blob: b47c751df069a768f19465f0c8e60afe4150575d [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
7#include <linux/mm.h>
8#include <linux/memremap.h>
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
14#include <linux/sched/signal.h>
15#include <linux/rwsem.h>
16#include <linux/hugetlb.h>
David Brazdil0f672f62019-12-10 10:32:29 +000017#include <linux/migrate.h>
18#include <linux/mm_inline.h>
19#include <linux/sched/mm.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000020
21#include <asm/mmu_context.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000022#include <asm/tlbflush.h>
23
24#include "internal.h"
25
David Brazdil0f672f62019-12-10 10:32:29 +000026struct follow_page_context {
27 struct dev_pagemap *pgmap;
28 unsigned int page_mask;
29};
30
Olivier Deprez157378f2022-04-04 15:47:50 +020031static void hpage_pincount_add(struct page *page, int refs)
32{
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 VM_BUG_ON_PAGE(page != compound_head(page), page);
35
36 atomic_add(refs, compound_pincount_ptr(page));
37}
38
39static void hpage_pincount_sub(struct page *page, int refs)
40{
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 VM_BUG_ON_PAGE(page != compound_head(page), page);
43
44 atomic_sub(refs, compound_pincount_ptr(page));
45}
46
47/* Equivalent to calling put_page() @refs times. */
48static void put_page_refs(struct page *page, int refs)
49{
50#ifdef CONFIG_DEBUG_VM
51 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
52 return;
53#endif
54
55 /*
56 * Calling put_page() for each ref is unnecessarily slow. Only the last
57 * ref needs a put_page().
58 */
59 if (refs > 1)
60 page_ref_sub(page, refs - 1);
61 put_page(page);
62}
63
64/*
65 * Return the compound head page with ref appropriately incremented,
66 * or NULL if that failed.
67 */
68static inline struct page *try_get_compound_head(struct page *page, int refs)
69{
70 struct page *head = compound_head(page);
71
72 if (WARN_ON_ONCE(page_ref_count(head) < 0))
73 return NULL;
74 if (unlikely(!page_cache_add_speculative(head, refs)))
75 return NULL;
76
77 /*
78 * At this point we have a stable reference to the head page; but it
79 * could be that between the compound_head() lookup and the refcount
80 * increment, the compound page was split, in which case we'd end up
81 * holding a reference on a page that has nothing to do with the page
82 * we were given anymore.
83 * So now that the head page is stable, recheck that the pages still
84 * belong together.
85 */
86 if (unlikely(compound_head(page) != head)) {
87 put_page_refs(head, refs);
88 return NULL;
89 }
90
91 return head;
92}
93
94/*
95 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
96 * flags-dependent amount.
97 *
98 * "grab" names in this file mean, "look at flags to decide whether to use
99 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
100 *
101 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
102 * same time. (That's true throughout the get_user_pages*() and
103 * pin_user_pages*() APIs.) Cases:
104 *
105 * FOLL_GET: page's refcount will be incremented by 1.
106 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
107 *
108 * Return: head page (with refcount appropriately incremented) for success, or
109 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
110 * considered failure, and furthermore, a likely bug in the caller, so a warning
111 * is also emitted.
112 */
113static __maybe_unused struct page *try_grab_compound_head(struct page *page,
114 int refs,
115 unsigned int flags)
116{
117 if (flags & FOLL_GET)
118 return try_get_compound_head(page, refs);
119 else if (flags & FOLL_PIN) {
120 int orig_refs = refs;
121
122 /*
123 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
124 * path, so fail and let the caller fall back to the slow path.
125 */
126 if (unlikely(flags & FOLL_LONGTERM) &&
127 is_migrate_cma_page(page))
128 return NULL;
129
130 /*
131 * CAUTION: Don't use compound_head() on the page before this
132 * point, the result won't be stable.
133 */
134 page = try_get_compound_head(page, refs);
135 if (!page)
136 return NULL;
137
138 /*
139 * When pinning a compound page of order > 1 (which is what
140 * hpage_pincount_available() checks for), use an exact count to
141 * track it, via hpage_pincount_add/_sub().
142 *
143 * However, be sure to *also* increment the normal page refcount
144 * field at least once, so that the page really is pinned.
145 */
146 if (hpage_pincount_available(page))
147 hpage_pincount_add(page, refs);
148 else
149 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
150
151 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
152 orig_refs);
153
154 return page;
155 }
156
157 WARN_ON_ONCE(1);
158 return NULL;
159}
160
161static void put_compound_head(struct page *page, int refs, unsigned int flags)
162{
163 if (flags & FOLL_PIN) {
164 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
165 refs);
166
167 if (hpage_pincount_available(page))
168 hpage_pincount_sub(page, refs);
169 else
170 refs *= GUP_PIN_COUNTING_BIAS;
171 }
172
173 put_page_refs(page, refs);
174}
175
David Brazdil0f672f62019-12-10 10:32:29 +0000176/**
Olivier Deprez157378f2022-04-04 15:47:50 +0200177 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
178 *
179 * This might not do anything at all, depending on the flags argument.
180 *
181 * "grab" names in this file mean, "look at flags to decide whether to use
182 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
183 *
184 * @page: pointer to page to be grabbed
185 * @flags: gup flags: these are the FOLL_* flag values.
186 *
187 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
188 * time. Cases:
189 *
190 * FOLL_GET: page's refcount will be incremented by 1.
191 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
192 *
193 * Return: true for success, or if no action was required (if neither FOLL_PIN
194 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
195 * FOLL_PIN was set, but the page could not be grabbed.
196 */
197bool __must_check try_grab_page(struct page *page, unsigned int flags)
198{
199 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
200
201 if (flags & FOLL_GET)
202 return try_get_page(page);
203 else if (flags & FOLL_PIN) {
204 int refs = 1;
205
206 page = compound_head(page);
207
208 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
209 return false;
210
211 if (hpage_pincount_available(page))
212 hpage_pincount_add(page, 1);
213 else
214 refs = GUP_PIN_COUNTING_BIAS;
215
216 /*
217 * Similar to try_grab_compound_head(): even if using the
218 * hpage_pincount_add/_sub() routines, be sure to
219 * *also* increment the normal page refcount field at least
220 * once, so that the page really is pinned.
221 */
222 page_ref_add(page, refs);
223
224 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
225 }
226
227 return true;
228}
229
230/**
231 * unpin_user_page() - release a dma-pinned page
232 * @page: pointer to page to be released
233 *
234 * Pages that were pinned via pin_user_pages*() must be released via either
235 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
236 * that such pages can be separately tracked and uniquely handled. In
237 * particular, interactions with RDMA and filesystems need special handling.
238 */
239void unpin_user_page(struct page *page)
240{
241 put_compound_head(compound_head(page), 1, FOLL_PIN);
242}
243EXPORT_SYMBOL(unpin_user_page);
244
245/**
246 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
David Brazdil0f672f62019-12-10 10:32:29 +0000247 * @pages: array of pages to be maybe marked dirty, and definitely released.
248 * @npages: number of pages in the @pages array.
249 * @make_dirty: whether to mark the pages dirty
250 *
251 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
252 * variants called on that page.
253 *
254 * For each page in the @pages array, make that page (or its head page, if a
255 * compound page) dirty, if @make_dirty is true, and if the page was previously
Olivier Deprez157378f2022-04-04 15:47:50 +0200256 * listed as clean. In any case, releases all pages using unpin_user_page(),
257 * possibly via unpin_user_pages(), for the non-dirty case.
David Brazdil0f672f62019-12-10 10:32:29 +0000258 *
Olivier Deprez157378f2022-04-04 15:47:50 +0200259 * Please see the unpin_user_page() documentation for details.
David Brazdil0f672f62019-12-10 10:32:29 +0000260 *
261 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
262 * required, then the caller should a) verify that this is really correct,
263 * because _lock() is usually required, and b) hand code it:
Olivier Deprez157378f2022-04-04 15:47:50 +0200264 * set_page_dirty_lock(), unpin_user_page().
David Brazdil0f672f62019-12-10 10:32:29 +0000265 *
266 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200267void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
268 bool make_dirty)
David Brazdil0f672f62019-12-10 10:32:29 +0000269{
270 unsigned long index;
271
272 /*
273 * TODO: this can be optimized for huge pages: if a series of pages is
274 * physically contiguous and part of the same compound page, then a
275 * single operation to the head page should suffice.
276 */
277
278 if (!make_dirty) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200279 unpin_user_pages(pages, npages);
David Brazdil0f672f62019-12-10 10:32:29 +0000280 return;
281 }
282
283 for (index = 0; index < npages; index++) {
284 struct page *page = compound_head(pages[index]);
285 /*
286 * Checking PageDirty at this point may race with
287 * clear_page_dirty_for_io(), but that's OK. Two key
288 * cases:
289 *
290 * 1) This code sees the page as already dirty, so it
291 * skips the call to set_page_dirty(). That could happen
292 * because clear_page_dirty_for_io() called
293 * page_mkclean(), followed by set_page_dirty().
294 * However, now the page is going to get written back,
295 * which meets the original intention of setting it
296 * dirty, so all is well: clear_page_dirty_for_io() goes
297 * on to call TestClearPageDirty(), and write the page
298 * back.
299 *
300 * 2) This code sees the page as clean, so it calls
301 * set_page_dirty(). The page stays dirty, despite being
302 * written back, so it gets written back again in the
303 * next writeback cycle. This is harmless.
304 */
305 if (!PageDirty(page))
306 set_page_dirty_lock(page);
Olivier Deprez157378f2022-04-04 15:47:50 +0200307 unpin_user_page(page);
David Brazdil0f672f62019-12-10 10:32:29 +0000308 }
309}
Olivier Deprez157378f2022-04-04 15:47:50 +0200310EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
David Brazdil0f672f62019-12-10 10:32:29 +0000311
312/**
Olivier Deprez157378f2022-04-04 15:47:50 +0200313 * unpin_user_pages() - release an array of gup-pinned pages.
David Brazdil0f672f62019-12-10 10:32:29 +0000314 * @pages: array of pages to be marked dirty and released.
315 * @npages: number of pages in the @pages array.
316 *
Olivier Deprez157378f2022-04-04 15:47:50 +0200317 * For each page in the @pages array, release the page using unpin_user_page().
David Brazdil0f672f62019-12-10 10:32:29 +0000318 *
Olivier Deprez157378f2022-04-04 15:47:50 +0200319 * Please see the unpin_user_page() documentation for details.
David Brazdil0f672f62019-12-10 10:32:29 +0000320 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200321void unpin_user_pages(struct page **pages, unsigned long npages)
David Brazdil0f672f62019-12-10 10:32:29 +0000322{
323 unsigned long index;
324
325 /*
Olivier Deprez157378f2022-04-04 15:47:50 +0200326 * If this WARN_ON() fires, then the system *might* be leaking pages (by
327 * leaving them pinned), but probably not. More likely, gup/pup returned
328 * a hard -ERRNO error to the caller, who erroneously passed it here.
329 */
330 if (WARN_ON(IS_ERR_VALUE(npages)))
331 return;
332 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000333 * TODO: this can be optimized for huge pages: if a series of pages is
334 * physically contiguous and part of the same compound page, then a
335 * single operation to the head page should suffice.
336 */
337 for (index = 0; index < npages; index++)
Olivier Deprez157378f2022-04-04 15:47:50 +0200338 unpin_user_page(pages[index]);
David Brazdil0f672f62019-12-10 10:32:29 +0000339}
Olivier Deprez157378f2022-04-04 15:47:50 +0200340EXPORT_SYMBOL(unpin_user_pages);
David Brazdil0f672f62019-12-10 10:32:29 +0000341
342#ifdef CONFIG_MMU
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000343static struct page *no_page_table(struct vm_area_struct *vma,
344 unsigned int flags)
345{
346 /*
347 * When core dumping an enormous anonymous area that nobody
348 * has touched so far, we don't want to allocate unnecessary pages or
349 * page tables. Return error instead of NULL to skip handle_mm_fault,
350 * then get_dump_page() will return NULL to leave a hole in the dump.
351 * But we can only make this optimization where a hole would surely
352 * be zero-filled if handle_mm_fault() actually did handle it.
353 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200354 if ((flags & FOLL_DUMP) &&
355 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000356 return ERR_PTR(-EFAULT);
357 return NULL;
358}
359
360static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
361 pte_t *pte, unsigned int flags)
362{
363 /* No page to get reference */
364 if (flags & FOLL_GET)
365 return -EFAULT;
366
367 if (flags & FOLL_TOUCH) {
368 pte_t entry = *pte;
369
370 if (flags & FOLL_WRITE)
371 entry = pte_mkdirty(entry);
372 entry = pte_mkyoung(entry);
373
374 if (!pte_same(*pte, entry)) {
375 set_pte_at(vma->vm_mm, address, pte, entry);
376 update_mmu_cache(vma, address, pte);
377 }
378 }
379
380 /* Proper page table entry exists, but no corresponding struct page */
381 return -EEXIST;
382}
383
384/*
Olivier Deprez157378f2022-04-04 15:47:50 +0200385 * FOLL_FORCE can write to even unwritable pte's, but only
386 * after we've gone through a COW cycle and they are dirty.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000387 */
388static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
389{
Olivier Deprez157378f2022-04-04 15:47:50 +0200390 return pte_write(pte) ||
391 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000392}
393
394static struct page *follow_page_pte(struct vm_area_struct *vma,
David Brazdil0f672f62019-12-10 10:32:29 +0000395 unsigned long address, pmd_t *pmd, unsigned int flags,
396 struct dev_pagemap **pgmap)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000397{
398 struct mm_struct *mm = vma->vm_mm;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000399 struct page *page;
400 spinlock_t *ptl;
401 pte_t *ptep, pte;
Olivier Deprez157378f2022-04-04 15:47:50 +0200402 int ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000403
Olivier Deprez157378f2022-04-04 15:47:50 +0200404 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
405 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
406 (FOLL_PIN | FOLL_GET)))
407 return ERR_PTR(-EINVAL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000408retry:
409 if (unlikely(pmd_bad(*pmd)))
410 return no_page_table(vma, flags);
411
412 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
413 pte = *ptep;
414 if (!pte_present(pte)) {
415 swp_entry_t entry;
416 /*
417 * KSM's break_ksm() relies upon recognizing a ksm page
418 * even while it is being migrated, so for that case we
419 * need migration_entry_wait().
420 */
421 if (likely(!(flags & FOLL_MIGRATION)))
422 goto no_page;
423 if (pte_none(pte))
424 goto no_page;
425 entry = pte_to_swp_entry(pte);
426 if (!is_migration_entry(entry))
427 goto no_page;
428 pte_unmap_unlock(ptep, ptl);
429 migration_entry_wait(mm, pmd, address);
430 goto retry;
431 }
432 if ((flags & FOLL_NUMA) && pte_protnone(pte))
433 goto no_page;
434 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
435 pte_unmap_unlock(ptep, ptl);
436 return NULL;
437 }
438
439 page = vm_normal_page(vma, address, pte);
Olivier Deprez157378f2022-04-04 15:47:50 +0200440 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000441 /*
Olivier Deprez157378f2022-04-04 15:47:50 +0200442 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
443 * case since they are only valid while holding the pgmap
444 * reference.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000445 */
David Brazdil0f672f62019-12-10 10:32:29 +0000446 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
447 if (*pgmap)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000448 page = pte_page(pte);
449 else
450 goto no_page;
451 } else if (unlikely(!page)) {
452 if (flags & FOLL_DUMP) {
453 /* Avoid special (like zero) pages in core dumps */
454 page = ERR_PTR(-EFAULT);
455 goto out;
456 }
457
458 if (is_zero_pfn(pte_pfn(pte))) {
459 page = pte_page(pte);
460 } else {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000461 ret = follow_pfn_pte(vma, address, ptep, flags);
462 page = ERR_PTR(ret);
463 goto out;
464 }
465 }
466
467 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000468 get_page(page);
469 pte_unmap_unlock(ptep, ptl);
470 lock_page(page);
471 ret = split_huge_page(page);
472 unlock_page(page);
473 put_page(page);
474 if (ret)
475 return ERR_PTR(ret);
476 goto retry;
477 }
478
Olivier Deprez157378f2022-04-04 15:47:50 +0200479 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
480 if (unlikely(!try_grab_page(page, flags))) {
481 page = ERR_PTR(-ENOMEM);
482 goto out;
483 }
484 /*
485 * We need to make the page accessible if and only if we are going
486 * to access its content (the FOLL_PIN case). Please see
487 * Documentation/core-api/pin_user_pages.rst for details.
488 */
489 if (flags & FOLL_PIN) {
490 ret = arch_make_page_accessible(page);
491 if (ret) {
492 unpin_user_page(page);
493 page = ERR_PTR(ret);
David Brazdil0f672f62019-12-10 10:32:29 +0000494 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000495 }
496 }
497 if (flags & FOLL_TOUCH) {
498 if ((flags & FOLL_WRITE) &&
499 !pte_dirty(pte) && !PageDirty(page))
500 set_page_dirty(page);
501 /*
502 * pte_mkyoung() would be more correct here, but atomic care
503 * is needed to avoid losing the dirty bit: it is easier to use
504 * mark_page_accessed().
505 */
506 mark_page_accessed(page);
507 }
508 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
509 /* Do not mlock pte-mapped THP */
510 if (PageTransCompound(page))
511 goto out;
512
513 /*
514 * The preliminary mapping check is mainly to avoid the
515 * pointless overhead of lock_page on the ZERO_PAGE
516 * which might bounce very badly if there is contention.
517 *
518 * If the page is already locked, we don't need to
519 * handle it now - vmscan will handle it later if and
520 * when it attempts to reclaim the page.
521 */
522 if (page->mapping && trylock_page(page)) {
523 lru_add_drain(); /* push cached pages to LRU */
524 /*
525 * Because we lock page here, and migration is
526 * blocked by the pte's page reference, and we
527 * know the page is still mapped, we don't even
528 * need to check for file-cache page truncation.
529 */
530 mlock_vma_page(page);
531 unlock_page(page);
532 }
533 }
534out:
535 pte_unmap_unlock(ptep, ptl);
536 return page;
537no_page:
538 pte_unmap_unlock(ptep, ptl);
539 if (!pte_none(pte))
540 return NULL;
541 return no_page_table(vma, flags);
542}
543
544static struct page *follow_pmd_mask(struct vm_area_struct *vma,
545 unsigned long address, pud_t *pudp,
David Brazdil0f672f62019-12-10 10:32:29 +0000546 unsigned int flags,
547 struct follow_page_context *ctx)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000548{
549 pmd_t *pmd, pmdval;
550 spinlock_t *ptl;
551 struct page *page;
552 struct mm_struct *mm = vma->vm_mm;
553
554 pmd = pmd_offset(pudp, address);
555 /*
556 * The READ_ONCE() will stabilize the pmdval in a register or
557 * on the stack so that it will stop changing under the code.
558 */
559 pmdval = READ_ONCE(*pmd);
560 if (pmd_none(pmdval))
561 return no_page_table(vma, flags);
Olivier Deprez157378f2022-04-04 15:47:50 +0200562 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000563 page = follow_huge_pmd(mm, address, pmd, flags);
564 if (page)
565 return page;
566 return no_page_table(vma, flags);
567 }
568 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
569 page = follow_huge_pd(vma, address,
570 __hugepd(pmd_val(pmdval)), flags,
571 PMD_SHIFT);
572 if (page)
573 return page;
574 return no_page_table(vma, flags);
575 }
576retry:
577 if (!pmd_present(pmdval)) {
578 if (likely(!(flags & FOLL_MIGRATION)))
579 return no_page_table(vma, flags);
580 VM_BUG_ON(thp_migration_supported() &&
581 !is_pmd_migration_entry(pmdval));
582 if (is_pmd_migration_entry(pmdval))
583 pmd_migration_entry_wait(mm, pmd);
584 pmdval = READ_ONCE(*pmd);
585 /*
586 * MADV_DONTNEED may convert the pmd to null because
Olivier Deprez157378f2022-04-04 15:47:50 +0200587 * mmap_lock is held in read mode
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000588 */
589 if (pmd_none(pmdval))
590 return no_page_table(vma, flags);
591 goto retry;
592 }
593 if (pmd_devmap(pmdval)) {
594 ptl = pmd_lock(mm, pmd);
David Brazdil0f672f62019-12-10 10:32:29 +0000595 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000596 spin_unlock(ptl);
597 if (page)
598 return page;
599 }
600 if (likely(!pmd_trans_huge(pmdval)))
David Brazdil0f672f62019-12-10 10:32:29 +0000601 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000602
603 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
604 return no_page_table(vma, flags);
605
606retry_locked:
607 ptl = pmd_lock(mm, pmd);
608 if (unlikely(pmd_none(*pmd))) {
609 spin_unlock(ptl);
610 return no_page_table(vma, flags);
611 }
612 if (unlikely(!pmd_present(*pmd))) {
613 spin_unlock(ptl);
614 if (likely(!(flags & FOLL_MIGRATION)))
615 return no_page_table(vma, flags);
616 pmd_migration_entry_wait(mm, pmd);
617 goto retry_locked;
618 }
619 if (unlikely(!pmd_trans_huge(*pmd))) {
620 spin_unlock(ptl);
David Brazdil0f672f62019-12-10 10:32:29 +0000621 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000622 }
David Brazdil0f672f62019-12-10 10:32:29 +0000623 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000624 int ret;
625 page = pmd_page(*pmd);
626 if (is_huge_zero_page(page)) {
627 spin_unlock(ptl);
628 ret = 0;
629 split_huge_pmd(vma, pmd, address);
630 if (pmd_trans_unstable(pmd))
631 ret = -EBUSY;
David Brazdil0f672f62019-12-10 10:32:29 +0000632 } else if (flags & FOLL_SPLIT) {
633 if (unlikely(!try_get_page(page))) {
634 spin_unlock(ptl);
635 return ERR_PTR(-ENOMEM);
636 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000637 spin_unlock(ptl);
638 lock_page(page);
639 ret = split_huge_page(page);
640 unlock_page(page);
641 put_page(page);
642 if (pmd_none(*pmd))
643 return no_page_table(vma, flags);
David Brazdil0f672f62019-12-10 10:32:29 +0000644 } else { /* flags & FOLL_SPLIT_PMD */
645 spin_unlock(ptl);
646 split_huge_pmd(vma, pmd, address);
647 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000648 }
649
650 return ret ? ERR_PTR(ret) :
David Brazdil0f672f62019-12-10 10:32:29 +0000651 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000652 }
653 page = follow_trans_huge_pmd(vma, address, pmd, flags);
654 spin_unlock(ptl);
David Brazdil0f672f62019-12-10 10:32:29 +0000655 ctx->page_mask = HPAGE_PMD_NR - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000656 return page;
657}
658
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000659static struct page *follow_pud_mask(struct vm_area_struct *vma,
660 unsigned long address, p4d_t *p4dp,
David Brazdil0f672f62019-12-10 10:32:29 +0000661 unsigned int flags,
662 struct follow_page_context *ctx)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000663{
664 pud_t *pud;
665 spinlock_t *ptl;
666 struct page *page;
667 struct mm_struct *mm = vma->vm_mm;
668
669 pud = pud_offset(p4dp, address);
670 if (pud_none(*pud))
671 return no_page_table(vma, flags);
Olivier Deprez157378f2022-04-04 15:47:50 +0200672 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000673 page = follow_huge_pud(mm, address, pud, flags);
674 if (page)
675 return page;
676 return no_page_table(vma, flags);
677 }
678 if (is_hugepd(__hugepd(pud_val(*pud)))) {
679 page = follow_huge_pd(vma, address,
680 __hugepd(pud_val(*pud)), flags,
681 PUD_SHIFT);
682 if (page)
683 return page;
684 return no_page_table(vma, flags);
685 }
686 if (pud_devmap(*pud)) {
687 ptl = pud_lock(mm, pud);
David Brazdil0f672f62019-12-10 10:32:29 +0000688 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000689 spin_unlock(ptl);
690 if (page)
691 return page;
692 }
693 if (unlikely(pud_bad(*pud)))
694 return no_page_table(vma, flags);
695
David Brazdil0f672f62019-12-10 10:32:29 +0000696 return follow_pmd_mask(vma, address, pud, flags, ctx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000697}
698
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000699static struct page *follow_p4d_mask(struct vm_area_struct *vma,
700 unsigned long address, pgd_t *pgdp,
David Brazdil0f672f62019-12-10 10:32:29 +0000701 unsigned int flags,
702 struct follow_page_context *ctx)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000703{
704 p4d_t *p4d;
705 struct page *page;
706
707 p4d = p4d_offset(pgdp, address);
708 if (p4d_none(*p4d))
709 return no_page_table(vma, flags);
710 BUILD_BUG_ON(p4d_huge(*p4d));
711 if (unlikely(p4d_bad(*p4d)))
712 return no_page_table(vma, flags);
713
714 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
715 page = follow_huge_pd(vma, address,
716 __hugepd(p4d_val(*p4d)), flags,
717 P4D_SHIFT);
718 if (page)
719 return page;
720 return no_page_table(vma, flags);
721 }
David Brazdil0f672f62019-12-10 10:32:29 +0000722 return follow_pud_mask(vma, address, p4d, flags, ctx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000723}
724
725/**
726 * follow_page_mask - look up a page descriptor from a user-virtual address
727 * @vma: vm_area_struct mapping @address
728 * @address: virtual address to look up
729 * @flags: flags modifying lookup behaviour
David Brazdil0f672f62019-12-10 10:32:29 +0000730 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
731 * pointer to output page_mask
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000732 *
733 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
734 *
David Brazdil0f672f62019-12-10 10:32:29 +0000735 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
736 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
737 *
738 * On output, the @ctx->page_mask is set according to the size of the page.
739 *
740 * Return: the mapped (struct page *), %NULL if no mapping exists, or
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000741 * an error pointer if there is a mapping to something not represented
742 * by a page descriptor (see also vm_normal_page()).
743 */
David Brazdil0f672f62019-12-10 10:32:29 +0000744static struct page *follow_page_mask(struct vm_area_struct *vma,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000745 unsigned long address, unsigned int flags,
David Brazdil0f672f62019-12-10 10:32:29 +0000746 struct follow_page_context *ctx)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000747{
748 pgd_t *pgd;
749 struct page *page;
750 struct mm_struct *mm = vma->vm_mm;
751
David Brazdil0f672f62019-12-10 10:32:29 +0000752 ctx->page_mask = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000753
754 /* make this handle hugepd */
755 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
756 if (!IS_ERR(page)) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200757 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000758 return page;
759 }
760
761 pgd = pgd_offset(mm, address);
762
763 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
764 return no_page_table(vma, flags);
765
766 if (pgd_huge(*pgd)) {
767 page = follow_huge_pgd(mm, address, pgd, flags);
768 if (page)
769 return page;
770 return no_page_table(vma, flags);
771 }
772 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
773 page = follow_huge_pd(vma, address,
774 __hugepd(pgd_val(*pgd)), flags,
775 PGDIR_SHIFT);
776 if (page)
777 return page;
778 return no_page_table(vma, flags);
779 }
780
David Brazdil0f672f62019-12-10 10:32:29 +0000781 return follow_p4d_mask(vma, address, pgd, flags, ctx);
782}
783
784struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
785 unsigned int foll_flags)
786{
787 struct follow_page_context ctx = { NULL };
788 struct page *page;
789
790 page = follow_page_mask(vma, address, foll_flags, &ctx);
791 if (ctx.pgmap)
792 put_dev_pagemap(ctx.pgmap);
793 return page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000794}
795
796static int get_gate_page(struct mm_struct *mm, unsigned long address,
797 unsigned int gup_flags, struct vm_area_struct **vma,
798 struct page **page)
799{
800 pgd_t *pgd;
801 p4d_t *p4d;
802 pud_t *pud;
803 pmd_t *pmd;
804 pte_t *pte;
805 int ret = -EFAULT;
806
807 /* user gate pages are read-only */
808 if (gup_flags & FOLL_WRITE)
809 return -EFAULT;
810 if (address > TASK_SIZE)
811 pgd = pgd_offset_k(address);
812 else
813 pgd = pgd_offset_gate(mm, address);
David Brazdil0f672f62019-12-10 10:32:29 +0000814 if (pgd_none(*pgd))
815 return -EFAULT;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000816 p4d = p4d_offset(pgd, address);
David Brazdil0f672f62019-12-10 10:32:29 +0000817 if (p4d_none(*p4d))
818 return -EFAULT;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000819 pud = pud_offset(p4d, address);
David Brazdil0f672f62019-12-10 10:32:29 +0000820 if (pud_none(*pud))
821 return -EFAULT;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000822 pmd = pmd_offset(pud, address);
823 if (!pmd_present(*pmd))
824 return -EFAULT;
825 VM_BUG_ON(pmd_trans_huge(*pmd));
826 pte = pte_offset_map(pmd, address);
827 if (pte_none(*pte))
828 goto unmap;
829 *vma = get_gate_vma(mm);
830 if (!page)
831 goto out;
832 *page = vm_normal_page(*vma, address, *pte);
833 if (!*page) {
834 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
835 goto unmap;
836 *page = pte_page(*pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000837 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200838 if (unlikely(!try_grab_page(*page, gup_flags))) {
David Brazdil0f672f62019-12-10 10:32:29 +0000839 ret = -ENOMEM;
840 goto unmap;
841 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000842out:
843 ret = 0;
844unmap:
845 pte_unmap(pte);
846 return ret;
847}
848
849/*
Olivier Deprez157378f2022-04-04 15:47:50 +0200850 * mmap_lock must be held on entry. If @locked != NULL and *@flags
851 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
852 * is, *@locked will be set to 0 and -EBUSY returned.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000853 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200854static int faultin_page(struct vm_area_struct *vma,
855 unsigned long address, unsigned int *flags, int *locked)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000856{
857 unsigned int fault_flags = 0;
858 vm_fault_t ret;
859
860 /* mlock all present pages, but do not fault in new pages */
861 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
862 return -ENOENT;
863 if (*flags & FOLL_WRITE)
864 fault_flags |= FAULT_FLAG_WRITE;
865 if (*flags & FOLL_REMOTE)
866 fault_flags |= FAULT_FLAG_REMOTE;
Olivier Deprez157378f2022-04-04 15:47:50 +0200867 if (locked)
868 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000869 if (*flags & FOLL_NOWAIT)
870 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
871 if (*flags & FOLL_TRIED) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200872 /*
873 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
874 * can co-exist
875 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000876 fault_flags |= FAULT_FLAG_TRIED;
877 }
878
Olivier Deprez157378f2022-04-04 15:47:50 +0200879 ret = handle_mm_fault(vma, address, fault_flags, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000880 if (ret & VM_FAULT_ERROR) {
881 int err = vm_fault_to_errno(ret, *flags);
882
883 if (err)
884 return err;
885 BUG();
886 }
887
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000888 if (ret & VM_FAULT_RETRY) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200889 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
890 *locked = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000891 return -EBUSY;
892 }
893
894 /*
895 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
896 * necessary, even if maybe_mkwrite decided not to set pte_write. We
897 * can thus safely do subsequent page lookups as if they were reads.
898 * But only do so when looping for pte_write is futile: in some cases
899 * userspace may also be wanting to write to the gotten user page,
900 * which a read fault here might prevent (a readonly page might get
901 * reCOWed by userspace write).
902 */
903 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
904 *flags |= FOLL_COW;
905 return 0;
906}
907
908static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
909{
910 vm_flags_t vm_flags = vma->vm_flags;
911 int write = (gup_flags & FOLL_WRITE);
912 int foreign = (gup_flags & FOLL_REMOTE);
913
914 if (vm_flags & (VM_IO | VM_PFNMAP))
915 return -EFAULT;
916
917 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
918 return -EFAULT;
919
920 if (write) {
921 if (!(vm_flags & VM_WRITE)) {
922 if (!(gup_flags & FOLL_FORCE))
923 return -EFAULT;
924 /*
925 * We used to let the write,force case do COW in a
926 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
927 * set a breakpoint in a read-only mapping of an
928 * executable, without corrupting the file (yet only
929 * when that file had been opened for writing!).
930 * Anon pages in shared mappings are surprising: now
931 * just reject it.
932 */
933 if (!is_cow_mapping(vm_flags))
934 return -EFAULT;
935 }
936 } else if (!(vm_flags & VM_READ)) {
937 if (!(gup_flags & FOLL_FORCE))
938 return -EFAULT;
939 /*
940 * Is there actually any vma we can reach here which does not
941 * have VM_MAYREAD set?
942 */
943 if (!(vm_flags & VM_MAYREAD))
944 return -EFAULT;
945 }
946 /*
947 * gups are always data accesses, not instruction
948 * fetches, so execute=false here
949 */
950 if (!arch_vma_access_permitted(vma, write, false, foreign))
951 return -EFAULT;
952 return 0;
953}
954
955/**
956 * __get_user_pages() - pin user pages in memory
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000957 * @mm: mm_struct of target mm
958 * @start: starting user address
959 * @nr_pages: number of pages from start to pin
960 * @gup_flags: flags modifying pin behaviour
961 * @pages: array that receives pointers to the pages pinned.
962 * Should be at least nr_pages long. Or NULL, if caller
963 * only intends to ensure the pages are faulted in.
964 * @vmas: array of pointers to vmas corresponding to each page.
965 * Or NULL if the caller does not require them.
Olivier Deprez157378f2022-04-04 15:47:50 +0200966 * @locked: whether we're still with the mmap_lock held
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000967 *
Olivier Deprez157378f2022-04-04 15:47:50 +0200968 * Returns either number of pages pinned (which may be less than the
969 * number requested), or an error. Details about the return value:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000970 *
Olivier Deprez157378f2022-04-04 15:47:50 +0200971 * -- If nr_pages is 0, returns 0.
972 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
973 * -- If nr_pages is >0, and some pages were pinned, returns the number of
974 * pages pinned. Again, this may be less than nr_pages.
975 * -- 0 return value is possible when the fault would need to be retried.
976 *
977 * The caller is responsible for releasing returned @pages, via put_page().
978 *
979 * @vmas are valid only as long as mmap_lock is held.
980 *
981 * Must be called with mmap_lock held. It may be released. See below.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000982 *
983 * __get_user_pages walks a process's page tables and takes a reference to
984 * each struct page that each user address corresponds to at a given
985 * instant. That is, it takes the page that would be accessed if a user
986 * thread accesses the given user virtual address at that instant.
987 *
988 * This does not guarantee that the page exists in the user mappings when
989 * __get_user_pages returns, and there may even be a completely different
990 * page there in some cases (eg. if mmapped pagecache has been invalidated
991 * and subsequently re faulted). However it does guarantee that the page
992 * won't be freed completely. And mostly callers simply care that the page
993 * contains data that was valid *at some point in time*. Typically, an IO
994 * or similar operation cannot guarantee anything stronger anyway because
995 * locks can't be held over the syscall boundary.
996 *
997 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
998 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
999 * appropriate) must be called after the page is finished with, and
1000 * before put_page is called.
1001 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001002 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1003 * released by an up_read(). That can happen if @gup_flags does not
1004 * have FOLL_NOWAIT.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001005 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001006 * A caller using such a combination of @locked and @gup_flags
1007 * must therefore hold the mmap_lock for reading only, and recognize
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001008 * when it's been released. Otherwise, it must be held for either
1009 * reading or writing and will not be released.
1010 *
1011 * In most cases, get_user_pages or get_user_pages_fast should be used
1012 * instead of __get_user_pages. __get_user_pages should be used only if
1013 * you need some special @gup_flags.
1014 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001015static long __get_user_pages(struct mm_struct *mm,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001016 unsigned long start, unsigned long nr_pages,
1017 unsigned int gup_flags, struct page **pages,
Olivier Deprez157378f2022-04-04 15:47:50 +02001018 struct vm_area_struct **vmas, int *locked)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001019{
David Brazdil0f672f62019-12-10 10:32:29 +00001020 long ret = 0, i = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001021 struct vm_area_struct *vma = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00001022 struct follow_page_context ctx = { NULL };
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001023
1024 if (!nr_pages)
1025 return 0;
1026
David Brazdil0f672f62019-12-10 10:32:29 +00001027 start = untagged_addr(start);
1028
Olivier Deprez157378f2022-04-04 15:47:50 +02001029 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001030
1031 /*
1032 * If FOLL_FORCE is set then do not force a full fault as the hinting
1033 * fault information is unrelated to the reference behaviour of a task
1034 * using the address space
1035 */
1036 if (!(gup_flags & FOLL_FORCE))
1037 gup_flags |= FOLL_NUMA;
1038
1039 do {
1040 struct page *page;
1041 unsigned int foll_flags = gup_flags;
1042 unsigned int page_increm;
1043
1044 /* first iteration or cross vma bound */
1045 if (!vma || start >= vma->vm_end) {
1046 vma = find_extend_vma(mm, start);
1047 if (!vma && in_gate_area(mm, start)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001048 ret = get_gate_page(mm, start & PAGE_MASK,
1049 gup_flags, &vma,
1050 pages ? &pages[i] : NULL);
1051 if (ret)
David Brazdil0f672f62019-12-10 10:32:29 +00001052 goto out;
1053 ctx.page_mask = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001054 goto next_page;
1055 }
1056
David Brazdil0f672f62019-12-10 10:32:29 +00001057 if (!vma || check_vma_flags(vma, gup_flags)) {
1058 ret = -EFAULT;
1059 goto out;
1060 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001061 if (is_vm_hugetlb_page(vma)) {
1062 i = follow_hugetlb_page(mm, vma, pages, vmas,
1063 &start, &nr_pages, i,
Olivier Deprez157378f2022-04-04 15:47:50 +02001064 gup_flags, locked);
1065 if (locked && *locked == 0) {
1066 /*
1067 * We've got a VM_FAULT_RETRY
1068 * and we've lost mmap_lock.
1069 * We must stop here.
1070 */
1071 BUG_ON(gup_flags & FOLL_NOWAIT);
1072 BUG_ON(ret != 0);
1073 goto out;
1074 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001075 continue;
1076 }
1077 }
1078retry:
1079 /*
1080 * If we have a pending SIGKILL, don't keep faulting pages and
1081 * potentially allocating memory.
1082 */
David Brazdil0f672f62019-12-10 10:32:29 +00001083 if (fatal_signal_pending(current)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001084 ret = -EINTR;
David Brazdil0f672f62019-12-10 10:32:29 +00001085 goto out;
1086 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001087 cond_resched();
David Brazdil0f672f62019-12-10 10:32:29 +00001088
1089 page = follow_page_mask(vma, start, foll_flags, &ctx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001090 if (!page) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001091 ret = faultin_page(vma, start, &foll_flags, locked);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001092 switch (ret) {
1093 case 0:
1094 goto retry;
David Brazdil0f672f62019-12-10 10:32:29 +00001095 case -EBUSY:
1096 ret = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02001097 fallthrough;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001098 case -EFAULT:
1099 case -ENOMEM:
1100 case -EHWPOISON:
David Brazdil0f672f62019-12-10 10:32:29 +00001101 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001102 case -ENOENT:
1103 goto next_page;
1104 }
1105 BUG();
1106 } else if (PTR_ERR(page) == -EEXIST) {
1107 /*
1108 * Proper page table entry exists, but no corresponding
1109 * struct page.
1110 */
1111 goto next_page;
1112 } else if (IS_ERR(page)) {
David Brazdil0f672f62019-12-10 10:32:29 +00001113 ret = PTR_ERR(page);
1114 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001115 }
1116 if (pages) {
1117 pages[i] = page;
1118 flush_anon_page(vma, page, start);
1119 flush_dcache_page(page);
David Brazdil0f672f62019-12-10 10:32:29 +00001120 ctx.page_mask = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001121 }
1122next_page:
1123 if (vmas) {
1124 vmas[i] = vma;
David Brazdil0f672f62019-12-10 10:32:29 +00001125 ctx.page_mask = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001126 }
David Brazdil0f672f62019-12-10 10:32:29 +00001127 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001128 if (page_increm > nr_pages)
1129 page_increm = nr_pages;
1130 i += page_increm;
1131 start += page_increm * PAGE_SIZE;
1132 nr_pages -= page_increm;
1133 } while (nr_pages);
David Brazdil0f672f62019-12-10 10:32:29 +00001134out:
1135 if (ctx.pgmap)
1136 put_dev_pagemap(ctx.pgmap);
1137 return i ? i : ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001138}
1139
1140static bool vma_permits_fault(struct vm_area_struct *vma,
1141 unsigned int fault_flags)
1142{
1143 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1144 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1145 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1146
1147 if (!(vm_flags & vma->vm_flags))
1148 return false;
1149
1150 /*
1151 * The architecture might have a hardware protection
1152 * mechanism other than read/write that can deny access.
1153 *
1154 * gup always represents data access, not instruction
1155 * fetches, so execute=false here:
1156 */
1157 if (!arch_vma_access_permitted(vma, write, false, foreign))
1158 return false;
1159
1160 return true;
1161}
1162
Olivier Deprez157378f2022-04-04 15:47:50 +02001163/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001164 * fixup_user_fault() - manually resolve a user page fault
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001165 * @mm: mm_struct of target mm
1166 * @address: user address
1167 * @fault_flags:flags to pass down to handle_mm_fault()
Olivier Deprez157378f2022-04-04 15:47:50 +02001168 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1169 * does not allow retry. If NULL, the caller must guarantee
1170 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001171 *
1172 * This is meant to be called in the specific scenario where for locking reasons
1173 * we try to access user memory in atomic context (within a pagefault_disable()
1174 * section), this returns -EFAULT, and we want to resolve the user fault before
1175 * trying again.
1176 *
1177 * Typically this is meant to be used by the futex code.
1178 *
1179 * The main difference with get_user_pages() is that this function will
1180 * unconditionally call handle_mm_fault() which will in turn perform all the
1181 * necessary SW fixup of the dirty and young bits in the PTE, while
1182 * get_user_pages() only guarantees to update these in the struct page.
1183 *
1184 * This is important for some architectures where those bits also gate the
1185 * access permission to the page because they are maintained in software. On
1186 * such architectures, gup() will not be enough to make a subsequent access
1187 * succeed.
1188 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001189 * This function will not return with an unlocked mmap_lock. So it has not the
1190 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001191 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001192int fixup_user_fault(struct mm_struct *mm,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001193 unsigned long address, unsigned int fault_flags,
1194 bool *unlocked)
1195{
1196 struct vm_area_struct *vma;
1197 vm_fault_t ret, major = 0;
1198
David Brazdil0f672f62019-12-10 10:32:29 +00001199 address = untagged_addr(address);
1200
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001201 if (unlocked)
Olivier Deprez157378f2022-04-04 15:47:50 +02001202 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001203
1204retry:
1205 vma = find_extend_vma(mm, address);
1206 if (!vma || address < vma->vm_start)
1207 return -EFAULT;
1208
1209 if (!vma_permits_fault(vma, fault_flags))
1210 return -EFAULT;
1211
Olivier Deprez157378f2022-04-04 15:47:50 +02001212 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1213 fatal_signal_pending(current))
1214 return -EINTR;
1215
1216 ret = handle_mm_fault(vma, address, fault_flags, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001217 major |= ret & VM_FAULT_MAJOR;
1218 if (ret & VM_FAULT_ERROR) {
1219 int err = vm_fault_to_errno(ret, 0);
1220
1221 if (err)
1222 return err;
1223 BUG();
1224 }
1225
1226 if (ret & VM_FAULT_RETRY) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001227 mmap_read_lock(mm);
1228 *unlocked = true;
1229 fault_flags |= FAULT_FLAG_TRIED;
1230 goto retry;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001231 }
1232
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001233 return 0;
1234}
1235EXPORT_SYMBOL_GPL(fixup_user_fault);
1236
Olivier Deprez157378f2022-04-04 15:47:50 +02001237/*
1238 * Please note that this function, unlike __get_user_pages will not
1239 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1240 */
1241static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001242 unsigned long start,
1243 unsigned long nr_pages,
1244 struct page **pages,
1245 struct vm_area_struct **vmas,
1246 int *locked,
1247 unsigned int flags)
1248{
1249 long ret, pages_done;
1250 bool lock_dropped;
1251
1252 if (locked) {
1253 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1254 BUG_ON(vmas);
1255 /* check caller initialized locked */
1256 BUG_ON(*locked != 1);
1257 }
1258
Olivier Deprez157378f2022-04-04 15:47:50 +02001259 if (flags & FOLL_PIN)
1260 atomic_set(&mm->has_pinned, 1);
1261
1262 /*
1263 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1264 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1265 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1266 * for FOLL_GET, not for the newer FOLL_PIN.
1267 *
1268 * FOLL_PIN always expects pages to be non-null, but no need to assert
1269 * that here, as any failures will be obvious enough.
1270 */
1271 if (pages && !(flags & FOLL_PIN))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001272 flags |= FOLL_GET;
1273
1274 pages_done = 0;
1275 lock_dropped = false;
1276 for (;;) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001277 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001278 vmas, locked);
1279 if (!locked)
1280 /* VM_FAULT_RETRY couldn't trigger, bypass */
1281 return ret;
1282
1283 /* VM_FAULT_RETRY cannot return errors */
1284 if (!*locked) {
1285 BUG_ON(ret < 0);
1286 BUG_ON(ret >= nr_pages);
1287 }
1288
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001289 if (ret > 0) {
1290 nr_pages -= ret;
1291 pages_done += ret;
1292 if (!nr_pages)
1293 break;
1294 }
1295 if (*locked) {
1296 /*
1297 * VM_FAULT_RETRY didn't trigger or it was a
1298 * FOLL_NOWAIT.
1299 */
1300 if (!pages_done)
1301 pages_done = ret;
1302 break;
1303 }
David Brazdil0f672f62019-12-10 10:32:29 +00001304 /*
1305 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1306 * For the prefault case (!pages) we only update counts.
1307 */
1308 if (likely(pages))
1309 pages += ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001310 start += ret << PAGE_SHIFT;
Olivier Deprez157378f2022-04-04 15:47:50 +02001311 lock_dropped = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001312
Olivier Deprez157378f2022-04-04 15:47:50 +02001313retry:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001314 /*
1315 * Repeat on the address that fired VM_FAULT_RETRY
Olivier Deprez157378f2022-04-04 15:47:50 +02001316 * with both FAULT_FLAG_ALLOW_RETRY and
1317 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1318 * by fatal signals, so we need to check it before we
1319 * start trying again otherwise it can loop forever.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001320 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001321
1322 if (fatal_signal_pending(current)) {
1323 if (!pages_done)
1324 pages_done = -EINTR;
1325 break;
1326 }
1327
1328 ret = mmap_read_lock_killable(mm);
1329 if (ret) {
1330 BUG_ON(ret > 0);
1331 if (!pages_done)
1332 pages_done = ret;
1333 break;
1334 }
1335
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001336 *locked = 1;
Olivier Deprez157378f2022-04-04 15:47:50 +02001337 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1338 pages, NULL, locked);
1339 if (!*locked) {
1340 /* Continue to retry until we succeeded */
1341 BUG_ON(ret != 0);
1342 goto retry;
1343 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001344 if (ret != 1) {
1345 BUG_ON(ret > 1);
1346 if (!pages_done)
1347 pages_done = ret;
1348 break;
1349 }
1350 nr_pages--;
1351 pages_done++;
1352 if (!nr_pages)
1353 break;
David Brazdil0f672f62019-12-10 10:32:29 +00001354 if (likely(pages))
1355 pages++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001356 start += PAGE_SIZE;
1357 }
1358 if (lock_dropped && *locked) {
1359 /*
1360 * We must let the caller know we temporarily dropped the lock
1361 * and so the critical section protected by it was lost.
1362 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001363 mmap_read_unlock(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001364 *locked = 0;
1365 }
1366 return pages_done;
1367}
1368
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001369/**
1370 * populate_vma_page_range() - populate a range of pages in the vma.
1371 * @vma: target vma
1372 * @start: start address
1373 * @end: end address
Olivier Deprez157378f2022-04-04 15:47:50 +02001374 * @locked: whether the mmap_lock is still held
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001375 *
1376 * This takes care of mlocking the pages too if VM_LOCKED is set.
1377 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001378 * Return either number of pages pinned in the vma, or a negative error
1379 * code on error.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001380 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001381 * vma->vm_mm->mmap_lock must be held.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001382 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001383 * If @locked is NULL, it may be held for read or write and will
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001384 * be unperturbed.
1385 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001386 * If @locked is non-NULL, it must held for read only and may be
1387 * released. If it's released, *@locked will be set to 0.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001388 */
1389long populate_vma_page_range(struct vm_area_struct *vma,
Olivier Deprez157378f2022-04-04 15:47:50 +02001390 unsigned long start, unsigned long end, int *locked)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001391{
1392 struct mm_struct *mm = vma->vm_mm;
1393 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1394 int gup_flags;
1395
1396 VM_BUG_ON(start & ~PAGE_MASK);
1397 VM_BUG_ON(end & ~PAGE_MASK);
1398 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1399 VM_BUG_ON_VMA(end > vma->vm_end, vma);
Olivier Deprez157378f2022-04-04 15:47:50 +02001400 mmap_assert_locked(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001401
1402 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1403 if (vma->vm_flags & VM_LOCKONFAULT)
1404 gup_flags &= ~FOLL_POPULATE;
1405 /*
1406 * We want to touch writable mappings with a write fault in order
1407 * to break COW, except for shared mappings because these don't COW
1408 * and we would not want to dirty them for nothing.
1409 */
1410 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1411 gup_flags |= FOLL_WRITE;
1412
1413 /*
1414 * We want mlock to succeed for regions that have any permissions
1415 * other than PROT_NONE.
1416 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001417 if (vma_is_accessible(vma))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001418 gup_flags |= FOLL_FORCE;
1419
1420 /*
1421 * We made sure addr is within a VMA, so the following will
1422 * not result in a stack expansion that recurses back here.
1423 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001424 return __get_user_pages(mm, start, nr_pages, gup_flags,
1425 NULL, NULL, locked);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001426}
1427
1428/*
1429 * __mm_populate - populate and/or mlock pages within a range of address space.
1430 *
1431 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1432 * flags. VMAs must be already marked with the desired vm_flags, and
Olivier Deprez157378f2022-04-04 15:47:50 +02001433 * mmap_lock must not be held.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001434 */
1435int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1436{
1437 struct mm_struct *mm = current->mm;
1438 unsigned long end, nstart, nend;
1439 struct vm_area_struct *vma = NULL;
1440 int locked = 0;
1441 long ret = 0;
1442
1443 end = start + len;
1444
1445 for (nstart = start; nstart < end; nstart = nend) {
1446 /*
1447 * We want to fault in pages for [nstart; end) address range.
1448 * Find first corresponding VMA.
1449 */
1450 if (!locked) {
1451 locked = 1;
Olivier Deprez157378f2022-04-04 15:47:50 +02001452 mmap_read_lock(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001453 vma = find_vma(mm, nstart);
1454 } else if (nstart >= vma->vm_end)
1455 vma = vma->vm_next;
1456 if (!vma || vma->vm_start >= end)
1457 break;
1458 /*
1459 * Set [nstart; nend) to intersection of desired address
1460 * range with the first VMA. Also, skip undesirable VMA types.
1461 */
1462 nend = min(end, vma->vm_end);
1463 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1464 continue;
1465 if (nstart < vma->vm_start)
1466 nstart = vma->vm_start;
1467 /*
1468 * Now fault in a range of pages. populate_vma_page_range()
1469 * double checks the vma flags, so that it won't mlock pages
1470 * if the vma was already munlocked.
1471 */
1472 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1473 if (ret < 0) {
1474 if (ignore_errors) {
1475 ret = 0;
1476 continue; /* continue at next VMA */
1477 }
1478 break;
1479 }
1480 nend = nstart + ret * PAGE_SIZE;
1481 ret = 0;
1482 }
1483 if (locked)
Olivier Deprez157378f2022-04-04 15:47:50 +02001484 mmap_read_unlock(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001485 return ret; /* 0 or negative error code */
1486}
David Brazdil0f672f62019-12-10 10:32:29 +00001487#else /* CONFIG_MMU */
Olivier Deprez157378f2022-04-04 15:47:50 +02001488static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
David Brazdil0f672f62019-12-10 10:32:29 +00001489 unsigned long nr_pages, struct page **pages,
1490 struct vm_area_struct **vmas, int *locked,
1491 unsigned int foll_flags)
1492{
1493 struct vm_area_struct *vma;
1494 unsigned long vm_flags;
1495 int i;
1496
1497 /* calculate required read or write permissions.
1498 * If FOLL_FORCE is set, we only require the "MAY" flags.
1499 */
1500 vm_flags = (foll_flags & FOLL_WRITE) ?
1501 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1502 vm_flags &= (foll_flags & FOLL_FORCE) ?
1503 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1504
1505 for (i = 0; i < nr_pages; i++) {
1506 vma = find_vma(mm, start);
1507 if (!vma)
1508 goto finish_or_fault;
1509
1510 /* protect what we can, including chardevs */
1511 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1512 !(vm_flags & vma->vm_flags))
1513 goto finish_or_fault;
1514
1515 if (pages) {
1516 pages[i] = virt_to_page(start);
1517 if (pages[i])
1518 get_page(pages[i]);
1519 }
1520 if (vmas)
1521 vmas[i] = vma;
1522 start = (start + PAGE_SIZE) & PAGE_MASK;
1523 }
1524
1525 return i;
1526
1527finish_or_fault:
1528 return i ? : -EFAULT;
1529}
1530#endif /* !CONFIG_MMU */
1531
Olivier Deprez157378f2022-04-04 15:47:50 +02001532/**
1533 * get_dump_page() - pin user page in memory while writing it to core dump
1534 * @addr: user address
1535 *
1536 * Returns struct page pointer of user page pinned for dump,
1537 * to be freed afterwards by put_page().
1538 *
1539 * Returns NULL on any kind of failure - a hole must then be inserted into
1540 * the corefile, to preserve alignment with its headers; and also returns
1541 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1542 * allowing a hole to be left in the corefile to save diskspace.
1543 *
1544 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1545 */
1546#ifdef CONFIG_ELF_CORE
1547struct page *get_dump_page(unsigned long addr)
1548{
1549 struct mm_struct *mm = current->mm;
1550 struct page *page;
1551 int locked = 1;
1552 int ret;
1553
1554 if (mmap_read_lock_killable(mm))
1555 return NULL;
1556 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1557 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1558 if (locked)
1559 mmap_read_unlock(mm);
1560 return (ret == 1) ? page : NULL;
1561}
1562#endif /* CONFIG_ELF_CORE */
1563
David Brazdil0f672f62019-12-10 10:32:29 +00001564#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1565static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1566{
1567 long i;
1568 struct vm_area_struct *vma_prev = NULL;
1569
1570 for (i = 0; i < nr_pages; i++) {
1571 struct vm_area_struct *vma = vmas[i];
1572
1573 if (vma == vma_prev)
1574 continue;
1575
1576 vma_prev = vma;
1577
1578 if (vma_is_fsdax(vma))
1579 return true;
1580 }
1581 return false;
1582}
1583
1584#ifdef CONFIG_CMA
Olivier Deprez157378f2022-04-04 15:47:50 +02001585static long check_and_migrate_cma_pages(struct mm_struct *mm,
David Brazdil0f672f62019-12-10 10:32:29 +00001586 unsigned long start,
1587 unsigned long nr_pages,
1588 struct page **pages,
1589 struct vm_area_struct **vmas,
1590 unsigned int gup_flags)
1591{
Olivier Deprez157378f2022-04-04 15:47:50 +02001592 unsigned long i, isolation_error_count;
1593 bool drain_allow;
David Brazdil0f672f62019-12-10 10:32:29 +00001594 LIST_HEAD(cma_page_list);
Olivier Deprez157378f2022-04-04 15:47:50 +02001595 long ret = nr_pages;
1596 struct page *prev_head, *head;
1597 struct migration_target_control mtc = {
1598 .nid = NUMA_NO_NODE,
1599 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1600 };
David Brazdil0f672f62019-12-10 10:32:29 +00001601
1602check_again:
Olivier Deprez157378f2022-04-04 15:47:50 +02001603 prev_head = NULL;
1604 isolation_error_count = 0;
1605 drain_allow = true;
1606 for (i = 0; i < nr_pages; i++) {
1607 head = compound_head(pages[i]);
1608 if (head == prev_head)
1609 continue;
1610 prev_head = head;
David Brazdil0f672f62019-12-10 10:32:29 +00001611 /*
1612 * If we get a page from the CMA zone, since we are going to
1613 * be pinning these entries, we might as well move them out
1614 * of the CMA zone if possible.
1615 */
1616 if (is_migrate_cma_page(head)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001617 if (PageHuge(head)) {
1618 if (!isolate_huge_page(head, &cma_page_list))
1619 isolation_error_count++;
1620 } else {
David Brazdil0f672f62019-12-10 10:32:29 +00001621 if (!PageLRU(head) && drain_allow) {
1622 lru_add_drain_all();
1623 drain_allow = false;
1624 }
1625
Olivier Deprez157378f2022-04-04 15:47:50 +02001626 if (isolate_lru_page(head)) {
1627 isolation_error_count++;
1628 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00001629 }
Olivier Deprez157378f2022-04-04 15:47:50 +02001630 list_add_tail(&head->lru, &cma_page_list);
1631 mod_node_page_state(page_pgdat(head),
1632 NR_ISOLATED_ANON +
1633 page_is_file_lru(head),
1634 thp_nr_pages(head));
David Brazdil0f672f62019-12-10 10:32:29 +00001635 }
1636 }
David Brazdil0f672f62019-12-10 10:32:29 +00001637 }
1638
Olivier Deprez157378f2022-04-04 15:47:50 +02001639 /*
1640 * If list is empty, and no isolation errors, means that all pages are
1641 * in the correct zone.
1642 */
1643 if (list_empty(&cma_page_list) && !isolation_error_count)
1644 return ret;
1645
David Brazdil0f672f62019-12-10 10:32:29 +00001646 if (!list_empty(&cma_page_list)) {
1647 /*
1648 * drop the above get_user_pages reference.
1649 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001650 if (gup_flags & FOLL_PIN)
1651 unpin_user_pages(pages, nr_pages);
1652 else
1653 for (i = 0; i < nr_pages; i++)
1654 put_page(pages[i]);
David Brazdil0f672f62019-12-10 10:32:29 +00001655
Olivier Deprez157378f2022-04-04 15:47:50 +02001656 ret = migrate_pages(&cma_page_list, alloc_migration_target,
1657 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1658 MR_CONTIG_RANGE);
1659 if (ret) {
David Brazdil0f672f62019-12-10 10:32:29 +00001660 if (!list_empty(&cma_page_list))
1661 putback_movable_pages(&cma_page_list);
Olivier Deprez157378f2022-04-04 15:47:50 +02001662 return ret > 0 ? -ENOMEM : ret;
David Brazdil0f672f62019-12-10 10:32:29 +00001663 }
David Brazdil0f672f62019-12-10 10:32:29 +00001664
Olivier Deprez157378f2022-04-04 15:47:50 +02001665 /* We unpinned pages before migration, pin them again */
1666 ret = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1667 NULL, gup_flags);
1668 if (ret <= 0)
1669 return ret;
1670 nr_pages = ret;
David Brazdil0f672f62019-12-10 10:32:29 +00001671 }
1672
Olivier Deprez157378f2022-04-04 15:47:50 +02001673 /*
1674 * check again because pages were unpinned, and we also might have
1675 * had isolation errors and need more pages to migrate.
1676 */
1677 goto check_again;
David Brazdil0f672f62019-12-10 10:32:29 +00001678}
1679#else
Olivier Deprez157378f2022-04-04 15:47:50 +02001680static long check_and_migrate_cma_pages(struct mm_struct *mm,
David Brazdil0f672f62019-12-10 10:32:29 +00001681 unsigned long start,
1682 unsigned long nr_pages,
1683 struct page **pages,
1684 struct vm_area_struct **vmas,
1685 unsigned int gup_flags)
1686{
1687 return nr_pages;
1688}
1689#endif /* CONFIG_CMA */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001690
1691/*
David Brazdil0f672f62019-12-10 10:32:29 +00001692 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1693 * allows us to process the FOLL_LONGTERM flag.
1694 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001695static long __gup_longterm_locked(struct mm_struct *mm,
David Brazdil0f672f62019-12-10 10:32:29 +00001696 unsigned long start,
1697 unsigned long nr_pages,
1698 struct page **pages,
1699 struct vm_area_struct **vmas,
1700 unsigned int gup_flags)
1701{
1702 struct vm_area_struct **vmas_tmp = vmas;
1703 unsigned long flags = 0;
1704 long rc, i;
1705
1706 if (gup_flags & FOLL_LONGTERM) {
1707 if (!pages)
1708 return -EINVAL;
1709
1710 if (!vmas_tmp) {
1711 vmas_tmp = kcalloc(nr_pages,
1712 sizeof(struct vm_area_struct *),
1713 GFP_KERNEL);
1714 if (!vmas_tmp)
1715 return -ENOMEM;
1716 }
1717 flags = memalloc_nocma_save();
1718 }
1719
Olivier Deprez157378f2022-04-04 15:47:50 +02001720 rc = __get_user_pages_locked(mm, start, nr_pages, pages,
David Brazdil0f672f62019-12-10 10:32:29 +00001721 vmas_tmp, NULL, gup_flags);
1722
1723 if (gup_flags & FOLL_LONGTERM) {
David Brazdil0f672f62019-12-10 10:32:29 +00001724 if (rc < 0)
1725 goto out;
1726
1727 if (check_dax_vmas(vmas_tmp, rc)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001728 if (gup_flags & FOLL_PIN)
1729 unpin_user_pages(pages, rc);
1730 else
1731 for (i = 0; i < rc; i++)
1732 put_page(pages[i]);
David Brazdil0f672f62019-12-10 10:32:29 +00001733 rc = -EOPNOTSUPP;
1734 goto out;
1735 }
1736
Olivier Deprez157378f2022-04-04 15:47:50 +02001737 rc = check_and_migrate_cma_pages(mm, start, rc, pages,
David Brazdil0f672f62019-12-10 10:32:29 +00001738 vmas_tmp, gup_flags);
Olivier Deprez157378f2022-04-04 15:47:50 +02001739out:
1740 memalloc_nocma_restore(flags);
David Brazdil0f672f62019-12-10 10:32:29 +00001741 }
1742
David Brazdil0f672f62019-12-10 10:32:29 +00001743 if (vmas_tmp != vmas)
1744 kfree(vmas_tmp);
1745 return rc;
1746}
1747#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
Olivier Deprez157378f2022-04-04 15:47:50 +02001748static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
David Brazdil0f672f62019-12-10 10:32:29 +00001749 unsigned long start,
1750 unsigned long nr_pages,
1751 struct page **pages,
1752 struct vm_area_struct **vmas,
1753 unsigned int flags)
1754{
Olivier Deprez157378f2022-04-04 15:47:50 +02001755 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
David Brazdil0f672f62019-12-10 10:32:29 +00001756 NULL, flags);
1757}
1758#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1759
Olivier Deprez157378f2022-04-04 15:47:50 +02001760static bool is_valid_gup_flags(unsigned int gup_flags)
1761{
1762 /*
1763 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1764 * never directly by the caller, so enforce that with an assertion:
1765 */
1766 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1767 return false;
1768 /*
1769 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1770 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1771 * FOLL_PIN.
1772 */
1773 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1774 return false;
1775
1776 return true;
1777}
1778
1779#ifdef CONFIG_MMU
1780static long __get_user_pages_remote(struct mm_struct *mm,
1781 unsigned long start, unsigned long nr_pages,
1782 unsigned int gup_flags, struct page **pages,
1783 struct vm_area_struct **vmas, int *locked)
1784{
1785 /*
1786 * Parts of FOLL_LONGTERM behavior are incompatible with
1787 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1788 * vmas. However, this only comes up if locked is set, and there are
1789 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1790 * allow what we can.
1791 */
1792 if (gup_flags & FOLL_LONGTERM) {
1793 if (WARN_ON_ONCE(locked))
1794 return -EINVAL;
1795 /*
1796 * This will check the vmas (even if our vmas arg is NULL)
1797 * and return -ENOTSUPP if DAX isn't allowed in this case:
1798 */
1799 return __gup_longterm_locked(mm, start, nr_pages, pages,
1800 vmas, gup_flags | FOLL_TOUCH |
1801 FOLL_REMOTE);
1802 }
1803
1804 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1805 locked,
1806 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1807}
1808
1809/**
1810 * get_user_pages_remote() - pin user pages in memory
1811 * @mm: mm_struct of target mm
1812 * @start: starting user address
1813 * @nr_pages: number of pages from start to pin
1814 * @gup_flags: flags modifying lookup behaviour
1815 * @pages: array that receives pointers to the pages pinned.
1816 * Should be at least nr_pages long. Or NULL, if caller
1817 * only intends to ensure the pages are faulted in.
1818 * @vmas: array of pointers to vmas corresponding to each page.
1819 * Or NULL if the caller does not require them.
1820 * @locked: pointer to lock flag indicating whether lock is held and
1821 * subsequently whether VM_FAULT_RETRY functionality can be
1822 * utilised. Lock must initially be held.
1823 *
1824 * Returns either number of pages pinned (which may be less than the
1825 * number requested), or an error. Details about the return value:
1826 *
1827 * -- If nr_pages is 0, returns 0.
1828 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1829 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1830 * pages pinned. Again, this may be less than nr_pages.
1831 *
1832 * The caller is responsible for releasing returned @pages, via put_page().
1833 *
1834 * @vmas are valid only as long as mmap_lock is held.
1835 *
1836 * Must be called with mmap_lock held for read or write.
1837 *
1838 * get_user_pages_remote walks a process's page tables and takes a reference
1839 * to each struct page that each user address corresponds to at a given
1840 * instant. That is, it takes the page that would be accessed if a user
1841 * thread accesses the given user virtual address at that instant.
1842 *
1843 * This does not guarantee that the page exists in the user mappings when
1844 * get_user_pages_remote returns, and there may even be a completely different
1845 * page there in some cases (eg. if mmapped pagecache has been invalidated
1846 * and subsequently re faulted). However it does guarantee that the page
1847 * won't be freed completely. And mostly callers simply care that the page
1848 * contains data that was valid *at some point in time*. Typically, an IO
1849 * or similar operation cannot guarantee anything stronger anyway because
1850 * locks can't be held over the syscall boundary.
1851 *
1852 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1853 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1854 * be called after the page is finished with, and before put_page is called.
1855 *
1856 * get_user_pages_remote is typically used for fewer-copy IO operations,
1857 * to get a handle on the memory by some means other than accesses
1858 * via the user virtual addresses. The pages may be submitted for
1859 * DMA to devices or accessed via their kernel linear mapping (via the
1860 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1861 *
1862 * See also get_user_pages_fast, for performance critical applications.
1863 *
1864 * get_user_pages_remote should be phased out in favor of
1865 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1866 * should use get_user_pages_remote because it cannot pass
1867 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1868 */
1869long get_user_pages_remote(struct mm_struct *mm,
1870 unsigned long start, unsigned long nr_pages,
1871 unsigned int gup_flags, struct page **pages,
1872 struct vm_area_struct **vmas, int *locked)
1873{
1874 if (!is_valid_gup_flags(gup_flags))
1875 return -EINVAL;
1876
1877 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1878 pages, vmas, locked);
1879}
1880EXPORT_SYMBOL(get_user_pages_remote);
1881
1882#else /* CONFIG_MMU */
1883long get_user_pages_remote(struct mm_struct *mm,
1884 unsigned long start, unsigned long nr_pages,
1885 unsigned int gup_flags, struct page **pages,
1886 struct vm_area_struct **vmas, int *locked)
1887{
1888 return 0;
1889}
1890
1891static long __get_user_pages_remote(struct mm_struct *mm,
1892 unsigned long start, unsigned long nr_pages,
1893 unsigned int gup_flags, struct page **pages,
1894 struct vm_area_struct **vmas, int *locked)
1895{
1896 return 0;
1897}
1898#endif /* !CONFIG_MMU */
1899
1900/**
1901 * get_user_pages() - pin user pages in memory
1902 * @start: starting user address
1903 * @nr_pages: number of pages from start to pin
1904 * @gup_flags: flags modifying lookup behaviour
1905 * @pages: array that receives pointers to the pages pinned.
1906 * Should be at least nr_pages long. Or NULL, if caller
1907 * only intends to ensure the pages are faulted in.
1908 * @vmas: array of pointers to vmas corresponding to each page.
1909 * Or NULL if the caller does not require them.
1910 *
1911 * This is the same as get_user_pages_remote(), just with a less-flexible
1912 * calling convention where we assume that the mm being operated on belongs to
1913 * the current task, and doesn't allow passing of a locked parameter. We also
1914 * obviously don't pass FOLL_REMOTE in here.
David Brazdil0f672f62019-12-10 10:32:29 +00001915 */
1916long get_user_pages(unsigned long start, unsigned long nr_pages,
1917 unsigned int gup_flags, struct page **pages,
1918 struct vm_area_struct **vmas)
1919{
Olivier Deprez157378f2022-04-04 15:47:50 +02001920 if (!is_valid_gup_flags(gup_flags))
1921 return -EINVAL;
1922
1923 return __gup_longterm_locked(current->mm, start, nr_pages,
David Brazdil0f672f62019-12-10 10:32:29 +00001924 pages, vmas, gup_flags | FOLL_TOUCH);
1925}
1926EXPORT_SYMBOL(get_user_pages);
1927
Olivier Deprez157378f2022-04-04 15:47:50 +02001928/**
David Brazdil0f672f62019-12-10 10:32:29 +00001929 * get_user_pages_locked() is suitable to replace the form:
1930 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001931 * mmap_read_lock(mm);
David Brazdil0f672f62019-12-10 10:32:29 +00001932 * do_something()
Olivier Deprez157378f2022-04-04 15:47:50 +02001933 * get_user_pages(mm, ..., pages, NULL);
1934 * mmap_read_unlock(mm);
David Brazdil0f672f62019-12-10 10:32:29 +00001935 *
1936 * to:
1937 *
1938 * int locked = 1;
Olivier Deprez157378f2022-04-04 15:47:50 +02001939 * mmap_read_lock(mm);
David Brazdil0f672f62019-12-10 10:32:29 +00001940 * do_something()
Olivier Deprez157378f2022-04-04 15:47:50 +02001941 * get_user_pages_locked(mm, ..., pages, &locked);
David Brazdil0f672f62019-12-10 10:32:29 +00001942 * if (locked)
Olivier Deprez157378f2022-04-04 15:47:50 +02001943 * mmap_read_unlock(mm);
1944 *
1945 * @start: starting user address
1946 * @nr_pages: number of pages from start to pin
1947 * @gup_flags: flags modifying lookup behaviour
1948 * @pages: array that receives pointers to the pages pinned.
1949 * Should be at least nr_pages long. Or NULL, if caller
1950 * only intends to ensure the pages are faulted in.
1951 * @locked: pointer to lock flag indicating whether lock is held and
1952 * subsequently whether VM_FAULT_RETRY functionality can be
1953 * utilised. Lock must initially be held.
1954 *
1955 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1956 * paths better by using either get_user_pages_locked() or
1957 * get_user_pages_unlocked().
1958 *
David Brazdil0f672f62019-12-10 10:32:29 +00001959 */
1960long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1961 unsigned int gup_flags, struct page **pages,
1962 int *locked)
1963{
1964 /*
1965 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1966 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1967 * vmas. As there are no users of this flag in this call we simply
1968 * disallow this option for now.
1969 */
1970 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1971 return -EINVAL;
Olivier Deprez157378f2022-04-04 15:47:50 +02001972 /*
1973 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1974 * never directly by the caller, so enforce that:
1975 */
1976 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1977 return -EINVAL;
David Brazdil0f672f62019-12-10 10:32:29 +00001978
Olivier Deprez157378f2022-04-04 15:47:50 +02001979 return __get_user_pages_locked(current->mm, start, nr_pages,
David Brazdil0f672f62019-12-10 10:32:29 +00001980 pages, NULL, locked,
1981 gup_flags | FOLL_TOUCH);
1982}
1983EXPORT_SYMBOL(get_user_pages_locked);
1984
1985/*
1986 * get_user_pages_unlocked() is suitable to replace the form:
1987 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001988 * mmap_read_lock(mm);
1989 * get_user_pages(mm, ..., pages, NULL);
1990 * mmap_read_unlock(mm);
David Brazdil0f672f62019-12-10 10:32:29 +00001991 *
1992 * with:
1993 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001994 * get_user_pages_unlocked(mm, ..., pages);
David Brazdil0f672f62019-12-10 10:32:29 +00001995 *
1996 * It is functionally equivalent to get_user_pages_fast so
1997 * get_user_pages_fast should be used instead if specific gup_flags
1998 * (e.g. FOLL_FORCE) are not required.
1999 */
2000long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2001 struct page **pages, unsigned int gup_flags)
2002{
2003 struct mm_struct *mm = current->mm;
2004 int locked = 1;
2005 long ret;
2006
2007 /*
2008 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2009 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2010 * vmas. As there are no users of this flag in this call we simply
2011 * disallow this option for now.
2012 */
2013 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2014 return -EINVAL;
2015
Olivier Deprez157378f2022-04-04 15:47:50 +02002016 mmap_read_lock(mm);
2017 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
David Brazdil0f672f62019-12-10 10:32:29 +00002018 &locked, gup_flags | FOLL_TOUCH);
2019 if (locked)
Olivier Deprez157378f2022-04-04 15:47:50 +02002020 mmap_read_unlock(mm);
David Brazdil0f672f62019-12-10 10:32:29 +00002021 return ret;
2022}
2023EXPORT_SYMBOL(get_user_pages_unlocked);
2024
2025/*
2026 * Fast GUP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002027 *
2028 * get_user_pages_fast attempts to pin user pages by walking the page
2029 * tables directly and avoids taking locks. Thus the walker needs to be
2030 * protected from page table pages being freed from under it, and should
2031 * block any THP splits.
2032 *
2033 * One way to achieve this is to have the walker disable interrupts, and
2034 * rely on IPIs from the TLB flushing code blocking before the page table
2035 * pages are freed. This is unsuitable for architectures that do not need
2036 * to broadcast an IPI when invalidating TLBs.
2037 *
2038 * Another way to achieve this is to batch up page table containing pages
2039 * belonging to more than one mm_user, then rcu_sched a callback to free those
2040 * pages. Disabling interrupts will allow the fast_gup walker to both block
2041 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2042 * (which is a relatively rare event). The code below adopts this strategy.
2043 *
2044 * Before activating this code, please be aware that the following assumptions
2045 * are currently made:
2046 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002047 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002048 * free pages containing page tables or TLB flushing requires IPI broadcast.
2049 *
2050 * *) ptes can be read atomically by the architecture.
2051 *
2052 * *) access_ok is sufficient to validate userspace address ranges.
2053 *
2054 * The last two assumptions can be relaxed by the addition of helper functions.
2055 *
2056 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2057 */
David Brazdil0f672f62019-12-10 10:32:29 +00002058#ifdef CONFIG_HAVE_FAST_GUP
2059#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
Olivier Deprez157378f2022-04-04 15:47:50 +02002060
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002061/*
David Brazdil0f672f62019-12-10 10:32:29 +00002062 * WARNING: only to be used in the get_user_pages_fast() implementation.
2063 *
2064 * With get_user_pages_fast(), we walk down the pagetables without taking any
2065 * locks. For this we would like to load the pointers atomically, but sometimes
2066 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2067 * we do have is the guarantee that a PTE will only either go from not present
2068 * to present, or present to not present or both -- it will not switch to a
2069 * completely different present page without a TLB flush in between; something
2070 * that we are blocking by holding interrupts off.
2071 *
2072 * Setting ptes from not present to present goes:
2073 *
2074 * ptep->pte_high = h;
2075 * smp_wmb();
2076 * ptep->pte_low = l;
2077 *
2078 * And present to not present goes:
2079 *
2080 * ptep->pte_low = 0;
2081 * smp_wmb();
2082 * ptep->pte_high = 0;
2083 *
2084 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2085 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2086 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2087 * picked up a changed pte high. We might have gotten rubbish values from
2088 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2089 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2090 * operates on present ptes we're safe.
2091 */
2092static inline pte_t gup_get_pte(pte_t *ptep)
2093{
2094 pte_t pte;
2095
2096 do {
2097 pte.pte_low = ptep->pte_low;
2098 smp_rmb();
2099 pte.pte_high = ptep->pte_high;
2100 smp_rmb();
2101 } while (unlikely(pte.pte_low != ptep->pte_low));
2102
2103 return pte;
2104}
2105#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2106/*
2107 * We require that the PTE can be read atomically.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002108 */
2109static inline pte_t gup_get_pte(pte_t *ptep)
2110{
Olivier Deprez157378f2022-04-04 15:47:50 +02002111 return ptep_get(ptep);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002112}
David Brazdil0f672f62019-12-10 10:32:29 +00002113#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002114
David Brazdil0f672f62019-12-10 10:32:29 +00002115static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
Olivier Deprez157378f2022-04-04 15:47:50 +02002116 unsigned int flags,
David Brazdil0f672f62019-12-10 10:32:29 +00002117 struct page **pages)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002118{
2119 while ((*nr) - nr_start) {
2120 struct page *page = pages[--(*nr)];
2121
2122 ClearPageReferenced(page);
Olivier Deprez157378f2022-04-04 15:47:50 +02002123 if (flags & FOLL_PIN)
2124 unpin_user_page(page);
2125 else
2126 put_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002127 }
2128}
2129
2130#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
Olivier Deprez92d4c212022-12-06 15:05:30 +01002131/*
2132 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2133 * operations.
2134 *
2135 * To pin the page, fast-gup needs to do below in order:
2136 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2137 *
2138 * For the rest of pgtable operations where pgtable updates can be racy
2139 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2140 * is pinned.
2141 *
2142 * Above will work for all pte-level operations, including THP split.
2143 *
2144 * For THP collapse, it's a bit more complicated because fast-gup may be
2145 * walking a pgtable page that is being freed (pte is still valid but pmd
2146 * can be cleared already). To avoid race in such condition, we need to
2147 * also check pmd here to make sure pmd doesn't change (corresponds to
2148 * pmdp_collapse_flush() in the THP collapse code path).
2149 */
2150static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2151 unsigned long end, unsigned int flags,
2152 struct page **pages, int *nr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002153{
2154 struct dev_pagemap *pgmap = NULL;
2155 int nr_start = *nr, ret = 0;
2156 pte_t *ptep, *ptem;
2157
2158 ptem = ptep = pte_offset_map(&pmd, addr);
2159 do {
2160 pte_t pte = gup_get_pte(ptep);
2161 struct page *head, *page;
2162
2163 /*
2164 * Similar to the PMD case below, NUMA hinting must take slow
2165 * path using the pte_protnone check.
2166 */
2167 if (pte_protnone(pte))
2168 goto pte_unmap;
2169
David Brazdil0f672f62019-12-10 10:32:29 +00002170 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002171 goto pte_unmap;
2172
2173 if (pte_devmap(pte)) {
David Brazdil0f672f62019-12-10 10:32:29 +00002174 if (unlikely(flags & FOLL_LONGTERM))
2175 goto pte_unmap;
2176
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002177 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2178 if (unlikely(!pgmap)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002179 undo_dev_pagemap(nr, nr_start, flags, pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002180 goto pte_unmap;
2181 }
2182 } else if (pte_special(pte))
2183 goto pte_unmap;
2184
2185 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2186 page = pte_page(pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002187
Olivier Deprez157378f2022-04-04 15:47:50 +02002188 head = try_grab_compound_head(page, 1, flags);
David Brazdil0f672f62019-12-10 10:32:29 +00002189 if (!head)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002190 goto pte_unmap;
2191
Olivier Deprez92d4c212022-12-06 15:05:30 +01002192 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2193 unlikely(pte_val(pte) != pte_val(*ptep))) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002194 put_compound_head(head, 1, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002195 goto pte_unmap;
2196 }
2197
2198 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2199
Olivier Deprez157378f2022-04-04 15:47:50 +02002200 /*
2201 * We need to make the page accessible if and only if we are
2202 * going to access its content (the FOLL_PIN case). Please
2203 * see Documentation/core-api/pin_user_pages.rst for
2204 * details.
2205 */
2206 if (flags & FOLL_PIN) {
2207 ret = arch_make_page_accessible(page);
2208 if (ret) {
2209 unpin_user_page(page);
2210 goto pte_unmap;
2211 }
2212 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002213 SetPageReferenced(page);
2214 pages[*nr] = page;
2215 (*nr)++;
2216
2217 } while (ptep++, addr += PAGE_SIZE, addr != end);
2218
2219 ret = 1;
2220
2221pte_unmap:
2222 if (pgmap)
2223 put_dev_pagemap(pgmap);
2224 pte_unmap(ptem);
2225 return ret;
2226}
2227#else
2228
2229/*
2230 * If we can't determine whether or not a pte is special, then fail immediately
2231 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2232 * to be special.
2233 *
2234 * For a futex to be placed on a THP tail page, get_futex_key requires a
Olivier Deprez157378f2022-04-04 15:47:50 +02002235 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002236 * useful to have gup_huge_pmd even if we can't operate on ptes.
2237 */
Olivier Deprez92d4c212022-12-06 15:05:30 +01002238static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2239 unsigned long end, unsigned int flags,
2240 struct page **pages, int *nr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002241{
2242 return 0;
2243}
2244#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2245
David Brazdil0f672f62019-12-10 10:32:29 +00002246#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002247static int __gup_device_huge(unsigned long pfn, unsigned long addr,
Olivier Deprez157378f2022-04-04 15:47:50 +02002248 unsigned long end, unsigned int flags,
2249 struct page **pages, int *nr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002250{
2251 int nr_start = *nr;
2252 struct dev_pagemap *pgmap = NULL;
2253
2254 do {
2255 struct page *page = pfn_to_page(pfn);
2256
2257 pgmap = get_dev_pagemap(pfn, pgmap);
2258 if (unlikely(!pgmap)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002259 undo_dev_pagemap(nr, nr_start, flags, pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002260 return 0;
2261 }
2262 SetPageReferenced(page);
2263 pages[*nr] = page;
Olivier Deprez157378f2022-04-04 15:47:50 +02002264 if (unlikely(!try_grab_page(page, flags))) {
2265 undo_dev_pagemap(nr, nr_start, flags, pages);
2266 return 0;
2267 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002268 (*nr)++;
2269 pfn++;
2270 } while (addr += PAGE_SIZE, addr != end);
2271
2272 if (pgmap)
2273 put_dev_pagemap(pgmap);
2274 return 1;
2275}
2276
2277static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
Olivier Deprez157378f2022-04-04 15:47:50 +02002278 unsigned long end, unsigned int flags,
2279 struct page **pages, int *nr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002280{
2281 unsigned long fault_pfn;
2282 int nr_start = *nr;
2283
2284 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
Olivier Deprez157378f2022-04-04 15:47:50 +02002285 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002286 return 0;
2287
2288 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002289 undo_dev_pagemap(nr, nr_start, flags, pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002290 return 0;
2291 }
2292 return 1;
2293}
2294
2295static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
Olivier Deprez157378f2022-04-04 15:47:50 +02002296 unsigned long end, unsigned int flags,
2297 struct page **pages, int *nr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002298{
2299 unsigned long fault_pfn;
2300 int nr_start = *nr;
2301
2302 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
Olivier Deprez157378f2022-04-04 15:47:50 +02002303 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002304 return 0;
2305
2306 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002307 undo_dev_pagemap(nr, nr_start, flags, pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002308 return 0;
2309 }
2310 return 1;
2311}
2312#else
2313static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
Olivier Deprez157378f2022-04-04 15:47:50 +02002314 unsigned long end, unsigned int flags,
2315 struct page **pages, int *nr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002316{
2317 BUILD_BUG();
2318 return 0;
2319}
2320
2321static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
Olivier Deprez157378f2022-04-04 15:47:50 +02002322 unsigned long end, unsigned int flags,
2323 struct page **pages, int *nr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002324{
2325 BUILD_BUG();
2326 return 0;
2327}
2328#endif
2329
Olivier Deprez157378f2022-04-04 15:47:50 +02002330static int record_subpages(struct page *page, unsigned long addr,
2331 unsigned long end, struct page **pages)
2332{
2333 int nr;
2334
2335 for (nr = 0; addr != end; addr += PAGE_SIZE)
2336 pages[nr++] = page++;
2337
2338 return nr;
2339}
2340
David Brazdil0f672f62019-12-10 10:32:29 +00002341#ifdef CONFIG_ARCH_HAS_HUGEPD
2342static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2343 unsigned long sz)
2344{
2345 unsigned long __boundary = (addr + sz) & ~(sz-1);
2346 return (__boundary - 1 < end - 1) ? __boundary : end;
2347}
2348
2349static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2350 unsigned long end, unsigned int flags,
2351 struct page **pages, int *nr)
2352{
2353 unsigned long pte_end;
2354 struct page *head, *page;
2355 pte_t pte;
2356 int refs;
2357
2358 pte_end = (addr + sz) & ~(sz-1);
2359 if (pte_end < end)
2360 end = pte_end;
2361
Olivier Deprez157378f2022-04-04 15:47:50 +02002362 pte = huge_ptep_get(ptep);
David Brazdil0f672f62019-12-10 10:32:29 +00002363
2364 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2365 return 0;
2366
2367 /* hugepages are never "special" */
2368 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2369
David Brazdil0f672f62019-12-10 10:32:29 +00002370 head = pte_page(pte);
David Brazdil0f672f62019-12-10 10:32:29 +00002371 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
Olivier Deprez157378f2022-04-04 15:47:50 +02002372 refs = record_subpages(page, addr, end, pages + *nr);
David Brazdil0f672f62019-12-10 10:32:29 +00002373
Olivier Deprez157378f2022-04-04 15:47:50 +02002374 head = try_grab_compound_head(head, refs, flags);
2375 if (!head)
David Brazdil0f672f62019-12-10 10:32:29 +00002376 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +00002377
2378 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002379 put_compound_head(head, refs, flags);
David Brazdil0f672f62019-12-10 10:32:29 +00002380 return 0;
2381 }
2382
Olivier Deprez157378f2022-04-04 15:47:50 +02002383 *nr += refs;
David Brazdil0f672f62019-12-10 10:32:29 +00002384 SetPageReferenced(head);
2385 return 1;
2386}
2387
2388static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2389 unsigned int pdshift, unsigned long end, unsigned int flags,
2390 struct page **pages, int *nr)
2391{
2392 pte_t *ptep;
2393 unsigned long sz = 1UL << hugepd_shift(hugepd);
2394 unsigned long next;
2395
2396 ptep = hugepte_offset(hugepd, addr, pdshift);
2397 do {
2398 next = hugepte_addr_end(addr, end, sz);
2399 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2400 return 0;
2401 } while (ptep++, addr = next, addr != end);
2402
2403 return 1;
2404}
2405#else
2406static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2407 unsigned int pdshift, unsigned long end, unsigned int flags,
2408 struct page **pages, int *nr)
2409{
2410 return 0;
2411}
2412#endif /* CONFIG_ARCH_HAS_HUGEPD */
2413
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002414static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
David Brazdil0f672f62019-12-10 10:32:29 +00002415 unsigned long end, unsigned int flags,
2416 struct page **pages, int *nr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002417{
2418 struct page *head, *page;
2419 int refs;
2420
David Brazdil0f672f62019-12-10 10:32:29 +00002421 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002422 return 0;
2423
David Brazdil0f672f62019-12-10 10:32:29 +00002424 if (pmd_devmap(orig)) {
2425 if (unlikely(flags & FOLL_LONGTERM))
2426 return 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02002427 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2428 pages, nr);
David Brazdil0f672f62019-12-10 10:32:29 +00002429 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002430
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002431 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
Olivier Deprez157378f2022-04-04 15:47:50 +02002432 refs = record_subpages(page, addr, end, pages + *nr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002433
Olivier Deprez157378f2022-04-04 15:47:50 +02002434 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2435 if (!head)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002436 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002437
2438 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002439 put_compound_head(head, refs, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002440 return 0;
2441 }
2442
Olivier Deprez157378f2022-04-04 15:47:50 +02002443 *nr += refs;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002444 SetPageReferenced(head);
2445 return 1;
2446}
2447
2448static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
Olivier Deprez157378f2022-04-04 15:47:50 +02002449 unsigned long end, unsigned int flags,
2450 struct page **pages, int *nr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002451{
2452 struct page *head, *page;
2453 int refs;
2454
David Brazdil0f672f62019-12-10 10:32:29 +00002455 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002456 return 0;
2457
David Brazdil0f672f62019-12-10 10:32:29 +00002458 if (pud_devmap(orig)) {
2459 if (unlikely(flags & FOLL_LONGTERM))
2460 return 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02002461 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2462 pages, nr);
David Brazdil0f672f62019-12-10 10:32:29 +00002463 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002464
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002465 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
Olivier Deprez157378f2022-04-04 15:47:50 +02002466 refs = record_subpages(page, addr, end, pages + *nr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002467
Olivier Deprez157378f2022-04-04 15:47:50 +02002468 head = try_grab_compound_head(pud_page(orig), refs, flags);
2469 if (!head)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002470 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002471
2472 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002473 put_compound_head(head, refs, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002474 return 0;
2475 }
2476
Olivier Deprez157378f2022-04-04 15:47:50 +02002477 *nr += refs;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002478 SetPageReferenced(head);
2479 return 1;
2480}
2481
2482static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
David Brazdil0f672f62019-12-10 10:32:29 +00002483 unsigned long end, unsigned int flags,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002484 struct page **pages, int *nr)
2485{
2486 int refs;
2487 struct page *head, *page;
2488
David Brazdil0f672f62019-12-10 10:32:29 +00002489 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002490 return 0;
2491
2492 BUILD_BUG_ON(pgd_devmap(orig));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002493
Olivier Deprez157378f2022-04-04 15:47:50 +02002494 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2495 refs = record_subpages(page, addr, end, pages + *nr);
2496
2497 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2498 if (!head)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002499 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002500
2501 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002502 put_compound_head(head, refs, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002503 return 0;
2504 }
2505
Olivier Deprez157378f2022-04-04 15:47:50 +02002506 *nr += refs;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002507 SetPageReferenced(head);
2508 return 1;
2509}
2510
Olivier Deprez0e641232021-09-23 10:07:05 +02002511static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
David Brazdil0f672f62019-12-10 10:32:29 +00002512 unsigned int flags, struct page **pages, int *nr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002513{
2514 unsigned long next;
2515 pmd_t *pmdp;
2516
Olivier Deprez0e641232021-09-23 10:07:05 +02002517 pmdp = pmd_offset_lockless(pudp, pud, addr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002518 do {
2519 pmd_t pmd = READ_ONCE(*pmdp);
2520
2521 next = pmd_addr_end(addr, end);
2522 if (!pmd_present(pmd))
2523 return 0;
2524
David Brazdil0f672f62019-12-10 10:32:29 +00002525 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2526 pmd_devmap(pmd))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002527 /*
2528 * NUMA hinting faults need to be handled in the GUP
2529 * slowpath for accounting purposes and so that they
2530 * can be serialised against THP migration.
2531 */
2532 if (pmd_protnone(pmd))
2533 return 0;
2534
David Brazdil0f672f62019-12-10 10:32:29 +00002535 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002536 pages, nr))
2537 return 0;
2538
2539 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2540 /*
2541 * architecture have different format for hugetlbfs
2542 * pmd format and THP pmd format
2543 */
2544 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
David Brazdil0f672f62019-12-10 10:32:29 +00002545 PMD_SHIFT, next, flags, pages, nr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002546 return 0;
Olivier Deprez92d4c212022-12-06 15:05:30 +01002547 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002548 return 0;
2549 } while (pmdp++, addr = next, addr != end);
2550
2551 return 1;
2552}
2553
Olivier Deprez0e641232021-09-23 10:07:05 +02002554static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
David Brazdil0f672f62019-12-10 10:32:29 +00002555 unsigned int flags, struct page **pages, int *nr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002556{
2557 unsigned long next;
2558 pud_t *pudp;
2559
Olivier Deprez0e641232021-09-23 10:07:05 +02002560 pudp = pud_offset_lockless(p4dp, p4d, addr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002561 do {
2562 pud_t pud = READ_ONCE(*pudp);
2563
2564 next = pud_addr_end(addr, end);
Olivier Deprez157378f2022-04-04 15:47:50 +02002565 if (unlikely(!pud_present(pud)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002566 return 0;
2567 if (unlikely(pud_huge(pud))) {
David Brazdil0f672f62019-12-10 10:32:29 +00002568 if (!gup_huge_pud(pud, pudp, addr, next, flags,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002569 pages, nr))
2570 return 0;
2571 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2572 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
David Brazdil0f672f62019-12-10 10:32:29 +00002573 PUD_SHIFT, next, flags, pages, nr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002574 return 0;
Olivier Deprez0e641232021-09-23 10:07:05 +02002575 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002576 return 0;
2577 } while (pudp++, addr = next, addr != end);
2578
2579 return 1;
2580}
2581
Olivier Deprez0e641232021-09-23 10:07:05 +02002582static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
David Brazdil0f672f62019-12-10 10:32:29 +00002583 unsigned int flags, struct page **pages, int *nr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002584{
2585 unsigned long next;
2586 p4d_t *p4dp;
2587
Olivier Deprez0e641232021-09-23 10:07:05 +02002588 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002589 do {
2590 p4d_t p4d = READ_ONCE(*p4dp);
2591
2592 next = p4d_addr_end(addr, end);
2593 if (p4d_none(p4d))
2594 return 0;
2595 BUILD_BUG_ON(p4d_huge(p4d));
2596 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2597 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
David Brazdil0f672f62019-12-10 10:32:29 +00002598 P4D_SHIFT, next, flags, pages, nr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002599 return 0;
Olivier Deprez0e641232021-09-23 10:07:05 +02002600 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002601 return 0;
2602 } while (p4dp++, addr = next, addr != end);
2603
2604 return 1;
2605}
2606
2607static void gup_pgd_range(unsigned long addr, unsigned long end,
David Brazdil0f672f62019-12-10 10:32:29 +00002608 unsigned int flags, struct page **pages, int *nr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002609{
2610 unsigned long next;
2611 pgd_t *pgdp;
2612
2613 pgdp = pgd_offset(current->mm, addr);
2614 do {
2615 pgd_t pgd = READ_ONCE(*pgdp);
2616
2617 next = pgd_addr_end(addr, end);
2618 if (pgd_none(pgd))
2619 return;
2620 if (unlikely(pgd_huge(pgd))) {
David Brazdil0f672f62019-12-10 10:32:29 +00002621 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002622 pages, nr))
2623 return;
2624 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2625 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
David Brazdil0f672f62019-12-10 10:32:29 +00002626 PGDIR_SHIFT, next, flags, pages, nr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002627 return;
Olivier Deprez0e641232021-09-23 10:07:05 +02002628 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002629 return;
2630 } while (pgdp++, addr = next, addr != end);
2631}
David Brazdil0f672f62019-12-10 10:32:29 +00002632#else
2633static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2634 unsigned int flags, struct page **pages, int *nr)
2635{
2636}
2637#endif /* CONFIG_HAVE_FAST_GUP */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002638
2639#ifndef gup_fast_permitted
2640/*
Olivier Deprez157378f2022-04-04 15:47:50 +02002641 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002642 * we need to fall back to the slow version:
2643 */
David Brazdil0f672f62019-12-10 10:32:29 +00002644static bool gup_fast_permitted(unsigned long start, unsigned long end)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002645{
David Brazdil0f672f62019-12-10 10:32:29 +00002646 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002647}
2648#endif
2649
Olivier Deprez157378f2022-04-04 15:47:50 +02002650static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2651 unsigned int gup_flags, struct page **pages)
2652{
2653 int ret;
2654
2655 /*
2656 * FIXME: FOLL_LONGTERM does not work with
2657 * get_user_pages_unlocked() (see comments in that function)
2658 */
2659 if (gup_flags & FOLL_LONGTERM) {
2660 mmap_read_lock(current->mm);
2661 ret = __gup_longterm_locked(current->mm,
2662 start, nr_pages,
2663 pages, NULL, gup_flags);
2664 mmap_read_unlock(current->mm);
2665 } else {
2666 ret = get_user_pages_unlocked(start, nr_pages,
2667 pages, gup_flags);
2668 }
2669
2670 return ret;
2671}
2672
2673static unsigned long lockless_pages_from_mm(unsigned long start,
2674 unsigned long end,
2675 unsigned int gup_flags,
2676 struct page **pages)
2677{
2678 unsigned long flags;
2679 int nr_pinned = 0;
2680 unsigned seq;
2681
2682 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2683 !gup_fast_permitted(start, end))
2684 return 0;
2685
2686 if (gup_flags & FOLL_PIN) {
2687 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2688 if (seq & 1)
2689 return 0;
2690 }
2691
2692 /*
2693 * Disable interrupts. The nested form is used, in order to allow full,
2694 * general purpose use of this routine.
2695 *
2696 * With interrupts disabled, we block page table pages from being freed
2697 * from under us. See struct mmu_table_batch comments in
2698 * include/asm-generic/tlb.h for more details.
2699 *
2700 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2701 * that come from THPs splitting.
2702 */
2703 local_irq_save(flags);
2704 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2705 local_irq_restore(flags);
2706
2707 /*
2708 * When pinning pages for DMA there could be a concurrent write protect
2709 * from fork() via copy_page_range(), in this case always fail fast GUP.
2710 */
2711 if (gup_flags & FOLL_PIN) {
2712 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2713 unpin_user_pages(pages, nr_pinned);
2714 return 0;
2715 }
2716 }
2717 return nr_pinned;
2718}
2719
2720static int internal_get_user_pages_fast(unsigned long start,
2721 unsigned long nr_pages,
2722 unsigned int gup_flags,
2723 struct page **pages)
2724{
2725 unsigned long len, end;
2726 unsigned long nr_pinned;
2727 int ret;
2728
2729 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2730 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2731 FOLL_FAST_ONLY)))
2732 return -EINVAL;
2733
2734 if (gup_flags & FOLL_PIN)
2735 atomic_set(&current->mm->has_pinned, 1);
2736
2737 if (!(gup_flags & FOLL_FAST_ONLY))
2738 might_lock_read(&current->mm->mmap_lock);
2739
2740 start = untagged_addr(start) & PAGE_MASK;
2741 len = nr_pages << PAGE_SHIFT;
2742 if (check_add_overflow(start, len, &end))
2743 return 0;
2744 if (unlikely(!access_ok((void __user *)start, len)))
2745 return -EFAULT;
2746
2747 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2748 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2749 return nr_pinned;
2750
2751 /* Slow path: try to get the remaining pages with get_user_pages */
2752 start += nr_pinned << PAGE_SHIFT;
2753 pages += nr_pinned;
2754 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2755 pages);
2756 if (ret < 0) {
2757 /*
2758 * The caller has to unpin the pages we already pinned so
2759 * returning -errno is not an option
2760 */
2761 if (nr_pinned)
2762 return nr_pinned;
2763 return ret;
2764 }
2765 return ret + nr_pinned;
2766}
2767
2768/**
2769 * get_user_pages_fast_only() - pin user pages in memory
2770 * @start: starting user address
2771 * @nr_pages: number of pages from start to pin
2772 * @gup_flags: flags modifying pin behaviour
2773 * @pages: array that receives pointers to the pages pinned.
2774 * Should be at least nr_pages long.
2775 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002776 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2777 * the regular GUP.
2778 * Note a difference with get_user_pages_fast: this always returns the
2779 * number of pages pinned, 0 if no pages were pinned.
David Brazdil0f672f62019-12-10 10:32:29 +00002780 *
2781 * If the architecture does not support this function, simply return with no
2782 * pages pinned.
Olivier Deprez0e641232021-09-23 10:07:05 +02002783 *
2784 * Careful, careful! COW breaking can go either way, so a non-write
2785 * access can get ambiguous page results. If you call this function without
2786 * 'write' set, you'd better be sure that you're ok with that ambiguity.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002787 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002788int get_user_pages_fast_only(unsigned long start, int nr_pages,
2789 unsigned int gup_flags, struct page **pages)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002790{
Olivier Deprez157378f2022-04-04 15:47:50 +02002791 int nr_pinned;
2792 /*
2793 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2794 * because gup fast is always a "pin with a +1 page refcount" request.
2795 *
2796 * FOLL_FAST_ONLY is required in order to match the API description of
2797 * this routine: no fall back to regular ("slow") GUP.
2798 */
2799 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002800
Olivier Deprez157378f2022-04-04 15:47:50 +02002801 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2802 pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002803
2804 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02002805 * As specified in the API description above, this routine is not
2806 * allowed to return negative values. However, the common core
2807 * routine internal_get_user_pages_fast() *can* return -errno.
2808 * Therefore, correct for that here:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002809 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002810 if (nr_pinned < 0)
2811 nr_pinned = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002812
Olivier Deprez157378f2022-04-04 15:47:50 +02002813 return nr_pinned;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002814}
Olivier Deprez157378f2022-04-04 15:47:50 +02002815EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002816
2817/**
2818 * get_user_pages_fast() - pin user pages in memory
Olivier Deprez157378f2022-04-04 15:47:50 +02002819 * @start: starting user address
2820 * @nr_pages: number of pages from start to pin
2821 * @gup_flags: flags modifying pin behaviour
2822 * @pages: array that receives pointers to the pages pinned.
2823 * Should be at least nr_pages long.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002824 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002825 * Attempt to pin user pages in memory without taking mm->mmap_lock.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002826 * If not successful, it will fall back to taking the lock and
2827 * calling get_user_pages().
2828 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002829 * Returns number of pages pinned. This may be fewer than the number requested.
2830 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2831 * -errno.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002832 */
David Brazdil0f672f62019-12-10 10:32:29 +00002833int get_user_pages_fast(unsigned long start, int nr_pages,
2834 unsigned int gup_flags, struct page **pages)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002835{
Olivier Deprez157378f2022-04-04 15:47:50 +02002836 if (!is_valid_gup_flags(gup_flags))
David Brazdil0f672f62019-12-10 10:32:29 +00002837 return -EINVAL;
2838
Olivier Deprez0e641232021-09-23 10:07:05 +02002839 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02002840 * The caller may or may not have explicitly set FOLL_GET; either way is
2841 * OK. However, internally (within mm/gup.c), gup fast variants must set
2842 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2843 * request.
Olivier Deprez0e641232021-09-23 10:07:05 +02002844 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002845 gup_flags |= FOLL_GET;
2846 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002847}
David Brazdil0f672f62019-12-10 10:32:29 +00002848EXPORT_SYMBOL_GPL(get_user_pages_fast);
Olivier Deprez157378f2022-04-04 15:47:50 +02002849
2850/**
2851 * pin_user_pages_fast() - pin user pages in memory without taking locks
2852 *
2853 * @start: starting user address
2854 * @nr_pages: number of pages from start to pin
2855 * @gup_flags: flags modifying pin behaviour
2856 * @pages: array that receives pointers to the pages pinned.
2857 * Should be at least nr_pages long.
2858 *
2859 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2860 * get_user_pages_fast() for documentation on the function arguments, because
2861 * the arguments here are identical.
2862 *
2863 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2864 * see Documentation/core-api/pin_user_pages.rst for further details.
2865 */
2866int pin_user_pages_fast(unsigned long start, int nr_pages,
2867 unsigned int gup_flags, struct page **pages)
2868{
2869 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2870 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2871 return -EINVAL;
2872
2873 gup_flags |= FOLL_PIN;
2874 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2875}
2876EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2877
2878/*
2879 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2880 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2881 *
2882 * The API rules are the same, too: no negative values may be returned.
2883 */
2884int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2885 unsigned int gup_flags, struct page **pages)
2886{
2887 int nr_pinned;
2888
2889 /*
2890 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2891 * rules require returning 0, rather than -errno:
2892 */
2893 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2894 return 0;
2895 /*
2896 * FOLL_FAST_ONLY is required in order to match the API description of
2897 * this routine: no fall back to regular ("slow") GUP.
2898 */
2899 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2900 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2901 pages);
2902 /*
2903 * This routine is not allowed to return negative values. However,
2904 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2905 * correct for that here:
2906 */
2907 if (nr_pinned < 0)
2908 nr_pinned = 0;
2909
2910 return nr_pinned;
2911}
2912EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2913
2914/**
2915 * pin_user_pages_remote() - pin pages of a remote process
2916 *
2917 * @mm: mm_struct of target mm
2918 * @start: starting user address
2919 * @nr_pages: number of pages from start to pin
2920 * @gup_flags: flags modifying lookup behaviour
2921 * @pages: array that receives pointers to the pages pinned.
2922 * Should be at least nr_pages long. Or NULL, if caller
2923 * only intends to ensure the pages are faulted in.
2924 * @vmas: array of pointers to vmas corresponding to each page.
2925 * Or NULL if the caller does not require them.
2926 * @locked: pointer to lock flag indicating whether lock is held and
2927 * subsequently whether VM_FAULT_RETRY functionality can be
2928 * utilised. Lock must initially be held.
2929 *
2930 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2931 * get_user_pages_remote() for documentation on the function arguments, because
2932 * the arguments here are identical.
2933 *
2934 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2935 * see Documentation/core-api/pin_user_pages.rst for details.
2936 */
2937long pin_user_pages_remote(struct mm_struct *mm,
2938 unsigned long start, unsigned long nr_pages,
2939 unsigned int gup_flags, struct page **pages,
2940 struct vm_area_struct **vmas, int *locked)
2941{
2942 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2943 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2944 return -EINVAL;
2945
2946 gup_flags |= FOLL_PIN;
2947 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2948 pages, vmas, locked);
2949}
2950EXPORT_SYMBOL(pin_user_pages_remote);
2951
2952/**
2953 * pin_user_pages() - pin user pages in memory for use by other devices
2954 *
2955 * @start: starting user address
2956 * @nr_pages: number of pages from start to pin
2957 * @gup_flags: flags modifying lookup behaviour
2958 * @pages: array that receives pointers to the pages pinned.
2959 * Should be at least nr_pages long. Or NULL, if caller
2960 * only intends to ensure the pages are faulted in.
2961 * @vmas: array of pointers to vmas corresponding to each page.
2962 * Or NULL if the caller does not require them.
2963 *
2964 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2965 * FOLL_PIN is set.
2966 *
2967 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2968 * see Documentation/core-api/pin_user_pages.rst for details.
2969 */
2970long pin_user_pages(unsigned long start, unsigned long nr_pages,
2971 unsigned int gup_flags, struct page **pages,
2972 struct vm_area_struct **vmas)
2973{
2974 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2975 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2976 return -EINVAL;
2977
2978 gup_flags |= FOLL_PIN;
2979 return __gup_longterm_locked(current->mm, start, nr_pages,
2980 pages, vmas, gup_flags);
2981}
2982EXPORT_SYMBOL(pin_user_pages);
2983
2984/*
2985 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2986 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2987 * FOLL_PIN and rejects FOLL_GET.
2988 */
2989long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2990 struct page **pages, unsigned int gup_flags)
2991{
2992 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2993 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2994 return -EINVAL;
2995
2996 gup_flags |= FOLL_PIN;
2997 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2998}
2999EXPORT_SYMBOL(pin_user_pages_unlocked);
3000
3001/*
3002 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3003 * Behavior is the same, except that this one sets FOLL_PIN and rejects
3004 * FOLL_GET.
3005 */
3006long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3007 unsigned int gup_flags, struct page **pages,
3008 int *locked)
3009{
3010 /*
3011 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3012 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3013 * vmas. As there are no users of this flag in this call we simply
3014 * disallow this option for now.
3015 */
3016 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3017 return -EINVAL;
3018
3019 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3020 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3021 return -EINVAL;
3022
3023 gup_flags |= FOLL_PIN;
3024 return __get_user_pages_locked(current->mm, start, nr_pages,
3025 pages, NULL, locked,
3026 gup_flags | FOLL_TOUCH);
3027}
3028EXPORT_SYMBOL(pin_user_pages_locked);