David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
| 3 | /* |
| 4 | * Copyright 2016-2019 HabanaLabs, Ltd. |
| 5 | * All Rights Reserved. |
| 6 | */ |
| 7 | |
| 8 | #include <uapi/misc/habanalabs.h> |
| 9 | #include "habanalabs.h" |
| 10 | |
| 11 | #include <linux/mm.h> |
| 12 | #include <linux/slab.h> |
| 13 | |
| 14 | static void cb_fini(struct hl_device *hdev, struct hl_cb *cb) |
| 15 | { |
| 16 | hdev->asic_funcs->asic_dma_free_coherent(hdev, cb->size, |
| 17 | (void *) (uintptr_t) cb->kernel_address, |
| 18 | cb->bus_address); |
| 19 | kfree(cb); |
| 20 | } |
| 21 | |
| 22 | static void cb_do_release(struct hl_device *hdev, struct hl_cb *cb) |
| 23 | { |
| 24 | if (cb->is_pool) { |
| 25 | spin_lock(&hdev->cb_pool_lock); |
| 26 | list_add(&cb->pool_list, &hdev->cb_pool); |
| 27 | spin_unlock(&hdev->cb_pool_lock); |
| 28 | } else { |
| 29 | cb_fini(hdev, cb); |
| 30 | } |
| 31 | } |
| 32 | |
| 33 | static void cb_release(struct kref *ref) |
| 34 | { |
| 35 | struct hl_device *hdev; |
| 36 | struct hl_cb *cb; |
| 37 | |
| 38 | cb = container_of(ref, struct hl_cb, refcount); |
| 39 | hdev = cb->hdev; |
| 40 | |
| 41 | hl_debugfs_remove_cb(cb); |
| 42 | |
| 43 | cb_do_release(hdev, cb); |
| 44 | } |
| 45 | |
| 46 | static struct hl_cb *hl_cb_alloc(struct hl_device *hdev, u32 cb_size, |
| 47 | int ctx_id) |
| 48 | { |
| 49 | struct hl_cb *cb; |
| 50 | void *p; |
| 51 | |
| 52 | /* |
| 53 | * We use of GFP_ATOMIC here because this function can be called from |
| 54 | * the latency-sensitive code path for command submission. Due to H/W |
| 55 | * limitations in some of the ASICs, the kernel must copy the user CB |
| 56 | * that is designated for an external queue and actually enqueue |
| 57 | * the kernel's copy. Hence, we must never sleep in this code section |
| 58 | * and must use GFP_ATOMIC for all memory allocations. |
| 59 | */ |
| 60 | if (ctx_id == HL_KERNEL_ASID_ID) |
| 61 | cb = kzalloc(sizeof(*cb), GFP_ATOMIC); |
| 62 | else |
| 63 | cb = kzalloc(sizeof(*cb), GFP_KERNEL); |
| 64 | |
| 65 | if (!cb) |
| 66 | return NULL; |
| 67 | |
| 68 | if (ctx_id == HL_KERNEL_ASID_ID) |
| 69 | p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, cb_size, |
| 70 | &cb->bus_address, GFP_ATOMIC); |
| 71 | else |
| 72 | p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, cb_size, |
| 73 | &cb->bus_address, |
| 74 | GFP_USER | __GFP_ZERO); |
| 75 | if (!p) { |
| 76 | dev_err(hdev->dev, |
| 77 | "failed to allocate %d of dma memory for CB\n", |
| 78 | cb_size); |
| 79 | kfree(cb); |
| 80 | return NULL; |
| 81 | } |
| 82 | |
| 83 | cb->kernel_address = (u64) (uintptr_t) p; |
| 84 | cb->size = cb_size; |
| 85 | |
| 86 | return cb; |
| 87 | } |
| 88 | |
| 89 | int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr, |
| 90 | u32 cb_size, u64 *handle, int ctx_id) |
| 91 | { |
| 92 | struct hl_cb *cb; |
| 93 | bool alloc_new_cb = true; |
| 94 | int rc; |
| 95 | |
| 96 | /* |
| 97 | * Can't use generic function to check this because of special case |
| 98 | * where we create a CB as part of the reset process |
| 99 | */ |
| 100 | if ((hdev->disabled) || ((atomic_read(&hdev->in_reset)) && |
| 101 | (ctx_id != HL_KERNEL_ASID_ID))) { |
| 102 | dev_warn_ratelimited(hdev->dev, |
| 103 | "Device is disabled or in reset. Can't create new CBs\n"); |
| 104 | rc = -EBUSY; |
| 105 | goto out_err; |
| 106 | } |
| 107 | |
| 108 | if (cb_size > HL_MAX_CB_SIZE) { |
| 109 | dev_err(hdev->dev, |
| 110 | "CB size %d must be less then %d\n", |
| 111 | cb_size, HL_MAX_CB_SIZE); |
| 112 | rc = -EINVAL; |
| 113 | goto out_err; |
| 114 | } |
| 115 | |
| 116 | /* Minimum allocation must be PAGE SIZE */ |
| 117 | if (cb_size < PAGE_SIZE) |
| 118 | cb_size = PAGE_SIZE; |
| 119 | |
| 120 | if (ctx_id == HL_KERNEL_ASID_ID && |
| 121 | cb_size <= hdev->asic_prop.cb_pool_cb_size) { |
| 122 | |
| 123 | spin_lock(&hdev->cb_pool_lock); |
| 124 | if (!list_empty(&hdev->cb_pool)) { |
| 125 | cb = list_first_entry(&hdev->cb_pool, typeof(*cb), |
| 126 | pool_list); |
| 127 | list_del(&cb->pool_list); |
| 128 | spin_unlock(&hdev->cb_pool_lock); |
| 129 | alloc_new_cb = false; |
| 130 | } else { |
| 131 | spin_unlock(&hdev->cb_pool_lock); |
| 132 | dev_dbg(hdev->dev, "CB pool is empty\n"); |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | if (alloc_new_cb) { |
| 137 | cb = hl_cb_alloc(hdev, cb_size, ctx_id); |
| 138 | if (!cb) { |
| 139 | rc = -ENOMEM; |
| 140 | goto out_err; |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | cb->hdev = hdev; |
| 145 | cb->ctx_id = ctx_id; |
| 146 | |
| 147 | spin_lock(&mgr->cb_lock); |
| 148 | rc = idr_alloc(&mgr->cb_handles, cb, 1, 0, GFP_ATOMIC); |
| 149 | spin_unlock(&mgr->cb_lock); |
| 150 | |
| 151 | if (rc < 0) { |
| 152 | dev_err(hdev->dev, "Failed to allocate IDR for a new CB\n"); |
| 153 | goto release_cb; |
| 154 | } |
| 155 | |
| 156 | cb->id = rc; |
| 157 | |
| 158 | kref_init(&cb->refcount); |
| 159 | spin_lock_init(&cb->lock); |
| 160 | |
| 161 | /* |
| 162 | * idr is 32-bit so we can safely OR it with a mask that is above |
| 163 | * 32 bit |
| 164 | */ |
| 165 | *handle = cb->id | HL_MMAP_CB_MASK; |
| 166 | *handle <<= PAGE_SHIFT; |
| 167 | |
| 168 | hl_debugfs_add_cb(cb); |
| 169 | |
| 170 | return 0; |
| 171 | |
| 172 | release_cb: |
| 173 | cb_do_release(hdev, cb); |
| 174 | out_err: |
| 175 | *handle = 0; |
| 176 | |
| 177 | return rc; |
| 178 | } |
| 179 | |
| 180 | int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle) |
| 181 | { |
| 182 | struct hl_cb *cb; |
| 183 | u32 handle; |
| 184 | int rc = 0; |
| 185 | |
| 186 | /* |
| 187 | * handle was given to user to do mmap, I need to shift it back to |
| 188 | * how the idr module gave it to me |
| 189 | */ |
| 190 | cb_handle >>= PAGE_SHIFT; |
| 191 | handle = (u32) cb_handle; |
| 192 | |
| 193 | spin_lock(&mgr->cb_lock); |
| 194 | |
| 195 | cb = idr_find(&mgr->cb_handles, handle); |
| 196 | if (cb) { |
| 197 | idr_remove(&mgr->cb_handles, handle); |
| 198 | spin_unlock(&mgr->cb_lock); |
| 199 | kref_put(&cb->refcount, cb_release); |
| 200 | } else { |
| 201 | spin_unlock(&mgr->cb_lock); |
| 202 | dev_err(hdev->dev, |
| 203 | "CB destroy failed, no match to handle 0x%x\n", handle); |
| 204 | rc = -EINVAL; |
| 205 | } |
| 206 | |
| 207 | return rc; |
| 208 | } |
| 209 | |
| 210 | int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data) |
| 211 | { |
| 212 | union hl_cb_args *args = data; |
| 213 | struct hl_device *hdev = hpriv->hdev; |
| 214 | u64 handle; |
| 215 | int rc; |
| 216 | |
| 217 | if (hl_device_disabled_or_in_reset(hdev)) { |
| 218 | dev_warn_ratelimited(hdev->dev, |
| 219 | "Device is %s. Can't execute CB IOCTL\n", |
| 220 | atomic_read(&hdev->in_reset) ? "in_reset" : "disabled"); |
| 221 | return -EBUSY; |
| 222 | } |
| 223 | |
| 224 | switch (args->in.op) { |
| 225 | case HL_CB_OP_CREATE: |
| 226 | rc = hl_cb_create(hdev, &hpriv->cb_mgr, args->in.cb_size, |
| 227 | &handle, hpriv->ctx->asid); |
| 228 | memset(args, 0, sizeof(*args)); |
| 229 | args->out.cb_handle = handle; |
| 230 | break; |
| 231 | case HL_CB_OP_DESTROY: |
| 232 | rc = hl_cb_destroy(hdev, &hpriv->cb_mgr, |
| 233 | args->in.cb_handle); |
| 234 | break; |
| 235 | default: |
| 236 | rc = -ENOTTY; |
| 237 | break; |
| 238 | } |
| 239 | |
| 240 | return rc; |
| 241 | } |
| 242 | |
| 243 | static void cb_vm_close(struct vm_area_struct *vma) |
| 244 | { |
| 245 | struct hl_cb *cb = (struct hl_cb *) vma->vm_private_data; |
| 246 | long new_mmap_size; |
| 247 | |
| 248 | new_mmap_size = cb->mmap_size - (vma->vm_end - vma->vm_start); |
| 249 | |
| 250 | if (new_mmap_size > 0) { |
| 251 | cb->mmap_size = new_mmap_size; |
| 252 | return; |
| 253 | } |
| 254 | |
| 255 | spin_lock(&cb->lock); |
| 256 | cb->mmap = false; |
| 257 | spin_unlock(&cb->lock); |
| 258 | |
| 259 | hl_cb_put(cb); |
| 260 | vma->vm_private_data = NULL; |
| 261 | } |
| 262 | |
| 263 | static const struct vm_operations_struct cb_vm_ops = { |
| 264 | .close = cb_vm_close |
| 265 | }; |
| 266 | |
| 267 | int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma) |
| 268 | { |
| 269 | struct hl_device *hdev = hpriv->hdev; |
| 270 | struct hl_cb *cb; |
| 271 | phys_addr_t address; |
| 272 | u32 handle; |
| 273 | int rc; |
| 274 | |
| 275 | handle = vma->vm_pgoff; |
| 276 | |
| 277 | /* reference was taken here */ |
| 278 | cb = hl_cb_get(hdev, &hpriv->cb_mgr, handle); |
| 279 | if (!cb) { |
| 280 | dev_err(hdev->dev, |
| 281 | "CB mmap failed, no match to handle %d\n", handle); |
| 282 | return -EINVAL; |
| 283 | } |
| 284 | |
| 285 | /* Validation check */ |
| 286 | if ((vma->vm_end - vma->vm_start) != ALIGN(cb->size, PAGE_SIZE)) { |
| 287 | dev_err(hdev->dev, |
| 288 | "CB mmap failed, mmap size 0x%lx != 0x%x cb size\n", |
| 289 | vma->vm_end - vma->vm_start, cb->size); |
| 290 | rc = -EINVAL; |
| 291 | goto put_cb; |
| 292 | } |
| 293 | |
| 294 | spin_lock(&cb->lock); |
| 295 | |
| 296 | if (cb->mmap) { |
| 297 | dev_err(hdev->dev, |
| 298 | "CB mmap failed, CB already mmaped to user\n"); |
| 299 | rc = -EINVAL; |
| 300 | goto release_lock; |
| 301 | } |
| 302 | |
| 303 | cb->mmap = true; |
| 304 | |
| 305 | spin_unlock(&cb->lock); |
| 306 | |
| 307 | vma->vm_ops = &cb_vm_ops; |
| 308 | |
| 309 | /* |
| 310 | * Note: We're transferring the cb reference to |
| 311 | * vma->vm_private_data here. |
| 312 | */ |
| 313 | |
| 314 | vma->vm_private_data = cb; |
| 315 | |
| 316 | /* Calculate address for CB */ |
| 317 | address = virt_to_phys((void *) (uintptr_t) cb->kernel_address); |
| 318 | |
| 319 | rc = hdev->asic_funcs->cb_mmap(hdev, vma, cb->kernel_address, |
| 320 | address, cb->size); |
| 321 | |
| 322 | if (rc) { |
| 323 | spin_lock(&cb->lock); |
| 324 | cb->mmap = false; |
| 325 | goto release_lock; |
| 326 | } |
| 327 | |
| 328 | cb->mmap_size = cb->size; |
| 329 | |
| 330 | return 0; |
| 331 | |
| 332 | release_lock: |
| 333 | spin_unlock(&cb->lock); |
| 334 | put_cb: |
| 335 | hl_cb_put(cb); |
| 336 | return rc; |
| 337 | } |
| 338 | |
| 339 | struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr, |
| 340 | u32 handle) |
| 341 | { |
| 342 | struct hl_cb *cb; |
| 343 | |
| 344 | spin_lock(&mgr->cb_lock); |
| 345 | cb = idr_find(&mgr->cb_handles, handle); |
| 346 | |
| 347 | if (!cb) { |
| 348 | spin_unlock(&mgr->cb_lock); |
| 349 | dev_warn(hdev->dev, |
| 350 | "CB get failed, no match to handle %d\n", handle); |
| 351 | return NULL; |
| 352 | } |
| 353 | |
| 354 | kref_get(&cb->refcount); |
| 355 | |
| 356 | spin_unlock(&mgr->cb_lock); |
| 357 | |
| 358 | return cb; |
| 359 | |
| 360 | } |
| 361 | |
| 362 | void hl_cb_put(struct hl_cb *cb) |
| 363 | { |
| 364 | kref_put(&cb->refcount, cb_release); |
| 365 | } |
| 366 | |
| 367 | void hl_cb_mgr_init(struct hl_cb_mgr *mgr) |
| 368 | { |
| 369 | spin_lock_init(&mgr->cb_lock); |
| 370 | idr_init(&mgr->cb_handles); |
| 371 | } |
| 372 | |
| 373 | void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr) |
| 374 | { |
| 375 | struct hl_cb *cb; |
| 376 | struct idr *idp; |
| 377 | u32 id; |
| 378 | |
| 379 | idp = &mgr->cb_handles; |
| 380 | |
| 381 | idr_for_each_entry(idp, cb, id) { |
| 382 | if (kref_put(&cb->refcount, cb_release) != 1) |
| 383 | dev_err(hdev->dev, |
| 384 | "CB %d for CTX ID %d is still alive\n", |
| 385 | id, cb->ctx_id); |
| 386 | } |
| 387 | |
| 388 | idr_destroy(&mgr->cb_handles); |
| 389 | } |
| 390 | |
| 391 | struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size) |
| 392 | { |
| 393 | u64 cb_handle; |
| 394 | struct hl_cb *cb; |
| 395 | int rc; |
| 396 | |
| 397 | rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, cb_size, &cb_handle, |
| 398 | HL_KERNEL_ASID_ID); |
| 399 | if (rc) { |
| 400 | dev_err(hdev->dev, |
| 401 | "Failed to allocate CB for the kernel driver %d\n", rc); |
| 402 | return NULL; |
| 403 | } |
| 404 | |
| 405 | cb_handle >>= PAGE_SHIFT; |
| 406 | cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr, (u32) cb_handle); |
| 407 | /* hl_cb_get should never fail here so use kernel WARN */ |
| 408 | WARN(!cb, "Kernel CB handle invalid 0x%x\n", (u32) cb_handle); |
| 409 | if (!cb) |
| 410 | goto destroy_cb; |
| 411 | |
| 412 | return cb; |
| 413 | |
| 414 | destroy_cb: |
| 415 | hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb_handle << PAGE_SHIFT); |
| 416 | |
| 417 | return NULL; |
| 418 | } |
| 419 | |
| 420 | int hl_cb_pool_init(struct hl_device *hdev) |
| 421 | { |
| 422 | struct hl_cb *cb; |
| 423 | int i; |
| 424 | |
| 425 | INIT_LIST_HEAD(&hdev->cb_pool); |
| 426 | spin_lock_init(&hdev->cb_pool_lock); |
| 427 | |
| 428 | for (i = 0 ; i < hdev->asic_prop.cb_pool_cb_cnt ; i++) { |
| 429 | cb = hl_cb_alloc(hdev, hdev->asic_prop.cb_pool_cb_size, |
| 430 | HL_KERNEL_ASID_ID); |
| 431 | if (cb) { |
| 432 | cb->is_pool = true; |
| 433 | list_add(&cb->pool_list, &hdev->cb_pool); |
| 434 | } else { |
| 435 | hl_cb_pool_fini(hdev); |
| 436 | return -ENOMEM; |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | int hl_cb_pool_fini(struct hl_device *hdev) |
| 444 | { |
| 445 | struct hl_cb *cb, *tmp; |
| 446 | |
| 447 | list_for_each_entry_safe(cb, tmp, &hdev->cb_pool, pool_list) { |
| 448 | list_del(&cb->pool_list); |
| 449 | cb_fini(hdev, cb); |
| 450 | } |
| 451 | |
| 452 | return 0; |
| 453 | } |