blob: 5a0ce0c2c4bbdc65318ab54622f1795860a33fe1 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000015#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_error.h"
25#include "xfs_quota.h"
26#include "xfs_fsops.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000027#include "xfs_icache.h"
28#include "xfs_sysfs.h"
29#include "xfs_rmap_btree.h"
30#include "xfs_refcount_btree.h"
31#include "xfs_reflink.h"
32#include "xfs_extent_busy.h"
David Brazdil0f672f62019-12-10 10:32:29 +000033#include "xfs_health.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000034
35
36static DEFINE_MUTEX(xfs_uuid_table_mutex);
37static int xfs_uuid_table_size;
38static uuid_t *xfs_uuid_table;
39
40void
41xfs_uuid_table_free(void)
42{
43 if (xfs_uuid_table_size == 0)
44 return;
45 kmem_free(xfs_uuid_table);
46 xfs_uuid_table = NULL;
47 xfs_uuid_table_size = 0;
48}
49
50/*
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53 */
54STATIC int
55xfs_uuid_mount(
56 struct xfs_mount *mp)
57{
58 uuid_t *uuid = &mp->m_sb.sb_uuid;
59 int hole, i;
60
61 /* Publish UUID in struct super_block */
62 uuid_copy(&mp->m_super->s_uuid, uuid);
63
64 if (mp->m_flags & XFS_MOUNT_NOUUID)
65 return 0;
66
67 if (uuid_is_null(uuid)) {
68 xfs_warn(mp, "Filesystem has null UUID - can't mount");
69 return -EINVAL;
70 }
71
72 mutex_lock(&xfs_uuid_table_mutex);
73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74 if (uuid_is_null(&xfs_uuid_table[i])) {
75 hole = i;
76 continue;
77 }
78 if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 goto out_duplicate;
80 }
81
82 if (hole < 0) {
83 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
David Brazdil0f672f62019-12-10 10:32:29 +000085 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000086 hole = xfs_uuid_table_size++;
87 }
88 xfs_uuid_table[hole] = *uuid;
89 mutex_unlock(&xfs_uuid_table_mutex);
90
91 return 0;
92
93 out_duplicate:
94 mutex_unlock(&xfs_uuid_table_mutex);
95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96 return -EINVAL;
97}
98
99STATIC void
100xfs_uuid_unmount(
101 struct xfs_mount *mp)
102{
103 uuid_t *uuid = &mp->m_sb.sb_uuid;
104 int i;
105
106 if (mp->m_flags & XFS_MOUNT_NOUUID)
107 return;
108
109 mutex_lock(&xfs_uuid_table_mutex);
110 for (i = 0; i < xfs_uuid_table_size; i++) {
111 if (uuid_is_null(&xfs_uuid_table[i]))
112 continue;
113 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 continue;
115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 break;
117 }
118 ASSERT(i < xfs_uuid_table_size);
119 mutex_unlock(&xfs_uuid_table_mutex);
120}
121
122
123STATIC void
124__xfs_free_perag(
125 struct rcu_head *head)
126{
127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
128
129 ASSERT(atomic_read(&pag->pag_ref) == 0);
130 kmem_free(pag);
131}
132
133/*
134 * Free up the per-ag resources associated with the mount structure.
135 */
136STATIC void
137xfs_free_perag(
138 xfs_mount_t *mp)
139{
140 xfs_agnumber_t agno;
141 struct xfs_perag *pag;
142
143 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
144 spin_lock(&mp->m_perag_lock);
145 pag = radix_tree_delete(&mp->m_perag_tree, agno);
146 spin_unlock(&mp->m_perag_lock);
147 ASSERT(pag);
148 ASSERT(atomic_read(&pag->pag_ref) == 0);
David Brazdil0f672f62019-12-10 10:32:29 +0000149 xfs_iunlink_destroy(pag);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000150 xfs_buf_hash_destroy(pag);
151 mutex_destroy(&pag->pag_ici_reclaim_lock);
152 call_rcu(&pag->rcu_head, __xfs_free_perag);
153 }
154}
155
156/*
157 * Check size of device based on the (data/realtime) block count.
158 * Note: this check is used by the growfs code as well as mount.
159 */
160int
161xfs_sb_validate_fsb_count(
162 xfs_sb_t *sbp,
163 uint64_t nblocks)
164{
165 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
166 ASSERT(sbp->sb_blocklog >= BBSHIFT);
167
168 /* Limited by ULONG_MAX of page cache index */
169 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
170 return -EFBIG;
171 return 0;
172}
173
174int
175xfs_initialize_perag(
176 xfs_mount_t *mp,
177 xfs_agnumber_t agcount,
178 xfs_agnumber_t *maxagi)
179{
180 xfs_agnumber_t index;
181 xfs_agnumber_t first_initialised = NULLAGNUMBER;
182 xfs_perag_t *pag;
183 int error = -ENOMEM;
184
185 /*
186 * Walk the current per-ag tree so we don't try to initialise AGs
187 * that already exist (growfs case). Allocate and insert all the
188 * AGs we don't find ready for initialisation.
189 */
190 for (index = 0; index < agcount; index++) {
191 pag = xfs_perag_get(mp, index);
192 if (pag) {
193 xfs_perag_put(pag);
194 continue;
195 }
196
197 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
Olivier Deprez0e641232021-09-23 10:07:05 +0200198 if (!pag) {
199 error = -ENOMEM;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000200 goto out_unwind_new_pags;
Olivier Deprez0e641232021-09-23 10:07:05 +0200201 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000202 pag->pag_agno = index;
203 pag->pag_mount = mp;
204 spin_lock_init(&pag->pag_ici_lock);
205 mutex_init(&pag->pag_ici_reclaim_lock);
206 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
Olivier Deprez0e641232021-09-23 10:07:05 +0200207
208 error = xfs_buf_hash_init(pag);
209 if (error)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000210 goto out_free_pag;
211 init_waitqueue_head(&pag->pagb_wait);
212 spin_lock_init(&pag->pagb_lock);
213 pag->pagb_count = 0;
214 pag->pagb_tree = RB_ROOT;
215
Olivier Deprez0e641232021-09-23 10:07:05 +0200216 error = radix_tree_preload(GFP_NOFS);
217 if (error)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000218 goto out_hash_destroy;
219
220 spin_lock(&mp->m_perag_lock);
221 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000222 WARN_ON_ONCE(1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000223 spin_unlock(&mp->m_perag_lock);
224 radix_tree_preload_end();
225 error = -EEXIST;
226 goto out_hash_destroy;
227 }
228 spin_unlock(&mp->m_perag_lock);
229 radix_tree_preload_end();
230 /* first new pag is fully initialized */
231 if (first_initialised == NULLAGNUMBER)
232 first_initialised = index;
David Brazdil0f672f62019-12-10 10:32:29 +0000233 error = xfs_iunlink_init(pag);
234 if (error)
235 goto out_hash_destroy;
236 spin_lock_init(&pag->pag_state_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000237 }
238
239 index = xfs_set_inode_alloc(mp, agcount);
240
241 if (maxagi)
242 *maxagi = index;
243
244 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
245 return 0;
246
247out_hash_destroy:
248 xfs_buf_hash_destroy(pag);
249out_free_pag:
250 mutex_destroy(&pag->pag_ici_reclaim_lock);
251 kmem_free(pag);
252out_unwind_new_pags:
253 /* unwind any prior newly initialized pags */
254 for (index = first_initialised; index < agcount; index++) {
255 pag = radix_tree_delete(&mp->m_perag_tree, index);
256 if (!pag)
257 break;
258 xfs_buf_hash_destroy(pag);
David Brazdil0f672f62019-12-10 10:32:29 +0000259 xfs_iunlink_destroy(pag);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000260 mutex_destroy(&pag->pag_ici_reclaim_lock);
261 kmem_free(pag);
262 }
263 return error;
264}
265
266/*
267 * xfs_readsb
268 *
269 * Does the initial read of the superblock.
270 */
271int
272xfs_readsb(
273 struct xfs_mount *mp,
274 int flags)
275{
276 unsigned int sector_size;
277 struct xfs_buf *bp;
278 struct xfs_sb *sbp = &mp->m_sb;
279 int error;
280 int loud = !(flags & XFS_MFSI_QUIET);
281 const struct xfs_buf_ops *buf_ops;
282
283 ASSERT(mp->m_sb_bp == NULL);
284 ASSERT(mp->m_ddev_targp != NULL);
285
286 /*
287 * For the initial read, we must guess at the sector
288 * size based on the block device. It's enough to
289 * get the sb_sectsize out of the superblock and
290 * then reread with the proper length.
291 * We don't verify it yet, because it may not be complete.
292 */
293 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
294 buf_ops = NULL;
295
296 /*
297 * Allocate a (locked) buffer to hold the superblock. This will be kept
298 * around at all times to optimize access to the superblock. Therefore,
299 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
300 * elevated.
301 */
302reread:
303 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
304 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
305 buf_ops);
306 if (error) {
307 if (loud)
308 xfs_warn(mp, "SB validate failed with error %d.", error);
309 /* bad CRC means corrupted metadata */
310 if (error == -EFSBADCRC)
311 error = -EFSCORRUPTED;
312 return error;
313 }
314
315 /*
316 * Initialize the mount structure from the superblock.
317 */
318 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
319
320 /*
321 * If we haven't validated the superblock, do so now before we try
322 * to check the sector size and reread the superblock appropriately.
323 */
324 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
325 if (loud)
326 xfs_warn(mp, "Invalid superblock magic number");
327 error = -EINVAL;
328 goto release_buf;
329 }
330
331 /*
332 * We must be able to do sector-sized and sector-aligned IO.
333 */
334 if (sector_size > sbp->sb_sectsize) {
335 if (loud)
336 xfs_warn(mp, "device supports %u byte sectors (not %u)",
337 sector_size, sbp->sb_sectsize);
338 error = -ENOSYS;
339 goto release_buf;
340 }
341
342 if (buf_ops == NULL) {
343 /*
344 * Re-read the superblock so the buffer is correctly sized,
345 * and properly verified.
346 */
347 xfs_buf_relse(bp);
348 sector_size = sbp->sb_sectsize;
349 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
350 goto reread;
351 }
352
353 xfs_reinit_percpu_counters(mp);
354
355 /* no need to be quiet anymore, so reset the buf ops */
356 bp->b_ops = &xfs_sb_buf_ops;
357
358 mp->m_sb_bp = bp;
359 xfs_buf_unlock(bp);
360 return 0;
361
362release_buf:
363 xfs_buf_relse(bp);
364 return error;
365}
366
367/*
368 * Update alignment values based on mount options and sb values
369 */
370STATIC int
371xfs_update_alignment(xfs_mount_t *mp)
372{
373 xfs_sb_t *sbp = &(mp->m_sb);
374
375 if (mp->m_dalign) {
376 /*
377 * If stripe unit and stripe width are not multiples
378 * of the fs blocksize turn off alignment.
379 */
380 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
381 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
382 xfs_warn(mp,
383 "alignment check failed: sunit/swidth vs. blocksize(%d)",
384 sbp->sb_blocksize);
385 return -EINVAL;
386 } else {
387 /*
388 * Convert the stripe unit and width to FSBs.
389 */
390 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
391 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
392 xfs_warn(mp,
393 "alignment check failed: sunit/swidth vs. agsize(%d)",
394 sbp->sb_agblocks);
395 return -EINVAL;
396 } else if (mp->m_dalign) {
397 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
398 } else {
399 xfs_warn(mp,
400 "alignment check failed: sunit(%d) less than bsize(%d)",
401 mp->m_dalign, sbp->sb_blocksize);
402 return -EINVAL;
403 }
404 }
405
406 /*
407 * Update superblock with new values
408 * and log changes
409 */
410 if (xfs_sb_version_hasdalign(sbp)) {
411 if (sbp->sb_unit != mp->m_dalign) {
412 sbp->sb_unit = mp->m_dalign;
413 mp->m_update_sb = true;
414 }
415 if (sbp->sb_width != mp->m_swidth) {
416 sbp->sb_width = mp->m_swidth;
417 mp->m_update_sb = true;
418 }
419 } else {
420 xfs_warn(mp,
421 "cannot change alignment: superblock does not support data alignment");
422 return -EINVAL;
423 }
424 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
425 xfs_sb_version_hasdalign(&mp->m_sb)) {
426 mp->m_dalign = sbp->sb_unit;
427 mp->m_swidth = sbp->sb_width;
428 }
429
430 return 0;
431}
432
433/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000434 * Set the default minimum read and write sizes unless
435 * already specified in a mount option.
436 * We use smaller I/O sizes when the file system
437 * is being used for NFS service (wsync mount option).
438 */
439STATIC void
440xfs_set_rw_sizes(xfs_mount_t *mp)
441{
442 xfs_sb_t *sbp = &(mp->m_sb);
443 int readio_log, writeio_log;
444
445 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
446 if (mp->m_flags & XFS_MOUNT_WSYNC) {
447 readio_log = XFS_WSYNC_READIO_LOG;
448 writeio_log = XFS_WSYNC_WRITEIO_LOG;
449 } else {
450 readio_log = XFS_READIO_LOG_LARGE;
451 writeio_log = XFS_WRITEIO_LOG_LARGE;
452 }
453 } else {
454 readio_log = mp->m_readio_log;
455 writeio_log = mp->m_writeio_log;
456 }
457
458 if (sbp->sb_blocklog > readio_log) {
459 mp->m_readio_log = sbp->sb_blocklog;
460 } else {
461 mp->m_readio_log = readio_log;
462 }
463 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
464 if (sbp->sb_blocklog > writeio_log) {
465 mp->m_writeio_log = sbp->sb_blocklog;
466 } else {
467 mp->m_writeio_log = writeio_log;
468 }
469 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
470}
471
472/*
473 * precalculate the low space thresholds for dynamic speculative preallocation.
474 */
475void
476xfs_set_low_space_thresholds(
477 struct xfs_mount *mp)
478{
479 int i;
480
481 for (i = 0; i < XFS_LOWSP_MAX; i++) {
482 uint64_t space = mp->m_sb.sb_dblocks;
483
484 do_div(space, 100);
485 mp->m_low_space[i] = space * (i + 1);
486 }
487}
488
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000489/*
490 * Check that the data (and log if separate) is an ok size.
491 */
492STATIC int
493xfs_check_sizes(
494 struct xfs_mount *mp)
495{
496 struct xfs_buf *bp;
497 xfs_daddr_t d;
498 int error;
499
500 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
501 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
502 xfs_warn(mp, "filesystem size mismatch detected");
503 return -EFBIG;
504 }
505 error = xfs_buf_read_uncached(mp->m_ddev_targp,
506 d - XFS_FSS_TO_BB(mp, 1),
507 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
508 if (error) {
509 xfs_warn(mp, "last sector read failed");
510 return error;
511 }
512 xfs_buf_relse(bp);
513
514 if (mp->m_logdev_targp == mp->m_ddev_targp)
515 return 0;
516
517 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
518 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
519 xfs_warn(mp, "log size mismatch detected");
520 return -EFBIG;
521 }
522 error = xfs_buf_read_uncached(mp->m_logdev_targp,
523 d - XFS_FSB_TO_BB(mp, 1),
524 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
525 if (error) {
526 xfs_warn(mp, "log device read failed");
527 return error;
528 }
529 xfs_buf_relse(bp);
530 return 0;
531}
532
533/*
534 * Clear the quotaflags in memory and in the superblock.
535 */
536int
537xfs_mount_reset_sbqflags(
538 struct xfs_mount *mp)
539{
540 mp->m_qflags = 0;
541
542 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
543 if (mp->m_sb.sb_qflags == 0)
544 return 0;
545 spin_lock(&mp->m_sb_lock);
546 mp->m_sb.sb_qflags = 0;
547 spin_unlock(&mp->m_sb_lock);
548
549 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
550 return 0;
551
552 return xfs_sync_sb(mp, false);
553}
554
555uint64_t
556xfs_default_resblks(xfs_mount_t *mp)
557{
558 uint64_t resblks;
559
560 /*
561 * We default to 5% or 8192 fsbs of space reserved, whichever is
562 * smaller. This is intended to cover concurrent allocation
563 * transactions when we initially hit enospc. These each require a 4
564 * block reservation. Hence by default we cover roughly 2000 concurrent
565 * allocation reservations.
566 */
567 resblks = mp->m_sb.sb_dblocks;
568 do_div(resblks, 20);
569 resblks = min_t(uint64_t, resblks, 8192);
570 return resblks;
571}
572
573/* Ensure the summary counts are correct. */
574STATIC int
575xfs_check_summary_counts(
576 struct xfs_mount *mp)
577{
578 /*
579 * The AG0 superblock verifier rejects in-progress filesystems,
580 * so we should never see the flag set this far into mounting.
581 */
582 if (mp->m_sb.sb_inprogress) {
583 xfs_err(mp, "sb_inprogress set after log recovery??");
584 WARN_ON(1);
585 return -EFSCORRUPTED;
586 }
587
588 /*
589 * Now the log is mounted, we know if it was an unclean shutdown or
590 * not. If it was, with the first phase of recovery has completed, we
591 * have consistent AG blocks on disk. We have not recovered EFIs yet,
592 * but they are recovered transactionally in the second recovery phase
593 * later.
594 *
595 * If the log was clean when we mounted, we can check the summary
596 * counters. If any of them are obviously incorrect, we can recompute
597 * them from the AGF headers in the next step.
598 */
599 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
600 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
601 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
602 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
David Brazdil0f672f62019-12-10 10:32:29 +0000603 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000604
605 /*
606 * We can safely re-initialise incore superblock counters from the
607 * per-ag data. These may not be correct if the filesystem was not
608 * cleanly unmounted, so we waited for recovery to finish before doing
609 * this.
610 *
611 * If the filesystem was cleanly unmounted or the previous check did
612 * not flag anything weird, then we can trust the values in the
613 * superblock to be correct and we don't need to do anything here.
614 * Otherwise, recalculate the summary counters.
615 */
616 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
617 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
David Brazdil0f672f62019-12-10 10:32:29 +0000618 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000619 return 0;
620
621 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
622}
623
624/*
625 * This function does the following on an initial mount of a file system:
626 * - reads the superblock from disk and init the mount struct
627 * - if we're a 32-bit kernel, do a size check on the superblock
628 * so we don't mount terabyte filesystems
629 * - init mount struct realtime fields
630 * - allocate inode hash table for fs
631 * - init directory manager
632 * - perform recovery and init the log manager
633 */
634int
635xfs_mountfs(
636 struct xfs_mount *mp)
637{
638 struct xfs_sb *sbp = &(mp->m_sb);
639 struct xfs_inode *rip;
David Brazdil0f672f62019-12-10 10:32:29 +0000640 struct xfs_ino_geometry *igeo = M_IGEO(mp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000641 uint64_t resblks;
642 uint quotamount = 0;
643 uint quotaflags = 0;
644 int error = 0;
645
646 xfs_sb_mount_common(mp, sbp);
647
648 /*
649 * Check for a mismatched features2 values. Older kernels read & wrote
650 * into the wrong sb offset for sb_features2 on some platforms due to
651 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
652 * which made older superblock reading/writing routines swap it as a
653 * 64-bit value.
654 *
655 * For backwards compatibility, we make both slots equal.
656 *
657 * If we detect a mismatched field, we OR the set bits into the existing
658 * features2 field in case it has already been modified; we don't want
659 * to lose any features. We then update the bad location with the ORed
660 * value so that older kernels will see any features2 flags. The
661 * superblock writeback code ensures the new sb_features2 is copied to
662 * sb_bad_features2 before it is logged or written to disk.
663 */
664 if (xfs_sb_has_mismatched_features2(sbp)) {
665 xfs_warn(mp, "correcting sb_features alignment problem");
666 sbp->sb_features2 |= sbp->sb_bad_features2;
667 mp->m_update_sb = true;
668
669 /*
670 * Re-check for ATTR2 in case it was found in bad_features2
671 * slot.
672 */
673 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
674 !(mp->m_flags & XFS_MOUNT_NOATTR2))
675 mp->m_flags |= XFS_MOUNT_ATTR2;
676 }
677
678 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
679 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
680 xfs_sb_version_removeattr2(&mp->m_sb);
681 mp->m_update_sb = true;
682
683 /* update sb_versionnum for the clearing of the morebits */
684 if (!sbp->sb_features2)
685 mp->m_update_sb = true;
686 }
687
688 /* always use v2 inodes by default now */
689 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
690 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
691 mp->m_update_sb = true;
692 }
693
694 /*
695 * Check if sb_agblocks is aligned at stripe boundary
696 * If sb_agblocks is NOT aligned turn off m_dalign since
697 * allocator alignment is within an ag, therefore ag has
698 * to be aligned at stripe boundary.
699 */
700 error = xfs_update_alignment(mp);
701 if (error)
702 goto out;
703
704 xfs_alloc_compute_maxlevels(mp);
705 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
706 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
David Brazdil0f672f62019-12-10 10:32:29 +0000707 xfs_ialloc_setup_geometry(mp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000708 xfs_rmapbt_compute_maxlevels(mp);
709 xfs_refcountbt_compute_maxlevels(mp);
710
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000711 /* enable fail_at_unmount as default */
712 mp->m_fail_unmount = true;
713
714 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
715 if (error)
716 goto out;
717
718 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
719 &mp->m_kobj, "stats");
720 if (error)
721 goto out_remove_sysfs;
722
723 error = xfs_error_sysfs_init(mp);
724 if (error)
725 goto out_del_stats;
726
727 error = xfs_errortag_init(mp);
728 if (error)
729 goto out_remove_error_sysfs;
730
731 error = xfs_uuid_mount(mp);
732 if (error)
733 goto out_remove_errortag;
734
735 /*
736 * Set the minimum read and write sizes
737 */
738 xfs_set_rw_sizes(mp);
739
740 /* set the low space thresholds for dynamic preallocation */
741 xfs_set_low_space_thresholds(mp);
742
743 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000744 * If enabled, sparse inode chunk alignment is expected to match the
745 * cluster size. Full inode chunk alignment must match the chunk size,
746 * but that is checked on sb read verification...
747 */
748 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
749 mp->m_sb.sb_spino_align !=
David Brazdil0f672f62019-12-10 10:32:29 +0000750 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000751 xfs_warn(mp,
752 "Sparse inode block alignment (%u) must match cluster size (%llu).",
753 mp->m_sb.sb_spino_align,
David Brazdil0f672f62019-12-10 10:32:29 +0000754 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000755 error = -EINVAL;
756 goto out_remove_uuid;
757 }
758
759 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000760 * Check that the data (and log if separate) is an ok size.
761 */
762 error = xfs_check_sizes(mp);
763 if (error)
764 goto out_remove_uuid;
765
766 /*
767 * Initialize realtime fields in the mount structure
768 */
769 error = xfs_rtmount_init(mp);
770 if (error) {
771 xfs_warn(mp, "RT mount failed");
772 goto out_remove_uuid;
773 }
774
775 /*
776 * Copies the low order bits of the timestamp and the randomly
777 * set "sequence" number out of a UUID.
778 */
779 mp->m_fixedfsid[0] =
780 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
781 get_unaligned_be16(&sbp->sb_uuid.b[4]);
782 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
783
784 error = xfs_da_mount(mp);
785 if (error) {
786 xfs_warn(mp, "Failed dir/attr init: %d", error);
787 goto out_remove_uuid;
788 }
789
790 /*
791 * Initialize the precomputed transaction reservations values.
792 */
793 xfs_trans_init(mp);
794
795 /*
796 * Allocate and initialize the per-ag data.
797 */
798 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
799 if (error) {
800 xfs_warn(mp, "Failed per-ag init: %d", error);
801 goto out_free_dir;
802 }
803
804 if (!sbp->sb_logblocks) {
805 xfs_warn(mp, "no log defined");
806 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
807 error = -EFSCORRUPTED;
808 goto out_free_perag;
809 }
810
811 /*
812 * Log's mount-time initialization. The first part of recovery can place
813 * some items on the AIL, to be handled when recovery is finished or
814 * cancelled.
815 */
816 error = xfs_log_mount(mp, mp->m_logdev_targp,
817 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
818 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
819 if (error) {
820 xfs_warn(mp, "log mount failed");
821 goto out_fail_wait;
822 }
823
824 /* Make sure the summary counts are ok. */
825 error = xfs_check_summary_counts(mp);
826 if (error)
827 goto out_log_dealloc;
828
829 /*
830 * Get and sanity-check the root inode.
831 * Save the pointer to it in the mount structure.
832 */
833 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
834 XFS_ILOCK_EXCL, &rip);
835 if (error) {
836 xfs_warn(mp,
837 "Failed to read root inode 0x%llx, error %d",
838 sbp->sb_rootino, -error);
839 goto out_log_dealloc;
840 }
841
842 ASSERT(rip != NULL);
843
844 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
845 xfs_warn(mp, "corrupted root inode %llu: not a directory",
846 (unsigned long long)rip->i_ino);
847 xfs_iunlock(rip, XFS_ILOCK_EXCL);
848 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
849 mp);
850 error = -EFSCORRUPTED;
851 goto out_rele_rip;
852 }
853 mp->m_rootip = rip; /* save it */
854
855 xfs_iunlock(rip, XFS_ILOCK_EXCL);
856
857 /*
858 * Initialize realtime inode pointers in the mount structure
859 */
860 error = xfs_rtmount_inodes(mp);
861 if (error) {
862 /*
863 * Free up the root inode.
864 */
865 xfs_warn(mp, "failed to read RT inodes");
866 goto out_rele_rip;
867 }
868
869 /*
870 * If this is a read-only mount defer the superblock updates until
871 * the next remount into writeable mode. Otherwise we would never
872 * perform the update e.g. for the root filesystem.
873 */
874 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
875 error = xfs_sync_sb(mp, false);
876 if (error) {
877 xfs_warn(mp, "failed to write sb changes");
878 goto out_rtunmount;
879 }
880 }
881
882 /*
883 * Initialise the XFS quota management subsystem for this mount
884 */
885 if (XFS_IS_QUOTA_RUNNING(mp)) {
886 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
887 if (error)
888 goto out_rtunmount;
889 } else {
890 ASSERT(!XFS_IS_QUOTA_ON(mp));
891
892 /*
893 * If a file system had quotas running earlier, but decided to
894 * mount without -o uquota/pquota/gquota options, revoke the
895 * quotachecked license.
896 */
897 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
898 xfs_notice(mp, "resetting quota flags");
899 error = xfs_mount_reset_sbqflags(mp);
900 if (error)
901 goto out_rtunmount;
902 }
903 }
904
905 /*
906 * Finish recovering the file system. This part needed to be delayed
907 * until after the root and real-time bitmap inodes were consistently
908 * read in.
909 */
910 error = xfs_log_mount_finish(mp);
911 if (error) {
912 xfs_warn(mp, "log mount finish failed");
913 goto out_rtunmount;
914 }
915
916 /*
917 * Now the log is fully replayed, we can transition to full read-only
918 * mode for read-only mounts. This will sync all the metadata and clean
919 * the log so that the recovery we just performed does not have to be
920 * replayed again on the next mount.
921 *
922 * We use the same quiesce mechanism as the rw->ro remount, as they are
923 * semantically identical operations.
924 */
925 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
926 XFS_MOUNT_RDONLY) {
927 xfs_quiesce_attr(mp);
928 }
929
930 /*
931 * Complete the quota initialisation, post-log-replay component.
932 */
933 if (quotamount) {
934 ASSERT(mp->m_qflags == 0);
935 mp->m_qflags = quotaflags;
936
937 xfs_qm_mount_quotas(mp);
938 }
939
940 /*
941 * Now we are mounted, reserve a small amount of unused space for
942 * privileged transactions. This is needed so that transaction
943 * space required for critical operations can dip into this pool
944 * when at ENOSPC. This is needed for operations like create with
945 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
946 * are not allowed to use this reserved space.
947 *
948 * This may drive us straight to ENOSPC on mount, but that implies
949 * we were already there on the last unmount. Warn if this occurs.
950 */
951 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
952 resblks = xfs_default_resblks(mp);
953 error = xfs_reserve_blocks(mp, &resblks, NULL);
954 if (error)
955 xfs_warn(mp,
956 "Unable to allocate reserve blocks. Continuing without reserve pool.");
957
958 /* Recover any CoW blocks that never got remapped. */
959 error = xfs_reflink_recover_cow(mp);
960 if (error) {
961 xfs_err(mp,
962 "Error %d recovering leftover CoW allocations.", error);
963 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
964 goto out_quota;
965 }
966
967 /* Reserve AG blocks for future btree expansion. */
968 error = xfs_fs_reserve_ag_blocks(mp);
969 if (error && error != -ENOSPC)
970 goto out_agresv;
971 }
972
973 return 0;
974
975 out_agresv:
976 xfs_fs_unreserve_ag_blocks(mp);
977 out_quota:
978 xfs_qm_unmount_quotas(mp);
979 out_rtunmount:
980 xfs_rtunmount_inodes(mp);
981 out_rele_rip:
982 xfs_irele(rip);
983 /* Clean out dquots that might be in memory after quotacheck. */
984 xfs_qm_unmount(mp);
985 /*
986 * Cancel all delayed reclaim work and reclaim the inodes directly.
987 * We have to do this /after/ rtunmount and qm_unmount because those
988 * two will have scheduled delayed reclaim for the rt/quota inodes.
989 *
990 * This is slightly different from the unmountfs call sequence
991 * because we could be tearing down a partially set up mount. In
992 * particular, if log_mount_finish fails we bail out without calling
993 * qm_unmount_quotas and therefore rely on qm_unmount to release the
994 * quota inodes.
995 */
996 cancel_delayed_work_sync(&mp->m_reclaim_work);
997 xfs_reclaim_inodes(mp, SYNC_WAIT);
David Brazdil0f672f62019-12-10 10:32:29 +0000998 xfs_health_unmount(mp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000999 out_log_dealloc:
1000 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1001 xfs_log_mount_cancel(mp);
1002 out_fail_wait:
1003 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1004 xfs_wait_buftarg(mp->m_logdev_targp);
1005 xfs_wait_buftarg(mp->m_ddev_targp);
1006 out_free_perag:
1007 xfs_free_perag(mp);
1008 out_free_dir:
1009 xfs_da_unmount(mp);
1010 out_remove_uuid:
1011 xfs_uuid_unmount(mp);
1012 out_remove_errortag:
1013 xfs_errortag_del(mp);
1014 out_remove_error_sysfs:
1015 xfs_error_sysfs_del(mp);
1016 out_del_stats:
1017 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1018 out_remove_sysfs:
1019 xfs_sysfs_del(&mp->m_kobj);
1020 out:
1021 return error;
1022}
1023
1024/*
1025 * This flushes out the inodes,dquots and the superblock, unmounts the
1026 * log and makes sure that incore structures are freed.
1027 */
1028void
1029xfs_unmountfs(
1030 struct xfs_mount *mp)
1031{
1032 uint64_t resblks;
1033 int error;
1034
David Brazdil0f672f62019-12-10 10:32:29 +00001035 xfs_stop_block_reaping(mp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001036 xfs_fs_unreserve_ag_blocks(mp);
1037 xfs_qm_unmount_quotas(mp);
1038 xfs_rtunmount_inodes(mp);
1039 xfs_irele(mp->m_rootip);
1040
1041 /*
1042 * We can potentially deadlock here if we have an inode cluster
1043 * that has been freed has its buffer still pinned in memory because
1044 * the transaction is still sitting in a iclog. The stale inodes
1045 * on that buffer will have their flush locks held until the
1046 * transaction hits the disk and the callbacks run. the inode
1047 * flush takes the flush lock unconditionally and with nothing to
1048 * push out the iclog we will never get that unlocked. hence we
1049 * need to force the log first.
1050 */
1051 xfs_log_force(mp, XFS_LOG_SYNC);
1052
1053 /*
1054 * Wait for all busy extents to be freed, including completion of
1055 * any discard operation.
1056 */
1057 xfs_extent_busy_wait_all(mp);
1058 flush_workqueue(xfs_discard_wq);
1059
1060 /*
1061 * We now need to tell the world we are unmounting. This will allow
1062 * us to detect that the filesystem is going away and we should error
1063 * out anything that we have been retrying in the background. This will
1064 * prevent neverending retries in AIL pushing from hanging the unmount.
1065 */
1066 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1067
1068 /*
1069 * Flush all pending changes from the AIL.
1070 */
1071 xfs_ail_push_all_sync(mp->m_ail);
1072
1073 /*
1074 * And reclaim all inodes. At this point there should be no dirty
1075 * inodes and none should be pinned or locked, but use synchronous
1076 * reclaim just to be sure. We can stop background inode reclaim
1077 * here as well if it is still running.
1078 */
1079 cancel_delayed_work_sync(&mp->m_reclaim_work);
1080 xfs_reclaim_inodes(mp, SYNC_WAIT);
David Brazdil0f672f62019-12-10 10:32:29 +00001081 xfs_health_unmount(mp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001082
1083 xfs_qm_unmount(mp);
1084
1085 /*
1086 * Unreserve any blocks we have so that when we unmount we don't account
1087 * the reserved free space as used. This is really only necessary for
1088 * lazy superblock counting because it trusts the incore superblock
1089 * counters to be absolutely correct on clean unmount.
1090 *
1091 * We don't bother correcting this elsewhere for lazy superblock
1092 * counting because on mount of an unclean filesystem we reconstruct the
1093 * correct counter value and this is irrelevant.
1094 *
1095 * For non-lazy counter filesystems, this doesn't matter at all because
1096 * we only every apply deltas to the superblock and hence the incore
1097 * value does not matter....
1098 */
1099 resblks = 0;
1100 error = xfs_reserve_blocks(mp, &resblks, NULL);
1101 if (error)
1102 xfs_warn(mp, "Unable to free reserved block pool. "
1103 "Freespace may not be correct on next mount.");
1104
1105 error = xfs_log_sbcount(mp);
1106 if (error)
1107 xfs_warn(mp, "Unable to update superblock counters. "
1108 "Freespace may not be correct on next mount.");
1109
1110
1111 xfs_log_unmount(mp);
1112 xfs_da_unmount(mp);
1113 xfs_uuid_unmount(mp);
1114
1115#if defined(DEBUG)
1116 xfs_errortag_clearall(mp);
1117#endif
1118 xfs_free_perag(mp);
1119
1120 xfs_errortag_del(mp);
1121 xfs_error_sysfs_del(mp);
1122 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1123 xfs_sysfs_del(&mp->m_kobj);
1124}
1125
1126/*
1127 * Determine whether modifications can proceed. The caller specifies the minimum
1128 * freeze level for which modifications should not be allowed. This allows
1129 * certain operations to proceed while the freeze sequence is in progress, if
1130 * necessary.
1131 */
1132bool
1133xfs_fs_writable(
1134 struct xfs_mount *mp,
1135 int level)
1136{
1137 ASSERT(level > SB_UNFROZEN);
1138 if ((mp->m_super->s_writers.frozen >= level) ||
1139 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1140 return false;
1141
1142 return true;
1143}
1144
1145/*
1146 * xfs_log_sbcount
1147 *
1148 * Sync the superblock counters to disk.
1149 *
1150 * Note this code can be called during the process of freezing, so we use the
1151 * transaction allocator that does not block when the transaction subsystem is
1152 * in its frozen state.
1153 */
1154int
1155xfs_log_sbcount(xfs_mount_t *mp)
1156{
1157 /* allow this to proceed during the freeze sequence... */
1158 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1159 return 0;
1160
1161 /*
1162 * we don't need to do this if we are updating the superblock
1163 * counters on every modification.
1164 */
1165 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1166 return 0;
1167
1168 return xfs_sync_sb(mp, true);
1169}
1170
1171/*
1172 * Deltas for the inode count are +/-64, hence we use a large batch size
1173 * of 128 so we don't need to take the counter lock on every update.
1174 */
1175#define XFS_ICOUNT_BATCH 128
1176int
1177xfs_mod_icount(
1178 struct xfs_mount *mp,
1179 int64_t delta)
1180{
1181 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1182 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1183 ASSERT(0);
1184 percpu_counter_add(&mp->m_icount, -delta);
1185 return -EINVAL;
1186 }
1187 return 0;
1188}
1189
1190int
1191xfs_mod_ifree(
1192 struct xfs_mount *mp,
1193 int64_t delta)
1194{
1195 percpu_counter_add(&mp->m_ifree, delta);
1196 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1197 ASSERT(0);
1198 percpu_counter_add(&mp->m_ifree, -delta);
1199 return -EINVAL;
1200 }
1201 return 0;
1202}
1203
1204/*
1205 * Deltas for the block count can vary from 1 to very large, but lock contention
1206 * only occurs on frequent small block count updates such as in the delayed
1207 * allocation path for buffered writes (page a time updates). Hence we set
1208 * a large batch count (1024) to minimise global counter updates except when
1209 * we get near to ENOSPC and we have to be very accurate with our updates.
1210 */
1211#define XFS_FDBLOCKS_BATCH 1024
1212int
1213xfs_mod_fdblocks(
1214 struct xfs_mount *mp,
1215 int64_t delta,
1216 bool rsvd)
1217{
1218 int64_t lcounter;
1219 long long res_used;
1220 s32 batch;
1221
1222 if (delta > 0) {
1223 /*
1224 * If the reserve pool is depleted, put blocks back into it
1225 * first. Most of the time the pool is full.
1226 */
1227 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1228 percpu_counter_add(&mp->m_fdblocks, delta);
1229 return 0;
1230 }
1231
1232 spin_lock(&mp->m_sb_lock);
1233 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1234
1235 if (res_used > delta) {
1236 mp->m_resblks_avail += delta;
1237 } else {
1238 delta -= res_used;
1239 mp->m_resblks_avail = mp->m_resblks;
1240 percpu_counter_add(&mp->m_fdblocks, delta);
1241 }
1242 spin_unlock(&mp->m_sb_lock);
1243 return 0;
1244 }
1245
1246 /*
1247 * Taking blocks away, need to be more accurate the closer we
1248 * are to zero.
1249 *
1250 * If the counter has a value of less than 2 * max batch size,
1251 * then make everything serialise as we are real close to
1252 * ENOSPC.
1253 */
1254 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1255 XFS_FDBLOCKS_BATCH) < 0)
1256 batch = 1;
1257 else
1258 batch = XFS_FDBLOCKS_BATCH;
1259
1260 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1261 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1262 XFS_FDBLOCKS_BATCH) >= 0) {
1263 /* we had space! */
1264 return 0;
1265 }
1266
1267 /*
1268 * lock up the sb for dipping into reserves before releasing the space
1269 * that took us to ENOSPC.
1270 */
1271 spin_lock(&mp->m_sb_lock);
1272 percpu_counter_add(&mp->m_fdblocks, -delta);
1273 if (!rsvd)
1274 goto fdblocks_enospc;
1275
1276 lcounter = (long long)mp->m_resblks_avail + delta;
1277 if (lcounter >= 0) {
1278 mp->m_resblks_avail = lcounter;
1279 spin_unlock(&mp->m_sb_lock);
1280 return 0;
1281 }
1282 printk_once(KERN_WARNING
1283 "Filesystem \"%s\": reserve blocks depleted! "
1284 "Consider increasing reserve pool size.",
1285 mp->m_fsname);
1286fdblocks_enospc:
1287 spin_unlock(&mp->m_sb_lock);
1288 return -ENOSPC;
1289}
1290
1291int
1292xfs_mod_frextents(
1293 struct xfs_mount *mp,
1294 int64_t delta)
1295{
1296 int64_t lcounter;
1297 int ret = 0;
1298
1299 spin_lock(&mp->m_sb_lock);
1300 lcounter = mp->m_sb.sb_frextents + delta;
1301 if (lcounter < 0)
1302 ret = -ENOSPC;
1303 else
1304 mp->m_sb.sb_frextents = lcounter;
1305 spin_unlock(&mp->m_sb_lock);
1306 return ret;
1307}
1308
1309/*
1310 * xfs_getsb() is called to obtain the buffer for the superblock.
1311 * The buffer is returned locked and read in from disk.
1312 * The buffer should be released with a call to xfs_brelse().
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001313 */
1314struct xfs_buf *
1315xfs_getsb(
David Brazdil0f672f62019-12-10 10:32:29 +00001316 struct xfs_mount *mp)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001317{
1318 struct xfs_buf *bp = mp->m_sb_bp;
1319
David Brazdil0f672f62019-12-10 10:32:29 +00001320 xfs_buf_lock(bp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001321 xfs_buf_hold(bp);
1322 ASSERT(bp->b_flags & XBF_DONE);
1323 return bp;
1324}
1325
1326/*
1327 * Used to free the superblock along various error paths.
1328 */
1329void
1330xfs_freesb(
1331 struct xfs_mount *mp)
1332{
1333 struct xfs_buf *bp = mp->m_sb_bp;
1334
1335 xfs_buf_lock(bp);
1336 mp->m_sb_bp = NULL;
1337 xfs_buf_relse(bp);
1338}
1339
1340/*
1341 * If the underlying (data/log/rt) device is readonly, there are some
1342 * operations that cannot proceed.
1343 */
1344int
1345xfs_dev_is_read_only(
1346 struct xfs_mount *mp,
1347 char *message)
1348{
1349 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1350 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1351 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1352 xfs_notice(mp, "%s required on read-only device.", message);
1353 xfs_notice(mp, "write access unavailable, cannot proceed.");
1354 return -EROFS;
1355 }
1356 return 0;
1357}
1358
1359/* Force the summary counters to be recalculated at next mount. */
1360void
1361xfs_force_summary_recalc(
1362 struct xfs_mount *mp)
1363{
1364 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1365 return;
1366
David Brazdil0f672f62019-12-10 10:32:29 +00001367 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1368}
1369
1370/*
1371 * Update the in-core delayed block counter.
1372 *
1373 * We prefer to update the counter without having to take a spinlock for every
1374 * counter update (i.e. batching). Each change to delayed allocation
1375 * reservations can change can easily exceed the default percpu counter
1376 * batching, so we use a larger batch factor here.
1377 *
1378 * Note that we don't currently have any callers requiring fast summation
1379 * (e.g. percpu_counter_read) so we can use a big batch value here.
1380 */
1381#define XFS_DELALLOC_BATCH (4096)
1382void
1383xfs_mod_delalloc(
1384 struct xfs_mount *mp,
1385 int64_t delta)
1386{
1387 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1388 XFS_DELALLOC_BATCH);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001389}