", hdev->name); |
| 200 | |
| 201 | hci_req_init(&req, hdev); |
| 202 | |
| 203 | hdev->req_status = HCI_REQ_PEND; |
| 204 | |
| 205 | err = func(&req, opt); |
| 206 | if (err) { |
| 207 | if (hci_status) |
| 208 | *hci_status = HCI_ERROR_UNSPECIFIED; |
| 209 | return err; |
| 210 | } |
| 211 | |
| 212 | err = hci_req_run_skb(&req, hci_req_sync_complete); |
| 213 | if (err < 0) { |
| 214 | hdev->req_status = 0; |
| 215 | |
| 216 | /* ENODATA means the HCI request command queue is empty. |
| 217 | * This can happen when a request with conditionals doesn't |
| 218 | * trigger any commands to be sent. This is normal behavior |
| 219 | * and should not trigger an error return. |
| 220 | */ |
| 221 | if (err == -ENODATA) { |
| 222 | if (hci_status) |
| 223 | *hci_status = 0; |
| 224 | return 0; |
| 225 | } |
| 226 | |
| 227 | if (hci_status) |
| 228 | *hci_status = HCI_ERROR_UNSPECIFIED; |
| 229 | |
| 230 | return err; |
| 231 | } |
| 232 | |
| 233 | err = wait_event_interruptible_timeout(hdev->req_wait_q, |
| 234 | hdev->req_status != HCI_REQ_PEND, timeout); |
| 235 | |
| 236 | if (err == -ERESTARTSYS) |
| 237 | return -EINTR; |
| 238 | |
| 239 | switch (hdev->req_status) { |
| 240 | case HCI_REQ_DONE: |
| 241 | err = -bt_to_errno(hdev->req_result); |
| 242 | if (hci_status) |
| 243 | *hci_status = hdev->req_result; |
| 244 | break; |
| 245 | |
| 246 | case HCI_REQ_CANCELED: |
| 247 | err = -hdev->req_result; |
| 248 | if (hci_status) |
| 249 | *hci_status = HCI_ERROR_UNSPECIFIED; |
| 250 | break; |
| 251 | |
| 252 | default: |
| 253 | err = -ETIMEDOUT; |
| 254 | if (hci_status) |
| 255 | *hci_status = HCI_ERROR_UNSPECIFIED; |
| 256 | break; |
| 257 | } |
| 258 | |
| 259 | kfree_skb(hdev->req_skb); |
| 260 | hdev->req_skb = NULL; |
| 261 | hdev->req_status = hdev->req_result = 0; |
| 262 | |
| 263 | BT_DBG("%s end: err %d", hdev->name, err); |
| 264 | |
| 265 | return err; |
| 266 | } |
| 267 | |
| 268 | int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req, |
| 269 | unsigned long opt), |
| 270 | unsigned long opt, u32 timeout, u8 *hci_status) |
| 271 | { |
| 272 | int ret; |
| 273 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 274 | /* Serialize all requests */ |
| 275 | hci_req_sync_lock(hdev); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 276 | /* check the state after obtaing the lock to protect the HCI_UP |
| 277 | * against any races from hci_dev_do_close when the controller |
| 278 | * gets removed. |
| 279 | */ |
| 280 | if (test_bit(HCI_UP, &hdev->flags)) |
| 281 | ret = __hci_req_sync(hdev, req, opt, timeout, hci_status); |
| 282 | else |
| 283 | ret = -ENETDOWN; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 284 | hci_req_sync_unlock(hdev); |
| 285 | |
| 286 | return ret; |
| 287 | } |
| 288 | |
| 289 | struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen, |
| 290 | const void *param) |
| 291 | { |
| 292 | int len = HCI_COMMAND_HDR_SIZE + plen; |
| 293 | struct hci_command_hdr *hdr; |
| 294 | struct sk_buff *skb; |
| 295 | |
| 296 | skb = bt_skb_alloc(len, GFP_ATOMIC); |
| 297 | if (!skb) |
| 298 | return NULL; |
| 299 | |
| 300 | hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); |
| 301 | hdr->opcode = cpu_to_le16(opcode); |
| 302 | hdr->plen = plen; |
| 303 | |
| 304 | if (plen) |
| 305 | skb_put_data(skb, param, plen); |
| 306 | |
| 307 | BT_DBG("skb len %d", skb->len); |
| 308 | |
| 309 | hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; |
| 310 | hci_skb_opcode(skb) = opcode; |
| 311 | |
| 312 | return skb; |
| 313 | } |
| 314 | |
| 315 | /* Queue a command to an asynchronous HCI request */ |
| 316 | void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, |
| 317 | const void *param, u8 event) |
| 318 | { |
| 319 | struct hci_dev *hdev = req->hdev; |
| 320 | struct sk_buff *skb; |
| 321 | |
| 322 | BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); |
| 323 | |
| 324 | /* If an error occurred during request building, there is no point in |
| 325 | * queueing the HCI command. We can simply return. |
| 326 | */ |
| 327 | if (req->err) |
| 328 | return; |
| 329 | |
| 330 | skb = hci_prepare_cmd(hdev, opcode, plen, param); |
| 331 | if (!skb) { |
| 332 | bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", |
| 333 | opcode); |
| 334 | req->err = -ENOMEM; |
| 335 | return; |
| 336 | } |
| 337 | |
| 338 | if (skb_queue_empty(&req->cmd_q)) |
| 339 | bt_cb(skb)->hci.req_flags |= HCI_REQ_START; |
| 340 | |
| 341 | bt_cb(skb)->hci.req_event = event; |
| 342 | |
| 343 | skb_queue_tail(&req->cmd_q, skb); |
| 344 | } |
| 345 | |
| 346 | void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, |
| 347 | const void *param) |
| 348 | { |
| 349 | hci_req_add_ev(req, opcode, plen, param, 0); |
| 350 | } |
| 351 | |
| 352 | void __hci_req_write_fast_connectable(struct hci_request *req, bool enable) |
| 353 | { |
| 354 | struct hci_dev *hdev = req->hdev; |
| 355 | struct hci_cp_write_page_scan_activity acp; |
| 356 | u8 type; |
| 357 | |
| 358 | if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| 359 | return; |
| 360 | |
| 361 | if (hdev->hci_ver < BLUETOOTH_VER_1_2) |
| 362 | return; |
| 363 | |
| 364 | if (enable) { |
| 365 | type = PAGE_SCAN_TYPE_INTERLACED; |
| 366 | |
| 367 | /* 160 msec page scan interval */ |
| 368 | acp.interval = cpu_to_le16(0x0100); |
| 369 | } else { |
| 370 | type = PAGE_SCAN_TYPE_STANDARD; /* default */ |
| 371 | |
| 372 | /* default 1.28 sec page scan */ |
| 373 | acp.interval = cpu_to_le16(0x0800); |
| 374 | } |
| 375 | |
| 376 | acp.window = cpu_to_le16(0x0012); |
| 377 | |
| 378 | if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval || |
| 379 | __cpu_to_le16(hdev->page_scan_window) != acp.window) |
| 380 | hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, |
| 381 | sizeof(acp), &acp); |
| 382 | |
| 383 | if (hdev->page_scan_type != type) |
| 384 | hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type); |
| 385 | } |
| 386 | |
| 387 | /* This function controls the background scanning based on hdev->pend_le_conns |
| 388 | * list. If there are pending LE connection we start the background scanning, |
| 389 | * otherwise we stop it. |
| 390 | * |
| 391 | * This function requires the caller holds hdev->lock. |
| 392 | */ |
| 393 | static void __hci_update_background_scan(struct hci_request *req) |
| 394 | { |
| 395 | struct hci_dev *hdev = req->hdev; |
| 396 | |
| 397 | if (!test_bit(HCI_UP, &hdev->flags) || |
| 398 | test_bit(HCI_INIT, &hdev->flags) || |
| 399 | hci_dev_test_flag(hdev, HCI_SETUP) || |
| 400 | hci_dev_test_flag(hdev, HCI_CONFIG) || |
| 401 | hci_dev_test_flag(hdev, HCI_AUTO_OFF) || |
| 402 | hci_dev_test_flag(hdev, HCI_UNREGISTER)) |
| 403 | return; |
| 404 | |
| 405 | /* No point in doing scanning if LE support hasn't been enabled */ |
| 406 | if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) |
| 407 | return; |
| 408 | |
| 409 | /* If discovery is active don't interfere with it */ |
| 410 | if (hdev->discovery.state != DISCOVERY_STOPPED) |
| 411 | return; |
| 412 | |
| 413 | /* Reset RSSI and UUID filters when starting background scanning |
| 414 | * since these filters are meant for service discovery only. |
| 415 | * |
| 416 | * The Start Discovery and Start Service Discovery operations |
| 417 | * ensure to set proper values for RSSI threshold and UUID |
| 418 | * filter list. So it is safe to just reset them here. |
| 419 | */ |
| 420 | hci_discovery_filter_clear(hdev); |
| 421 | |
| 422 | if (list_empty(&hdev->pend_le_conns) && |
| 423 | list_empty(&hdev->pend_le_reports)) { |
| 424 | /* If there is no pending LE connections or devices |
| 425 | * to be scanned for, we should stop the background |
| 426 | * scanning. |
| 427 | */ |
| 428 | |
| 429 | /* If controller is not scanning we are done. */ |
| 430 | if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| 431 | return; |
| 432 | |
| 433 | hci_req_add_le_scan_disable(req); |
| 434 | |
| 435 | BT_DBG("%s stopping background scanning", hdev->name); |
| 436 | } else { |
| 437 | /* If there is at least one pending LE connection, we should |
| 438 | * keep the background scan running. |
| 439 | */ |
| 440 | |
| 441 | /* If controller is connecting, we should not start scanning |
| 442 | * since some controllers are not able to scan and connect at |
| 443 | * the same time. |
| 444 | */ |
| 445 | if (hci_lookup_le_connect(hdev)) |
| 446 | return; |
| 447 | |
| 448 | /* If controller is currently scanning, we stop it to ensure we |
| 449 | * don't miss any advertising (due to duplicates filter). |
| 450 | */ |
| 451 | if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| 452 | hci_req_add_le_scan_disable(req); |
| 453 | |
| 454 | hci_req_add_le_passive_scan(req); |
| 455 | |
| 456 | BT_DBG("%s starting background scanning", hdev->name); |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | void __hci_req_update_name(struct hci_request *req) |
| 461 | { |
| 462 | struct hci_dev *hdev = req->hdev; |
| 463 | struct hci_cp_write_local_name cp; |
| 464 | |
| 465 | memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); |
| 466 | |
| 467 | hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp); |
| 468 | } |
| 469 | |
| 470 | #define PNP_INFO_SVCLASS_ID 0x1200 |
| 471 | |
| 472 | static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) |
| 473 | { |
| 474 | u8 *ptr = data, *uuids_start = NULL; |
| 475 | struct bt_uuid *uuid; |
| 476 | |
| 477 | if (len < 4) |
| 478 | return ptr; |
| 479 | |
| 480 | list_for_each_entry(uuid, &hdev->uuids, list) { |
| 481 | u16 uuid16; |
| 482 | |
| 483 | if (uuid->size != 16) |
| 484 | continue; |
| 485 | |
| 486 | uuid16 = get_unaligned_le16(&uuid->uuid[12]); |
| 487 | if (uuid16 < 0x1100) |
| 488 | continue; |
| 489 | |
| 490 | if (uuid16 == PNP_INFO_SVCLASS_ID) |
| 491 | continue; |
| 492 | |
| 493 | if (!uuids_start) { |
| 494 | uuids_start = ptr; |
| 495 | uuids_start[0] = 1; |
| 496 | uuids_start[1] = EIR_UUID16_ALL; |
| 497 | ptr += 2; |
| 498 | } |
| 499 | |
| 500 | /* Stop if not enough space to put next UUID */ |
| 501 | if ((ptr - data) + sizeof(u16) > len) { |
| 502 | uuids_start[1] = EIR_UUID16_SOME; |
| 503 | break; |
| 504 | } |
| 505 | |
| 506 | *ptr++ = (uuid16 & 0x00ff); |
| 507 | *ptr++ = (uuid16 & 0xff00) >> 8; |
| 508 | uuids_start[0] += sizeof(uuid16); |
| 509 | } |
| 510 | |
| 511 | return ptr; |
| 512 | } |
| 513 | |
| 514 | static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) |
| 515 | { |
| 516 | u8 *ptr = data, *uuids_start = NULL; |
| 517 | struct bt_uuid *uuid; |
| 518 | |
| 519 | if (len < 6) |
| 520 | return ptr; |
| 521 | |
| 522 | list_for_each_entry(uuid, &hdev->uuids, list) { |
| 523 | if (uuid->size != 32) |
| 524 | continue; |
| 525 | |
| 526 | if (!uuids_start) { |
| 527 | uuids_start = ptr; |
| 528 | uuids_start[0] = 1; |
| 529 | uuids_start[1] = EIR_UUID32_ALL; |
| 530 | ptr += 2; |
| 531 | } |
| 532 | |
| 533 | /* Stop if not enough space to put next UUID */ |
| 534 | if ((ptr - data) + sizeof(u32) > len) { |
| 535 | uuids_start[1] = EIR_UUID32_SOME; |
| 536 | break; |
| 537 | } |
| 538 | |
| 539 | memcpy(ptr, &uuid->uuid[12], sizeof(u32)); |
| 540 | ptr += sizeof(u32); |
| 541 | uuids_start[0] += sizeof(u32); |
| 542 | } |
| 543 | |
| 544 | return ptr; |
| 545 | } |
| 546 | |
| 547 | static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) |
| 548 | { |
| 549 | u8 *ptr = data, *uuids_start = NULL; |
| 550 | struct bt_uuid *uuid; |
| 551 | |
| 552 | if (len < 18) |
| 553 | return ptr; |
| 554 | |
| 555 | list_for_each_entry(uuid, &hdev->uuids, list) { |
| 556 | if (uuid->size != 128) |
| 557 | continue; |
| 558 | |
| 559 | if (!uuids_start) { |
| 560 | uuids_start = ptr; |
| 561 | uuids_start[0] = 1; |
| 562 | uuids_start[1] = EIR_UUID128_ALL; |
| 563 | ptr += 2; |
| 564 | } |
| 565 | |
| 566 | /* Stop if not enough space to put next UUID */ |
| 567 | if ((ptr - data) + 16 > len) { |
| 568 | uuids_start[1] = EIR_UUID128_SOME; |
| 569 | break; |
| 570 | } |
| 571 | |
| 572 | memcpy(ptr, uuid->uuid, 16); |
| 573 | ptr += 16; |
| 574 | uuids_start[0] += 16; |
| 575 | } |
| 576 | |
| 577 | return ptr; |
| 578 | } |
| 579 | |
| 580 | static void create_eir(struct hci_dev *hdev, u8 *data) |
| 581 | { |
| 582 | u8 *ptr = data; |
| 583 | size_t name_len; |
| 584 | |
| 585 | name_len = strlen(hdev->dev_name); |
| 586 | |
| 587 | if (name_len > 0) { |
| 588 | /* EIR Data type */ |
| 589 | if (name_len > 48) { |
| 590 | name_len = 48; |
| 591 | ptr[1] = EIR_NAME_SHORT; |
| 592 | } else |
| 593 | ptr[1] = EIR_NAME_COMPLETE; |
| 594 | |
| 595 | /* EIR Data length */ |
| 596 | ptr[0] = name_len + 1; |
| 597 | |
| 598 | memcpy(ptr + 2, hdev->dev_name, name_len); |
| 599 | |
| 600 | ptr += (name_len + 2); |
| 601 | } |
| 602 | |
| 603 | if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) { |
| 604 | ptr[0] = 2; |
| 605 | ptr[1] = EIR_TX_POWER; |
| 606 | ptr[2] = (u8) hdev->inq_tx_power; |
| 607 | |
| 608 | ptr += 3; |
| 609 | } |
| 610 | |
| 611 | if (hdev->devid_source > 0) { |
| 612 | ptr[0] = 9; |
| 613 | ptr[1] = EIR_DEVICE_ID; |
| 614 | |
| 615 | put_unaligned_le16(hdev->devid_source, ptr + 2); |
| 616 | put_unaligned_le16(hdev->devid_vendor, ptr + 4); |
| 617 | put_unaligned_le16(hdev->devid_product, ptr + 6); |
| 618 | put_unaligned_le16(hdev->devid_version, ptr + 8); |
| 619 | |
| 620 | ptr += 10; |
| 621 | } |
| 622 | |
| 623 | ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); |
| 624 | ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); |
| 625 | ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); |
| 626 | } |
| 627 | |
| 628 | void __hci_req_update_eir(struct hci_request *req) |
| 629 | { |
| 630 | struct hci_dev *hdev = req->hdev; |
| 631 | struct hci_cp_write_eir cp; |
| 632 | |
| 633 | if (!hdev_is_powered(hdev)) |
| 634 | return; |
| 635 | |
| 636 | if (!lmp_ext_inq_capable(hdev)) |
| 637 | return; |
| 638 | |
| 639 | if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) |
| 640 | return; |
| 641 | |
| 642 | if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) |
| 643 | return; |
| 644 | |
| 645 | memset(&cp, 0, sizeof(cp)); |
| 646 | |
| 647 | create_eir(hdev, cp.data); |
| 648 | |
| 649 | if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) |
| 650 | return; |
| 651 | |
| 652 | memcpy(hdev->eir, cp.data, sizeof(cp.data)); |
| 653 | |
| 654 | hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); |
| 655 | } |
| 656 | |
| 657 | void hci_req_add_le_scan_disable(struct hci_request *req) |
| 658 | { |
| 659 | struct hci_dev *hdev = req->hdev; |
| 660 | |
| 661 | if (use_ext_scan(hdev)) { |
| 662 | struct hci_cp_le_set_ext_scan_enable cp; |
| 663 | |
| 664 | memset(&cp, 0, sizeof(cp)); |
| 665 | cp.enable = LE_SCAN_DISABLE; |
| 666 | hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp), |
| 667 | &cp); |
| 668 | } else { |
| 669 | struct hci_cp_le_set_scan_enable cp; |
| 670 | |
| 671 | memset(&cp, 0, sizeof(cp)); |
| 672 | cp.enable = LE_SCAN_DISABLE; |
| 673 | hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | static void add_to_white_list(struct hci_request *req, |
| 678 | struct hci_conn_params *params) |
| 679 | { |
| 680 | struct hci_cp_le_add_to_white_list cp; |
| 681 | |
| 682 | cp.bdaddr_type = params->addr_type; |
| 683 | bacpy(&cp.bdaddr, ¶ms->addr); |
| 684 | |
| 685 | hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp); |
| 686 | } |
| 687 | |
| 688 | static u8 update_white_list(struct hci_request *req) |
| 689 | { |
| 690 | struct hci_dev *hdev = req->hdev; |
| 691 | struct hci_conn_params *params; |
| 692 | struct bdaddr_list *b; |
| 693 | uint8_t white_list_entries = 0; |
| 694 | |
| 695 | /* Go through the current white list programmed into the |
| 696 | * controller one by one and check if that address is still |
| 697 | * in the list of pending connections or list of devices to |
| 698 | * report. If not present in either list, then queue the |
| 699 | * command to remove it from the controller. |
| 700 | */ |
| 701 | list_for_each_entry(b, &hdev->le_white_list, list) { |
| 702 | /* If the device is neither in pend_le_conns nor |
| 703 | * pend_le_reports then remove it from the whitelist. |
| 704 | */ |
| 705 | if (!hci_pend_le_action_lookup(&hdev->pend_le_conns, |
| 706 | &b->bdaddr, b->bdaddr_type) && |
| 707 | !hci_pend_le_action_lookup(&hdev->pend_le_reports, |
| 708 | &b->bdaddr, b->bdaddr_type)) { |
| 709 | struct hci_cp_le_del_from_white_list cp; |
| 710 | |
| 711 | cp.bdaddr_type = b->bdaddr_type; |
| 712 | bacpy(&cp.bdaddr, &b->bdaddr); |
| 713 | |
| 714 | hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, |
| 715 | sizeof(cp), &cp); |
| 716 | continue; |
| 717 | } |
| 718 | |
| 719 | if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) { |
| 720 | /* White list can not be used with RPAs */ |
| 721 | return 0x00; |
| 722 | } |
| 723 | |
| 724 | white_list_entries++; |
| 725 | } |
| 726 | |
| 727 | /* Since all no longer valid white list entries have been |
| 728 | * removed, walk through the list of pending connections |
| 729 | * and ensure that any new device gets programmed into |
| 730 | * the controller. |
| 731 | * |
| 732 | * If the list of the devices is larger than the list of |
| 733 | * available white list entries in the controller, then |
| 734 | * just abort and return filer policy value to not use the |
| 735 | * white list. |
| 736 | */ |
| 737 | list_for_each_entry(params, &hdev->pend_le_conns, action) { |
| 738 | if (hci_bdaddr_list_lookup(&hdev->le_white_list, |
| 739 | ¶ms->addr, params->addr_type)) |
| 740 | continue; |
| 741 | |
| 742 | if (white_list_entries >= hdev->le_white_list_size) { |
| 743 | /* Select filter policy to accept all advertising */ |
| 744 | return 0x00; |
| 745 | } |
| 746 | |
| 747 | if (hci_find_irk_by_addr(hdev, ¶ms->addr, |
| 748 | params->addr_type)) { |
| 749 | /* White list can not be used with RPAs */ |
| 750 | return 0x00; |
| 751 | } |
| 752 | |
| 753 | white_list_entries++; |
| 754 | add_to_white_list(req, params); |
| 755 | } |
| 756 | |
| 757 | /* After adding all new pending connections, walk through |
| 758 | * the list of pending reports and also add these to the |
| 759 | * white list if there is still space. |
| 760 | */ |
| 761 | list_for_each_entry(params, &hdev->pend_le_reports, action) { |
| 762 | if (hci_bdaddr_list_lookup(&hdev->le_white_list, |
| 763 | ¶ms->addr, params->addr_type)) |
| 764 | continue; |
| 765 | |
| 766 | if (white_list_entries >= hdev->le_white_list_size) { |
| 767 | /* Select filter policy to accept all advertising */ |
| 768 | return 0x00; |
| 769 | } |
| 770 | |
| 771 | if (hci_find_irk_by_addr(hdev, ¶ms->addr, |
| 772 | params->addr_type)) { |
| 773 | /* White list can not be used with RPAs */ |
| 774 | return 0x00; |
| 775 | } |
| 776 | |
| 777 | white_list_entries++; |
| 778 | add_to_white_list(req, params); |
| 779 | } |
| 780 | |
| 781 | /* Select filter policy to use white list */ |
| 782 | return 0x01; |
| 783 | } |
| 784 | |
| 785 | static bool scan_use_rpa(struct hci_dev *hdev) |
| 786 | { |
| 787 | return hci_dev_test_flag(hdev, HCI_PRIVACY); |
| 788 | } |
| 789 | |
| 790 | static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval, |
| 791 | u16 window, u8 own_addr_type, u8 filter_policy) |
| 792 | { |
| 793 | struct hci_dev *hdev = req->hdev; |
| 794 | |
| 795 | /* Use ext scanning if set ext scan param and ext scan enable is |
| 796 | * supported |
| 797 | */ |
| 798 | if (use_ext_scan(hdev)) { |
| 799 | struct hci_cp_le_set_ext_scan_params *ext_param_cp; |
| 800 | struct hci_cp_le_set_ext_scan_enable ext_enable_cp; |
| 801 | struct hci_cp_le_scan_phy_params *phy_params; |
| 802 | u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2]; |
| 803 | u32 plen; |
| 804 | |
| 805 | ext_param_cp = (void *)data; |
| 806 | phy_params = (void *)ext_param_cp->data; |
| 807 | |
| 808 | memset(ext_param_cp, 0, sizeof(*ext_param_cp)); |
| 809 | ext_param_cp->own_addr_type = own_addr_type; |
| 810 | ext_param_cp->filter_policy = filter_policy; |
| 811 | |
| 812 | plen = sizeof(*ext_param_cp); |
| 813 | |
| 814 | if (scan_1m(hdev) || scan_2m(hdev)) { |
| 815 | ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M; |
| 816 | |
| 817 | memset(phy_params, 0, sizeof(*phy_params)); |
| 818 | phy_params->type = type; |
| 819 | phy_params->interval = cpu_to_le16(interval); |
| 820 | phy_params->window = cpu_to_le16(window); |
| 821 | |
| 822 | plen += sizeof(*phy_params); |
| 823 | phy_params++; |
| 824 | } |
| 825 | |
| 826 | if (scan_coded(hdev)) { |
| 827 | ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED; |
| 828 | |
| 829 | memset(phy_params, 0, sizeof(*phy_params)); |
| 830 | phy_params->type = type; |
| 831 | phy_params->interval = cpu_to_le16(interval); |
| 832 | phy_params->window = cpu_to_le16(window); |
| 833 | |
| 834 | plen += sizeof(*phy_params); |
| 835 | phy_params++; |
| 836 | } |
| 837 | |
| 838 | hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS, |
| 839 | plen, ext_param_cp); |
| 840 | |
| 841 | memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); |
| 842 | ext_enable_cp.enable = LE_SCAN_ENABLE; |
| 843 | ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; |
| 844 | |
| 845 | hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, |
| 846 | sizeof(ext_enable_cp), &ext_enable_cp); |
| 847 | } else { |
| 848 | struct hci_cp_le_set_scan_param param_cp; |
| 849 | struct hci_cp_le_set_scan_enable enable_cp; |
| 850 | |
| 851 | memset(¶m_cp, 0, sizeof(param_cp)); |
| 852 | param_cp.type = type; |
| 853 | param_cp.interval = cpu_to_le16(interval); |
| 854 | param_cp.window = cpu_to_le16(window); |
| 855 | param_cp.own_address_type = own_addr_type; |
| 856 | param_cp.filter_policy = filter_policy; |
| 857 | hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), |
| 858 | ¶m_cp); |
| 859 | |
| 860 | memset(&enable_cp, 0, sizeof(enable_cp)); |
| 861 | enable_cp.enable = LE_SCAN_ENABLE; |
| 862 | enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; |
| 863 | hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), |
| 864 | &enable_cp); |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | void hci_req_add_le_passive_scan(struct hci_request *req) |
| 869 | { |
| 870 | struct hci_dev *hdev = req->hdev; |
| 871 | u8 own_addr_type; |
| 872 | u8 filter_policy; |
| 873 | |
| 874 | /* Set require_privacy to false since no SCAN_REQ are send |
| 875 | * during passive scanning. Not using an non-resolvable address |
| 876 | * here is important so that peer devices using direct |
| 877 | * advertising with our address will be correctly reported |
| 878 | * by the controller. |
| 879 | */ |
| 880 | if (hci_update_random_address(req, false, scan_use_rpa(hdev), |
| 881 | &own_addr_type)) |
| 882 | return; |
| 883 | |
| 884 | /* Adding or removing entries from the white list must |
| 885 | * happen before enabling scanning. The controller does |
| 886 | * not allow white list modification while scanning. |
| 887 | */ |
| 888 | filter_policy = update_white_list(req); |
| 889 | |
| 890 | /* When the controller is using random resolvable addresses and |
| 891 | * with that having LE privacy enabled, then controllers with |
| 892 | * Extended Scanner Filter Policies support can now enable support |
| 893 | * for handling directed advertising. |
| 894 | * |
| 895 | * So instead of using filter polices 0x00 (no whitelist) |
| 896 | * and 0x01 (whitelist enabled) use the new filter policies |
| 897 | * 0x02 (no whitelist) and 0x03 (whitelist enabled). |
| 898 | */ |
| 899 | if (hci_dev_test_flag(hdev, HCI_PRIVACY) && |
| 900 | (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) |
| 901 | filter_policy |= 0x02; |
| 902 | |
| 903 | hci_req_start_scan(req, LE_SCAN_PASSIVE, hdev->le_scan_interval, |
| 904 | hdev->le_scan_window, own_addr_type, filter_policy); |
| 905 | } |
| 906 | |
| 907 | static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance) |
| 908 | { |
| 909 | struct adv_info *adv_instance; |
| 910 | |
| 911 | /* Ignore instance 0 */ |
| 912 | if (instance == 0x00) |
| 913 | return 0; |
| 914 | |
| 915 | adv_instance = hci_find_adv_instance(hdev, instance); |
| 916 | if (!adv_instance) |
| 917 | return 0; |
| 918 | |
| 919 | /* TODO: Take into account the "appearance" and "local-name" flags here. |
| 920 | * These are currently being ignored as they are not supported. |
| 921 | */ |
| 922 | return adv_instance->scan_rsp_len; |
| 923 | } |
| 924 | |
| 925 | static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev) |
| 926 | { |
| 927 | u8 instance = hdev->cur_adv_instance; |
| 928 | struct adv_info *adv_instance; |
| 929 | |
| 930 | /* Ignore instance 0 */ |
| 931 | if (instance == 0x00) |
| 932 | return 0; |
| 933 | |
| 934 | adv_instance = hci_find_adv_instance(hdev, instance); |
| 935 | if (!adv_instance) |
| 936 | return 0; |
| 937 | |
| 938 | /* TODO: Take into account the "appearance" and "local-name" flags here. |
| 939 | * These are currently being ignored as they are not supported. |
| 940 | */ |
| 941 | return adv_instance->scan_rsp_len; |
| 942 | } |
| 943 | |
| 944 | void __hci_req_disable_advertising(struct hci_request *req) |
| 945 | { |
| 946 | if (ext_adv_capable(req->hdev)) { |
| 947 | struct hci_cp_le_set_ext_adv_enable cp; |
| 948 | |
| 949 | cp.enable = 0x00; |
| 950 | /* Disable all sets since we only support one set at the moment */ |
| 951 | cp.num_of_sets = 0x00; |
| 952 | |
| 953 | hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp); |
| 954 | } else { |
| 955 | u8 enable = 0x00; |
| 956 | |
| 957 | hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); |
| 958 | } |
| 959 | } |
| 960 | |
| 961 | static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance) |
| 962 | { |
| 963 | u32 flags; |
| 964 | struct adv_info *adv_instance; |
| 965 | |
| 966 | if (instance == 0x00) { |
| 967 | /* Instance 0 always manages the "Tx Power" and "Flags" |
| 968 | * fields |
| 969 | */ |
| 970 | flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; |
| 971 | |
| 972 | /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting |
| 973 | * corresponds to the "connectable" instance flag. |
| 974 | */ |
| 975 | if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) |
| 976 | flags |= MGMT_ADV_FLAG_CONNECTABLE; |
| 977 | |
| 978 | if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) |
| 979 | flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; |
| 980 | else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) |
| 981 | flags |= MGMT_ADV_FLAG_DISCOV; |
| 982 | |
| 983 | return flags; |
| 984 | } |
| 985 | |
| 986 | adv_instance = hci_find_adv_instance(hdev, instance); |
| 987 | |
| 988 | /* Return 0 when we got an invalid instance identifier. */ |
| 989 | if (!adv_instance) |
| 990 | return 0; |
| 991 | |
| 992 | return adv_instance->flags; |
| 993 | } |
| 994 | |
| 995 | static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) |
| 996 | { |
| 997 | /* If privacy is not enabled don't use RPA */ |
| 998 | if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) |
| 999 | return false; |
| 1000 | |
| 1001 | /* If basic privacy mode is enabled use RPA */ |
| 1002 | if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) |
| 1003 | return true; |
| 1004 | |
| 1005 | /* If limited privacy mode is enabled don't use RPA if we're |
| 1006 | * both discoverable and bondable. |
| 1007 | */ |
| 1008 | if ((flags & MGMT_ADV_FLAG_DISCOV) && |
| 1009 | hci_dev_test_flag(hdev, HCI_BONDABLE)) |
| 1010 | return false; |
| 1011 | |
| 1012 | /* We're neither bondable nor discoverable in the limited |
| 1013 | * privacy mode, therefore use RPA. |
| 1014 | */ |
| 1015 | return true; |
| 1016 | } |
| 1017 | |
| 1018 | static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) |
| 1019 | { |
| 1020 | /* If there is no connection we are OK to advertise. */ |
| 1021 | if (hci_conn_num(hdev, LE_LINK) == 0) |
| 1022 | return true; |
| 1023 | |
| 1024 | /* Check le_states if there is any connection in slave role. */ |
| 1025 | if (hdev->conn_hash.le_num_slave > 0) { |
| 1026 | /* Slave connection state and non connectable mode bit 20. */ |
| 1027 | if (!connectable && !(hdev->le_states[2] & 0x10)) |
| 1028 | return false; |
| 1029 | |
| 1030 | /* Slave connection state and connectable mode bit 38 |
| 1031 | * and scannable bit 21. |
| 1032 | */ |
| 1033 | if (connectable && (!(hdev->le_states[4] & 0x40) || |
| 1034 | !(hdev->le_states[2] & 0x20))) |
| 1035 | return false; |
| 1036 | } |
| 1037 | |
| 1038 | /* Check le_states if there is any connection in master role. */ |
| 1039 | if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) { |
| 1040 | /* Master connection state and non connectable mode bit 18. */ |
| 1041 | if (!connectable && !(hdev->le_states[2] & 0x02)) |
| 1042 | return false; |
| 1043 | |
| 1044 | /* Master connection state and connectable mode bit 35 and |
| 1045 | * scannable 19. |
| 1046 | */ |
| 1047 | if (connectable && (!(hdev->le_states[4] & 0x08) || |
| 1048 | !(hdev->le_states[2] & 0x08))) |
| 1049 | return false; |
| 1050 | } |
| 1051 | |
| 1052 | return true; |
| 1053 | } |
| 1054 | |
| 1055 | void __hci_req_enable_advertising(struct hci_request *req) |
| 1056 | { |
| 1057 | struct hci_dev *hdev = req->hdev; |
| 1058 | struct hci_cp_le_set_adv_param cp; |
| 1059 | u8 own_addr_type, enable = 0x01; |
| 1060 | bool connectable; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1061 | u16 adv_min_interval, adv_max_interval; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1062 | u32 flags; |
| 1063 | |
| 1064 | flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance); |
| 1065 | |
| 1066 | /* If the "connectable" instance flag was not set, then choose between |
| 1067 | * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. |
| 1068 | */ |
| 1069 | connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || |
| 1070 | mgmt_get_connectable(hdev); |
| 1071 | |
| 1072 | if (!is_advertising_allowed(hdev, connectable)) |
| 1073 | return; |
| 1074 | |
| 1075 | if (hci_dev_test_flag(hdev, HCI_LE_ADV)) |
| 1076 | __hci_req_disable_advertising(req); |
| 1077 | |
| 1078 | /* Clear the HCI_LE_ADV bit temporarily so that the |
| 1079 | * hci_update_random_address knows that it's safe to go ahead |
| 1080 | * and write a new random address. The flag will be set back on |
| 1081 | * as soon as the SET_ADV_ENABLE HCI command completes. |
| 1082 | */ |
| 1083 | hci_dev_clear_flag(hdev, HCI_LE_ADV); |
| 1084 | |
| 1085 | /* Set require_privacy to true only when non-connectable |
| 1086 | * advertising is used. In that case it is fine to use a |
| 1087 | * non-resolvable private address. |
| 1088 | */ |
| 1089 | if (hci_update_random_address(req, !connectable, |
| 1090 | adv_use_rpa(hdev, flags), |
| 1091 | &own_addr_type) < 0) |
| 1092 | return; |
| 1093 | |
| 1094 | memset(&cp, 0, sizeof(cp)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1095 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1096 | if (connectable) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1097 | cp.type = LE_ADV_IND; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1098 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1099 | adv_min_interval = hdev->le_adv_min_interval; |
| 1100 | adv_max_interval = hdev->le_adv_max_interval; |
| 1101 | } else { |
| 1102 | if (get_cur_adv_instance_scan_rsp_len(hdev)) |
| 1103 | cp.type = LE_ADV_SCAN_IND; |
| 1104 | else |
| 1105 | cp.type = LE_ADV_NONCONN_IND; |
| 1106 | |
| 1107 | if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || |
| 1108 | hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { |
| 1109 | adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; |
| 1110 | adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; |
| 1111 | } else { |
| 1112 | adv_min_interval = hdev->le_adv_min_interval; |
| 1113 | adv_max_interval = hdev->le_adv_max_interval; |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | cp.min_interval = cpu_to_le16(adv_min_interval); |
| 1118 | cp.max_interval = cpu_to_le16(adv_max_interval); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1119 | cp.own_address_type = own_addr_type; |
| 1120 | cp.channel_map = hdev->le_adv_channel_map; |
| 1121 | |
| 1122 | hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); |
| 1123 | |
| 1124 | hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); |
| 1125 | } |
| 1126 | |
| 1127 | u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len) |
| 1128 | { |
| 1129 | size_t short_len; |
| 1130 | size_t complete_len; |
| 1131 | |
| 1132 | /* no space left for name (+ NULL + type + len) */ |
| 1133 | if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3) |
| 1134 | return ad_len; |
| 1135 | |
| 1136 | /* use complete name if present and fits */ |
| 1137 | complete_len = strlen(hdev->dev_name); |
| 1138 | if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH) |
| 1139 | return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE, |
| 1140 | hdev->dev_name, complete_len + 1); |
| 1141 | |
| 1142 | /* use short name if present */ |
| 1143 | short_len = strlen(hdev->short_name); |
| 1144 | if (short_len) |
| 1145 | return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, |
| 1146 | hdev->short_name, short_len + 1); |
| 1147 | |
| 1148 | /* use shortened full name if present, we already know that name |
| 1149 | * is longer then HCI_MAX_SHORT_NAME_LENGTH |
| 1150 | */ |
| 1151 | if (complete_len) { |
| 1152 | u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1]; |
| 1153 | |
| 1154 | memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH); |
| 1155 | name[HCI_MAX_SHORT_NAME_LENGTH] = '\0'; |
| 1156 | |
| 1157 | return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name, |
| 1158 | sizeof(name)); |
| 1159 | } |
| 1160 | |
| 1161 | return ad_len; |
| 1162 | } |
| 1163 | |
| 1164 | static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len) |
| 1165 | { |
| 1166 | return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance); |
| 1167 | } |
| 1168 | |
| 1169 | static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr) |
| 1170 | { |
| 1171 | u8 scan_rsp_len = 0; |
| 1172 | |
| 1173 | if (hdev->appearance) { |
| 1174 | scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); |
| 1175 | } |
| 1176 | |
| 1177 | return append_local_name(hdev, ptr, scan_rsp_len); |
| 1178 | } |
| 1179 | |
| 1180 | static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance, |
| 1181 | u8 *ptr) |
| 1182 | { |
| 1183 | struct adv_info *adv_instance; |
| 1184 | u32 instance_flags; |
| 1185 | u8 scan_rsp_len = 0; |
| 1186 | |
| 1187 | adv_instance = hci_find_adv_instance(hdev, instance); |
| 1188 | if (!adv_instance) |
| 1189 | return 0; |
| 1190 | |
| 1191 | instance_flags = adv_instance->flags; |
| 1192 | |
| 1193 | if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) { |
| 1194 | scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); |
| 1195 | } |
| 1196 | |
| 1197 | memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data, |
| 1198 | adv_instance->scan_rsp_len); |
| 1199 | |
| 1200 | scan_rsp_len += adv_instance->scan_rsp_len; |
| 1201 | |
| 1202 | if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME) |
| 1203 | scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len); |
| 1204 | |
| 1205 | return scan_rsp_len; |
| 1206 | } |
| 1207 | |
| 1208 | void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance) |
| 1209 | { |
| 1210 | struct hci_dev *hdev = req->hdev; |
| 1211 | u8 len; |
| 1212 | |
| 1213 | if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) |
| 1214 | return; |
| 1215 | |
| 1216 | if (ext_adv_capable(hdev)) { |
| 1217 | struct hci_cp_le_set_ext_scan_rsp_data cp; |
| 1218 | |
| 1219 | memset(&cp, 0, sizeof(cp)); |
| 1220 | |
| 1221 | if (instance) |
| 1222 | len = create_instance_scan_rsp_data(hdev, instance, |
| 1223 | cp.data); |
| 1224 | else |
| 1225 | len = create_default_scan_rsp_data(hdev, cp.data); |
| 1226 | |
| 1227 | if (hdev->scan_rsp_data_len == len && |
| 1228 | !memcmp(cp.data, hdev->scan_rsp_data, len)) |
| 1229 | return; |
| 1230 | |
| 1231 | memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); |
| 1232 | hdev->scan_rsp_data_len = len; |
| 1233 | |
| 1234 | cp.handle = 0; |
| 1235 | cp.length = len; |
| 1236 | cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; |
| 1237 | cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; |
| 1238 | |
| 1239 | hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp), |
| 1240 | &cp); |
| 1241 | } else { |
| 1242 | struct hci_cp_le_set_scan_rsp_data cp; |
| 1243 | |
| 1244 | memset(&cp, 0, sizeof(cp)); |
| 1245 | |
| 1246 | if (instance) |
| 1247 | len = create_instance_scan_rsp_data(hdev, instance, |
| 1248 | cp.data); |
| 1249 | else |
| 1250 | len = create_default_scan_rsp_data(hdev, cp.data); |
| 1251 | |
| 1252 | if (hdev->scan_rsp_data_len == len && |
| 1253 | !memcmp(cp.data, hdev->scan_rsp_data, len)) |
| 1254 | return; |
| 1255 | |
| 1256 | memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); |
| 1257 | hdev->scan_rsp_data_len = len; |
| 1258 | |
| 1259 | cp.length = len; |
| 1260 | |
| 1261 | hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp); |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr) |
| 1266 | { |
| 1267 | struct adv_info *adv_instance = NULL; |
| 1268 | u8 ad_len = 0, flags = 0; |
| 1269 | u32 instance_flags; |
| 1270 | |
| 1271 | /* Return 0 when the current instance identifier is invalid. */ |
| 1272 | if (instance) { |
| 1273 | adv_instance = hci_find_adv_instance(hdev, instance); |
| 1274 | if (!adv_instance) |
| 1275 | return 0; |
| 1276 | } |
| 1277 | |
| 1278 | instance_flags = get_adv_instance_flags(hdev, instance); |
| 1279 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1280 | /* If instance already has the flags set skip adding it once |
| 1281 | * again. |
| 1282 | */ |
| 1283 | if (adv_instance && eir_get_data(adv_instance->adv_data, |
| 1284 | adv_instance->adv_data_len, EIR_FLAGS, |
| 1285 | NULL)) |
| 1286 | goto skip_flags; |
| 1287 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1288 | /* The Add Advertising command allows userspace to set both the general |
| 1289 | * and limited discoverable flags. |
| 1290 | */ |
| 1291 | if (instance_flags & MGMT_ADV_FLAG_DISCOV) |
| 1292 | flags |= LE_AD_GENERAL; |
| 1293 | |
| 1294 | if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV) |
| 1295 | flags |= LE_AD_LIMITED; |
| 1296 | |
| 1297 | if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| 1298 | flags |= LE_AD_NO_BREDR; |
| 1299 | |
| 1300 | if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) { |
| 1301 | /* If a discovery flag wasn't provided, simply use the global |
| 1302 | * settings. |
| 1303 | */ |
| 1304 | if (!flags) |
| 1305 | flags |= mgmt_get_adv_discov_flags(hdev); |
| 1306 | |
| 1307 | /* If flags would still be empty, then there is no need to |
| 1308 | * include the "Flags" AD field". |
| 1309 | */ |
| 1310 | if (flags) { |
| 1311 | ptr[0] = 0x02; |
| 1312 | ptr[1] = EIR_FLAGS; |
| 1313 | ptr[2] = flags; |
| 1314 | |
| 1315 | ad_len += 3; |
| 1316 | ptr += 3; |
| 1317 | } |
| 1318 | } |
| 1319 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1320 | skip_flags: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1321 | if (adv_instance) { |
| 1322 | memcpy(ptr, adv_instance->adv_data, |
| 1323 | adv_instance->adv_data_len); |
| 1324 | ad_len += adv_instance->adv_data_len; |
| 1325 | ptr += adv_instance->adv_data_len; |
| 1326 | } |
| 1327 | |
| 1328 | if (instance_flags & MGMT_ADV_FLAG_TX_POWER) { |
| 1329 | s8 adv_tx_power; |
| 1330 | |
| 1331 | if (ext_adv_capable(hdev)) { |
| 1332 | if (adv_instance) |
| 1333 | adv_tx_power = adv_instance->tx_power; |
| 1334 | else |
| 1335 | adv_tx_power = hdev->adv_tx_power; |
| 1336 | } else { |
| 1337 | adv_tx_power = hdev->adv_tx_power; |
| 1338 | } |
| 1339 | |
| 1340 | /* Provide Tx Power only if we can provide a valid value for it */ |
| 1341 | if (adv_tx_power != HCI_TX_POWER_INVALID) { |
| 1342 | ptr[0] = 0x02; |
| 1343 | ptr[1] = EIR_TX_POWER; |
| 1344 | ptr[2] = (u8)adv_tx_power; |
| 1345 | |
| 1346 | ad_len += 3; |
| 1347 | ptr += 3; |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | return ad_len; |
| 1352 | } |
| 1353 | |
| 1354 | void __hci_req_update_adv_data(struct hci_request *req, u8 instance) |
| 1355 | { |
| 1356 | struct hci_dev *hdev = req->hdev; |
| 1357 | u8 len; |
| 1358 | |
| 1359 | if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) |
| 1360 | return; |
| 1361 | |
| 1362 | if (ext_adv_capable(hdev)) { |
| 1363 | struct hci_cp_le_set_ext_adv_data cp; |
| 1364 | |
| 1365 | memset(&cp, 0, sizeof(cp)); |
| 1366 | |
| 1367 | len = create_instance_adv_data(hdev, instance, cp.data); |
| 1368 | |
| 1369 | /* There's nothing to do if the data hasn't changed */ |
| 1370 | if (hdev->adv_data_len == len && |
| 1371 | memcmp(cp.data, hdev->adv_data, len) == 0) |
| 1372 | return; |
| 1373 | |
| 1374 | memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); |
| 1375 | hdev->adv_data_len = len; |
| 1376 | |
| 1377 | cp.length = len; |
| 1378 | cp.handle = 0; |
| 1379 | cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; |
| 1380 | cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; |
| 1381 | |
| 1382 | hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp); |
| 1383 | } else { |
| 1384 | struct hci_cp_le_set_adv_data cp; |
| 1385 | |
| 1386 | memset(&cp, 0, sizeof(cp)); |
| 1387 | |
| 1388 | len = create_instance_adv_data(hdev, instance, cp.data); |
| 1389 | |
| 1390 | /* There's nothing to do if the data hasn't changed */ |
| 1391 | if (hdev->adv_data_len == len && |
| 1392 | memcmp(cp.data, hdev->adv_data, len) == 0) |
| 1393 | return; |
| 1394 | |
| 1395 | memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); |
| 1396 | hdev->adv_data_len = len; |
| 1397 | |
| 1398 | cp.length = len; |
| 1399 | |
| 1400 | hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp); |
| 1401 | } |
| 1402 | } |
| 1403 | |
| 1404 | int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance) |
| 1405 | { |
| 1406 | struct hci_request req; |
| 1407 | |
| 1408 | hci_req_init(&req, hdev); |
| 1409 | __hci_req_update_adv_data(&req, instance); |
| 1410 | |
| 1411 | return hci_req_run(&req, NULL); |
| 1412 | } |
| 1413 | |
| 1414 | static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode) |
| 1415 | { |
| 1416 | BT_DBG("%s status %u", hdev->name, status); |
| 1417 | } |
| 1418 | |
| 1419 | void hci_req_reenable_advertising(struct hci_dev *hdev) |
| 1420 | { |
| 1421 | struct hci_request req; |
| 1422 | |
| 1423 | if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && |
| 1424 | list_empty(&hdev->adv_instances)) |
| 1425 | return; |
| 1426 | |
| 1427 | hci_req_init(&req, hdev); |
| 1428 | |
| 1429 | if (hdev->cur_adv_instance) { |
| 1430 | __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance, |
| 1431 | true); |
| 1432 | } else { |
| 1433 | if (ext_adv_capable(hdev)) { |
| 1434 | __hci_req_start_ext_adv(&req, 0x00); |
| 1435 | } else { |
| 1436 | __hci_req_update_adv_data(&req, 0x00); |
| 1437 | __hci_req_update_scan_rsp_data(&req, 0x00); |
| 1438 | __hci_req_enable_advertising(&req); |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | hci_req_run(&req, adv_enable_complete); |
| 1443 | } |
| 1444 | |
| 1445 | static void adv_timeout_expire(struct work_struct *work) |
| 1446 | { |
| 1447 | struct hci_dev *hdev = container_of(work, struct hci_dev, |
| 1448 | adv_instance_expire.work); |
| 1449 | |
| 1450 | struct hci_request req; |
| 1451 | u8 instance; |
| 1452 | |
| 1453 | BT_DBG("%s", hdev->name); |
| 1454 | |
| 1455 | hci_dev_lock(hdev); |
| 1456 | |
| 1457 | hdev->adv_instance_timeout = 0; |
| 1458 | |
| 1459 | instance = hdev->cur_adv_instance; |
| 1460 | if (instance == 0x00) |
| 1461 | goto unlock; |
| 1462 | |
| 1463 | hci_req_init(&req, hdev); |
| 1464 | |
| 1465 | hci_req_clear_adv_instance(hdev, NULL, &req, instance, false); |
| 1466 | |
| 1467 | if (list_empty(&hdev->adv_instances)) |
| 1468 | __hci_req_disable_advertising(&req); |
| 1469 | |
| 1470 | hci_req_run(&req, NULL); |
| 1471 | |
| 1472 | unlock: |
| 1473 | hci_dev_unlock(hdev); |
| 1474 | } |
| 1475 | |
| 1476 | int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, |
| 1477 | bool use_rpa, struct adv_info *adv_instance, |
| 1478 | u8 *own_addr_type, bdaddr_t *rand_addr) |
| 1479 | { |
| 1480 | int err; |
| 1481 | |
| 1482 | bacpy(rand_addr, BDADDR_ANY); |
| 1483 | |
| 1484 | /* If privacy is enabled use a resolvable private address. If |
| 1485 | * current RPA has expired then generate a new one. |
| 1486 | */ |
| 1487 | if (use_rpa) { |
| 1488 | int to; |
| 1489 | |
| 1490 | *own_addr_type = ADDR_LE_DEV_RANDOM; |
| 1491 | |
| 1492 | if (adv_instance) { |
| 1493 | if (!adv_instance->rpa_expired && |
| 1494 | !bacmp(&adv_instance->random_addr, &hdev->rpa)) |
| 1495 | return 0; |
| 1496 | |
| 1497 | adv_instance->rpa_expired = false; |
| 1498 | } else { |
| 1499 | if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && |
| 1500 | !bacmp(&hdev->random_addr, &hdev->rpa)) |
| 1501 | return 0; |
| 1502 | } |
| 1503 | |
| 1504 | err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); |
| 1505 | if (err < 0) { |
| 1506 | BT_ERR("%s failed to generate new RPA", hdev->name); |
| 1507 | return err; |
| 1508 | } |
| 1509 | |
| 1510 | bacpy(rand_addr, &hdev->rpa); |
| 1511 | |
| 1512 | to = msecs_to_jiffies(hdev->rpa_timeout * 1000); |
| 1513 | if (adv_instance) |
| 1514 | queue_delayed_work(hdev->workqueue, |
| 1515 | &adv_instance->rpa_expired_cb, to); |
| 1516 | else |
| 1517 | queue_delayed_work(hdev->workqueue, |
| 1518 | &hdev->rpa_expired, to); |
| 1519 | |
| 1520 | return 0; |
| 1521 | } |
| 1522 | |
| 1523 | /* In case of required privacy without resolvable private address, |
| 1524 | * use an non-resolvable private address. This is useful for |
| 1525 | * non-connectable advertising. |
| 1526 | */ |
| 1527 | if (require_privacy) { |
| 1528 | bdaddr_t nrpa; |
| 1529 | |
| 1530 | while (true) { |
| 1531 | /* The non-resolvable private address is generated |
| 1532 | * from random six bytes with the two most significant |
| 1533 | * bits cleared. |
| 1534 | */ |
| 1535 | get_random_bytes(&nrpa, 6); |
| 1536 | nrpa.b[5] &= 0x3f; |
| 1537 | |
| 1538 | /* The non-resolvable private address shall not be |
| 1539 | * equal to the public address. |
| 1540 | */ |
| 1541 | if (bacmp(&hdev->bdaddr, &nrpa)) |
| 1542 | break; |
| 1543 | } |
| 1544 | |
| 1545 | *own_addr_type = ADDR_LE_DEV_RANDOM; |
| 1546 | bacpy(rand_addr, &nrpa); |
| 1547 | |
| 1548 | return 0; |
| 1549 | } |
| 1550 | |
| 1551 | /* No privacy so use a public address. */ |
| 1552 | *own_addr_type = ADDR_LE_DEV_PUBLIC; |
| 1553 | |
| 1554 | return 0; |
| 1555 | } |
| 1556 | |
| 1557 | void __hci_req_clear_ext_adv_sets(struct hci_request *req) |
| 1558 | { |
| 1559 | hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL); |
| 1560 | } |
| 1561 | |
| 1562 | int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance) |
| 1563 | { |
| 1564 | struct hci_cp_le_set_ext_adv_params cp; |
| 1565 | struct hci_dev *hdev = req->hdev; |
| 1566 | bool connectable; |
| 1567 | u32 flags; |
| 1568 | bdaddr_t random_addr; |
| 1569 | u8 own_addr_type; |
| 1570 | int err; |
| 1571 | struct adv_info *adv_instance; |
| 1572 | bool secondary_adv; |
| 1573 | /* In ext adv set param interval is 3 octets */ |
| 1574 | const u8 adv_interval[3] = { 0x00, 0x08, 0x00 }; |
| 1575 | |
| 1576 | if (instance > 0) { |
| 1577 | adv_instance = hci_find_adv_instance(hdev, instance); |
| 1578 | if (!adv_instance) |
| 1579 | return -EINVAL; |
| 1580 | } else { |
| 1581 | adv_instance = NULL; |
| 1582 | } |
| 1583 | |
| 1584 | flags = get_adv_instance_flags(hdev, instance); |
| 1585 | |
| 1586 | /* If the "connectable" instance flag was not set, then choose between |
| 1587 | * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. |
| 1588 | */ |
| 1589 | connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || |
| 1590 | mgmt_get_connectable(hdev); |
| 1591 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1592 | if (!is_advertising_allowed(hdev, connectable)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1593 | return -EPERM; |
| 1594 | |
| 1595 | /* Set require_privacy to true only when non-connectable |
| 1596 | * advertising is used. In that case it is fine to use a |
| 1597 | * non-resolvable private address. |
| 1598 | */ |
| 1599 | err = hci_get_random_address(hdev, !connectable, |
| 1600 | adv_use_rpa(hdev, flags), adv_instance, |
| 1601 | &own_addr_type, &random_addr); |
| 1602 | if (err < 0) |
| 1603 | return err; |
| 1604 | |
| 1605 | memset(&cp, 0, sizeof(cp)); |
| 1606 | |
| 1607 | memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval)); |
| 1608 | memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval)); |
| 1609 | |
| 1610 | secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); |
| 1611 | |
| 1612 | if (connectable) { |
| 1613 | if (secondary_adv) |
| 1614 | cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); |
| 1615 | else |
| 1616 | cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); |
| 1617 | } else if (get_adv_instance_scan_rsp_len(hdev, instance)) { |
| 1618 | if (secondary_adv) |
| 1619 | cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); |
| 1620 | else |
| 1621 | cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); |
| 1622 | } else { |
| 1623 | if (secondary_adv) |
| 1624 | cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); |
| 1625 | else |
| 1626 | cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); |
| 1627 | } |
| 1628 | |
| 1629 | cp.own_addr_type = own_addr_type; |
| 1630 | cp.channel_map = hdev->le_adv_channel_map; |
| 1631 | cp.tx_power = 127; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1632 | cp.handle = instance; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1633 | |
| 1634 | if (flags & MGMT_ADV_FLAG_SEC_2M) { |
| 1635 | cp.primary_phy = HCI_ADV_PHY_1M; |
| 1636 | cp.secondary_phy = HCI_ADV_PHY_2M; |
| 1637 | } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { |
| 1638 | cp.primary_phy = HCI_ADV_PHY_CODED; |
| 1639 | cp.secondary_phy = HCI_ADV_PHY_CODED; |
| 1640 | } else { |
| 1641 | /* In all other cases use 1M */ |
| 1642 | cp.primary_phy = HCI_ADV_PHY_1M; |
| 1643 | cp.secondary_phy = HCI_ADV_PHY_1M; |
| 1644 | } |
| 1645 | |
| 1646 | hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); |
| 1647 | |
| 1648 | if (own_addr_type == ADDR_LE_DEV_RANDOM && |
| 1649 | bacmp(&random_addr, BDADDR_ANY)) { |
| 1650 | struct hci_cp_le_set_adv_set_rand_addr cp; |
| 1651 | |
| 1652 | /* Check if random address need to be updated */ |
| 1653 | if (adv_instance) { |
| 1654 | if (!bacmp(&random_addr, &adv_instance->random_addr)) |
| 1655 | return 0; |
| 1656 | } else { |
| 1657 | if (!bacmp(&random_addr, &hdev->random_addr)) |
| 1658 | return 0; |
| 1659 | } |
| 1660 | |
| 1661 | memset(&cp, 0, sizeof(cp)); |
| 1662 | |
| 1663 | cp.handle = 0; |
| 1664 | bacpy(&cp.bdaddr, &random_addr); |
| 1665 | |
| 1666 | hci_req_add(req, |
| 1667 | HCI_OP_LE_SET_ADV_SET_RAND_ADDR, |
| 1668 | sizeof(cp), &cp); |
| 1669 | } |
| 1670 | |
| 1671 | return 0; |
| 1672 | } |
| 1673 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1674 | int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1675 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1676 | struct hci_dev *hdev = req->hdev; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1677 | struct hci_cp_le_set_ext_adv_enable *cp; |
| 1678 | struct hci_cp_ext_adv_set *adv_set; |
| 1679 | u8 data[sizeof(*cp) + sizeof(*adv_set) * 1]; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1680 | struct adv_info *adv_instance; |
| 1681 | |
| 1682 | if (instance > 0) { |
| 1683 | adv_instance = hci_find_adv_instance(hdev, instance); |
| 1684 | if (!adv_instance) |
| 1685 | return -EINVAL; |
| 1686 | } else { |
| 1687 | adv_instance = NULL; |
| 1688 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1689 | |
| 1690 | cp = (void *) data; |
| 1691 | adv_set = (void *) cp->data; |
| 1692 | |
| 1693 | memset(cp, 0, sizeof(*cp)); |
| 1694 | |
| 1695 | cp->enable = 0x01; |
| 1696 | cp->num_of_sets = 0x01; |
| 1697 | |
| 1698 | memset(adv_set, 0, sizeof(*adv_set)); |
| 1699 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1700 | adv_set->handle = instance; |
| 1701 | |
| 1702 | /* Set duration per instance since controller is responsible for |
| 1703 | * scheduling it. |
| 1704 | */ |
| 1705 | if (adv_instance && adv_instance->duration) { |
| 1706 | u16 duration = adv_instance->duration * MSEC_PER_SEC; |
| 1707 | |
| 1708 | /* Time = N * 10 ms */ |
| 1709 | adv_set->duration = cpu_to_le16(duration / 10); |
| 1710 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1711 | |
| 1712 | hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, |
| 1713 | sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets, |
| 1714 | data); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1715 | |
| 1716 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1717 | } |
| 1718 | |
| 1719 | int __hci_req_start_ext_adv(struct hci_request *req, u8 instance) |
| 1720 | { |
| 1721 | struct hci_dev *hdev = req->hdev; |
| 1722 | int err; |
| 1723 | |
| 1724 | if (hci_dev_test_flag(hdev, HCI_LE_ADV)) |
| 1725 | __hci_req_disable_advertising(req); |
| 1726 | |
| 1727 | err = __hci_req_setup_ext_adv_instance(req, instance); |
| 1728 | if (err < 0) |
| 1729 | return err; |
| 1730 | |
| 1731 | __hci_req_update_scan_rsp_data(req, instance); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1732 | __hci_req_enable_ext_advertising(req, instance); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1733 | |
| 1734 | return 0; |
| 1735 | } |
| 1736 | |
| 1737 | int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance, |
| 1738 | bool force) |
| 1739 | { |
| 1740 | struct hci_dev *hdev = req->hdev; |
| 1741 | struct adv_info *adv_instance = NULL; |
| 1742 | u16 timeout; |
| 1743 | |
| 1744 | if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || |
| 1745 | list_empty(&hdev->adv_instances)) |
| 1746 | return -EPERM; |
| 1747 | |
| 1748 | if (hdev->adv_instance_timeout) |
| 1749 | return -EBUSY; |
| 1750 | |
| 1751 | adv_instance = hci_find_adv_instance(hdev, instance); |
| 1752 | if (!adv_instance) |
| 1753 | return -ENOENT; |
| 1754 | |
| 1755 | /* A zero timeout means unlimited advertising. As long as there is |
| 1756 | * only one instance, duration should be ignored. We still set a timeout |
| 1757 | * in case further instances are being added later on. |
| 1758 | * |
| 1759 | * If the remaining lifetime of the instance is more than the duration |
| 1760 | * then the timeout corresponds to the duration, otherwise it will be |
| 1761 | * reduced to the remaining instance lifetime. |
| 1762 | */ |
| 1763 | if (adv_instance->timeout == 0 || |
| 1764 | adv_instance->duration <= adv_instance->remaining_time) |
| 1765 | timeout = adv_instance->duration; |
| 1766 | else |
| 1767 | timeout = adv_instance->remaining_time; |
| 1768 | |
| 1769 | /* The remaining time is being reduced unless the instance is being |
| 1770 | * advertised without time limit. |
| 1771 | */ |
| 1772 | if (adv_instance->timeout) |
| 1773 | adv_instance->remaining_time = |
| 1774 | adv_instance->remaining_time - timeout; |
| 1775 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1776 | /* Only use work for scheduling instances with legacy advertising */ |
| 1777 | if (!ext_adv_capable(hdev)) { |
| 1778 | hdev->adv_instance_timeout = timeout; |
| 1779 | queue_delayed_work(hdev->req_workqueue, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1780 | &hdev->adv_instance_expire, |
| 1781 | msecs_to_jiffies(timeout * 1000)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1782 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1783 | |
| 1784 | /* If we're just re-scheduling the same instance again then do not |
| 1785 | * execute any HCI commands. This happens when a single instance is |
| 1786 | * being advertised. |
| 1787 | */ |
| 1788 | if (!force && hdev->cur_adv_instance == instance && |
| 1789 | hci_dev_test_flag(hdev, HCI_LE_ADV)) |
| 1790 | return 0; |
| 1791 | |
| 1792 | hdev->cur_adv_instance = instance; |
| 1793 | if (ext_adv_capable(hdev)) { |
| 1794 | __hci_req_start_ext_adv(req, instance); |
| 1795 | } else { |
| 1796 | __hci_req_update_adv_data(req, instance); |
| 1797 | __hci_req_update_scan_rsp_data(req, instance); |
| 1798 | __hci_req_enable_advertising(req); |
| 1799 | } |
| 1800 | |
| 1801 | return 0; |
| 1802 | } |
| 1803 | |
| 1804 | static void cancel_adv_timeout(struct hci_dev *hdev) |
| 1805 | { |
| 1806 | if (hdev->adv_instance_timeout) { |
| 1807 | hdev->adv_instance_timeout = 0; |
| 1808 | cancel_delayed_work(&hdev->adv_instance_expire); |
| 1809 | } |
| 1810 | } |
| 1811 | |
| 1812 | /* For a single instance: |
| 1813 | * - force == true: The instance will be removed even when its remaining |
| 1814 | * lifetime is not zero. |
| 1815 | * - force == false: the instance will be deactivated but kept stored unless |
| 1816 | * the remaining lifetime is zero. |
| 1817 | * |
| 1818 | * For instance == 0x00: |
| 1819 | * - force == true: All instances will be removed regardless of their timeout |
| 1820 | * setting. |
| 1821 | * - force == false: Only instances that have a timeout will be removed. |
| 1822 | */ |
| 1823 | void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk, |
| 1824 | struct hci_request *req, u8 instance, |
| 1825 | bool force) |
| 1826 | { |
| 1827 | struct adv_info *adv_instance, *n, *next_instance = NULL; |
| 1828 | int err; |
| 1829 | u8 rem_inst; |
| 1830 | |
| 1831 | /* Cancel any timeout concerning the removed instance(s). */ |
| 1832 | if (!instance || hdev->cur_adv_instance == instance) |
| 1833 | cancel_adv_timeout(hdev); |
| 1834 | |
| 1835 | /* Get the next instance to advertise BEFORE we remove |
| 1836 | * the current one. This can be the same instance again |
| 1837 | * if there is only one instance. |
| 1838 | */ |
| 1839 | if (instance && hdev->cur_adv_instance == instance) |
| 1840 | next_instance = hci_get_next_instance(hdev, instance); |
| 1841 | |
| 1842 | if (instance == 0x00) { |
| 1843 | list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, |
| 1844 | list) { |
| 1845 | if (!(force || adv_instance->timeout)) |
| 1846 | continue; |
| 1847 | |
| 1848 | rem_inst = adv_instance->instance; |
| 1849 | err = hci_remove_adv_instance(hdev, rem_inst); |
| 1850 | if (!err) |
| 1851 | mgmt_advertising_removed(sk, hdev, rem_inst); |
| 1852 | } |
| 1853 | } else { |
| 1854 | adv_instance = hci_find_adv_instance(hdev, instance); |
| 1855 | |
| 1856 | if (force || (adv_instance && adv_instance->timeout && |
| 1857 | !adv_instance->remaining_time)) { |
| 1858 | /* Don't advertise a removed instance. */ |
| 1859 | if (next_instance && |
| 1860 | next_instance->instance == instance) |
| 1861 | next_instance = NULL; |
| 1862 | |
| 1863 | err = hci_remove_adv_instance(hdev, instance); |
| 1864 | if (!err) |
| 1865 | mgmt_advertising_removed(sk, hdev, instance); |
| 1866 | } |
| 1867 | } |
| 1868 | |
| 1869 | if (!req || !hdev_is_powered(hdev) || |
| 1870 | hci_dev_test_flag(hdev, HCI_ADVERTISING)) |
| 1871 | return; |
| 1872 | |
| 1873 | if (next_instance) |
| 1874 | __hci_req_schedule_adv_instance(req, next_instance->instance, |
| 1875 | false); |
| 1876 | } |
| 1877 | |
| 1878 | static void set_random_addr(struct hci_request *req, bdaddr_t *rpa) |
| 1879 | { |
| 1880 | struct hci_dev *hdev = req->hdev; |
| 1881 | |
| 1882 | /* If we're advertising or initiating an LE connection we can't |
| 1883 | * go ahead and change the random address at this time. This is |
| 1884 | * because the eventual initiator address used for the |
| 1885 | * subsequently created connection will be undefined (some |
| 1886 | * controllers use the new address and others the one we had |
| 1887 | * when the operation started). |
| 1888 | * |
| 1889 | * In this kind of scenario skip the update and let the random |
| 1890 | * address be updated at the next cycle. |
| 1891 | */ |
| 1892 | if (hci_dev_test_flag(hdev, HCI_LE_ADV) || |
| 1893 | hci_lookup_le_connect(hdev)) { |
| 1894 | BT_DBG("Deferring random address update"); |
| 1895 | hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); |
| 1896 | return; |
| 1897 | } |
| 1898 | |
| 1899 | hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa); |
| 1900 | } |
| 1901 | |
| 1902 | int hci_update_random_address(struct hci_request *req, bool require_privacy, |
| 1903 | bool use_rpa, u8 *own_addr_type) |
| 1904 | { |
| 1905 | struct hci_dev *hdev = req->hdev; |
| 1906 | int err; |
| 1907 | |
| 1908 | /* If privacy is enabled use a resolvable private address. If |
| 1909 | * current RPA has expired or there is something else than |
| 1910 | * the current RPA in use, then generate a new one. |
| 1911 | */ |
| 1912 | if (use_rpa) { |
| 1913 | int to; |
| 1914 | |
| 1915 | *own_addr_type = ADDR_LE_DEV_RANDOM; |
| 1916 | |
| 1917 | if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && |
| 1918 | !bacmp(&hdev->random_addr, &hdev->rpa)) |
| 1919 | return 0; |
| 1920 | |
| 1921 | err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); |
| 1922 | if (err < 0) { |
| 1923 | bt_dev_err(hdev, "failed to generate new RPA"); |
| 1924 | return err; |
| 1925 | } |
| 1926 | |
| 1927 | set_random_addr(req, &hdev->rpa); |
| 1928 | |
| 1929 | to = msecs_to_jiffies(hdev->rpa_timeout * 1000); |
| 1930 | queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to); |
| 1931 | |
| 1932 | return 0; |
| 1933 | } |
| 1934 | |
| 1935 | /* In case of required privacy without resolvable private address, |
| 1936 | * use an non-resolvable private address. This is useful for active |
| 1937 | * scanning and non-connectable advertising. |
| 1938 | */ |
| 1939 | if (require_privacy) { |
| 1940 | bdaddr_t nrpa; |
| 1941 | |
| 1942 | while (true) { |
| 1943 | /* The non-resolvable private address is generated |
| 1944 | * from random six bytes with the two most significant |
| 1945 | * bits cleared. |
| 1946 | */ |
| 1947 | get_random_bytes(&nrpa, 6); |
| 1948 | nrpa.b[5] &= 0x3f; |
| 1949 | |
| 1950 | /* The non-resolvable private address shall not be |
| 1951 | * equal to the public address. |
| 1952 | */ |
| 1953 | if (bacmp(&hdev->bdaddr, &nrpa)) |
| 1954 | break; |
| 1955 | } |
| 1956 | |
| 1957 | *own_addr_type = ADDR_LE_DEV_RANDOM; |
| 1958 | set_random_addr(req, &nrpa); |
| 1959 | return 0; |
| 1960 | } |
| 1961 | |
| 1962 | /* If forcing static address is in use or there is no public |
| 1963 | * address use the static address as random address (but skip |
| 1964 | * the HCI command if the current random address is already the |
| 1965 | * static one. |
| 1966 | * |
| 1967 | * In case BR/EDR has been disabled on a dual-mode controller |
| 1968 | * and a static address has been configured, then use that |
| 1969 | * address instead of the public BR/EDR address. |
| 1970 | */ |
| 1971 | if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || |
| 1972 | !bacmp(&hdev->bdaddr, BDADDR_ANY) || |
| 1973 | (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && |
| 1974 | bacmp(&hdev->static_addr, BDADDR_ANY))) { |
| 1975 | *own_addr_type = ADDR_LE_DEV_RANDOM; |
| 1976 | if (bacmp(&hdev->static_addr, &hdev->random_addr)) |
| 1977 | hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, |
| 1978 | &hdev->static_addr); |
| 1979 | return 0; |
| 1980 | } |
| 1981 | |
| 1982 | /* Neither privacy nor static address is being used so use a |
| 1983 | * public address. |
| 1984 | */ |
| 1985 | *own_addr_type = ADDR_LE_DEV_PUBLIC; |
| 1986 | |
| 1987 | return 0; |
| 1988 | } |
| 1989 | |
| 1990 | static bool disconnected_whitelist_entries(struct hci_dev *hdev) |
| 1991 | { |
| 1992 | struct bdaddr_list *b; |
| 1993 | |
| 1994 | list_for_each_entry(b, &hdev->whitelist, list) { |
| 1995 | struct hci_conn *conn; |
| 1996 | |
| 1997 | conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); |
| 1998 | if (!conn) |
| 1999 | return true; |
| 2000 | |
| 2001 | if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) |
| 2002 | return true; |
| 2003 | } |
| 2004 | |
| 2005 | return false; |
| 2006 | } |
| 2007 | |
| 2008 | void __hci_req_update_scan(struct hci_request *req) |
| 2009 | { |
| 2010 | struct hci_dev *hdev = req->hdev; |
| 2011 | u8 scan; |
| 2012 | |
| 2013 | if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| 2014 | return; |
| 2015 | |
| 2016 | if (!hdev_is_powered(hdev)) |
| 2017 | return; |
| 2018 | |
| 2019 | if (mgmt_powering_down(hdev)) |
| 2020 | return; |
| 2021 | |
| 2022 | if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || |
| 2023 | disconnected_whitelist_entries(hdev)) |
| 2024 | scan = SCAN_PAGE; |
| 2025 | else |
| 2026 | scan = SCAN_DISABLED; |
| 2027 | |
| 2028 | if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) |
| 2029 | scan |= SCAN_INQUIRY; |
| 2030 | |
| 2031 | if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && |
| 2032 | test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) |
| 2033 | return; |
| 2034 | |
| 2035 | hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); |
| 2036 | } |
| 2037 | |
| 2038 | static int update_scan(struct hci_request *req, unsigned long opt) |
| 2039 | { |
| 2040 | hci_dev_lock(req->hdev); |
| 2041 | __hci_req_update_scan(req); |
| 2042 | hci_dev_unlock(req->hdev); |
| 2043 | return 0; |
| 2044 | } |
| 2045 | |
| 2046 | static void scan_update_work(struct work_struct *work) |
| 2047 | { |
| 2048 | struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update); |
| 2049 | |
| 2050 | hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL); |
| 2051 | } |
| 2052 | |
| 2053 | static int connectable_update(struct hci_request *req, unsigned long opt) |
| 2054 | { |
| 2055 | struct hci_dev *hdev = req->hdev; |
| 2056 | |
| 2057 | hci_dev_lock(hdev); |
| 2058 | |
| 2059 | __hci_req_update_scan(req); |
| 2060 | |
| 2061 | /* If BR/EDR is not enabled and we disable advertising as a |
| 2062 | * by-product of disabling connectable, we need to update the |
| 2063 | * advertising flags. |
| 2064 | */ |
| 2065 | if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| 2066 | __hci_req_update_adv_data(req, hdev->cur_adv_instance); |
| 2067 | |
| 2068 | /* Update the advertising parameters if necessary */ |
| 2069 | if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || |
| 2070 | !list_empty(&hdev->adv_instances)) { |
| 2071 | if (ext_adv_capable(hdev)) |
| 2072 | __hci_req_start_ext_adv(req, hdev->cur_adv_instance); |
| 2073 | else |
| 2074 | __hci_req_enable_advertising(req); |
| 2075 | } |
| 2076 | |
| 2077 | __hci_update_background_scan(req); |
| 2078 | |
| 2079 | hci_dev_unlock(hdev); |
| 2080 | |
| 2081 | return 0; |
| 2082 | } |
| 2083 | |
| 2084 | static void connectable_update_work(struct work_struct *work) |
| 2085 | { |
| 2086 | struct hci_dev *hdev = container_of(work, struct hci_dev, |
| 2087 | connectable_update); |
| 2088 | u8 status; |
| 2089 | |
| 2090 | hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status); |
| 2091 | mgmt_set_connectable_complete(hdev, status); |
| 2092 | } |
| 2093 | |
| 2094 | static u8 get_service_classes(struct hci_dev *hdev) |
| 2095 | { |
| 2096 | struct bt_uuid *uuid; |
| 2097 | u8 val = 0; |
| 2098 | |
| 2099 | list_for_each_entry(uuid, &hdev->uuids, list) |
| 2100 | val |= uuid->svc_hint; |
| 2101 | |
| 2102 | return val; |
| 2103 | } |
| 2104 | |
| 2105 | void __hci_req_update_class(struct hci_request *req) |
| 2106 | { |
| 2107 | struct hci_dev *hdev = req->hdev; |
| 2108 | u8 cod[3]; |
| 2109 | |
| 2110 | BT_DBG("%s", hdev->name); |
| 2111 | |
| 2112 | if (!hdev_is_powered(hdev)) |
| 2113 | return; |
| 2114 | |
| 2115 | if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| 2116 | return; |
| 2117 | |
| 2118 | if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) |
| 2119 | return; |
| 2120 | |
| 2121 | cod[0] = hdev->minor_class; |
| 2122 | cod[1] = hdev->major_class; |
| 2123 | cod[2] = get_service_classes(hdev); |
| 2124 | |
| 2125 | if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) |
| 2126 | cod[1] |= 0x20; |
| 2127 | |
| 2128 | if (memcmp(cod, hdev->dev_class, 3) == 0) |
| 2129 | return; |
| 2130 | |
| 2131 | hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod); |
| 2132 | } |
| 2133 | |
| 2134 | static void write_iac(struct hci_request *req) |
| 2135 | { |
| 2136 | struct hci_dev *hdev = req->hdev; |
| 2137 | struct hci_cp_write_current_iac_lap cp; |
| 2138 | |
| 2139 | if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) |
| 2140 | return; |
| 2141 | |
| 2142 | if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { |
| 2143 | /* Limited discoverable mode */ |
| 2144 | cp.num_iac = min_t(u8, hdev->num_iac, 2); |
| 2145 | cp.iac_lap[0] = 0x00; /* LIAC */ |
| 2146 | cp.iac_lap[1] = 0x8b; |
| 2147 | cp.iac_lap[2] = 0x9e; |
| 2148 | cp.iac_lap[3] = 0x33; /* GIAC */ |
| 2149 | cp.iac_lap[4] = 0x8b; |
| 2150 | cp.iac_lap[5] = 0x9e; |
| 2151 | } else { |
| 2152 | /* General discoverable mode */ |
| 2153 | cp.num_iac = 1; |
| 2154 | cp.iac_lap[0] = 0x33; /* GIAC */ |
| 2155 | cp.iac_lap[1] = 0x8b; |
| 2156 | cp.iac_lap[2] = 0x9e; |
| 2157 | } |
| 2158 | |
| 2159 | hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP, |
| 2160 | (cp.num_iac * 3) + 1, &cp); |
| 2161 | } |
| 2162 | |
| 2163 | static int discoverable_update(struct hci_request *req, unsigned long opt) |
| 2164 | { |
| 2165 | struct hci_dev *hdev = req->hdev; |
| 2166 | |
| 2167 | hci_dev_lock(hdev); |
| 2168 | |
| 2169 | if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { |
| 2170 | write_iac(req); |
| 2171 | __hci_req_update_scan(req); |
| 2172 | __hci_req_update_class(req); |
| 2173 | } |
| 2174 | |
| 2175 | /* Advertising instances don't use the global discoverable setting, so |
| 2176 | * only update AD if advertising was enabled using Set Advertising. |
| 2177 | */ |
| 2178 | if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { |
| 2179 | __hci_req_update_adv_data(req, 0x00); |
| 2180 | |
| 2181 | /* Discoverable mode affects the local advertising |
| 2182 | * address in limited privacy mode. |
| 2183 | */ |
| 2184 | if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { |
| 2185 | if (ext_adv_capable(hdev)) |
| 2186 | __hci_req_start_ext_adv(req, 0x00); |
| 2187 | else |
| 2188 | __hci_req_enable_advertising(req); |
| 2189 | } |
| 2190 | } |
| 2191 | |
| 2192 | hci_dev_unlock(hdev); |
| 2193 | |
| 2194 | return 0; |
| 2195 | } |
| 2196 | |
| 2197 | static void discoverable_update_work(struct work_struct *work) |
| 2198 | { |
| 2199 | struct hci_dev *hdev = container_of(work, struct hci_dev, |
| 2200 | discoverable_update); |
| 2201 | u8 status; |
| 2202 | |
| 2203 | hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status); |
| 2204 | mgmt_set_discoverable_complete(hdev, status); |
| 2205 | } |
| 2206 | |
| 2207 | void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn, |
| 2208 | u8 reason) |
| 2209 | { |
| 2210 | switch (conn->state) { |
| 2211 | case BT_CONNECTED: |
| 2212 | case BT_CONFIG: |
| 2213 | if (conn->type == AMP_LINK) { |
| 2214 | struct hci_cp_disconn_phy_link cp; |
| 2215 | |
| 2216 | cp.phy_handle = HCI_PHY_HANDLE(conn->handle); |
| 2217 | cp.reason = reason; |
| 2218 | hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp), |
| 2219 | &cp); |
| 2220 | } else { |
| 2221 | struct hci_cp_disconnect dc; |
| 2222 | |
| 2223 | dc.handle = cpu_to_le16(conn->handle); |
| 2224 | dc.reason = reason; |
| 2225 | hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc); |
| 2226 | } |
| 2227 | |
| 2228 | conn->state = BT_DISCONN; |
| 2229 | |
| 2230 | break; |
| 2231 | case BT_CONNECT: |
| 2232 | if (conn->type == LE_LINK) { |
| 2233 | if (test_bit(HCI_CONN_SCANNING, &conn->flags)) |
| 2234 | break; |
| 2235 | hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL, |
| 2236 | 0, NULL); |
| 2237 | } else if (conn->type == ACL_LINK) { |
| 2238 | if (req->hdev->hci_ver < BLUETOOTH_VER_1_2) |
| 2239 | break; |
| 2240 | hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL, |
| 2241 | 6, &conn->dst); |
| 2242 | } |
| 2243 | break; |
| 2244 | case BT_CONNECT2: |
| 2245 | if (conn->type == ACL_LINK) { |
| 2246 | struct hci_cp_reject_conn_req rej; |
| 2247 | |
| 2248 | bacpy(&rej.bdaddr, &conn->dst); |
| 2249 | rej.reason = reason; |
| 2250 | |
| 2251 | hci_req_add(req, HCI_OP_REJECT_CONN_REQ, |
| 2252 | sizeof(rej), &rej); |
| 2253 | } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { |
| 2254 | struct hci_cp_reject_sync_conn_req rej; |
| 2255 | |
| 2256 | bacpy(&rej.bdaddr, &conn->dst); |
| 2257 | |
| 2258 | /* SCO rejection has its own limited set of |
| 2259 | * allowed error values (0x0D-0x0F) which isn't |
| 2260 | * compatible with most values passed to this |
| 2261 | * function. To be safe hard-code one of the |
| 2262 | * values that's suitable for SCO. |
| 2263 | */ |
| 2264 | rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; |
| 2265 | |
| 2266 | hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ, |
| 2267 | sizeof(rej), &rej); |
| 2268 | } |
| 2269 | break; |
| 2270 | default: |
| 2271 | conn->state = BT_CLOSED; |
| 2272 | break; |
| 2273 | } |
| 2274 | } |
| 2275 | |
| 2276 | static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) |
| 2277 | { |
| 2278 | if (status) |
| 2279 | BT_DBG("Failed to abort connection: status 0x%2.2x", status); |
| 2280 | } |
| 2281 | |
| 2282 | int hci_abort_conn(struct hci_conn *conn, u8 reason) |
| 2283 | { |
| 2284 | struct hci_request req; |
| 2285 | int err; |
| 2286 | |
| 2287 | hci_req_init(&req, conn->hdev); |
| 2288 | |
| 2289 | __hci_abort_conn(&req, conn, reason); |
| 2290 | |
| 2291 | err = hci_req_run(&req, abort_conn_complete); |
| 2292 | if (err && err != -ENODATA) { |
| 2293 | bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err); |
| 2294 | return err; |
| 2295 | } |
| 2296 | |
| 2297 | return 0; |
| 2298 | } |
| 2299 | |
| 2300 | static int update_bg_scan(struct hci_request *req, unsigned long opt) |
| 2301 | { |
| 2302 | hci_dev_lock(req->hdev); |
| 2303 | __hci_update_background_scan(req); |
| 2304 | hci_dev_unlock(req->hdev); |
| 2305 | return 0; |
| 2306 | } |
| 2307 | |
| 2308 | static void bg_scan_update(struct work_struct *work) |
| 2309 | { |
| 2310 | struct hci_dev *hdev = container_of(work, struct hci_dev, |
| 2311 | bg_scan_update); |
| 2312 | struct hci_conn *conn; |
| 2313 | u8 status; |
| 2314 | int err; |
| 2315 | |
| 2316 | err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status); |
| 2317 | if (!err) |
| 2318 | return; |
| 2319 | |
| 2320 | hci_dev_lock(hdev); |
| 2321 | |
| 2322 | conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); |
| 2323 | if (conn) |
| 2324 | hci_le_conn_failed(conn, status); |
| 2325 | |
| 2326 | hci_dev_unlock(hdev); |
| 2327 | } |
| 2328 | |
| 2329 | static int le_scan_disable(struct hci_request *req, unsigned long opt) |
| 2330 | { |
| 2331 | hci_req_add_le_scan_disable(req); |
| 2332 | return 0; |
| 2333 | } |
| 2334 | |
| 2335 | static int bredr_inquiry(struct hci_request *req, unsigned long opt) |
| 2336 | { |
| 2337 | u8 length = opt; |
| 2338 | const u8 giac[3] = { 0x33, 0x8b, 0x9e }; |
| 2339 | const u8 liac[3] = { 0x00, 0x8b, 0x9e }; |
| 2340 | struct hci_cp_inquiry cp; |
| 2341 | |
| 2342 | BT_DBG("%s", req->hdev->name); |
| 2343 | |
| 2344 | hci_dev_lock(req->hdev); |
| 2345 | hci_inquiry_cache_flush(req->hdev); |
| 2346 | hci_dev_unlock(req->hdev); |
| 2347 | |
| 2348 | memset(&cp, 0, sizeof(cp)); |
| 2349 | |
| 2350 | if (req->hdev->discovery.limited) |
| 2351 | memcpy(&cp.lap, liac, sizeof(cp.lap)); |
| 2352 | else |
| 2353 | memcpy(&cp.lap, giac, sizeof(cp.lap)); |
| 2354 | |
| 2355 | cp.length = length; |
| 2356 | |
| 2357 | hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); |
| 2358 | |
| 2359 | return 0; |
| 2360 | } |
| 2361 | |
| 2362 | static void le_scan_disable_work(struct work_struct *work) |
| 2363 | { |
| 2364 | struct hci_dev *hdev = container_of(work, struct hci_dev, |
| 2365 | le_scan_disable.work); |
| 2366 | u8 status; |
| 2367 | |
| 2368 | BT_DBG("%s", hdev->name); |
| 2369 | |
| 2370 | if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| 2371 | return; |
| 2372 | |
| 2373 | cancel_delayed_work(&hdev->le_scan_restart); |
| 2374 | |
| 2375 | hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status); |
| 2376 | if (status) { |
| 2377 | bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x", |
| 2378 | status); |
| 2379 | return; |
| 2380 | } |
| 2381 | |
| 2382 | hdev->discovery.scan_start = 0; |
| 2383 | |
| 2384 | /* If we were running LE only scan, change discovery state. If |
| 2385 | * we were running both LE and BR/EDR inquiry simultaneously, |
| 2386 | * and BR/EDR inquiry is already finished, stop discovery, |
| 2387 | * otherwise BR/EDR inquiry will stop discovery when finished. |
| 2388 | * If we will resolve remote device name, do not change |
| 2389 | * discovery state. |
| 2390 | */ |
| 2391 | |
| 2392 | if (hdev->discovery.type == DISCOV_TYPE_LE) |
| 2393 | goto discov_stopped; |
| 2394 | |
| 2395 | if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) |
| 2396 | return; |
| 2397 | |
| 2398 | if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { |
| 2399 | if (!test_bit(HCI_INQUIRY, &hdev->flags) && |
| 2400 | hdev->discovery.state != DISCOVERY_RESOLVING) |
| 2401 | goto discov_stopped; |
| 2402 | |
| 2403 | return; |
| 2404 | } |
| 2405 | |
| 2406 | hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN, |
| 2407 | HCI_CMD_TIMEOUT, &status); |
| 2408 | if (status) { |
| 2409 | bt_dev_err(hdev, "inquiry failed: status 0x%02x", status); |
| 2410 | goto discov_stopped; |
| 2411 | } |
| 2412 | |
| 2413 | return; |
| 2414 | |
| 2415 | discov_stopped: |
| 2416 | hci_dev_lock(hdev); |
| 2417 | hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| 2418 | hci_dev_unlock(hdev); |
| 2419 | } |
| 2420 | |
| 2421 | static int le_scan_restart(struct hci_request *req, unsigned long opt) |
| 2422 | { |
| 2423 | struct hci_dev *hdev = req->hdev; |
| 2424 | |
| 2425 | /* If controller is not scanning we are done. */ |
| 2426 | if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| 2427 | return 0; |
| 2428 | |
| 2429 | hci_req_add_le_scan_disable(req); |
| 2430 | |
| 2431 | if (use_ext_scan(hdev)) { |
| 2432 | struct hci_cp_le_set_ext_scan_enable ext_enable_cp; |
| 2433 | |
| 2434 | memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); |
| 2435 | ext_enable_cp.enable = LE_SCAN_ENABLE; |
| 2436 | ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; |
| 2437 | |
| 2438 | hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, |
| 2439 | sizeof(ext_enable_cp), &ext_enable_cp); |
| 2440 | } else { |
| 2441 | struct hci_cp_le_set_scan_enable cp; |
| 2442 | |
| 2443 | memset(&cp, 0, sizeof(cp)); |
| 2444 | cp.enable = LE_SCAN_ENABLE; |
| 2445 | cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; |
| 2446 | hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); |
| 2447 | } |
| 2448 | |
| 2449 | return 0; |
| 2450 | } |
| 2451 | |
| 2452 | static void le_scan_restart_work(struct work_struct *work) |
| 2453 | { |
| 2454 | struct hci_dev *hdev = container_of(work, struct hci_dev, |
| 2455 | le_scan_restart.work); |
| 2456 | unsigned long timeout, duration, scan_start, now; |
| 2457 | u8 status; |
| 2458 | |
| 2459 | BT_DBG("%s", hdev->name); |
| 2460 | |
| 2461 | hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status); |
| 2462 | if (status) { |
| 2463 | bt_dev_err(hdev, "failed to restart LE scan: status %d", |
| 2464 | status); |
| 2465 | return; |
| 2466 | } |
| 2467 | |
| 2468 | hci_dev_lock(hdev); |
| 2469 | |
| 2470 | if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || |
| 2471 | !hdev->discovery.scan_start) |
| 2472 | goto unlock; |
| 2473 | |
| 2474 | /* When the scan was started, hdev->le_scan_disable has been queued |
| 2475 | * after duration from scan_start. During scan restart this job |
| 2476 | * has been canceled, and we need to queue it again after proper |
| 2477 | * timeout, to make sure that scan does not run indefinitely. |
| 2478 | */ |
| 2479 | duration = hdev->discovery.scan_duration; |
| 2480 | scan_start = hdev->discovery.scan_start; |
| 2481 | now = jiffies; |
| 2482 | if (now - scan_start <= duration) { |
| 2483 | int elapsed; |
| 2484 | |
| 2485 | if (now >= scan_start) |
| 2486 | elapsed = now - scan_start; |
| 2487 | else |
| 2488 | elapsed = ULONG_MAX - scan_start + now; |
| 2489 | |
| 2490 | timeout = duration - elapsed; |
| 2491 | } else { |
| 2492 | timeout = 0; |
| 2493 | } |
| 2494 | |
| 2495 | queue_delayed_work(hdev->req_workqueue, |
| 2496 | &hdev->le_scan_disable, timeout); |
| 2497 | |
| 2498 | unlock: |
| 2499 | hci_dev_unlock(hdev); |
| 2500 | } |
| 2501 | |
| 2502 | static int active_scan(struct hci_request *req, unsigned long opt) |
| 2503 | { |
| 2504 | uint16_t interval = opt; |
| 2505 | struct hci_dev *hdev = req->hdev; |
| 2506 | u8 own_addr_type; |
| 2507 | int err; |
| 2508 | |
| 2509 | BT_DBG("%s", hdev->name); |
| 2510 | |
| 2511 | if (hci_dev_test_flag(hdev, HCI_LE_ADV)) { |
| 2512 | hci_dev_lock(hdev); |
| 2513 | |
| 2514 | /* Don't let discovery abort an outgoing connection attempt |
| 2515 | * that's using directed advertising. |
| 2516 | */ |
| 2517 | if (hci_lookup_le_connect(hdev)) { |
| 2518 | hci_dev_unlock(hdev); |
| 2519 | return -EBUSY; |
| 2520 | } |
| 2521 | |
| 2522 | cancel_adv_timeout(hdev); |
| 2523 | hci_dev_unlock(hdev); |
| 2524 | |
| 2525 | __hci_req_disable_advertising(req); |
| 2526 | } |
| 2527 | |
| 2528 | /* If controller is scanning, it means the background scanning is |
| 2529 | * running. Thus, we should temporarily stop it in order to set the |
| 2530 | * discovery scanning parameters. |
| 2531 | */ |
| 2532 | if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| 2533 | hci_req_add_le_scan_disable(req); |
| 2534 | |
| 2535 | /* All active scans will be done with either a resolvable private |
| 2536 | * address (when privacy feature has been enabled) or non-resolvable |
| 2537 | * private address. |
| 2538 | */ |
| 2539 | err = hci_update_random_address(req, true, scan_use_rpa(hdev), |
| 2540 | &own_addr_type); |
| 2541 | if (err < 0) |
| 2542 | own_addr_type = ADDR_LE_DEV_PUBLIC; |
| 2543 | |
| 2544 | hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN, |
| 2545 | own_addr_type, 0); |
| 2546 | return 0; |
| 2547 | } |
| 2548 | |
| 2549 | static int interleaved_discov(struct hci_request *req, unsigned long opt) |
| 2550 | { |
| 2551 | int err; |
| 2552 | |
| 2553 | BT_DBG("%s", req->hdev->name); |
| 2554 | |
| 2555 | err = active_scan(req, opt); |
| 2556 | if (err) |
| 2557 | return err; |
| 2558 | |
| 2559 | return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN); |
| 2560 | } |
| 2561 | |
| 2562 | static void start_discovery(struct hci_dev *hdev, u8 *status) |
| 2563 | { |
| 2564 | unsigned long timeout; |
| 2565 | |
| 2566 | BT_DBG("%s type %u", hdev->name, hdev->discovery.type); |
| 2567 | |
| 2568 | switch (hdev->discovery.type) { |
| 2569 | case DISCOV_TYPE_BREDR: |
| 2570 | if (!hci_dev_test_flag(hdev, HCI_INQUIRY)) |
| 2571 | hci_req_sync(hdev, bredr_inquiry, |
| 2572 | DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT, |
| 2573 | status); |
| 2574 | return; |
| 2575 | case DISCOV_TYPE_INTERLEAVED: |
| 2576 | /* When running simultaneous discovery, the LE scanning time |
| 2577 | * should occupy the whole discovery time sine BR/EDR inquiry |
| 2578 | * and LE scanning are scheduled by the controller. |
| 2579 | * |
| 2580 | * For interleaving discovery in comparison, BR/EDR inquiry |
| 2581 | * and LE scanning are done sequentially with separate |
| 2582 | * timeouts. |
| 2583 | */ |
| 2584 | if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, |
| 2585 | &hdev->quirks)) { |
| 2586 | timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); |
| 2587 | /* During simultaneous discovery, we double LE scan |
| 2588 | * interval. We must leave some time for the controller |
| 2589 | * to do BR/EDR inquiry. |
| 2590 | */ |
| 2591 | hci_req_sync(hdev, interleaved_discov, |
| 2592 | DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT, |
| 2593 | status); |
| 2594 | break; |
| 2595 | } |
| 2596 | |
| 2597 | timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); |
| 2598 | hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT, |
| 2599 | HCI_CMD_TIMEOUT, status); |
| 2600 | break; |
| 2601 | case DISCOV_TYPE_LE: |
| 2602 | timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); |
| 2603 | hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT, |
| 2604 | HCI_CMD_TIMEOUT, status); |
| 2605 | break; |
| 2606 | default: |
| 2607 | *status = HCI_ERROR_UNSPECIFIED; |
| 2608 | return; |
| 2609 | } |
| 2610 | |
| 2611 | if (*status) |
| 2612 | return; |
| 2613 | |
| 2614 | BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout)); |
| 2615 | |
| 2616 | /* When service discovery is used and the controller has a |
| 2617 | * strict duplicate filter, it is important to remember the |
| 2618 | * start and duration of the scan. This is required for |
| 2619 | * restarting scanning during the discovery phase. |
| 2620 | */ |
| 2621 | if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && |
| 2622 | hdev->discovery.result_filtering) { |
| 2623 | hdev->discovery.scan_start = jiffies; |
| 2624 | hdev->discovery.scan_duration = timeout; |
| 2625 | } |
| 2626 | |
| 2627 | queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, |
| 2628 | timeout); |
| 2629 | } |
| 2630 | |
| 2631 | bool hci_req_stop_discovery(struct hci_request *req) |
| 2632 | { |
| 2633 | struct hci_dev *hdev = req->hdev; |
| 2634 | struct discovery_state *d = &hdev->discovery; |
| 2635 | struct hci_cp_remote_name_req_cancel cp; |
| 2636 | struct inquiry_entry *e; |
| 2637 | bool ret = false; |
| 2638 | |
| 2639 | BT_DBG("%s state %u", hdev->name, hdev->discovery.state); |
| 2640 | |
| 2641 | if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { |
| 2642 | if (test_bit(HCI_INQUIRY, &hdev->flags)) |
| 2643 | hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL); |
| 2644 | |
| 2645 | if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { |
| 2646 | cancel_delayed_work(&hdev->le_scan_disable); |
| 2647 | hci_req_add_le_scan_disable(req); |
| 2648 | } |
| 2649 | |
| 2650 | ret = true; |
| 2651 | } else { |
| 2652 | /* Passive scanning */ |
| 2653 | if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { |
| 2654 | hci_req_add_le_scan_disable(req); |
| 2655 | ret = true; |
| 2656 | } |
| 2657 | } |
| 2658 | |
| 2659 | /* No further actions needed for LE-only discovery */ |
| 2660 | if (d->type == DISCOV_TYPE_LE) |
| 2661 | return ret; |
| 2662 | |
| 2663 | if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { |
| 2664 | e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, |
| 2665 | NAME_PENDING); |
| 2666 | if (!e) |
| 2667 | return ret; |
| 2668 | |
| 2669 | bacpy(&cp.bdaddr, &e->data.bdaddr); |
| 2670 | hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp), |
| 2671 | &cp); |
| 2672 | ret = true; |
| 2673 | } |
| 2674 | |
| 2675 | return ret; |
| 2676 | } |
| 2677 | |
| 2678 | static int stop_discovery(struct hci_request *req, unsigned long opt) |
| 2679 | { |
| 2680 | hci_dev_lock(req->hdev); |
| 2681 | hci_req_stop_discovery(req); |
| 2682 | hci_dev_unlock(req->hdev); |
| 2683 | |
| 2684 | return 0; |
| 2685 | } |
| 2686 | |
| 2687 | static void discov_update(struct work_struct *work) |
| 2688 | { |
| 2689 | struct hci_dev *hdev = container_of(work, struct hci_dev, |
| 2690 | discov_update); |
| 2691 | u8 status = 0; |
| 2692 | |
| 2693 | switch (hdev->discovery.state) { |
| 2694 | case DISCOVERY_STARTING: |
| 2695 | start_discovery(hdev, &status); |
| 2696 | mgmt_start_discovery_complete(hdev, status); |
| 2697 | if (status) |
| 2698 | hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| 2699 | else |
| 2700 | hci_discovery_set_state(hdev, DISCOVERY_FINDING); |
| 2701 | break; |
| 2702 | case DISCOVERY_STOPPING: |
| 2703 | hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status); |
| 2704 | mgmt_stop_discovery_complete(hdev, status); |
| 2705 | if (!status) |
| 2706 | hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| 2707 | break; |
| 2708 | case DISCOVERY_STOPPED: |
| 2709 | default: |
| 2710 | return; |
| 2711 | } |
| 2712 | } |
| 2713 | |
| 2714 | static void discov_off(struct work_struct *work) |
| 2715 | { |
| 2716 | struct hci_dev *hdev = container_of(work, struct hci_dev, |
| 2717 | discov_off.work); |
| 2718 | |
| 2719 | BT_DBG("%s", hdev->name); |
| 2720 | |
| 2721 | hci_dev_lock(hdev); |
| 2722 | |
| 2723 | /* When discoverable timeout triggers, then just make sure |
| 2724 | * the limited discoverable flag is cleared. Even in the case |
| 2725 | * of a timeout triggered from general discoverable, it is |
| 2726 | * safe to unconditionally clear the flag. |
| 2727 | */ |
| 2728 | hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); |
| 2729 | hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); |
| 2730 | hdev->discov_timeout = 0; |
| 2731 | |
| 2732 | hci_dev_unlock(hdev); |
| 2733 | |
| 2734 | hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL); |
| 2735 | mgmt_new_settings(hdev); |
| 2736 | } |
| 2737 | |
| 2738 | static int powered_update_hci(struct hci_request *req, unsigned long opt) |
| 2739 | { |
| 2740 | struct hci_dev *hdev = req->hdev; |
| 2741 | u8 link_sec; |
| 2742 | |
| 2743 | hci_dev_lock(hdev); |
| 2744 | |
| 2745 | if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && |
| 2746 | !lmp_host_ssp_capable(hdev)) { |
| 2747 | u8 mode = 0x01; |
| 2748 | |
| 2749 | hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode); |
| 2750 | |
| 2751 | if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) { |
| 2752 | u8 support = 0x01; |
| 2753 | |
| 2754 | hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, |
| 2755 | sizeof(support), &support); |
| 2756 | } |
| 2757 | } |
| 2758 | |
| 2759 | if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) && |
| 2760 | lmp_bredr_capable(hdev)) { |
| 2761 | struct hci_cp_write_le_host_supported cp; |
| 2762 | |
| 2763 | cp.le = 0x01; |
| 2764 | cp.simul = 0x00; |
| 2765 | |
| 2766 | /* Check first if we already have the right |
| 2767 | * host state (host features set) |
| 2768 | */ |
| 2769 | if (cp.le != lmp_host_le_capable(hdev) || |
| 2770 | cp.simul != lmp_host_le_br_capable(hdev)) |
| 2771 | hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, |
| 2772 | sizeof(cp), &cp); |
| 2773 | } |
| 2774 | |
| 2775 | if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { |
| 2776 | /* Make sure the controller has a good default for |
| 2777 | * advertising data. This also applies to the case |
| 2778 | * where BR/EDR was toggled during the AUTO_OFF phase. |
| 2779 | */ |
| 2780 | if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || |
| 2781 | list_empty(&hdev->adv_instances)) { |
| 2782 | int err; |
| 2783 | |
| 2784 | if (ext_adv_capable(hdev)) { |
| 2785 | err = __hci_req_setup_ext_adv_instance(req, |
| 2786 | 0x00); |
| 2787 | if (!err) |
| 2788 | __hci_req_update_scan_rsp_data(req, |
| 2789 | 0x00); |
| 2790 | } else { |
| 2791 | err = 0; |
| 2792 | __hci_req_update_adv_data(req, 0x00); |
| 2793 | __hci_req_update_scan_rsp_data(req, 0x00); |
| 2794 | } |
| 2795 | |
| 2796 | if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { |
| 2797 | if (!ext_adv_capable(hdev)) |
| 2798 | __hci_req_enable_advertising(req); |
| 2799 | else if (!err) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2800 | __hci_req_enable_ext_advertising(req, |
| 2801 | 0x00); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2802 | } |
| 2803 | } else if (!list_empty(&hdev->adv_instances)) { |
| 2804 | struct adv_info *adv_instance; |
| 2805 | |
| 2806 | adv_instance = list_first_entry(&hdev->adv_instances, |
| 2807 | struct adv_info, list); |
| 2808 | __hci_req_schedule_adv_instance(req, |
| 2809 | adv_instance->instance, |
| 2810 | true); |
| 2811 | } |
| 2812 | } |
| 2813 | |
| 2814 | link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); |
| 2815 | if (link_sec != test_bit(HCI_AUTH, &hdev->flags)) |
| 2816 | hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, |
| 2817 | sizeof(link_sec), &link_sec); |
| 2818 | |
| 2819 | if (lmp_bredr_capable(hdev)) { |
| 2820 | if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) |
| 2821 | __hci_req_write_fast_connectable(req, true); |
| 2822 | else |
| 2823 | __hci_req_write_fast_connectable(req, false); |
| 2824 | __hci_req_update_scan(req); |
| 2825 | __hci_req_update_class(req); |
| 2826 | __hci_req_update_name(req); |
| 2827 | __hci_req_update_eir(req); |
| 2828 | } |
| 2829 | |
| 2830 | hci_dev_unlock(hdev); |
| 2831 | return 0; |
| 2832 | } |
| 2833 | |
| 2834 | int __hci_req_hci_power_on(struct hci_dev *hdev) |
| 2835 | { |
| 2836 | /* Register the available SMP channels (BR/EDR and LE) only when |
| 2837 | * successfully powering on the controller. This late |
| 2838 | * registration is required so that LE SMP can clearly decide if |
| 2839 | * the public address or static address is used. |
| 2840 | */ |
| 2841 | smp_register(hdev); |
| 2842 | |
| 2843 | return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT, |
| 2844 | NULL); |
| 2845 | } |
| 2846 | |
| 2847 | void hci_request_setup(struct hci_dev *hdev) |
| 2848 | { |
| 2849 | INIT_WORK(&hdev->discov_update, discov_update); |
| 2850 | INIT_WORK(&hdev->bg_scan_update, bg_scan_update); |
| 2851 | INIT_WORK(&hdev->scan_update, scan_update_work); |
| 2852 | INIT_WORK(&hdev->connectable_update, connectable_update_work); |
| 2853 | INIT_WORK(&hdev->discoverable_update, discoverable_update_work); |
| 2854 | INIT_DELAYED_WORK(&hdev->discov_off, discov_off); |
| 2855 | INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work); |
| 2856 | INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work); |
| 2857 | INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); |
| 2858 | } |
| 2859 | |
| 2860 | void hci_request_cancel_all(struct hci_dev *hdev) |
| 2861 | { |
| 2862 | hci_req_sync_cancel(hdev, ENODEV); |
| 2863 | |
| 2864 | cancel_work_sync(&hdev->discov_update); |
| 2865 | cancel_work_sync(&hdev->bg_scan_update); |
| 2866 | cancel_work_sync(&hdev->scan_update); |
| 2867 | cancel_work_sync(&hdev->connectable_update); |
| 2868 | cancel_work_sync(&hdev->discoverable_update); |
| 2869 | cancel_delayed_work_sync(&hdev->discov_off); |
| 2870 | cancel_delayed_work_sync(&hdev->le_scan_disable); |
| 2871 | cancel_delayed_work_sync(&hdev->le_scan_restart); |
| 2872 | |
| 2873 | if (hdev->adv_instance_timeout) { |
| 2874 | cancel_delayed_work_sync(&hdev->adv_instance_expire); |
| 2875 | hdev->adv_instance_timeout = 0; |
| 2876 | } |
| 2877 | } |