blob: 74c0f656f28c5131ef0c7ed13c59b44a221808a9 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * net/sched/sch_netem.c Network emulator
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License.
8 *
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
11 *
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14 */
15
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/types.h>
20#include <linux/kernel.h>
21#include <linux/errno.h>
22#include <linux/skbuff.h>
23#include <linux/vmalloc.h>
24#include <linux/rtnetlink.h>
25#include <linux/reciprocal_div.h>
26#include <linux/rbtree.h>
27
28#include <net/netlink.h>
29#include <net/pkt_sched.h>
30#include <net/inet_ecn.h>
31
32#define VERSION "1.3"
33
34/* Network Emulation Queuing algorithm.
35 ====================================
36
37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 Network Emulation Tool
39 [2] Luigi Rizzo, DummyNet for FreeBSD
40
41 ----------------------------------------------------------------
42
43 This started out as a simple way to delay outgoing packets to
44 test TCP but has grown to include most of the functionality
45 of a full blown network emulator like NISTnet. It can delay
46 packets and add random jitter (and correlation). The random
47 distribution can be loaded from a table as well to provide
48 normal, Pareto, or experimental curves. Packet loss,
49 duplication, and reordering can also be emulated.
50
51 This qdisc does not do classification that can be handled in
52 layering other disciplines. It does not need to do bandwidth
53 control either since that can be handled by using token
54 bucket or other rate control.
55
56 Correlated Loss Generator models
57
58 Added generation of correlated loss according to the
59 "Gilbert-Elliot" model, a 4-state markov model.
60
61 References:
62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 and intuitive loss model for packet networks and its implementation
65 in the Netem module in the Linux kernel", available in [1]
66
67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 Fabio Ludovici <fabio.ludovici at yahoo.it>
69*/
70
71struct disttable {
72 u32 size;
73 s16 table[0];
74};
75
76struct netem_sched_data {
77 /* internal t(ime)fifo qdisc uses t_root and sch->limit */
78 struct rb_root t_root;
79
80 /* optional qdisc for classful handling (NULL at netem init) */
81 struct Qdisc *qdisc;
82
83 struct qdisc_watchdog watchdog;
84
85 s64 latency;
86 s64 jitter;
87
88 u32 loss;
89 u32 ecn;
90 u32 limit;
91 u32 counter;
92 u32 gap;
93 u32 duplicate;
94 u32 reorder;
95 u32 corrupt;
96 u64 rate;
97 s32 packet_overhead;
98 u32 cell_size;
99 struct reciprocal_value cell_size_reciprocal;
100 s32 cell_overhead;
101
102 struct crndstate {
103 u32 last;
104 u32 rho;
105 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
106
107 struct disttable *delay_dist;
108
109 enum {
110 CLG_RANDOM,
111 CLG_4_STATES,
112 CLG_GILB_ELL,
113 } loss_model;
114
115 enum {
116 TX_IN_GAP_PERIOD = 1,
117 TX_IN_BURST_PERIOD,
118 LOST_IN_GAP_PERIOD,
119 LOST_IN_BURST_PERIOD,
120 } _4_state_model;
121
122 enum {
123 GOOD_STATE = 1,
124 BAD_STATE,
125 } GE_state_model;
126
127 /* Correlated Loss Generation models */
128 struct clgstate {
129 /* state of the Markov chain */
130 u8 state;
131
132 /* 4-states and Gilbert-Elliot models */
133 u32 a1; /* p13 for 4-states or p for GE */
134 u32 a2; /* p31 for 4-states or r for GE */
135 u32 a3; /* p32 for 4-states or h for GE */
136 u32 a4; /* p14 for 4-states or 1-k for GE */
137 u32 a5; /* p23 used only in 4-states */
138 } clg;
139
140 struct tc_netem_slot slot_config;
141 struct slotstate {
142 u64 slot_next;
143 s32 packets_left;
144 s32 bytes_left;
145 } slot;
146
147 struct disttable *slot_dist;
148};
149
150/* Time stamp put into socket buffer control block
151 * Only valid when skbs are in our internal t(ime)fifo queue.
152 *
153 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
154 * and skb->next & skb->prev are scratch space for a qdisc,
155 * we save skb->tstamp value in skb->cb[] before destroying it.
156 */
157struct netem_skb_cb {
158 u64 time_to_send;
159};
160
161static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
162{
163 /* we assume we can use skb next/prev/tstamp as storage for rb_node */
164 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
165 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
166}
167
168/* init_crandom - initialize correlated random number generator
169 * Use entropy source for initial seed.
170 */
171static void init_crandom(struct crndstate *state, unsigned long rho)
172{
173 state->rho = rho;
174 state->last = prandom_u32();
175}
176
177/* get_crandom - correlated random number generator
178 * Next number depends on last value.
179 * rho is scaled to avoid floating point.
180 */
181static u32 get_crandom(struct crndstate *state)
182{
183 u64 value, rho;
184 unsigned long answer;
185
186 if (!state || state->rho == 0) /* no correlation */
187 return prandom_u32();
188
189 value = prandom_u32();
190 rho = (u64)state->rho + 1;
191 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
192 state->last = answer;
193 return answer;
194}
195
196/* loss_4state - 4-state model loss generator
197 * Generates losses according to the 4-state Markov chain adopted in
198 * the GI (General and Intuitive) loss model.
199 */
200static bool loss_4state(struct netem_sched_data *q)
201{
202 struct clgstate *clg = &q->clg;
203 u32 rnd = prandom_u32();
204
205 /*
206 * Makes a comparison between rnd and the transition
207 * probabilities outgoing from the current state, then decides the
208 * next state and if the next packet has to be transmitted or lost.
209 * The four states correspond to:
210 * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
211 * LOST_IN_BURST_PERIOD => isolated losses within a gap period
212 * LOST_IN_GAP_PERIOD => lost packets within a burst period
213 * TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
214 */
215 switch (clg->state) {
216 case TX_IN_GAP_PERIOD:
217 if (rnd < clg->a4) {
218 clg->state = LOST_IN_BURST_PERIOD;
219 return true;
220 } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
221 clg->state = LOST_IN_GAP_PERIOD;
222 return true;
223 } else if (clg->a1 + clg->a4 < rnd) {
224 clg->state = TX_IN_GAP_PERIOD;
225 }
226
227 break;
228 case TX_IN_BURST_PERIOD:
229 if (rnd < clg->a5) {
230 clg->state = LOST_IN_GAP_PERIOD;
231 return true;
232 } else {
233 clg->state = TX_IN_BURST_PERIOD;
234 }
235
236 break;
237 case LOST_IN_GAP_PERIOD:
238 if (rnd < clg->a3)
239 clg->state = TX_IN_BURST_PERIOD;
240 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
241 clg->state = TX_IN_GAP_PERIOD;
242 } else if (clg->a2 + clg->a3 < rnd) {
243 clg->state = LOST_IN_GAP_PERIOD;
244 return true;
245 }
246 break;
247 case LOST_IN_BURST_PERIOD:
248 clg->state = TX_IN_GAP_PERIOD;
249 break;
250 }
251
252 return false;
253}
254
255/* loss_gilb_ell - Gilbert-Elliot model loss generator
256 * Generates losses according to the Gilbert-Elliot loss model or
257 * its special cases (Gilbert or Simple Gilbert)
258 *
259 * Makes a comparison between random number and the transition
260 * probabilities outgoing from the current state, then decides the
261 * next state. A second random number is extracted and the comparison
262 * with the loss probability of the current state decides if the next
263 * packet will be transmitted or lost.
264 */
265static bool loss_gilb_ell(struct netem_sched_data *q)
266{
267 struct clgstate *clg = &q->clg;
268
269 switch (clg->state) {
270 case GOOD_STATE:
271 if (prandom_u32() < clg->a1)
272 clg->state = BAD_STATE;
273 if (prandom_u32() < clg->a4)
274 return true;
275 break;
276 case BAD_STATE:
277 if (prandom_u32() < clg->a2)
278 clg->state = GOOD_STATE;
279 if (prandom_u32() > clg->a3)
280 return true;
281 }
282
283 return false;
284}
285
286static bool loss_event(struct netem_sched_data *q)
287{
288 switch (q->loss_model) {
289 case CLG_RANDOM:
290 /* Random packet drop 0 => none, ~0 => all */
291 return q->loss && q->loss >= get_crandom(&q->loss_cor);
292
293 case CLG_4_STATES:
294 /* 4state loss model algorithm (used also for GI model)
295 * Extracts a value from the markov 4 state loss generator,
296 * if it is 1 drops a packet and if needed writes the event in
297 * the kernel logs
298 */
299 return loss_4state(q);
300
301 case CLG_GILB_ELL:
302 /* Gilbert-Elliot loss model algorithm
303 * Extracts a value from the Gilbert-Elliot loss generator,
304 * if it is 1 drops a packet and if needed writes the event in
305 * the kernel logs
306 */
307 return loss_gilb_ell(q);
308 }
309
310 return false; /* not reached */
311}
312
313
314/* tabledist - return a pseudo-randomly distributed value with mean mu and
315 * std deviation sigma. Uses table lookup to approximate the desired
316 * distribution, and a uniformly-distributed pseudo-random source.
317 */
318static s64 tabledist(s64 mu, s32 sigma,
319 struct crndstate *state,
320 const struct disttable *dist)
321{
322 s64 x;
323 long t;
324 u32 rnd;
325
326 if (sigma == 0)
327 return mu;
328
329 rnd = get_crandom(state);
330
331 /* default uniform distribution */
332 if (dist == NULL)
333 return ((rnd % (2 * sigma)) + mu) - sigma;
334
335 t = dist->table[rnd % dist->size];
336 x = (sigma % NETEM_DIST_SCALE) * t;
337 if (x >= 0)
338 x += NETEM_DIST_SCALE/2;
339 else
340 x -= NETEM_DIST_SCALE/2;
341
342 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
343}
344
345static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
346{
347 len += q->packet_overhead;
348
349 if (q->cell_size) {
350 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
351
352 if (len > cells * q->cell_size) /* extra cell needed for remainder */
353 cells++;
354 len = cells * (q->cell_size + q->cell_overhead);
355 }
356
357 return div64_u64(len * NSEC_PER_SEC, q->rate);
358}
359
360static void tfifo_reset(struct Qdisc *sch)
361{
362 struct netem_sched_data *q = qdisc_priv(sch);
363 struct rb_node *p = rb_first(&q->t_root);
364
365 while (p) {
366 struct sk_buff *skb = rb_to_skb(p);
367
368 p = rb_next(p);
369 rb_erase(&skb->rbnode, &q->t_root);
370 rtnl_kfree_skbs(skb, skb);
371 }
372}
373
374static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
375{
376 struct netem_sched_data *q = qdisc_priv(sch);
377 u64 tnext = netem_skb_cb(nskb)->time_to_send;
378 struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
379
380 while (*p) {
381 struct sk_buff *skb;
382
383 parent = *p;
384 skb = rb_to_skb(parent);
385 if (tnext >= netem_skb_cb(skb)->time_to_send)
386 p = &parent->rb_right;
387 else
388 p = &parent->rb_left;
389 }
390 rb_link_node(&nskb->rbnode, parent, p);
391 rb_insert_color(&nskb->rbnode, &q->t_root);
392 sch->q.qlen++;
393}
394
395/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
396 * when we statistically choose to corrupt one, we instead segment it, returning
397 * the first packet to be corrupted, and re-enqueue the remaining frames
398 */
399static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
400 struct sk_buff **to_free)
401{
402 struct sk_buff *segs;
403 netdev_features_t features = netif_skb_features(skb);
404
405 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
406
407 if (IS_ERR_OR_NULL(segs)) {
408 qdisc_drop(skb, sch, to_free);
409 return NULL;
410 }
411 consume_skb(skb);
412 return segs;
413}
414
415static void netem_enqueue_skb_head(struct qdisc_skb_head *qh, struct sk_buff *skb)
416{
417 skb->next = qh->head;
418
419 if (!qh->head)
420 qh->tail = skb;
421 qh->head = skb;
422 qh->qlen++;
423}
424
425/*
426 * Insert one skb into qdisc.
427 * Note: parent depends on return value to account for queue length.
428 * NET_XMIT_DROP: queue length didn't change.
429 * NET_XMIT_SUCCESS: one skb was queued.
430 */
431static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
432 struct sk_buff **to_free)
433{
434 struct netem_sched_data *q = qdisc_priv(sch);
435 /* We don't fill cb now as skb_unshare() may invalidate it */
436 struct netem_skb_cb *cb;
437 struct sk_buff *skb2;
438 struct sk_buff *segs = NULL;
439 unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb);
440 int nb = 0;
441 int count = 1;
442 int rc = NET_XMIT_SUCCESS;
443
444 /* Do not fool qdisc_drop_all() */
445 skb->prev = NULL;
446
447 /* Random duplication */
448 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
449 ++count;
450
451 /* Drop packet? */
452 if (loss_event(q)) {
453 if (q->ecn && INET_ECN_set_ce(skb))
454 qdisc_qstats_drop(sch); /* mark packet */
455 else
456 --count;
457 }
458 if (count == 0) {
459 qdisc_qstats_drop(sch);
460 __qdisc_drop(skb, to_free);
461 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
462 }
463
464 /* If a delay is expected, orphan the skb. (orphaning usually takes
465 * place at TX completion time, so _before_ the link transit delay)
466 */
467 if (q->latency || q->jitter || q->rate)
468 skb_orphan_partial(skb);
469
470 /*
471 * If we need to duplicate packet, then re-insert at top of the
472 * qdisc tree, since parent queuer expects that only one
473 * skb will be queued.
474 */
475 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
476 struct Qdisc *rootq = qdisc_root(sch);
477 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
478
479 q->duplicate = 0;
480 rootq->enqueue(skb2, rootq, to_free);
481 q->duplicate = dupsave;
482 }
483
484 /*
485 * Randomized packet corruption.
486 * Make copy if needed since we are modifying
487 * If packet is going to be hardware checksummed, then
488 * do it now in software before we mangle it.
489 */
490 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
491 if (skb_is_gso(skb)) {
492 segs = netem_segment(skb, sch, to_free);
493 if (!segs)
494 return NET_XMIT_DROP;
495 } else {
496 segs = skb;
497 }
498
499 skb = segs;
500 segs = segs->next;
501
502 skb = skb_unshare(skb, GFP_ATOMIC);
503 if (unlikely(!skb)) {
504 qdisc_qstats_drop(sch);
505 goto finish_segs;
506 }
507 if (skb->ip_summed == CHECKSUM_PARTIAL &&
508 skb_checksum_help(skb)) {
509 qdisc_drop(skb, sch, to_free);
510 goto finish_segs;
511 }
512
513 skb->data[prandom_u32() % skb_headlen(skb)] ^=
514 1<<(prandom_u32() % 8);
515 }
516
517 if (unlikely(sch->q.qlen >= sch->limit))
518 return qdisc_drop_all(skb, sch, to_free);
519
520 qdisc_qstats_backlog_inc(sch, skb);
521
522 cb = netem_skb_cb(skb);
523 if (q->gap == 0 || /* not doing reordering */
524 q->counter < q->gap - 1 || /* inside last reordering gap */
525 q->reorder < get_crandom(&q->reorder_cor)) {
526 u64 now;
527 s64 delay;
528
529 delay = tabledist(q->latency, q->jitter,
530 &q->delay_cor, q->delay_dist);
531
532 now = ktime_get_ns();
533
534 if (q->rate) {
535 struct netem_skb_cb *last = NULL;
536
537 if (sch->q.tail)
538 last = netem_skb_cb(sch->q.tail);
539 if (q->t_root.rb_node) {
540 struct sk_buff *t_skb;
541 struct netem_skb_cb *t_last;
542
543 t_skb = skb_rb_last(&q->t_root);
544 t_last = netem_skb_cb(t_skb);
545 if (!last ||
546 t_last->time_to_send > last->time_to_send) {
547 last = t_last;
548 }
549 }
550
551 if (last) {
552 /*
553 * Last packet in queue is reference point (now),
554 * calculate this time bonus and subtract
555 * from delay.
556 */
557 delay -= last->time_to_send - now;
558 delay = max_t(s64, 0, delay);
559 now = last->time_to_send;
560 }
561
562 delay += packet_time_ns(qdisc_pkt_len(skb), q);
563 }
564
565 cb->time_to_send = now + delay;
566 ++q->counter;
567 tfifo_enqueue(skb, sch);
568 } else {
569 /*
570 * Do re-ordering by putting one out of N packets at the front
571 * of the queue.
572 */
573 cb->time_to_send = ktime_get_ns();
574 q->counter = 0;
575
576 netem_enqueue_skb_head(&sch->q, skb);
577 sch->qstats.requeues++;
578 }
579
580finish_segs:
581 if (segs) {
582 while (segs) {
583 skb2 = segs->next;
584 segs->next = NULL;
585 qdisc_skb_cb(segs)->pkt_len = segs->len;
586 last_len = segs->len;
587 rc = qdisc_enqueue(segs, sch, to_free);
588 if (rc != NET_XMIT_SUCCESS) {
589 if (net_xmit_drop_count(rc))
590 qdisc_qstats_drop(sch);
591 } else {
592 nb++;
593 len += last_len;
594 }
595 segs = skb2;
596 }
597 sch->q.qlen += nb;
598 if (nb > 1)
599 qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
600 }
601 return NET_XMIT_SUCCESS;
602}
603
604/* Delay the next round with a new future slot with a
605 * correct number of bytes and packets.
606 */
607
608static void get_slot_next(struct netem_sched_data *q, u64 now)
609{
610 s64 next_delay;
611
612 if (!q->slot_dist)
613 next_delay = q->slot_config.min_delay +
614 (prandom_u32() *
615 (q->slot_config.max_delay -
616 q->slot_config.min_delay) >> 32);
617 else
618 next_delay = tabledist(q->slot_config.dist_delay,
619 (s32)(q->slot_config.dist_jitter),
620 NULL, q->slot_dist);
621
622 q->slot.slot_next = now + next_delay;
623 q->slot.packets_left = q->slot_config.max_packets;
624 q->slot.bytes_left = q->slot_config.max_bytes;
625}
626
627static struct sk_buff *netem_dequeue(struct Qdisc *sch)
628{
629 struct netem_sched_data *q = qdisc_priv(sch);
630 struct sk_buff *skb;
631 struct rb_node *p;
632
633tfifo_dequeue:
634 skb = __qdisc_dequeue_head(&sch->q);
635 if (skb) {
636 qdisc_qstats_backlog_dec(sch, skb);
637deliver:
638 qdisc_bstats_update(sch, skb);
639 return skb;
640 }
641 p = rb_first(&q->t_root);
642 if (p) {
643 u64 time_to_send;
644 u64 now = ktime_get_ns();
645
646 skb = rb_to_skb(p);
647
648 /* if more time remaining? */
649 time_to_send = netem_skb_cb(skb)->time_to_send;
650 if (q->slot.slot_next && q->slot.slot_next < time_to_send)
651 get_slot_next(q, now);
652
653 if (time_to_send <= now && q->slot.slot_next <= now) {
654 rb_erase(p, &q->t_root);
655 sch->q.qlen--;
656 qdisc_qstats_backlog_dec(sch, skb);
657 skb->next = NULL;
658 skb->prev = NULL;
659 /* skb->dev shares skb->rbnode area,
660 * we need to restore its value.
661 */
662 skb->dev = qdisc_dev(sch);
663
664#ifdef CONFIG_NET_CLS_ACT
665 /*
666 * If it's at ingress let's pretend the delay is
667 * from the network (tstamp will be updated).
668 */
669 if (skb->tc_redirected && skb->tc_from_ingress)
670 skb->tstamp = 0;
671#endif
672
673 if (q->slot.slot_next) {
674 q->slot.packets_left--;
675 q->slot.bytes_left -= qdisc_pkt_len(skb);
676 if (q->slot.packets_left <= 0 ||
677 q->slot.bytes_left <= 0)
678 get_slot_next(q, now);
679 }
680
681 if (q->qdisc) {
682 unsigned int pkt_len = qdisc_pkt_len(skb);
683 struct sk_buff *to_free = NULL;
684 int err;
685
686 err = qdisc_enqueue(skb, q->qdisc, &to_free);
687 kfree_skb_list(to_free);
688 if (err != NET_XMIT_SUCCESS &&
689 net_xmit_drop_count(err)) {
690 qdisc_qstats_drop(sch);
691 qdisc_tree_reduce_backlog(sch, 1,
692 pkt_len);
693 }
694 goto tfifo_dequeue;
695 }
696 goto deliver;
697 }
698
699 if (q->qdisc) {
700 skb = q->qdisc->ops->dequeue(q->qdisc);
701 if (skb)
702 goto deliver;
703 }
704
705 qdisc_watchdog_schedule_ns(&q->watchdog,
706 max(time_to_send,
707 q->slot.slot_next));
708 }
709
710 if (q->qdisc) {
711 skb = q->qdisc->ops->dequeue(q->qdisc);
712 if (skb)
713 goto deliver;
714 }
715 return NULL;
716}
717
718static void netem_reset(struct Qdisc *sch)
719{
720 struct netem_sched_data *q = qdisc_priv(sch);
721
722 qdisc_reset_queue(sch);
723 tfifo_reset(sch);
724 if (q->qdisc)
725 qdisc_reset(q->qdisc);
726 qdisc_watchdog_cancel(&q->watchdog);
727}
728
729static void dist_free(struct disttable *d)
730{
731 kvfree(d);
732}
733
734/*
735 * Distribution data is a variable size payload containing
736 * signed 16 bit values.
737 */
738
739static int get_dist_table(struct Qdisc *sch, struct disttable **tbl,
740 const struct nlattr *attr)
741{
742 size_t n = nla_len(attr)/sizeof(__s16);
743 const __s16 *data = nla_data(attr);
744 spinlock_t *root_lock;
745 struct disttable *d;
746 int i;
747
748 if (n > NETEM_DIST_MAX)
749 return -EINVAL;
750
751 d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
752 if (!d)
753 return -ENOMEM;
754
755 d->size = n;
756 for (i = 0; i < n; i++)
757 d->table[i] = data[i];
758
759 root_lock = qdisc_root_sleeping_lock(sch);
760
761 spin_lock_bh(root_lock);
762 swap(*tbl, d);
763 spin_unlock_bh(root_lock);
764
765 dist_free(d);
766 return 0;
767}
768
769static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
770{
771 const struct tc_netem_slot *c = nla_data(attr);
772
773 q->slot_config = *c;
774 if (q->slot_config.max_packets == 0)
775 q->slot_config.max_packets = INT_MAX;
776 if (q->slot_config.max_bytes == 0)
777 q->slot_config.max_bytes = INT_MAX;
778 q->slot.packets_left = q->slot_config.max_packets;
779 q->slot.bytes_left = q->slot_config.max_bytes;
780 if (q->slot_config.min_delay | q->slot_config.max_delay |
781 q->slot_config.dist_jitter)
782 q->slot.slot_next = ktime_get_ns();
783 else
784 q->slot.slot_next = 0;
785}
786
787static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
788{
789 const struct tc_netem_corr *c = nla_data(attr);
790
791 init_crandom(&q->delay_cor, c->delay_corr);
792 init_crandom(&q->loss_cor, c->loss_corr);
793 init_crandom(&q->dup_cor, c->dup_corr);
794}
795
796static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
797{
798 const struct tc_netem_reorder *r = nla_data(attr);
799
800 q->reorder = r->probability;
801 init_crandom(&q->reorder_cor, r->correlation);
802}
803
804static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
805{
806 const struct tc_netem_corrupt *r = nla_data(attr);
807
808 q->corrupt = r->probability;
809 init_crandom(&q->corrupt_cor, r->correlation);
810}
811
812static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
813{
814 const struct tc_netem_rate *r = nla_data(attr);
815
816 q->rate = r->rate;
817 q->packet_overhead = r->packet_overhead;
818 q->cell_size = r->cell_size;
819 q->cell_overhead = r->cell_overhead;
820 if (q->cell_size)
821 q->cell_size_reciprocal = reciprocal_value(q->cell_size);
822 else
823 q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
824}
825
826static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
827{
828 const struct nlattr *la;
829 int rem;
830
831 nla_for_each_nested(la, attr, rem) {
832 u16 type = nla_type(la);
833
834 switch (type) {
835 case NETEM_LOSS_GI: {
836 const struct tc_netem_gimodel *gi = nla_data(la);
837
838 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
839 pr_info("netem: incorrect gi model size\n");
840 return -EINVAL;
841 }
842
843 q->loss_model = CLG_4_STATES;
844
845 q->clg.state = TX_IN_GAP_PERIOD;
846 q->clg.a1 = gi->p13;
847 q->clg.a2 = gi->p31;
848 q->clg.a3 = gi->p32;
849 q->clg.a4 = gi->p14;
850 q->clg.a5 = gi->p23;
851 break;
852 }
853
854 case NETEM_LOSS_GE: {
855 const struct tc_netem_gemodel *ge = nla_data(la);
856
857 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
858 pr_info("netem: incorrect ge model size\n");
859 return -EINVAL;
860 }
861
862 q->loss_model = CLG_GILB_ELL;
863 q->clg.state = GOOD_STATE;
864 q->clg.a1 = ge->p;
865 q->clg.a2 = ge->r;
866 q->clg.a3 = ge->h;
867 q->clg.a4 = ge->k1;
868 break;
869 }
870
871 default:
872 pr_info("netem: unknown loss type %u\n", type);
873 return -EINVAL;
874 }
875 }
876
877 return 0;
878}
879
880static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
881 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
882 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
883 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
884 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) },
885 [TCA_NETEM_LOSS] = { .type = NLA_NESTED },
886 [TCA_NETEM_ECN] = { .type = NLA_U32 },
887 [TCA_NETEM_RATE64] = { .type = NLA_U64 },
888 [TCA_NETEM_LATENCY64] = { .type = NLA_S64 },
889 [TCA_NETEM_JITTER64] = { .type = NLA_S64 },
890 [TCA_NETEM_SLOT] = { .len = sizeof(struct tc_netem_slot) },
891};
892
893static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
894 const struct nla_policy *policy, int len)
895{
896 int nested_len = nla_len(nla) - NLA_ALIGN(len);
897
898 if (nested_len < 0) {
899 pr_info("netem: invalid attributes len %d\n", nested_len);
900 return -EINVAL;
901 }
902
903 if (nested_len >= nla_attr_size(0))
904 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
905 nested_len, policy, NULL);
906
907 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
908 return 0;
909}
910
911/* Parse netlink message to set options */
912static int netem_change(struct Qdisc *sch, struct nlattr *opt,
913 struct netlink_ext_ack *extack)
914{
915 struct netem_sched_data *q = qdisc_priv(sch);
916 struct nlattr *tb[TCA_NETEM_MAX + 1];
917 struct tc_netem_qopt *qopt;
918 struct clgstate old_clg;
919 int old_loss_model = CLG_RANDOM;
920 int ret;
921
922 if (opt == NULL)
923 return -EINVAL;
924
925 qopt = nla_data(opt);
926 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
927 if (ret < 0)
928 return ret;
929
930 /* backup q->clg and q->loss_model */
931 old_clg = q->clg;
932 old_loss_model = q->loss_model;
933
934 if (tb[TCA_NETEM_LOSS]) {
935 ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
936 if (ret) {
937 q->loss_model = old_loss_model;
938 return ret;
939 }
940 } else {
941 q->loss_model = CLG_RANDOM;
942 }
943
944 if (tb[TCA_NETEM_DELAY_DIST]) {
945 ret = get_dist_table(sch, &q->delay_dist,
946 tb[TCA_NETEM_DELAY_DIST]);
947 if (ret)
948 goto get_table_failure;
949 }
950
951 if (tb[TCA_NETEM_SLOT_DIST]) {
952 ret = get_dist_table(sch, &q->slot_dist,
953 tb[TCA_NETEM_SLOT_DIST]);
954 if (ret)
955 goto get_table_failure;
956 }
957
958 sch->limit = qopt->limit;
959
960 q->latency = PSCHED_TICKS2NS(qopt->latency);
961 q->jitter = PSCHED_TICKS2NS(qopt->jitter);
962 q->limit = qopt->limit;
963 q->gap = qopt->gap;
964 q->counter = 0;
965 q->loss = qopt->loss;
966 q->duplicate = qopt->duplicate;
967
968 /* for compatibility with earlier versions.
969 * if gap is set, need to assume 100% probability
970 */
971 if (q->gap)
972 q->reorder = ~0;
973
974 if (tb[TCA_NETEM_CORR])
975 get_correlation(q, tb[TCA_NETEM_CORR]);
976
977 if (tb[TCA_NETEM_REORDER])
978 get_reorder(q, tb[TCA_NETEM_REORDER]);
979
980 if (tb[TCA_NETEM_CORRUPT])
981 get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
982
983 if (tb[TCA_NETEM_RATE])
984 get_rate(q, tb[TCA_NETEM_RATE]);
985
986 if (tb[TCA_NETEM_RATE64])
987 q->rate = max_t(u64, q->rate,
988 nla_get_u64(tb[TCA_NETEM_RATE64]));
989
990 if (tb[TCA_NETEM_LATENCY64])
991 q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
992
993 if (tb[TCA_NETEM_JITTER64])
994 q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
995
996 if (tb[TCA_NETEM_ECN])
997 q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
998
999 if (tb[TCA_NETEM_SLOT])
1000 get_slot(q, tb[TCA_NETEM_SLOT]);
1001
1002 return ret;
1003
1004get_table_failure:
1005 /* recover clg and loss_model, in case of
1006 * q->clg and q->loss_model were modified
1007 * in get_loss_clg()
1008 */
1009 q->clg = old_clg;
1010 q->loss_model = old_loss_model;
1011 return ret;
1012}
1013
1014static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1015 struct netlink_ext_ack *extack)
1016{
1017 struct netem_sched_data *q = qdisc_priv(sch);
1018 int ret;
1019
1020 qdisc_watchdog_init(&q->watchdog, sch);
1021
1022 if (!opt)
1023 return -EINVAL;
1024
1025 q->loss_model = CLG_RANDOM;
1026 ret = netem_change(sch, opt, extack);
1027 if (ret)
1028 pr_info("netem: change failed\n");
1029 return ret;
1030}
1031
1032static void netem_destroy(struct Qdisc *sch)
1033{
1034 struct netem_sched_data *q = qdisc_priv(sch);
1035
1036 qdisc_watchdog_cancel(&q->watchdog);
1037 if (q->qdisc)
1038 qdisc_destroy(q->qdisc);
1039 dist_free(q->delay_dist);
1040 dist_free(q->slot_dist);
1041}
1042
1043static int dump_loss_model(const struct netem_sched_data *q,
1044 struct sk_buff *skb)
1045{
1046 struct nlattr *nest;
1047
1048 nest = nla_nest_start(skb, TCA_NETEM_LOSS);
1049 if (nest == NULL)
1050 goto nla_put_failure;
1051
1052 switch (q->loss_model) {
1053 case CLG_RANDOM:
1054 /* legacy loss model */
1055 nla_nest_cancel(skb, nest);
1056 return 0; /* no data */
1057
1058 case CLG_4_STATES: {
1059 struct tc_netem_gimodel gi = {
1060 .p13 = q->clg.a1,
1061 .p31 = q->clg.a2,
1062 .p32 = q->clg.a3,
1063 .p14 = q->clg.a4,
1064 .p23 = q->clg.a5,
1065 };
1066
1067 if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1068 goto nla_put_failure;
1069 break;
1070 }
1071 case CLG_GILB_ELL: {
1072 struct tc_netem_gemodel ge = {
1073 .p = q->clg.a1,
1074 .r = q->clg.a2,
1075 .h = q->clg.a3,
1076 .k1 = q->clg.a4,
1077 };
1078
1079 if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1080 goto nla_put_failure;
1081 break;
1082 }
1083 }
1084
1085 nla_nest_end(skb, nest);
1086 return 0;
1087
1088nla_put_failure:
1089 nla_nest_cancel(skb, nest);
1090 return -1;
1091}
1092
1093static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1094{
1095 const struct netem_sched_data *q = qdisc_priv(sch);
1096 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1097 struct tc_netem_qopt qopt;
1098 struct tc_netem_corr cor;
1099 struct tc_netem_reorder reorder;
1100 struct tc_netem_corrupt corrupt;
1101 struct tc_netem_rate rate;
1102 struct tc_netem_slot slot;
1103
1104 qopt.latency = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->latency),
1105 UINT_MAX);
1106 qopt.jitter = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->jitter),
1107 UINT_MAX);
1108 qopt.limit = q->limit;
1109 qopt.loss = q->loss;
1110 qopt.gap = q->gap;
1111 qopt.duplicate = q->duplicate;
1112 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1113 goto nla_put_failure;
1114
1115 if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1116 goto nla_put_failure;
1117
1118 if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1119 goto nla_put_failure;
1120
1121 cor.delay_corr = q->delay_cor.rho;
1122 cor.loss_corr = q->loss_cor.rho;
1123 cor.dup_corr = q->dup_cor.rho;
1124 if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1125 goto nla_put_failure;
1126
1127 reorder.probability = q->reorder;
1128 reorder.correlation = q->reorder_cor.rho;
1129 if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1130 goto nla_put_failure;
1131
1132 corrupt.probability = q->corrupt;
1133 corrupt.correlation = q->corrupt_cor.rho;
1134 if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1135 goto nla_put_failure;
1136
1137 if (q->rate >= (1ULL << 32)) {
1138 if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1139 TCA_NETEM_PAD))
1140 goto nla_put_failure;
1141 rate.rate = ~0U;
1142 } else {
1143 rate.rate = q->rate;
1144 }
1145 rate.packet_overhead = q->packet_overhead;
1146 rate.cell_size = q->cell_size;
1147 rate.cell_overhead = q->cell_overhead;
1148 if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1149 goto nla_put_failure;
1150
1151 if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1152 goto nla_put_failure;
1153
1154 if (dump_loss_model(q, skb) != 0)
1155 goto nla_put_failure;
1156
1157 if (q->slot_config.min_delay | q->slot_config.max_delay |
1158 q->slot_config.dist_jitter) {
1159 slot = q->slot_config;
1160 if (slot.max_packets == INT_MAX)
1161 slot.max_packets = 0;
1162 if (slot.max_bytes == INT_MAX)
1163 slot.max_bytes = 0;
1164 if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1165 goto nla_put_failure;
1166 }
1167
1168 return nla_nest_end(skb, nla);
1169
1170nla_put_failure:
1171 nlmsg_trim(skb, nla);
1172 return -1;
1173}
1174
1175static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1176 struct sk_buff *skb, struct tcmsg *tcm)
1177{
1178 struct netem_sched_data *q = qdisc_priv(sch);
1179
1180 if (cl != 1 || !q->qdisc) /* only one class */
1181 return -ENOENT;
1182
1183 tcm->tcm_handle |= TC_H_MIN(1);
1184 tcm->tcm_info = q->qdisc->handle;
1185
1186 return 0;
1187}
1188
1189static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1190 struct Qdisc **old, struct netlink_ext_ack *extack)
1191{
1192 struct netem_sched_data *q = qdisc_priv(sch);
1193
1194 *old = qdisc_replace(sch, new, &q->qdisc);
1195 return 0;
1196}
1197
1198static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1199{
1200 struct netem_sched_data *q = qdisc_priv(sch);
1201 return q->qdisc;
1202}
1203
1204static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1205{
1206 return 1;
1207}
1208
1209static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1210{
1211 if (!walker->stop) {
1212 if (walker->count >= walker->skip)
1213 if (walker->fn(sch, 1, walker) < 0) {
1214 walker->stop = 1;
1215 return;
1216 }
1217 walker->count++;
1218 }
1219}
1220
1221static const struct Qdisc_class_ops netem_class_ops = {
1222 .graft = netem_graft,
1223 .leaf = netem_leaf,
1224 .find = netem_find,
1225 .walk = netem_walk,
1226 .dump = netem_dump_class,
1227};
1228
1229static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1230 .id = "netem",
1231 .cl_ops = &netem_class_ops,
1232 .priv_size = sizeof(struct netem_sched_data),
1233 .enqueue = netem_enqueue,
1234 .dequeue = netem_dequeue,
1235 .peek = qdisc_peek_dequeued,
1236 .init = netem_init,
1237 .reset = netem_reset,
1238 .destroy = netem_destroy,
1239 .change = netem_change,
1240 .dump = netem_dump,
1241 .owner = THIS_MODULE,
1242};
1243
1244
1245static int __init netem_module_init(void)
1246{
1247 pr_info("netem: version " VERSION "\n");
1248 return register_qdisc(&netem_qdisc_ops);
1249}
1250static void __exit netem_module_exit(void)
1251{
1252 unregister_qdisc(&netem_qdisc_ops);
1253}
1254module_init(netem_module_init)
1255module_exit(netem_module_exit)
1256MODULE_LICENSE("GPL");