blob: 4419486d7413cde19f9a76e81528796ab022d9e8 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010 */
11#include <linux/cpu.h>
12#include <linux/err.h>
13#include <linux/hrtimer.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/percpu.h>
17#include <linux/nmi.h>
18#include <linux/profile.h>
19#include <linux/sched/signal.h>
20#include <linux/sched/clock.h>
21#include <linux/sched/stat.h>
22#include <linux/sched/nohz.h>
23#include <linux/module.h>
24#include <linux/irq_work.h>
25#include <linux/posix-timers.h>
26#include <linux/context_tracking.h>
27#include <linux/mm.h>
28
29#include <asm/irq_regs.h>
30
31#include "tick-internal.h"
32
33#include <trace/events/timer.h>
34
35/*
36 * Per-CPU nohz control structure
37 */
38static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39
40struct tick_sched *tick_get_tick_sched(int cpu)
41{
42 return &per_cpu(tick_cpu_sched, cpu);
43}
44
45#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46/*
47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
48 */
49static ktime_t last_jiffies_update;
50
51/*
52 * Must be called with interrupts disabled !
53 */
54static void tick_do_update_jiffies64(ktime_t now)
55{
56 unsigned long ticks = 0;
57 ktime_t delta;
58
59 /*
60 * Do a quick check without holding jiffies_lock:
Olivier Deprez0e641232021-09-23 10:07:05 +020061 * The READ_ONCE() pairs with two updates done later in this function.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000062 */
Olivier Deprez0e641232021-09-23 10:07:05 +020063 delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000064 if (delta < tick_period)
65 return;
66
67 /* Reevaluate with jiffies_lock held */
68 write_seqlock(&jiffies_lock);
69
70 delta = ktime_sub(now, last_jiffies_update);
71 if (delta >= tick_period) {
72
73 delta = ktime_sub(delta, tick_period);
Olivier Deprez0e641232021-09-23 10:07:05 +020074 /* Pairs with the lockless read in this function. */
75 WRITE_ONCE(last_jiffies_update,
76 ktime_add(last_jiffies_update, tick_period));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000077
78 /* Slow path for long timeouts */
79 if (unlikely(delta >= tick_period)) {
80 s64 incr = ktime_to_ns(tick_period);
81
82 ticks = ktime_divns(delta, incr);
83
Olivier Deprez0e641232021-09-23 10:07:05 +020084 /* Pairs with the lockless read in this function. */
85 WRITE_ONCE(last_jiffies_update,
86 ktime_add_ns(last_jiffies_update,
87 incr * ticks));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000088 }
89 do_timer(++ticks);
90
91 /* Keep the tick_next_period variable up to date */
92 tick_next_period = ktime_add(last_jiffies_update, tick_period);
93 } else {
94 write_sequnlock(&jiffies_lock);
95 return;
96 }
97 write_sequnlock(&jiffies_lock);
98 update_wall_time();
99}
100
101/*
102 * Initialize and return retrieve the jiffies update.
103 */
104static ktime_t tick_init_jiffy_update(void)
105{
106 ktime_t period;
107
108 write_seqlock(&jiffies_lock);
109 /* Did we start the jiffies update yet ? */
110 if (last_jiffies_update == 0)
111 last_jiffies_update = tick_next_period;
112 period = last_jiffies_update;
113 write_sequnlock(&jiffies_lock);
114 return period;
115}
116
117static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
118{
119 int cpu = smp_processor_id();
120
121#ifdef CONFIG_NO_HZ_COMMON
122 /*
123 * Check if the do_timer duty was dropped. We don't care about
124 * concurrency: This happens only when the CPU in charge went
125 * into a long sleep. If two CPUs happen to assign themselves to
126 * this duty, then the jiffies update is still serialized by
127 * jiffies_lock.
David Brazdil0f672f62019-12-10 10:32:29 +0000128 *
129 * If nohz_full is enabled, this should not happen because the
130 * tick_do_timer_cpu never relinquishes.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000131 */
David Brazdil0f672f62019-12-10 10:32:29 +0000132 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
133#ifdef CONFIG_NO_HZ_FULL
134 WARN_ON(tick_nohz_full_running);
135#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000136 tick_do_timer_cpu = cpu;
David Brazdil0f672f62019-12-10 10:32:29 +0000137 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000138#endif
139
140 /* Check, if the jiffies need an update */
141 if (tick_do_timer_cpu == cpu)
142 tick_do_update_jiffies64(now);
143
144 if (ts->inidle)
145 ts->got_idle_tick = 1;
146}
147
148static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
149{
150#ifdef CONFIG_NO_HZ_COMMON
151 /*
152 * When we are idle and the tick is stopped, we have to touch
153 * the watchdog as we might not schedule for a really long
154 * time. This happens on complete idle SMP systems while
155 * waiting on the login prompt. We also increment the "start of
156 * idle" jiffy stamp so the idle accounting adjustment we do
157 * when we go busy again does not account too much ticks.
158 */
159 if (ts->tick_stopped) {
160 touch_softlockup_watchdog_sched();
161 if (is_idle_task(current))
162 ts->idle_jiffies++;
163 /*
164 * In case the current tick fired too early past its expected
165 * expiration, make sure we don't bypass the next clock reprogramming
166 * to the same deadline.
167 */
168 ts->next_tick = 0;
169 }
170#endif
171 update_process_times(user_mode(regs));
172 profile_tick(CPU_PROFILING);
173}
174#endif
175
176#ifdef CONFIG_NO_HZ_FULL
177cpumask_var_t tick_nohz_full_mask;
178bool tick_nohz_full_running;
179static atomic_t tick_dep_mask;
180
181static bool check_tick_dependency(atomic_t *dep)
182{
183 int val = atomic_read(dep);
184
185 if (val & TICK_DEP_MASK_POSIX_TIMER) {
186 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
187 return true;
188 }
189
190 if (val & TICK_DEP_MASK_PERF_EVENTS) {
191 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
192 return true;
193 }
194
195 if (val & TICK_DEP_MASK_SCHED) {
196 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
197 return true;
198 }
199
200 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
201 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
202 return true;
203 }
204
205 return false;
206}
207
208static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
209{
210 lockdep_assert_irqs_disabled();
211
212 if (unlikely(!cpu_online(cpu)))
213 return false;
214
215 if (check_tick_dependency(&tick_dep_mask))
216 return false;
217
218 if (check_tick_dependency(&ts->tick_dep_mask))
219 return false;
220
221 if (check_tick_dependency(&current->tick_dep_mask))
222 return false;
223
224 if (check_tick_dependency(&current->signal->tick_dep_mask))
225 return false;
226
227 return true;
228}
229
230static void nohz_full_kick_func(struct irq_work *work)
231{
232 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
233}
234
235static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
236 .func = nohz_full_kick_func,
237};
238
239/*
240 * Kick this CPU if it's full dynticks in order to force it to
241 * re-evaluate its dependency on the tick and restart it if necessary.
242 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
243 * is NMI safe.
244 */
245static void tick_nohz_full_kick(void)
246{
247 if (!tick_nohz_full_cpu(smp_processor_id()))
248 return;
249
250 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
251}
252
253/*
254 * Kick the CPU if it's full dynticks in order to force it to
255 * re-evaluate its dependency on the tick and restart it if necessary.
256 */
257void tick_nohz_full_kick_cpu(int cpu)
258{
259 if (!tick_nohz_full_cpu(cpu))
260 return;
261
262 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
263}
264
265/*
266 * Kick all full dynticks CPUs in order to force these to re-evaluate
267 * their dependency on the tick and restart it if necessary.
268 */
269static void tick_nohz_full_kick_all(void)
270{
271 int cpu;
272
273 if (!tick_nohz_full_running)
274 return;
275
276 preempt_disable();
277 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
278 tick_nohz_full_kick_cpu(cpu);
279 preempt_enable();
280}
281
282static void tick_nohz_dep_set_all(atomic_t *dep,
283 enum tick_dep_bits bit)
284{
285 int prev;
286
287 prev = atomic_fetch_or(BIT(bit), dep);
288 if (!prev)
289 tick_nohz_full_kick_all();
290}
291
292/*
293 * Set a global tick dependency. Used by perf events that rely on freq and
294 * by unstable clock.
295 */
296void tick_nohz_dep_set(enum tick_dep_bits bit)
297{
298 tick_nohz_dep_set_all(&tick_dep_mask, bit);
299}
300
301void tick_nohz_dep_clear(enum tick_dep_bits bit)
302{
303 atomic_andnot(BIT(bit), &tick_dep_mask);
304}
305
306/*
307 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
308 * manage events throttling.
309 */
310void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
311{
312 int prev;
313 struct tick_sched *ts;
314
315 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
316
317 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
318 if (!prev) {
319 preempt_disable();
320 /* Perf needs local kick that is NMI safe */
321 if (cpu == smp_processor_id()) {
322 tick_nohz_full_kick();
323 } else {
324 /* Remote irq work not NMI-safe */
325 if (!WARN_ON_ONCE(in_nmi()))
326 tick_nohz_full_kick_cpu(cpu);
327 }
328 preempt_enable();
329 }
330}
331
332void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
333{
334 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
335
336 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
337}
338
339/*
340 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
341 * per task timers.
342 */
343void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
344{
345 /*
346 * We could optimize this with just kicking the target running the task
347 * if that noise matters for nohz full users.
348 */
349 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
350}
351
352void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
353{
354 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
355}
356
357/*
358 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
359 * per process timers.
360 */
361void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
362{
363 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
364}
365
366void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
367{
368 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
369}
370
371/*
372 * Re-evaluate the need for the tick as we switch the current task.
373 * It might need the tick due to per task/process properties:
374 * perf events, posix CPU timers, ...
375 */
376void __tick_nohz_task_switch(void)
377{
378 unsigned long flags;
379 struct tick_sched *ts;
380
381 local_irq_save(flags);
382
383 if (!tick_nohz_full_cpu(smp_processor_id()))
384 goto out;
385
386 ts = this_cpu_ptr(&tick_cpu_sched);
387
388 if (ts->tick_stopped) {
389 if (atomic_read(&current->tick_dep_mask) ||
390 atomic_read(&current->signal->tick_dep_mask))
391 tick_nohz_full_kick();
392 }
393out:
394 local_irq_restore(flags);
395}
396
397/* Get the boot-time nohz CPU list from the kernel parameters. */
398void __init tick_nohz_full_setup(cpumask_var_t cpumask)
399{
400 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
401 cpumask_copy(tick_nohz_full_mask, cpumask);
402 tick_nohz_full_running = true;
403}
404
405static int tick_nohz_cpu_down(unsigned int cpu)
406{
407 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000408 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
409 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000410 * CPUs. It must remain online when nohz full is enabled.
411 */
412 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
413 return -EBUSY;
414 return 0;
415}
416
417void __init tick_nohz_init(void)
418{
419 int cpu, ret;
420
421 if (!tick_nohz_full_running)
422 return;
423
424 /*
425 * Full dynticks uses irq work to drive the tick rescheduling on safe
426 * locking contexts. But then we need irq work to raise its own
427 * interrupts to avoid circular dependency on the tick
428 */
429 if (!arch_irq_work_has_interrupt()) {
430 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
431 cpumask_clear(tick_nohz_full_mask);
432 tick_nohz_full_running = false;
433 return;
434 }
435
David Brazdil0f672f62019-12-10 10:32:29 +0000436 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
437 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
438 cpu = smp_processor_id();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000439
David Brazdil0f672f62019-12-10 10:32:29 +0000440 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
441 pr_warn("NO_HZ: Clearing %d from nohz_full range "
442 "for timekeeping\n", cpu);
443 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
444 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000445 }
446
447 for_each_cpu(cpu, tick_nohz_full_mask)
448 context_tracking_cpu_set(cpu);
449
450 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
451 "kernel/nohz:predown", NULL,
452 tick_nohz_cpu_down);
453 WARN_ON(ret < 0);
454 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
455 cpumask_pr_args(tick_nohz_full_mask));
456}
457#endif
458
459/*
460 * NOHZ - aka dynamic tick functionality
461 */
462#ifdef CONFIG_NO_HZ_COMMON
463/*
464 * NO HZ enabled ?
465 */
466bool tick_nohz_enabled __read_mostly = true;
467unsigned long tick_nohz_active __read_mostly;
468/*
469 * Enable / Disable tickless mode
470 */
471static int __init setup_tick_nohz(char *str)
472{
473 return (kstrtobool(str, &tick_nohz_enabled) == 0);
474}
475
476__setup("nohz=", setup_tick_nohz);
477
478bool tick_nohz_tick_stopped(void)
479{
480 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
481
482 return ts->tick_stopped;
483}
484
485bool tick_nohz_tick_stopped_cpu(int cpu)
486{
487 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
488
489 return ts->tick_stopped;
490}
491
492/**
493 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
494 *
495 * Called from interrupt entry when the CPU was idle
496 *
497 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
498 * must be updated. Otherwise an interrupt handler could use a stale jiffy
499 * value. We do this unconditionally on any CPU, as we don't know whether the
500 * CPU, which has the update task assigned is in a long sleep.
501 */
502static void tick_nohz_update_jiffies(ktime_t now)
503{
504 unsigned long flags;
505
506 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
507
508 local_irq_save(flags);
509 tick_do_update_jiffies64(now);
510 local_irq_restore(flags);
511
512 touch_softlockup_watchdog_sched();
513}
514
515/*
516 * Updates the per-CPU time idle statistics counters
517 */
518static void
519update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
520{
521 ktime_t delta;
522
523 if (ts->idle_active) {
524 delta = ktime_sub(now, ts->idle_entrytime);
525 if (nr_iowait_cpu(cpu) > 0)
526 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
527 else
528 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
529 ts->idle_entrytime = now;
530 }
531
532 if (last_update_time)
533 *last_update_time = ktime_to_us(now);
534
535}
536
537static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
538{
539 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
540 ts->idle_active = 0;
541
542 sched_clock_idle_wakeup_event();
543}
544
545static void tick_nohz_start_idle(struct tick_sched *ts)
546{
547 ts->idle_entrytime = ktime_get();
548 ts->idle_active = 1;
549 sched_clock_idle_sleep_event();
550}
551
552/**
553 * get_cpu_idle_time_us - get the total idle time of a CPU
554 * @cpu: CPU number to query
555 * @last_update_time: variable to store update time in. Do not update
556 * counters if NULL.
557 *
558 * Return the cumulative idle time (since boot) for a given
559 * CPU, in microseconds.
560 *
561 * This time is measured via accounting rather than sampling,
562 * and is as accurate as ktime_get() is.
563 *
564 * This function returns -1 if NOHZ is not enabled.
565 */
566u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
567{
568 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
569 ktime_t now, idle;
570
571 if (!tick_nohz_active)
572 return -1;
573
574 now = ktime_get();
575 if (last_update_time) {
576 update_ts_time_stats(cpu, ts, now, last_update_time);
577 idle = ts->idle_sleeptime;
578 } else {
579 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
580 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
581
582 idle = ktime_add(ts->idle_sleeptime, delta);
583 } else {
584 idle = ts->idle_sleeptime;
585 }
586 }
587
588 return ktime_to_us(idle);
589
590}
591EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
592
593/**
594 * get_cpu_iowait_time_us - get the total iowait time of a CPU
595 * @cpu: CPU number to query
596 * @last_update_time: variable to store update time in. Do not update
597 * counters if NULL.
598 *
599 * Return the cumulative iowait time (since boot) for a given
600 * CPU, in microseconds.
601 *
602 * This time is measured via accounting rather than sampling,
603 * and is as accurate as ktime_get() is.
604 *
605 * This function returns -1 if NOHZ is not enabled.
606 */
607u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
608{
609 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
610 ktime_t now, iowait;
611
612 if (!tick_nohz_active)
613 return -1;
614
615 now = ktime_get();
616 if (last_update_time) {
617 update_ts_time_stats(cpu, ts, now, last_update_time);
618 iowait = ts->iowait_sleeptime;
619 } else {
620 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
621 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
622
623 iowait = ktime_add(ts->iowait_sleeptime, delta);
624 } else {
625 iowait = ts->iowait_sleeptime;
626 }
627 }
628
629 return ktime_to_us(iowait);
630}
631EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
632
633static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
634{
635 hrtimer_cancel(&ts->sched_timer);
636 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
637
638 /* Forward the time to expire in the future */
639 hrtimer_forward(&ts->sched_timer, now, tick_period);
640
David Brazdil0f672f62019-12-10 10:32:29 +0000641 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
642 hrtimer_start_expires(&ts->sched_timer,
643 HRTIMER_MODE_ABS_PINNED_HARD);
644 } else {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000645 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
David Brazdil0f672f62019-12-10 10:32:29 +0000646 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000647
648 /*
649 * Reset to make sure next tick stop doesn't get fooled by past
650 * cached clock deadline.
651 */
652 ts->next_tick = 0;
653}
654
655static inline bool local_timer_softirq_pending(void)
656{
657 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
658}
659
660static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
661{
662 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
David Brazdil0f672f62019-12-10 10:32:29 +0000663 unsigned long basejiff;
664 unsigned int seq;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000665
666 /* Read jiffies and the time when jiffies were updated last */
667 do {
668 seq = read_seqbegin(&jiffies_lock);
669 basemono = last_jiffies_update;
670 basejiff = jiffies;
671 } while (read_seqretry(&jiffies_lock, seq));
672 ts->last_jiffies = basejiff;
673 ts->timer_expires_base = basemono;
674
675 /*
676 * Keep the periodic tick, when RCU, architecture or irq_work
677 * requests it.
678 * Aside of that check whether the local timer softirq is
679 * pending. If so its a bad idea to call get_next_timer_interrupt()
680 * because there is an already expired timer, so it will request
681 * immeditate expiry, which rearms the hardware timer with a
682 * minimal delta which brings us back to this place
683 * immediately. Lather, rinse and repeat...
684 */
685 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
686 irq_work_needs_cpu() || local_timer_softirq_pending()) {
687 next_tick = basemono + TICK_NSEC;
688 } else {
689 /*
690 * Get the next pending timer. If high resolution
691 * timers are enabled this only takes the timer wheel
692 * timers into account. If high resolution timers are
693 * disabled this also looks at the next expiring
694 * hrtimer.
695 */
696 next_tmr = get_next_timer_interrupt(basejiff, basemono);
697 ts->next_timer = next_tmr;
698 /* Take the next rcu event into account */
699 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
700 }
701
702 /*
703 * If the tick is due in the next period, keep it ticking or
704 * force prod the timer.
705 */
706 delta = next_tick - basemono;
707 if (delta <= (u64)TICK_NSEC) {
708 /*
709 * Tell the timer code that the base is not idle, i.e. undo
710 * the effect of get_next_timer_interrupt():
711 */
712 timer_clear_idle();
713 /*
714 * We've not stopped the tick yet, and there's a timer in the
715 * next period, so no point in stopping it either, bail.
716 */
717 if (!ts->tick_stopped) {
718 ts->timer_expires = 0;
719 goto out;
720 }
721 }
722
723 /*
724 * If this CPU is the one which had the do_timer() duty last, we limit
725 * the sleep time to the timekeeping max_deferment value.
726 * Otherwise we can sleep as long as we want.
727 */
728 delta = timekeeping_max_deferment();
729 if (cpu != tick_do_timer_cpu &&
730 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
731 delta = KTIME_MAX;
732
733 /* Calculate the next expiry time */
734 if (delta < (KTIME_MAX - basemono))
735 expires = basemono + delta;
736 else
737 expires = KTIME_MAX;
738
739 ts->timer_expires = min_t(u64, expires, next_tick);
740
741out:
742 return ts->timer_expires;
743}
744
745static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
746{
747 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
748 u64 basemono = ts->timer_expires_base;
749 u64 expires = ts->timer_expires;
750 ktime_t tick = expires;
751
752 /* Make sure we won't be trying to stop it twice in a row. */
753 ts->timer_expires_base = 0;
754
755 /*
756 * If this CPU is the one which updates jiffies, then give up
757 * the assignment and let it be taken by the CPU which runs
758 * the tick timer next, which might be this CPU as well. If we
759 * don't drop this here the jiffies might be stale and
760 * do_timer() never invoked. Keep track of the fact that it
761 * was the one which had the do_timer() duty last.
762 */
763 if (cpu == tick_do_timer_cpu) {
764 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
765 ts->do_timer_last = 1;
766 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
767 ts->do_timer_last = 0;
768 }
769
770 /* Skip reprogram of event if its not changed */
771 if (ts->tick_stopped && (expires == ts->next_tick)) {
772 /* Sanity check: make sure clockevent is actually programmed */
773 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
774 return;
775
776 WARN_ON_ONCE(1);
777 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
778 basemono, ts->next_tick, dev->next_event,
779 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
780 }
781
782 /*
783 * nohz_stop_sched_tick can be called several times before
784 * the nohz_restart_sched_tick is called. This happens when
785 * interrupts arrive which do not cause a reschedule. In the
786 * first call we save the current tick time, so we can restart
787 * the scheduler tick in nohz_restart_sched_tick.
788 */
789 if (!ts->tick_stopped) {
790 calc_load_nohz_start();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000791 quiet_vmstat();
792
793 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
794 ts->tick_stopped = 1;
795 trace_tick_stop(1, TICK_DEP_MASK_NONE);
796 }
797
798 ts->next_tick = tick;
799
800 /*
801 * If the expiration time == KTIME_MAX, then we simply stop
802 * the tick timer.
803 */
804 if (unlikely(expires == KTIME_MAX)) {
805 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
806 hrtimer_cancel(&ts->sched_timer);
807 return;
808 }
809
810 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
David Brazdil0f672f62019-12-10 10:32:29 +0000811 hrtimer_start(&ts->sched_timer, tick,
812 HRTIMER_MODE_ABS_PINNED_HARD);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000813 } else {
814 hrtimer_set_expires(&ts->sched_timer, tick);
815 tick_program_event(tick, 1);
816 }
817}
818
819static void tick_nohz_retain_tick(struct tick_sched *ts)
820{
821 ts->timer_expires_base = 0;
822}
823
824#ifdef CONFIG_NO_HZ_FULL
825static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
826{
827 if (tick_nohz_next_event(ts, cpu))
828 tick_nohz_stop_tick(ts, cpu);
829 else
830 tick_nohz_retain_tick(ts);
831}
832#endif /* CONFIG_NO_HZ_FULL */
833
834static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
835{
836 /* Update jiffies first */
837 tick_do_update_jiffies64(now);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000838
839 /*
840 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
841 * the clock forward checks in the enqueue path:
842 */
843 timer_clear_idle();
844
845 calc_load_nohz_stop();
846 touch_softlockup_watchdog_sched();
847 /*
848 * Cancel the scheduled timer and restore the tick
849 */
850 ts->tick_stopped = 0;
851 ts->idle_exittime = now;
852
853 tick_nohz_restart(ts, now);
854}
855
856static void tick_nohz_full_update_tick(struct tick_sched *ts)
857{
858#ifdef CONFIG_NO_HZ_FULL
859 int cpu = smp_processor_id();
860
861 if (!tick_nohz_full_cpu(cpu))
862 return;
863
864 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
865 return;
866
867 if (can_stop_full_tick(cpu, ts))
868 tick_nohz_stop_sched_tick(ts, cpu);
869 else if (ts->tick_stopped)
870 tick_nohz_restart_sched_tick(ts, ktime_get());
871#endif
872}
873
874static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
875{
876 /*
877 * If this CPU is offline and it is the one which updates
878 * jiffies, then give up the assignment and let it be taken by
879 * the CPU which runs the tick timer next. If we don't drop
880 * this here the jiffies might be stale and do_timer() never
881 * invoked.
882 */
883 if (unlikely(!cpu_online(cpu))) {
884 if (cpu == tick_do_timer_cpu)
885 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
886 /*
887 * Make sure the CPU doesn't get fooled by obsolete tick
888 * deadline if it comes back online later.
889 */
890 ts->next_tick = 0;
891 return false;
892 }
893
894 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
895 return false;
896
897 if (need_resched())
898 return false;
899
David Brazdil0f672f62019-12-10 10:32:29 +0000900 if (unlikely(local_softirq_pending())) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000901 static int ratelimit;
902
903 if (ratelimit < 10 &&
904 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
905 pr_warn("NOHZ: local_softirq_pending %02x\n",
906 (unsigned int) local_softirq_pending());
907 ratelimit++;
908 }
909 return false;
910 }
911
912 if (tick_nohz_full_enabled()) {
913 /*
914 * Keep the tick alive to guarantee timekeeping progression
915 * if there are full dynticks CPUs around
916 */
917 if (tick_do_timer_cpu == cpu)
918 return false;
David Brazdil0f672f62019-12-10 10:32:29 +0000919
920 /* Should not happen for nohz-full */
921 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000922 return false;
923 }
924
925 return true;
926}
927
928static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
929{
930 ktime_t expires;
931 int cpu = smp_processor_id();
932
933 /*
934 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
935 * tick timer expiration time is known already.
936 */
937 if (ts->timer_expires_base)
938 expires = ts->timer_expires;
939 else if (can_stop_idle_tick(cpu, ts))
940 expires = tick_nohz_next_event(ts, cpu);
941 else
942 return;
943
944 ts->idle_calls++;
945
946 if (expires > 0LL) {
947 int was_stopped = ts->tick_stopped;
948
949 tick_nohz_stop_tick(ts, cpu);
950
951 ts->idle_sleeps++;
952 ts->idle_expires = expires;
953
954 if (!was_stopped && ts->tick_stopped) {
955 ts->idle_jiffies = ts->last_jiffies;
956 nohz_balance_enter_idle(cpu);
957 }
958 } else {
959 tick_nohz_retain_tick(ts);
960 }
961}
962
963/**
964 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
965 *
966 * When the next event is more than a tick into the future, stop the idle tick
967 */
968void tick_nohz_idle_stop_tick(void)
969{
970 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
971}
972
973void tick_nohz_idle_retain_tick(void)
974{
975 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
976 /*
977 * Undo the effect of get_next_timer_interrupt() called from
978 * tick_nohz_next_event().
979 */
980 timer_clear_idle();
981}
982
983/**
984 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
985 *
986 * Called when we start the idle loop.
987 */
988void tick_nohz_idle_enter(void)
989{
990 struct tick_sched *ts;
991
992 lockdep_assert_irqs_enabled();
993
994 local_irq_disable();
995
996 ts = this_cpu_ptr(&tick_cpu_sched);
997
998 WARN_ON_ONCE(ts->timer_expires_base);
999
1000 ts->inidle = 1;
1001 tick_nohz_start_idle(ts);
1002
1003 local_irq_enable();
1004}
1005
1006/**
1007 * tick_nohz_irq_exit - update next tick event from interrupt exit
1008 *
1009 * When an interrupt fires while we are idle and it doesn't cause
1010 * a reschedule, it may still add, modify or delete a timer, enqueue
1011 * an RCU callback, etc...
1012 * So we need to re-calculate and reprogram the next tick event.
1013 */
1014void tick_nohz_irq_exit(void)
1015{
1016 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1017
1018 if (ts->inidle)
1019 tick_nohz_start_idle(ts);
1020 else
1021 tick_nohz_full_update_tick(ts);
1022}
1023
1024/**
1025 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1026 */
1027bool tick_nohz_idle_got_tick(void)
1028{
1029 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1030
1031 if (ts->got_idle_tick) {
1032 ts->got_idle_tick = 0;
1033 return true;
1034 }
1035 return false;
1036}
1037
1038/**
David Brazdil0f672f62019-12-10 10:32:29 +00001039 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1040 * or the tick, whatever that expires first. Note that, if the tick has been
1041 * stopped, it returns the next hrtimer.
1042 *
1043 * Called from power state control code with interrupts disabled
1044 */
1045ktime_t tick_nohz_get_next_hrtimer(void)
1046{
1047 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1048}
1049
1050/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001051 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1052 * @delta_next: duration until the next event if the tick cannot be stopped
1053 *
1054 * Called from power state control code with interrupts disabled
1055 */
1056ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1057{
1058 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1059 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1060 int cpu = smp_processor_id();
1061 /*
1062 * The idle entry time is expected to be a sufficient approximation of
1063 * the current time at this point.
1064 */
1065 ktime_t now = ts->idle_entrytime;
1066 ktime_t next_event;
1067
1068 WARN_ON_ONCE(!ts->inidle);
1069
1070 *delta_next = ktime_sub(dev->next_event, now);
1071
1072 if (!can_stop_idle_tick(cpu, ts))
1073 return *delta_next;
1074
1075 next_event = tick_nohz_next_event(ts, cpu);
1076 if (!next_event)
1077 return *delta_next;
1078
1079 /*
1080 * If the next highres timer to expire is earlier than next_event, the
1081 * idle governor needs to know that.
1082 */
1083 next_event = min_t(u64, next_event,
1084 hrtimer_next_event_without(&ts->sched_timer));
1085
1086 return ktime_sub(next_event, now);
1087}
1088
1089/**
1090 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1091 * for a particular CPU.
1092 *
1093 * Called from the schedutil frequency scaling governor in scheduler context.
1094 */
1095unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1096{
1097 struct tick_sched *ts = tick_get_tick_sched(cpu);
1098
1099 return ts->idle_calls;
1100}
1101
1102/**
1103 * tick_nohz_get_idle_calls - return the current idle calls counter value
1104 *
1105 * Called from the schedutil frequency scaling governor in scheduler context.
1106 */
1107unsigned long tick_nohz_get_idle_calls(void)
1108{
1109 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1110
1111 return ts->idle_calls;
1112}
1113
1114static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1115{
1116#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1117 unsigned long ticks;
1118
1119 if (vtime_accounting_cpu_enabled())
1120 return;
1121 /*
1122 * We stopped the tick in idle. Update process times would miss the
1123 * time we slept as update_process_times does only a 1 tick
1124 * accounting. Enforce that this is accounted to idle !
1125 */
1126 ticks = jiffies - ts->idle_jiffies;
1127 /*
1128 * We might be one off. Do not randomly account a huge number of ticks!
1129 */
1130 if (ticks && ticks < LONG_MAX)
1131 account_idle_ticks(ticks);
1132#endif
1133}
1134
1135static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1136{
1137 tick_nohz_restart_sched_tick(ts, now);
1138 tick_nohz_account_idle_ticks(ts);
1139}
1140
1141void tick_nohz_idle_restart_tick(void)
1142{
1143 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1144
1145 if (ts->tick_stopped)
1146 __tick_nohz_idle_restart_tick(ts, ktime_get());
1147}
1148
1149/**
1150 * tick_nohz_idle_exit - restart the idle tick from the idle task
1151 *
1152 * Restart the idle tick when the CPU is woken up from idle
1153 * This also exit the RCU extended quiescent state. The CPU
1154 * can use RCU again after this function is called.
1155 */
1156void tick_nohz_idle_exit(void)
1157{
1158 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1159 bool idle_active, tick_stopped;
1160 ktime_t now;
1161
1162 local_irq_disable();
1163
1164 WARN_ON_ONCE(!ts->inidle);
1165 WARN_ON_ONCE(ts->timer_expires_base);
1166
1167 ts->inidle = 0;
1168 idle_active = ts->idle_active;
1169 tick_stopped = ts->tick_stopped;
1170
1171 if (idle_active || tick_stopped)
1172 now = ktime_get();
1173
1174 if (idle_active)
1175 tick_nohz_stop_idle(ts, now);
1176
1177 if (tick_stopped)
1178 __tick_nohz_idle_restart_tick(ts, now);
1179
1180 local_irq_enable();
1181}
1182
1183/*
1184 * The nohz low res interrupt handler
1185 */
1186static void tick_nohz_handler(struct clock_event_device *dev)
1187{
1188 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1189 struct pt_regs *regs = get_irq_regs();
1190 ktime_t now = ktime_get();
1191
1192 dev->next_event = KTIME_MAX;
1193
1194 tick_sched_do_timer(ts, now);
1195 tick_sched_handle(ts, regs);
1196
1197 /* No need to reprogram if we are running tickless */
1198 if (unlikely(ts->tick_stopped))
1199 return;
1200
1201 hrtimer_forward(&ts->sched_timer, now, tick_period);
1202 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1203}
1204
1205static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1206{
1207 if (!tick_nohz_enabled)
1208 return;
1209 ts->nohz_mode = mode;
1210 /* One update is enough */
1211 if (!test_and_set_bit(0, &tick_nohz_active))
1212 timers_update_nohz();
1213}
1214
1215/**
1216 * tick_nohz_switch_to_nohz - switch to nohz mode
1217 */
1218static void tick_nohz_switch_to_nohz(void)
1219{
1220 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1221 ktime_t next;
1222
1223 if (!tick_nohz_enabled)
1224 return;
1225
1226 if (tick_switch_to_oneshot(tick_nohz_handler))
1227 return;
1228
1229 /*
1230 * Recycle the hrtimer in ts, so we can share the
1231 * hrtimer_forward with the highres code.
1232 */
David Brazdil0f672f62019-12-10 10:32:29 +00001233 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001234 /* Get the next period */
1235 next = tick_init_jiffy_update();
1236
1237 hrtimer_set_expires(&ts->sched_timer, next);
1238 hrtimer_forward_now(&ts->sched_timer, tick_period);
1239 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1240 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1241}
1242
1243static inline void tick_nohz_irq_enter(void)
1244{
1245 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1246 ktime_t now;
1247
1248 if (!ts->idle_active && !ts->tick_stopped)
1249 return;
1250 now = ktime_get();
1251 if (ts->idle_active)
1252 tick_nohz_stop_idle(ts, now);
1253 if (ts->tick_stopped)
1254 tick_nohz_update_jiffies(now);
1255}
1256
1257#else
1258
1259static inline void tick_nohz_switch_to_nohz(void) { }
1260static inline void tick_nohz_irq_enter(void) { }
1261static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1262
1263#endif /* CONFIG_NO_HZ_COMMON */
1264
1265/*
1266 * Called from irq_enter to notify about the possible interruption of idle()
1267 */
1268void tick_irq_enter(void)
1269{
1270 tick_check_oneshot_broadcast_this_cpu();
1271 tick_nohz_irq_enter();
1272}
1273
1274/*
1275 * High resolution timer specific code
1276 */
1277#ifdef CONFIG_HIGH_RES_TIMERS
1278/*
1279 * We rearm the timer until we get disabled by the idle code.
1280 * Called with interrupts disabled.
1281 */
1282static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1283{
1284 struct tick_sched *ts =
1285 container_of(timer, struct tick_sched, sched_timer);
1286 struct pt_regs *regs = get_irq_regs();
1287 ktime_t now = ktime_get();
1288
1289 tick_sched_do_timer(ts, now);
1290
1291 /*
1292 * Do not call, when we are not in irq context and have
1293 * no valid regs pointer
1294 */
1295 if (regs)
1296 tick_sched_handle(ts, regs);
1297 else
1298 ts->next_tick = 0;
1299
1300 /* No need to reprogram if we are in idle or full dynticks mode */
1301 if (unlikely(ts->tick_stopped))
1302 return HRTIMER_NORESTART;
1303
1304 hrtimer_forward(timer, now, tick_period);
1305
1306 return HRTIMER_RESTART;
1307}
1308
1309static int sched_skew_tick;
1310
1311static int __init skew_tick(char *str)
1312{
1313 get_option(&str, &sched_skew_tick);
1314
1315 return 0;
1316}
1317early_param("skew_tick", skew_tick);
1318
1319/**
1320 * tick_setup_sched_timer - setup the tick emulation timer
1321 */
1322void tick_setup_sched_timer(void)
1323{
1324 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1325 ktime_t now = ktime_get();
1326
1327 /*
1328 * Emulate tick processing via per-CPU hrtimers:
1329 */
David Brazdil0f672f62019-12-10 10:32:29 +00001330 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001331 ts->sched_timer.function = tick_sched_timer;
1332
1333 /* Get the next period (per-CPU) */
1334 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1335
1336 /* Offset the tick to avert jiffies_lock contention. */
1337 if (sched_skew_tick) {
1338 u64 offset = ktime_to_ns(tick_period) >> 1;
1339 do_div(offset, num_possible_cpus());
1340 offset *= smp_processor_id();
1341 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1342 }
1343
1344 hrtimer_forward(&ts->sched_timer, now, tick_period);
David Brazdil0f672f62019-12-10 10:32:29 +00001345 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001346 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1347}
1348#endif /* HIGH_RES_TIMERS */
1349
1350#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1351void tick_cancel_sched_timer(int cpu)
1352{
1353 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1354
1355# ifdef CONFIG_HIGH_RES_TIMERS
1356 if (ts->sched_timer.base)
1357 hrtimer_cancel(&ts->sched_timer);
1358# endif
1359
1360 memset(ts, 0, sizeof(*ts));
1361}
1362#endif
1363
1364/**
1365 * Async notification about clocksource changes
1366 */
1367void tick_clock_notify(void)
1368{
1369 int cpu;
1370
1371 for_each_possible_cpu(cpu)
1372 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1373}
1374
1375/*
1376 * Async notification about clock event changes
1377 */
1378void tick_oneshot_notify(void)
1379{
1380 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1381
1382 set_bit(0, &ts->check_clocks);
1383}
1384
1385/**
1386 * Check, if a change happened, which makes oneshot possible.
1387 *
1388 * Called cyclic from the hrtimer softirq (driven by the timer
1389 * softirq) allow_nohz signals, that we can switch into low-res nohz
1390 * mode, because high resolution timers are disabled (either compile
1391 * or runtime). Called with interrupts disabled.
1392 */
1393int tick_check_oneshot_change(int allow_nohz)
1394{
1395 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1396
1397 if (!test_and_clear_bit(0, &ts->check_clocks))
1398 return 0;
1399
1400 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1401 return 0;
1402
1403 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1404 return 0;
1405
1406 if (!allow_nohz)
1407 return 1;
1408
1409 tick_nohz_switch_to_nohz();
1410 return 0;
1411}