blob: c716ea81e65317a2dfa5e56b6bc3a17f9f282509 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001/* SPDX-License-Identifier: GPL-2.0-or-later */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/* include/asm-generic/tlb.h
3 *
4 * Generic TLB shootdown code
5 *
6 * Copyright 2001 Red Hat, Inc.
7 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
8 *
9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010 */
11#ifndef _ASM_GENERIC__TLB_H
12#define _ASM_GENERIC__TLB_H
13
14#include <linux/mmu_notifier.h>
15#include <linux/swap.h>
16#include <asm/pgalloc.h>
17#include <asm/tlbflush.h>
David Brazdil0f672f62019-12-10 10:32:29 +000018#include <asm/cacheflush.h>
19
20/*
21 * Blindly accessing user memory from NMI context can be dangerous
22 * if we're in the middle of switching the current user task or switching
23 * the loaded mm.
24 */
25#ifndef nmi_uaccess_okay
26# define nmi_uaccess_okay() true
27#endif
28
29#ifdef CONFIG_MMU
30
31/*
32 * Generic MMU-gather implementation.
33 *
34 * The mmu_gather data structure is used by the mm code to implement the
35 * correct and efficient ordering of freeing pages and TLB invalidations.
36 *
37 * This correct ordering is:
38 *
39 * 1) unhook page
40 * 2) TLB invalidate page
41 * 3) free page
42 *
43 * That is, we must never free a page before we have ensured there are no live
44 * translations left to it. Otherwise it might be possible to observe (or
45 * worse, change) the page content after it has been reused.
46 *
47 * The mmu_gather API consists of:
48 *
49 * - tlb_gather_mmu() / tlb_finish_mmu(); start and finish a mmu_gather
50 *
51 * Finish in particular will issue a (final) TLB invalidate and free
52 * all (remaining) queued pages.
53 *
54 * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
55 *
56 * Defaults to flushing at tlb_end_vma() to reset the range; helps when
57 * there's large holes between the VMAs.
58 *
59 * - tlb_remove_page() / __tlb_remove_page()
60 * - tlb_remove_page_size() / __tlb_remove_page_size()
61 *
62 * __tlb_remove_page_size() is the basic primitive that queues a page for
63 * freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
64 * boolean indicating if the queue is (now) full and a call to
65 * tlb_flush_mmu() is required.
66 *
67 * tlb_remove_page() and tlb_remove_page_size() imply the call to
68 * tlb_flush_mmu() when required and has no return value.
69 *
70 * - tlb_change_page_size()
71 *
72 * call before __tlb_remove_page*() to set the current page-size; implies a
73 * possible tlb_flush_mmu() call.
74 *
75 * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
76 *
77 * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
78 * related state, like the range)
79 *
80 * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
81 * whatever pages are still batched.
82 *
83 * - mmu_gather::fullmm
84 *
85 * A flag set by tlb_gather_mmu() to indicate we're going to free
86 * the entire mm; this allows a number of optimizations.
87 *
88 * - We can ignore tlb_{start,end}_vma(); because we don't
89 * care about ranges. Everything will be shot down.
90 *
91 * - (RISC) architectures that use ASIDs can cycle to a new ASID
92 * and delay the invalidation until ASID space runs out.
93 *
94 * - mmu_gather::need_flush_all
95 *
96 * A flag that can be set by the arch code if it wants to force
97 * flush the entire TLB irrespective of the range. For instance
98 * x86-PAE needs this when changing top-level entries.
99 *
100 * And allows the architecture to provide and implement tlb_flush():
101 *
102 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
103 * use of:
104 *
105 * - mmu_gather::start / mmu_gather::end
106 *
107 * which provides the range that needs to be flushed to cover the pages to
108 * be freed.
109 *
110 * - mmu_gather::freed_tables
111 *
112 * set when we freed page table pages
113 *
114 * - tlb_get_unmap_shift() / tlb_get_unmap_size()
115 *
116 * returns the smallest TLB entry size unmapped in this range.
117 *
118 * If an architecture does not provide tlb_flush() a default implementation
119 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
120 * specified, in which case we'll default to flush_tlb_mm().
121 *
122 * Additionally there are a few opt-in features:
123 *
124 * HAVE_MMU_GATHER_PAGE_SIZE
125 *
126 * This ensures we call tlb_flush() every time tlb_change_page_size() actually
127 * changes the size and provides mmu_gather::page_size to tlb_flush().
128 *
129 * HAVE_RCU_TABLE_FREE
130 *
131 * This provides tlb_remove_table(), to be used instead of tlb_remove_page()
132 * for page directores (__p*_free_tlb()). This provides separate freeing of
133 * the page-table pages themselves in a semi-RCU fashion (see comment below).
134 * Useful if your architecture doesn't use IPIs for remote TLB invalidates
135 * and therefore doesn't naturally serialize with software page-table walkers.
136 *
137 * When used, an architecture is expected to provide __tlb_remove_table()
138 * which does the actual freeing of these pages.
139 *
David Brazdil0f672f62019-12-10 10:32:29 +0000140 * MMU_GATHER_NO_RANGE
141 *
142 * Use this if your architecture lacks an efficient flush_tlb_range().
143 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000144
145#ifdef CONFIG_HAVE_RCU_TABLE_FREE
146/*
147 * Semi RCU freeing of the page directories.
148 *
149 * This is needed by some architectures to implement software pagetable walkers.
150 *
151 * gup_fast() and other software pagetable walkers do a lockless page-table
152 * walk and therefore needs some synchronization with the freeing of the page
153 * directories. The chosen means to accomplish that is by disabling IRQs over
154 * the walk.
155 *
156 * Architectures that use IPIs to flush TLBs will then automagically DTRT,
157 * since we unlink the page, flush TLBs, free the page. Since the disabling of
158 * IRQs delays the completion of the TLB flush we can never observe an already
159 * freed page.
160 *
161 * Architectures that do not have this (PPC) need to delay the freeing by some
162 * other means, this is that means.
163 *
164 * What we do is batch the freed directory pages (tables) and RCU free them.
165 * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
166 * holds off grace periods.
167 *
168 * However, in order to batch these pages we need to allocate storage, this
169 * allocation is deep inside the MM code and can thus easily fail on memory
170 * pressure. To guarantee progress we fall back to single table freeing, see
171 * the implementation of tlb_remove_table_one().
172 *
173 */
174struct mmu_table_batch {
175 struct rcu_head rcu;
176 unsigned int nr;
177 void *tables[0];
178};
179
180#define MAX_TABLE_BATCH \
181 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
182
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000183extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
184
Olivier Deprez0e641232021-09-23 10:07:05 +0200185/*
186 * This allows an architecture that does not use the linux page-tables for
187 * hardware to skip the TLBI when freeing page tables.
188 */
189#ifndef tlb_needs_table_invalidate
190#define tlb_needs_table_invalidate() (true)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000191#endif
192
Olivier Deprez0e641232021-09-23 10:07:05 +0200193#else
194
195#ifdef tlb_needs_table_invalidate
196#error tlb_needs_table_invalidate() requires HAVE_RCU_TABLE_FREE
197#endif
198
199#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
200
201
David Brazdil0f672f62019-12-10 10:32:29 +0000202#ifndef CONFIG_HAVE_MMU_GATHER_NO_GATHER
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000203/*
204 * If we can't allocate a page to make a big batch of page pointers
205 * to work on, then just handle a few from the on-stack structure.
206 */
207#define MMU_GATHER_BUNDLE 8
208
209struct mmu_gather_batch {
210 struct mmu_gather_batch *next;
211 unsigned int nr;
212 unsigned int max;
213 struct page *pages[0];
214};
215
216#define MAX_GATHER_BATCH \
217 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
218
219/*
220 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
221 * lockups for non-preemptible kernels on huge machines when a lot of memory
222 * is zapped during unmapping.
223 * 10K pages freed at once should be safe even without a preemption point.
224 */
225#define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH)
226
David Brazdil0f672f62019-12-10 10:32:29 +0000227extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
228 int page_size);
229#endif
230
231/*
232 * struct mmu_gather is an opaque type used by the mm code for passing around
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000233 * any data needed by arch specific code for tlb_remove_page.
234 */
235struct mmu_gather {
236 struct mm_struct *mm;
David Brazdil0f672f62019-12-10 10:32:29 +0000237
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000238#ifdef CONFIG_HAVE_RCU_TABLE_FREE
239 struct mmu_table_batch *batch;
240#endif
David Brazdil0f672f62019-12-10 10:32:29 +0000241
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000242 unsigned long start;
243 unsigned long end;
David Brazdil0f672f62019-12-10 10:32:29 +0000244 /*
245 * we are in the middle of an operation to clear
246 * a full mm and can make some optimizations
247 */
248 unsigned int fullmm : 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000249
David Brazdil0f672f62019-12-10 10:32:29 +0000250 /*
251 * we have performed an operation which
252 * requires a complete flush of the tlb
253 */
254 unsigned int need_flush_all : 1;
255
256 /*
257 * we have removed page directories
258 */
259 unsigned int freed_tables : 1;
260
261 /*
262 * at which levels have we cleared entries?
263 */
264 unsigned int cleared_ptes : 1;
265 unsigned int cleared_pmds : 1;
266 unsigned int cleared_puds : 1;
267 unsigned int cleared_p4ds : 1;
268
269 /*
270 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
271 */
272 unsigned int vma_exec : 1;
273 unsigned int vma_huge : 1;
274
275 unsigned int batch_count;
276
277#ifndef CONFIG_HAVE_MMU_GATHER_NO_GATHER
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000278 struct mmu_gather_batch *active;
279 struct mmu_gather_batch local;
280 struct page *__pages[MMU_GATHER_BUNDLE];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000281
David Brazdil0f672f62019-12-10 10:32:29 +0000282#ifdef CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
283 unsigned int page_size;
284#endif
285#endif
286};
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000287
288void arch_tlb_gather_mmu(struct mmu_gather *tlb,
289 struct mm_struct *mm, unsigned long start, unsigned long end);
290void tlb_flush_mmu(struct mmu_gather *tlb);
291void arch_tlb_finish_mmu(struct mmu_gather *tlb,
292 unsigned long start, unsigned long end, bool force);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000293
294static inline void __tlb_adjust_range(struct mmu_gather *tlb,
295 unsigned long address,
296 unsigned int range_size)
297{
298 tlb->start = min(tlb->start, address);
299 tlb->end = max(tlb->end, address + range_size);
300}
301
302static inline void __tlb_reset_range(struct mmu_gather *tlb)
303{
304 if (tlb->fullmm) {
305 tlb->start = tlb->end = ~0;
306 } else {
307 tlb->start = TASK_SIZE;
308 tlb->end = 0;
309 }
David Brazdil0f672f62019-12-10 10:32:29 +0000310 tlb->freed_tables = 0;
311 tlb->cleared_ptes = 0;
312 tlb->cleared_pmds = 0;
313 tlb->cleared_puds = 0;
314 tlb->cleared_p4ds = 0;
315 /*
316 * Do not reset mmu_gather::vma_* fields here, we do not
317 * call into tlb_start_vma() again to set them if there is an
318 * intermediate flush.
319 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000320}
321
David Brazdil0f672f62019-12-10 10:32:29 +0000322#ifdef CONFIG_MMU_GATHER_NO_RANGE
323
324#if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma)
325#error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma()
326#endif
327
328/*
329 * When an architecture does not have efficient means of range flushing TLBs
330 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
331 * range small. We equally don't have to worry about page granularity or other
332 * things.
333 *
334 * All we need to do is issue a full flush for any !0 range.
335 */
336static inline void tlb_flush(struct mmu_gather *tlb)
337{
338 if (tlb->end)
339 flush_tlb_mm(tlb->mm);
340}
341
342static inline void
343tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
344
345#define tlb_end_vma tlb_end_vma
346static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
347
348#else /* CONFIG_MMU_GATHER_NO_RANGE */
349
350#ifndef tlb_flush
351
352#if defined(tlb_start_vma) || defined(tlb_end_vma)
353#error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma()
354#endif
355
356/*
357 * When an architecture does not provide its own tlb_flush() implementation
358 * but does have a reasonably efficient flush_vma_range() implementation
359 * use that.
360 */
361static inline void tlb_flush(struct mmu_gather *tlb)
362{
363 if (tlb->fullmm || tlb->need_flush_all) {
364 flush_tlb_mm(tlb->mm);
365 } else if (tlb->end) {
366 struct vm_area_struct vma = {
367 .vm_mm = tlb->mm,
368 .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) |
369 (tlb->vma_huge ? VM_HUGETLB : 0),
370 };
371
372 flush_tlb_range(&vma, tlb->start, tlb->end);
373 }
374}
375
376static inline void
377tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
378{
379 /*
380 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
381 * mips-4k) flush only large pages.
382 *
383 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
384 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
385 * range.
386 *
387 * We rely on tlb_end_vma() to issue a flush, such that when we reset
388 * these values the batch is empty.
389 */
390 tlb->vma_huge = !!(vma->vm_flags & VM_HUGETLB);
391 tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
392}
393
394#else
395
396static inline void
397tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
398
399#endif
400
401#endif /* CONFIG_MMU_GATHER_NO_RANGE */
402
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000403static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
404{
405 if (!tlb->end)
406 return;
407
408 tlb_flush(tlb);
409 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
410 __tlb_reset_range(tlb);
411}
412
413static inline void tlb_remove_page_size(struct mmu_gather *tlb,
414 struct page *page, int page_size)
415{
416 if (__tlb_remove_page_size(tlb, page, page_size))
417 tlb_flush_mmu(tlb);
418}
419
420static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
421{
422 return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
423}
424
425/* tlb_remove_page
426 * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
427 * required.
428 */
429static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
430{
431 return tlb_remove_page_size(tlb, page, PAGE_SIZE);
432}
433
David Brazdil0f672f62019-12-10 10:32:29 +0000434static inline void tlb_change_page_size(struct mmu_gather *tlb,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000435 unsigned int page_size)
436{
David Brazdil0f672f62019-12-10 10:32:29 +0000437#ifdef CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
438 if (tlb->page_size && tlb->page_size != page_size) {
439 if (!tlb->fullmm)
440 tlb_flush_mmu(tlb);
441 }
442
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000443 tlb->page_size = page_size;
444#endif
445}
David Brazdil0f672f62019-12-10 10:32:29 +0000446
447static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
448{
449 if (tlb->cleared_ptes)
450 return PAGE_SHIFT;
451 if (tlb->cleared_pmds)
452 return PMD_SHIFT;
453 if (tlb->cleared_puds)
454 return PUD_SHIFT;
455 if (tlb->cleared_p4ds)
456 return P4D_SHIFT;
457
458 return PAGE_SHIFT;
459}
460
461static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
462{
463 return 1UL << tlb_get_unmap_shift(tlb);
464}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000465
466/*
467 * In the case of tlb vma handling, we can optimise these away in the
468 * case where we're doing a full MM flush. When we're doing a munmap,
469 * the vmas are adjusted to only cover the region to be torn down.
470 */
471#ifndef tlb_start_vma
David Brazdil0f672f62019-12-10 10:32:29 +0000472static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
473{
474 if (tlb->fullmm)
475 return;
476
477 tlb_update_vma_flags(tlb, vma);
478 flush_cache_range(vma, vma->vm_start, vma->vm_end);
479}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000480#endif
481
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000482#ifndef tlb_end_vma
David Brazdil0f672f62019-12-10 10:32:29 +0000483static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
484{
485 if (tlb->fullmm)
486 return;
487
488 /*
489 * Do a TLB flush and reset the range at VMA boundaries; this avoids
490 * the ranges growing with the unused space between consecutive VMAs,
491 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on
492 * this.
493 */
494 tlb_flush_mmu_tlbonly(tlb);
495}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000496#endif
497
498#ifndef __tlb_remove_tlb_entry
499#define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
500#endif
501
502/**
503 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
504 *
505 * Record the fact that pte's were really unmapped by updating the range,
506 * so we can later optimise away the tlb invalidate. This helps when
507 * userspace is unmapping already-unmapped pages, which happens quite a lot.
508 */
509#define tlb_remove_tlb_entry(tlb, ptep, address) \
510 do { \
511 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
David Brazdil0f672f62019-12-10 10:32:29 +0000512 tlb->cleared_ptes = 1; \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000513 __tlb_remove_tlb_entry(tlb, ptep, address); \
514 } while (0)
515
David Brazdil0f672f62019-12-10 10:32:29 +0000516#define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \
517 do { \
518 unsigned long _sz = huge_page_size(h); \
519 __tlb_adjust_range(tlb, address, _sz); \
520 if (_sz == PMD_SIZE) \
521 tlb->cleared_pmds = 1; \
522 else if (_sz == PUD_SIZE) \
523 tlb->cleared_puds = 1; \
524 __tlb_remove_tlb_entry(tlb, ptep, address); \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000525 } while (0)
526
527/**
528 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
529 * This is a nop so far, because only x86 needs it.
530 */
531#ifndef __tlb_remove_pmd_tlb_entry
532#define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
533#endif
534
535#define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \
536 do { \
537 __tlb_adjust_range(tlb, address, HPAGE_PMD_SIZE); \
David Brazdil0f672f62019-12-10 10:32:29 +0000538 tlb->cleared_pmds = 1; \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000539 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \
540 } while (0)
541
542/**
543 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
544 * invalidation. This is a nop so far, because only x86 needs it.
545 */
546#ifndef __tlb_remove_pud_tlb_entry
547#define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
548#endif
549
550#define tlb_remove_pud_tlb_entry(tlb, pudp, address) \
551 do { \
552 __tlb_adjust_range(tlb, address, HPAGE_PUD_SIZE); \
David Brazdil0f672f62019-12-10 10:32:29 +0000553 tlb->cleared_puds = 1; \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000554 __tlb_remove_pud_tlb_entry(tlb, pudp, address); \
555 } while (0)
556
557/*
558 * For things like page tables caches (ie caching addresses "inside" the
559 * page tables, like x86 does), for legacy reasons, flushing an
560 * individual page had better flush the page table caches behind it. This
561 * is definitely how x86 works, for example. And if you have an
562 * architected non-legacy page table cache (which I'm not aware of
563 * anybody actually doing), you're going to have some architecturally
564 * explicit flushing for that, likely *separate* from a regular TLB entry
565 * flush, and thus you'd need more than just some range expansion..
566 *
567 * So if we ever find an architecture
568 * that would want something that odd, I think it is up to that
569 * architecture to do its own odd thing, not cause pain for others
570 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
571 *
572 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
573 */
574
575#ifndef pte_free_tlb
576#define pte_free_tlb(tlb, ptep, address) \
577 do { \
578 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
David Brazdil0f672f62019-12-10 10:32:29 +0000579 tlb->freed_tables = 1; \
580 tlb->cleared_pmds = 1; \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000581 __pte_free_tlb(tlb, ptep, address); \
582 } while (0)
583#endif
584
585#ifndef pmd_free_tlb
586#define pmd_free_tlb(tlb, pmdp, address) \
587 do { \
David Brazdil0f672f62019-12-10 10:32:29 +0000588 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
589 tlb->freed_tables = 1; \
590 tlb->cleared_puds = 1; \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000591 __pmd_free_tlb(tlb, pmdp, address); \
592 } while (0)
593#endif
594
595#ifndef __ARCH_HAS_4LEVEL_HACK
596#ifndef pud_free_tlb
597#define pud_free_tlb(tlb, pudp, address) \
598 do { \
599 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
David Brazdil0f672f62019-12-10 10:32:29 +0000600 tlb->freed_tables = 1; \
601 tlb->cleared_p4ds = 1; \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000602 __pud_free_tlb(tlb, pudp, address); \
603 } while (0)
604#endif
605#endif
606
607#ifndef __ARCH_HAS_5LEVEL_HACK
608#ifndef p4d_free_tlb
609#define p4d_free_tlb(tlb, pudp, address) \
610 do { \
David Brazdil0f672f62019-12-10 10:32:29 +0000611 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
612 tlb->freed_tables = 1; \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000613 __p4d_free_tlb(tlb, pudp, address); \
614 } while (0)
615#endif
616#endif
617
David Brazdil0f672f62019-12-10 10:32:29 +0000618#endif /* CONFIG_MMU */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000619
620#endif /* _ASM_GENERIC__TLB_H */