blob: 9f4a78e3cde9e2453cea457275e4985e00e75ca5 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-or-later
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 *
6 * Derived from "arch/i386/mm/fault.c"
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 *
9 * Modified by Cort Dougan and Paul Mackerras.
10 *
11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012 */
13
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/sched/task_stack.h>
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/string.h>
20#include <linux/types.h>
21#include <linux/pagemap.h>
22#include <linux/ptrace.h>
23#include <linux/mman.h>
24#include <linux/mm.h>
25#include <linux/interrupt.h>
26#include <linux/highmem.h>
27#include <linux/extable.h>
28#include <linux/kprobes.h>
29#include <linux/kdebug.h>
30#include <linux/perf_event.h>
31#include <linux/ratelimit.h>
32#include <linux/context_tracking.h>
33#include <linux/hugetlb.h>
34#include <linux/uaccess.h>
35
36#include <asm/firmware.h>
37#include <asm/page.h>
38#include <asm/pgtable.h>
39#include <asm/mmu.h>
40#include <asm/mmu_context.h>
41#include <asm/siginfo.h>
42#include <asm/debug.h>
David Brazdil0f672f62019-12-10 10:32:29 +000043#include <asm/kup.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000044
45/*
46 * Check whether the instruction inst is a store using
47 * an update addressing form which will update r1.
48 */
49static bool store_updates_sp(unsigned int inst)
50{
51 /* check for 1 in the rA field */
52 if (((inst >> 16) & 0x1f) != 1)
53 return false;
54 /* check major opcode */
55 switch (inst >> 26) {
56 case OP_STWU:
57 case OP_STBU:
58 case OP_STHU:
59 case OP_STFSU:
60 case OP_STFDU:
61 return true;
62 case OP_STD: /* std or stdu */
63 return (inst & 3) == 1;
64 case OP_31:
65 /* check minor opcode */
66 switch ((inst >> 1) & 0x3ff) {
67 case OP_31_XOP_STDUX:
68 case OP_31_XOP_STWUX:
69 case OP_31_XOP_STBUX:
70 case OP_31_XOP_STHUX:
71 case OP_31_XOP_STFSUX:
72 case OP_31_XOP_STFDUX:
73 return true;
74 }
75 }
76 return false;
77}
78/*
79 * do_page_fault error handling helpers
80 */
81
82static int
David Brazdil0f672f62019-12-10 10:32:29 +000083__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000084{
85 /*
86 * If we are in kernel mode, bail out with a SEGV, this will
87 * be caught by the assembly which will restore the non-volatile
88 * registers before calling bad_page_fault()
89 */
90 if (!user_mode(regs))
91 return SIGSEGV;
92
David Brazdil0f672f62019-12-10 10:32:29 +000093 _exception(SIGSEGV, regs, si_code, address);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000094
95 return 0;
96}
97
98static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
99{
David Brazdil0f672f62019-12-10 10:32:29 +0000100 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000101}
102
David Brazdil0f672f62019-12-10 10:32:29 +0000103static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000104{
105 struct mm_struct *mm = current->mm;
106
107 /*
108 * Something tried to access memory that isn't in our memory map..
109 * Fix it, but check if it's kernel or user first..
110 */
111 up_read(&mm->mmap_sem);
112
David Brazdil0f672f62019-12-10 10:32:29 +0000113 return __bad_area_nosemaphore(regs, address, si_code);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000114}
115
116static noinline int bad_area(struct pt_regs *regs, unsigned long address)
117{
David Brazdil0f672f62019-12-10 10:32:29 +0000118 return __bad_area(regs, address, SEGV_MAPERR);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000119}
120
121static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
122 int pkey)
123{
David Brazdil0f672f62019-12-10 10:32:29 +0000124 /*
125 * If we are in kernel mode, bail out with a SEGV, this will
126 * be caught by the assembly which will restore the non-volatile
127 * registers before calling bad_page_fault()
128 */
129 if (!user_mode(regs))
130 return SIGSEGV;
131
132 _exception_pkey(regs, address, pkey);
133
134 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000135}
136
137static noinline int bad_access(struct pt_regs *regs, unsigned long address)
138{
David Brazdil0f672f62019-12-10 10:32:29 +0000139 return __bad_area(regs, address, SEGV_ACCERR);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000140}
141
142static int do_sigbus(struct pt_regs *regs, unsigned long address,
143 vm_fault_t fault)
144{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000145 if (!user_mode(regs))
146 return SIGBUS;
147
148 current->thread.trap_nr = BUS_ADRERR;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000149#ifdef CONFIG_MEMORY_FAILURE
150 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000151 unsigned int lsb = 0; /* shutup gcc */
152
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000153 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
154 current->comm, current->pid, address);
David Brazdil0f672f62019-12-10 10:32:29 +0000155
156 if (fault & VM_FAULT_HWPOISON_LARGE)
157 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
158 if (fault & VM_FAULT_HWPOISON)
159 lsb = PAGE_SHIFT;
160
161 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
162 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000163 }
164
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000165#endif
David Brazdil0f672f62019-12-10 10:32:29 +0000166 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000167 return 0;
168}
169
170static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
171 vm_fault_t fault)
172{
173 /*
174 * Kernel page fault interrupted by SIGKILL. We have no reason to
175 * continue processing.
176 */
177 if (fatal_signal_pending(current) && !user_mode(regs))
178 return SIGKILL;
179
180 /* Out of memory */
181 if (fault & VM_FAULT_OOM) {
182 /*
183 * We ran out of memory, or some other thing happened to us that
184 * made us unable to handle the page fault gracefully.
185 */
186 if (!user_mode(regs))
187 return SIGSEGV;
188 pagefault_out_of_memory();
189 } else {
190 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
191 VM_FAULT_HWPOISON_LARGE))
192 return do_sigbus(regs, addr, fault);
193 else if (fault & VM_FAULT_SIGSEGV)
194 return bad_area_nosemaphore(regs, addr);
195 else
196 BUG();
197 }
198 return 0;
199}
200
201/* Is this a bad kernel fault ? */
David Brazdil0f672f62019-12-10 10:32:29 +0000202static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
203 unsigned long address, bool is_write)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000204{
David Brazdil0f672f62019-12-10 10:32:29 +0000205 int is_exec = TRAP(regs) == 0x400;
206
Olivier Deprez0e641232021-09-23 10:07:05 +0200207 if (is_exec) {
David Brazdil0f672f62019-12-10 10:32:29 +0000208 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
209 address >= TASK_SIZE ? "exec-protected" : "user",
210 address,
211 from_kuid(&init_user_ns, current_uid()));
212
213 // Kernel exec fault is always bad
214 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000215 }
David Brazdil0f672f62019-12-10 10:32:29 +0000216
217 if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
218 !search_exception_tables(regs->nip)) {
219 pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
220 address,
221 from_kuid(&init_user_ns, current_uid()));
222 }
223
224 // Kernel fault on kernel address is bad
225 if (address >= TASK_SIZE)
226 return true;
227
228 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
229 if (!search_exception_tables(regs->nip))
230 return true;
231
232 // Read/write fault in a valid region (the exception table search passed
233 // above), but blocked by KUAP is bad, it can never succeed.
Olivier Deprez0e641232021-09-23 10:07:05 +0200234 if (bad_kuap_fault(regs, address, is_write))
David Brazdil0f672f62019-12-10 10:32:29 +0000235 return true;
236
237 // What's left? Kernel fault on user in well defined regions (extable
238 // matched), and allowed by KUAP in the faulting context.
239 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000240}
241
Olivier Deprez0e641232021-09-23 10:07:05 +0200242// This comes from 64-bit struct rt_sigframe + __SIGNAL_FRAMESIZE
243#define SIGFRAME_MAX_SIZE (4096 + 128)
244
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000245static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
246 struct vm_area_struct *vma, unsigned int flags,
247 bool *must_retry)
248{
249 /*
250 * N.B. The POWER/Open ABI allows programs to access up to
251 * 288 bytes below the stack pointer.
Olivier Deprez0e641232021-09-23 10:07:05 +0200252 * The kernel signal delivery code writes a bit over 4KB
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000253 * below the stack pointer (r1) before decrementing it.
254 * The exec code can write slightly over 640kB to the stack
255 * before setting the user r1. Thus we allow the stack to
256 * expand to 1MB without further checks.
257 */
258 if (address + 0x100000 < vma->vm_end) {
259 unsigned int __user *nip = (unsigned int __user *)regs->nip;
260 /* get user regs even if this fault is in kernel mode */
261 struct pt_regs *uregs = current->thread.regs;
262 if (uregs == NULL)
263 return true;
264
265 /*
266 * A user-mode access to an address a long way below
267 * the stack pointer is only valid if the instruction
268 * is one which would update the stack pointer to the
269 * address accessed if the instruction completed,
270 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
271 * (or the byte, halfword, float or double forms).
272 *
273 * If we don't check this then any write to the area
274 * between the last mapped region and the stack will
275 * expand the stack rather than segfaulting.
276 */
Olivier Deprez0e641232021-09-23 10:07:05 +0200277 if (address + SIGFRAME_MAX_SIZE >= uregs->gpr[1])
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000278 return false;
279
280 if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
David Brazdil0f672f62019-12-10 10:32:29 +0000281 access_ok(nip, sizeof(*nip))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000282 unsigned int inst;
283 int res;
284
285 pagefault_disable();
286 res = __get_user_inatomic(inst, nip);
287 pagefault_enable();
288 if (!res)
289 return !store_updates_sp(inst);
290 *must_retry = true;
291 }
292 return true;
293 }
294 return false;
295}
296
297static bool access_error(bool is_write, bool is_exec,
298 struct vm_area_struct *vma)
299{
300 /*
301 * Allow execution from readable areas if the MMU does not
302 * provide separate controls over reading and executing.
303 *
304 * Note: That code used to not be enabled for 4xx/BookE.
305 * It is now as I/D cache coherency for these is done at
306 * set_pte_at() time and I see no reason why the test
307 * below wouldn't be valid on those processors. This -may-
308 * break programs compiled with a really old ABI though.
309 */
310 if (is_exec) {
311 return !(vma->vm_flags & VM_EXEC) &&
312 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
313 !(vma->vm_flags & (VM_READ | VM_WRITE)));
314 }
315
316 if (is_write) {
317 if (unlikely(!(vma->vm_flags & VM_WRITE)))
318 return true;
319 return false;
320 }
321
322 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
323 return true;
324 /*
325 * We should ideally do the vma pkey access check here. But in the
326 * fault path, handle_mm_fault() also does the same check. To avoid
327 * these multiple checks, we skip it here and handle access error due
328 * to pkeys later.
329 */
330 return false;
331}
332
333#ifdef CONFIG_PPC_SMLPAR
334static inline void cmo_account_page_fault(void)
335{
336 if (firmware_has_feature(FW_FEATURE_CMO)) {
337 u32 page_ins;
338
339 preempt_disable();
340 page_ins = be32_to_cpu(get_lppaca()->page_ins);
341 page_ins += 1 << PAGE_FACTOR;
342 get_lppaca()->page_ins = cpu_to_be32(page_ins);
343 preempt_enable();
344 }
345}
346#else
347static inline void cmo_account_page_fault(void) { }
348#endif /* CONFIG_PPC_SMLPAR */
349
David Brazdil0f672f62019-12-10 10:32:29 +0000350static void sanity_check_fault(bool is_write, bool is_user,
351 unsigned long error_code, unsigned long address)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000352{
353 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000354 * Userspace trying to access kernel address, we get PROTFAULT for that.
355 */
356 if (is_user && address >= TASK_SIZE) {
Olivier Deprez0e641232021-09-23 10:07:05 +0200357 if ((long)address == -1)
358 return;
359
David Brazdil0f672f62019-12-10 10:32:29 +0000360 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
361 current->comm, current->pid, address,
362 from_kuid(&init_user_ns, current_uid()));
363 return;
364 }
365
Olivier Deprez0e641232021-09-23 10:07:05 +0200366 if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
367 return;
368
David Brazdil0f672f62019-12-10 10:32:29 +0000369 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000370 * For hash translation mode, we should never get a
371 * PROTFAULT. Any update to pte to reduce access will result in us
372 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
373 * fault instead of DSISR_PROTFAULT.
374 *
375 * A pte update to relax the access will not result in a hash page table
376 * entry invalidate and hence can result in DSISR_PROTFAULT.
377 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
378 * the special !is_write in the below conditional.
379 *
380 * For platforms that doesn't supports coherent icache and do support
381 * per page noexec bit, we do setup things such that we do the
382 * sync between D/I cache via fault. But that is handled via low level
383 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
384 * here in such case.
385 *
386 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
387 * check should handle those and hence we should fall to the bad_area
388 * handling correctly.
389 *
390 * For embedded with per page exec support that doesn't support coherent
391 * icache we do get PROTFAULT and we handle that D/I cache sync in
392 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
393 * is conditional for server MMU.
394 *
395 * For radix, we can get prot fault for autonuma case, because radix
396 * page table will have them marked noaccess for user.
397 */
David Brazdil0f672f62019-12-10 10:32:29 +0000398 if (radix_enabled() || is_write)
399 return;
400
401 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000402}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000403
404/*
405 * Define the correct "is_write" bit in error_code based
406 * on the processor family
407 */
408#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
409#define page_fault_is_write(__err) ((__err) & ESR_DST)
410#define page_fault_is_bad(__err) (0)
411#else
412#define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
413#if defined(CONFIG_PPC_8xx)
414#define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
415#elif defined(CONFIG_PPC64)
416#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
417#else
418#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
419#endif
420#endif
421
422/*
423 * For 600- and 800-family processors, the error_code parameter is DSISR
424 * for a data fault, SRR1 for an instruction fault. For 400-family processors
425 * the error_code parameter is ESR for a data fault, 0 for an instruction
426 * fault.
427 * For 64-bit processors, the error_code parameter is
428 * - DSISR for a non-SLB data access fault,
429 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
430 * - 0 any SLB fault.
431 *
432 * The return value is 0 if the fault was handled, or the signal
433 * number if this is a kernel fault that can't be handled here.
434 */
435static int __do_page_fault(struct pt_regs *regs, unsigned long address,
436 unsigned long error_code)
437{
438 struct vm_area_struct * vma;
439 struct mm_struct *mm = current->mm;
440 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
441 int is_exec = TRAP(regs) == 0x400;
442 int is_user = user_mode(regs);
443 int is_write = page_fault_is_write(error_code);
444 vm_fault_t fault, major = 0;
445 bool must_retry = false;
David Brazdil0f672f62019-12-10 10:32:29 +0000446 bool kprobe_fault = kprobe_page_fault(regs, 11);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000447
David Brazdil0f672f62019-12-10 10:32:29 +0000448 if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000449 return 0;
450
451 if (unlikely(page_fault_is_bad(error_code))) {
452 if (is_user) {
453 _exception(SIGBUS, regs, BUS_OBJERR, address);
454 return 0;
455 }
456 return SIGBUS;
457 }
458
459 /* Additional sanity check(s) */
David Brazdil0f672f62019-12-10 10:32:29 +0000460 sanity_check_fault(is_write, is_user, error_code, address);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000461
462 /*
463 * The kernel should never take an execute fault nor should it
David Brazdil0f672f62019-12-10 10:32:29 +0000464 * take a page fault to a kernel address or a page fault to a user
465 * address outside of dedicated places
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000466 */
David Brazdil0f672f62019-12-10 10:32:29 +0000467 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000468 return SIGSEGV;
469
470 /*
471 * If we're in an interrupt, have no user context or are running
472 * in a region with pagefaults disabled then we must not take the fault
473 */
474 if (unlikely(faulthandler_disabled() || !mm)) {
475 if (is_user)
476 printk_ratelimited(KERN_ERR "Page fault in user mode"
477 " with faulthandler_disabled()=%d"
478 " mm=%p\n",
479 faulthandler_disabled(), mm);
480 return bad_area_nosemaphore(regs, address);
481 }
482
483 /* We restore the interrupt state now */
484 if (!arch_irq_disabled_regs(regs))
485 local_irq_enable();
486
487 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
488
489 if (error_code & DSISR_KEYFAULT)
490 return bad_key_fault_exception(regs, address,
491 get_mm_addr_key(mm, address));
492
493 /*
494 * We want to do this outside mmap_sem, because reading code around nip
495 * can result in fault, which will cause a deadlock when called with
496 * mmap_sem held
497 */
498 if (is_user)
499 flags |= FAULT_FLAG_USER;
500 if (is_write)
501 flags |= FAULT_FLAG_WRITE;
502 if (is_exec)
503 flags |= FAULT_FLAG_INSTRUCTION;
504
505 /* When running in the kernel we expect faults to occur only to
506 * addresses in user space. All other faults represent errors in the
507 * kernel and should generate an OOPS. Unfortunately, in the case of an
508 * erroneous fault occurring in a code path which already holds mmap_sem
509 * we will deadlock attempting to validate the fault against the
510 * address space. Luckily the kernel only validly references user
511 * space from well defined areas of code, which are listed in the
512 * exceptions table.
513 *
514 * As the vast majority of faults will be valid we will only perform
515 * the source reference check when there is a possibility of a deadlock.
516 * Attempt to lock the address space, if we cannot we then validate the
517 * source. If this is invalid we can skip the address space check,
518 * thus avoiding the deadlock.
519 */
520 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
521 if (!is_user && !search_exception_tables(regs->nip))
522 return bad_area_nosemaphore(regs, address);
523
524retry:
525 down_read(&mm->mmap_sem);
526 } else {
527 /*
528 * The above down_read_trylock() might have succeeded in
529 * which case we'll have missed the might_sleep() from
530 * down_read():
531 */
532 might_sleep();
533 }
534
535 vma = find_vma(mm, address);
536 if (unlikely(!vma))
537 return bad_area(regs, address);
538 if (likely(vma->vm_start <= address))
539 goto good_area;
540 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
541 return bad_area(regs, address);
542
543 /* The stack is being expanded, check if it's valid */
544 if (unlikely(bad_stack_expansion(regs, address, vma, flags,
545 &must_retry))) {
546 if (!must_retry)
547 return bad_area(regs, address);
548
549 up_read(&mm->mmap_sem);
550 if (fault_in_pages_readable((const char __user *)regs->nip,
551 sizeof(unsigned int)))
552 return bad_area_nosemaphore(regs, address);
553 goto retry;
554 }
555
556 /* Try to expand it */
557 if (unlikely(expand_stack(vma, address)))
558 return bad_area(regs, address);
559
560good_area:
561 if (unlikely(access_error(is_write, is_exec, vma)))
562 return bad_access(regs, address);
563
564 /*
565 * If for any reason at all we couldn't handle the fault,
566 * make sure we exit gracefully rather than endlessly redo
567 * the fault.
568 */
569 fault = handle_mm_fault(vma, address, flags);
570
571#ifdef CONFIG_PPC_MEM_KEYS
572 /*
573 * we skipped checking for access error due to key earlier.
574 * Check that using handle_mm_fault error return.
575 */
576 if (unlikely(fault & VM_FAULT_SIGSEGV) &&
577 !arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
578
579 int pkey = vma_pkey(vma);
580
581 up_read(&mm->mmap_sem);
582 return bad_key_fault_exception(regs, address, pkey);
583 }
584#endif /* CONFIG_PPC_MEM_KEYS */
585
586 major |= fault & VM_FAULT_MAJOR;
587
588 /*
589 * Handle the retry right now, the mmap_sem has been released in that
590 * case.
591 */
592 if (unlikely(fault & VM_FAULT_RETRY)) {
593 /* We retry only once */
594 if (flags & FAULT_FLAG_ALLOW_RETRY) {
595 /*
596 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
597 * of starvation.
598 */
599 flags &= ~FAULT_FLAG_ALLOW_RETRY;
600 flags |= FAULT_FLAG_TRIED;
601 if (!fatal_signal_pending(current))
602 goto retry;
603 }
604
605 /*
606 * User mode? Just return to handle the fatal exception otherwise
607 * return to bad_page_fault
608 */
609 return is_user ? 0 : SIGBUS;
610 }
611
612 up_read(&current->mm->mmap_sem);
613
614 if (unlikely(fault & VM_FAULT_ERROR))
615 return mm_fault_error(regs, address, fault);
616
617 /*
618 * Major/minor page fault accounting.
619 */
620 if (major) {
621 current->maj_flt++;
622 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
623 cmo_account_page_fault();
624 } else {
625 current->min_flt++;
626 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
627 }
628 return 0;
629}
630NOKPROBE_SYMBOL(__do_page_fault);
631
632int do_page_fault(struct pt_regs *regs, unsigned long address,
633 unsigned long error_code)
634{
635 enum ctx_state prev_state = exception_enter();
636 int rc = __do_page_fault(regs, address, error_code);
637 exception_exit(prev_state);
638 return rc;
639}
640NOKPROBE_SYMBOL(do_page_fault);
641
642/*
643 * bad_page_fault is called when we have a bad access from the kernel.
644 * It is called from the DSI and ISI handlers in head.S and from some
645 * of the procedures in traps.c.
646 */
647void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
648{
649 const struct exception_table_entry *entry;
650
651 /* Are we prepared to handle this fault? */
652 if ((entry = search_exception_tables(regs->nip)) != NULL) {
653 regs->nip = extable_fixup(entry);
654 return;
655 }
656
657 /* kernel has accessed a bad area */
658
659 switch (TRAP(regs)) {
660 case 0x300:
661 case 0x380:
David Brazdil0f672f62019-12-10 10:32:29 +0000662 case 0xe00:
663 pr_alert("BUG: %s at 0x%08lx\n",
664 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
665 "Unable to handle kernel data access", regs->dar);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000666 break;
667 case 0x400:
668 case 0x480:
David Brazdil0f672f62019-12-10 10:32:29 +0000669 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
670 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000671 break;
672 case 0x600:
David Brazdil0f672f62019-12-10 10:32:29 +0000673 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
674 regs->dar);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000675 break;
676 default:
David Brazdil0f672f62019-12-10 10:32:29 +0000677 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
678 regs->dar);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000679 break;
680 }
681 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
682 regs->nip);
683
684 if (task_stack_end_corrupted(current))
685 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
686
687 die("Kernel access of bad area", regs, sig);
688}