Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * This file contains shadow memory manipulation code. |
| 3 | * |
| 4 | * Copyright (c) 2014 Samsung Electronics Co., Ltd. |
| 5 | * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> |
| 6 | * |
| 7 | * Some code borrowed from https://github.com/xairy/kasan-prototype by |
| 8 | * Andrey Konovalov <andreyknvl@gmail.com> |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of the GNU General Public License version 2 as |
| 12 | * published by the Free Software Foundation. |
| 13 | * |
| 14 | */ |
| 15 | |
| 16 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 17 | #define DISABLE_BRANCH_PROFILING |
| 18 | |
| 19 | #include <linux/export.h> |
| 20 | #include <linux/interrupt.h> |
| 21 | #include <linux/init.h> |
| 22 | #include <linux/kasan.h> |
| 23 | #include <linux/kernel.h> |
| 24 | #include <linux/kmemleak.h> |
| 25 | #include <linux/linkage.h> |
| 26 | #include <linux/memblock.h> |
| 27 | #include <linux/memory.h> |
| 28 | #include <linux/mm.h> |
| 29 | #include <linux/module.h> |
| 30 | #include <linux/printk.h> |
| 31 | #include <linux/sched.h> |
| 32 | #include <linux/sched/task_stack.h> |
| 33 | #include <linux/slab.h> |
| 34 | #include <linux/stacktrace.h> |
| 35 | #include <linux/string.h> |
| 36 | #include <linux/types.h> |
| 37 | #include <linux/vmalloc.h> |
| 38 | #include <linux/bug.h> |
| 39 | |
| 40 | #include "kasan.h" |
| 41 | #include "../slab.h" |
| 42 | |
| 43 | void kasan_enable_current(void) |
| 44 | { |
| 45 | current->kasan_depth++; |
| 46 | } |
| 47 | |
| 48 | void kasan_disable_current(void) |
| 49 | { |
| 50 | current->kasan_depth--; |
| 51 | } |
| 52 | |
| 53 | /* |
| 54 | * Poisons the shadow memory for 'size' bytes starting from 'addr'. |
| 55 | * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE. |
| 56 | */ |
| 57 | static void kasan_poison_shadow(const void *address, size_t size, u8 value) |
| 58 | { |
| 59 | void *shadow_start, *shadow_end; |
| 60 | |
| 61 | shadow_start = kasan_mem_to_shadow(address); |
| 62 | shadow_end = kasan_mem_to_shadow(address + size); |
| 63 | |
| 64 | memset(shadow_start, value, shadow_end - shadow_start); |
| 65 | } |
| 66 | |
| 67 | void kasan_unpoison_shadow(const void *address, size_t size) |
| 68 | { |
| 69 | kasan_poison_shadow(address, size, 0); |
| 70 | |
| 71 | if (size & KASAN_SHADOW_MASK) { |
| 72 | u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); |
| 73 | *shadow = size & KASAN_SHADOW_MASK; |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) |
| 78 | { |
| 79 | void *base = task_stack_page(task); |
| 80 | size_t size = sp - base; |
| 81 | |
| 82 | kasan_unpoison_shadow(base, size); |
| 83 | } |
| 84 | |
| 85 | /* Unpoison the entire stack for a task. */ |
| 86 | void kasan_unpoison_task_stack(struct task_struct *task) |
| 87 | { |
| 88 | __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); |
| 89 | } |
| 90 | |
| 91 | /* Unpoison the stack for the current task beyond a watermark sp value. */ |
| 92 | asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) |
| 93 | { |
| 94 | /* |
| 95 | * Calculate the task stack base address. Avoid using 'current' |
| 96 | * because this function is called by early resume code which hasn't |
| 97 | * yet set up the percpu register (%gs). |
| 98 | */ |
| 99 | void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); |
| 100 | |
| 101 | kasan_unpoison_shadow(base, watermark - base); |
| 102 | } |
| 103 | |
| 104 | /* |
| 105 | * Clear all poison for the region between the current SP and a provided |
| 106 | * watermark value, as is sometimes required prior to hand-crafted asm function |
| 107 | * returns in the middle of functions. |
| 108 | */ |
| 109 | void kasan_unpoison_stack_above_sp_to(const void *watermark) |
| 110 | { |
| 111 | const void *sp = __builtin_frame_address(0); |
| 112 | size_t size = watermark - sp; |
| 113 | |
| 114 | if (WARN_ON(sp > watermark)) |
| 115 | return; |
| 116 | kasan_unpoison_shadow(sp, size); |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * All functions below always inlined so compiler could |
| 121 | * perform better optimizations in each of __asan_loadX/__assn_storeX |
| 122 | * depending on memory access size X. |
| 123 | */ |
| 124 | |
| 125 | static __always_inline bool memory_is_poisoned_1(unsigned long addr) |
| 126 | { |
| 127 | s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr); |
| 128 | |
| 129 | if (unlikely(shadow_value)) { |
| 130 | s8 last_accessible_byte = addr & KASAN_SHADOW_MASK; |
| 131 | return unlikely(last_accessible_byte >= shadow_value); |
| 132 | } |
| 133 | |
| 134 | return false; |
| 135 | } |
| 136 | |
| 137 | static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr, |
| 138 | unsigned long size) |
| 139 | { |
| 140 | u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr); |
| 141 | |
| 142 | /* |
| 143 | * Access crosses 8(shadow size)-byte boundary. Such access maps |
| 144 | * into 2 shadow bytes, so we need to check them both. |
| 145 | */ |
| 146 | if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1)) |
| 147 | return *shadow_addr || memory_is_poisoned_1(addr + size - 1); |
| 148 | |
| 149 | return memory_is_poisoned_1(addr + size - 1); |
| 150 | } |
| 151 | |
| 152 | static __always_inline bool memory_is_poisoned_16(unsigned long addr) |
| 153 | { |
| 154 | u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr); |
| 155 | |
| 156 | /* Unaligned 16-bytes access maps into 3 shadow bytes. */ |
| 157 | if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE))) |
| 158 | return *shadow_addr || memory_is_poisoned_1(addr + 15); |
| 159 | |
| 160 | return *shadow_addr; |
| 161 | } |
| 162 | |
| 163 | static __always_inline unsigned long bytes_is_nonzero(const u8 *start, |
| 164 | size_t size) |
| 165 | { |
| 166 | while (size) { |
| 167 | if (unlikely(*start)) |
| 168 | return (unsigned long)start; |
| 169 | start++; |
| 170 | size--; |
| 171 | } |
| 172 | |
| 173 | return 0; |
| 174 | } |
| 175 | |
| 176 | static __always_inline unsigned long memory_is_nonzero(const void *start, |
| 177 | const void *end) |
| 178 | { |
| 179 | unsigned int words; |
| 180 | unsigned long ret; |
| 181 | unsigned int prefix = (unsigned long)start % 8; |
| 182 | |
| 183 | if (end - start <= 16) |
| 184 | return bytes_is_nonzero(start, end - start); |
| 185 | |
| 186 | if (prefix) { |
| 187 | prefix = 8 - prefix; |
| 188 | ret = bytes_is_nonzero(start, prefix); |
| 189 | if (unlikely(ret)) |
| 190 | return ret; |
| 191 | start += prefix; |
| 192 | } |
| 193 | |
| 194 | words = (end - start) / 8; |
| 195 | while (words) { |
| 196 | if (unlikely(*(u64 *)start)) |
| 197 | return bytes_is_nonzero(start, 8); |
| 198 | start += 8; |
| 199 | words--; |
| 200 | } |
| 201 | |
| 202 | return bytes_is_nonzero(start, (end - start) % 8); |
| 203 | } |
| 204 | |
| 205 | static __always_inline bool memory_is_poisoned_n(unsigned long addr, |
| 206 | size_t size) |
| 207 | { |
| 208 | unsigned long ret; |
| 209 | |
| 210 | ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr), |
| 211 | kasan_mem_to_shadow((void *)addr + size - 1) + 1); |
| 212 | |
| 213 | if (unlikely(ret)) { |
| 214 | unsigned long last_byte = addr + size - 1; |
| 215 | s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte); |
| 216 | |
| 217 | if (unlikely(ret != (unsigned long)last_shadow || |
| 218 | ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow))) |
| 219 | return true; |
| 220 | } |
| 221 | return false; |
| 222 | } |
| 223 | |
| 224 | static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size) |
| 225 | { |
| 226 | if (__builtin_constant_p(size)) { |
| 227 | switch (size) { |
| 228 | case 1: |
| 229 | return memory_is_poisoned_1(addr); |
| 230 | case 2: |
| 231 | case 4: |
| 232 | case 8: |
| 233 | return memory_is_poisoned_2_4_8(addr, size); |
| 234 | case 16: |
| 235 | return memory_is_poisoned_16(addr); |
| 236 | default: |
| 237 | BUILD_BUG(); |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | return memory_is_poisoned_n(addr, size); |
| 242 | } |
| 243 | |
| 244 | static __always_inline void check_memory_region_inline(unsigned long addr, |
| 245 | size_t size, bool write, |
| 246 | unsigned long ret_ip) |
| 247 | { |
| 248 | if (unlikely(size == 0)) |
| 249 | return; |
| 250 | |
| 251 | if (unlikely((void *)addr < |
| 252 | kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) { |
| 253 | kasan_report(addr, size, write, ret_ip); |
| 254 | return; |
| 255 | } |
| 256 | |
| 257 | if (likely(!memory_is_poisoned(addr, size))) |
| 258 | return; |
| 259 | |
| 260 | kasan_report(addr, size, write, ret_ip); |
| 261 | } |
| 262 | |
| 263 | static void check_memory_region(unsigned long addr, |
| 264 | size_t size, bool write, |
| 265 | unsigned long ret_ip) |
| 266 | { |
| 267 | check_memory_region_inline(addr, size, write, ret_ip); |
| 268 | } |
| 269 | |
| 270 | void kasan_check_read(const volatile void *p, unsigned int size) |
| 271 | { |
| 272 | check_memory_region((unsigned long)p, size, false, _RET_IP_); |
| 273 | } |
| 274 | EXPORT_SYMBOL(kasan_check_read); |
| 275 | |
| 276 | void kasan_check_write(const volatile void *p, unsigned int size) |
| 277 | { |
| 278 | check_memory_region((unsigned long)p, size, true, _RET_IP_); |
| 279 | } |
| 280 | EXPORT_SYMBOL(kasan_check_write); |
| 281 | |
| 282 | #undef memset |
| 283 | void *memset(void *addr, int c, size_t len) |
| 284 | { |
| 285 | check_memory_region((unsigned long)addr, len, true, _RET_IP_); |
| 286 | |
| 287 | return __memset(addr, c, len); |
| 288 | } |
| 289 | |
| 290 | #undef memmove |
| 291 | void *memmove(void *dest, const void *src, size_t len) |
| 292 | { |
| 293 | check_memory_region((unsigned long)src, len, false, _RET_IP_); |
| 294 | check_memory_region((unsigned long)dest, len, true, _RET_IP_); |
| 295 | |
| 296 | return __memmove(dest, src, len); |
| 297 | } |
| 298 | |
| 299 | #undef memcpy |
| 300 | void *memcpy(void *dest, const void *src, size_t len) |
| 301 | { |
| 302 | check_memory_region((unsigned long)src, len, false, _RET_IP_); |
| 303 | check_memory_region((unsigned long)dest, len, true, _RET_IP_); |
| 304 | |
| 305 | return __memcpy(dest, src, len); |
| 306 | } |
| 307 | |
| 308 | void kasan_alloc_pages(struct page *page, unsigned int order) |
| 309 | { |
| 310 | if (likely(!PageHighMem(page))) |
| 311 | kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order); |
| 312 | } |
| 313 | |
| 314 | void kasan_free_pages(struct page *page, unsigned int order) |
| 315 | { |
| 316 | if (likely(!PageHighMem(page))) |
| 317 | kasan_poison_shadow(page_address(page), |
| 318 | PAGE_SIZE << order, |
| 319 | KASAN_FREE_PAGE); |
| 320 | } |
| 321 | |
| 322 | /* |
| 323 | * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. |
| 324 | * For larger allocations larger redzones are used. |
| 325 | */ |
| 326 | static unsigned int optimal_redzone(unsigned int object_size) |
| 327 | { |
| 328 | return |
| 329 | object_size <= 64 - 16 ? 16 : |
| 330 | object_size <= 128 - 32 ? 32 : |
| 331 | object_size <= 512 - 64 ? 64 : |
| 332 | object_size <= 4096 - 128 ? 128 : |
| 333 | object_size <= (1 << 14) - 256 ? 256 : |
| 334 | object_size <= (1 << 15) - 512 ? 512 : |
| 335 | object_size <= (1 << 16) - 1024 ? 1024 : 2048; |
| 336 | } |
| 337 | |
| 338 | void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, |
| 339 | slab_flags_t *flags) |
| 340 | { |
| 341 | unsigned int orig_size = *size; |
| 342 | int redzone_adjust; |
| 343 | |
| 344 | /* Add alloc meta. */ |
| 345 | cache->kasan_info.alloc_meta_offset = *size; |
| 346 | *size += sizeof(struct kasan_alloc_meta); |
| 347 | |
| 348 | /* Add free meta. */ |
| 349 | if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || |
| 350 | cache->object_size < sizeof(struct kasan_free_meta)) { |
| 351 | cache->kasan_info.free_meta_offset = *size; |
| 352 | *size += sizeof(struct kasan_free_meta); |
| 353 | } |
| 354 | redzone_adjust = optimal_redzone(cache->object_size) - |
| 355 | (*size - cache->object_size); |
| 356 | |
| 357 | if (redzone_adjust > 0) |
| 358 | *size += redzone_adjust; |
| 359 | |
| 360 | *size = min_t(unsigned int, KMALLOC_MAX_SIZE, |
| 361 | max(*size, cache->object_size + |
| 362 | optimal_redzone(cache->object_size))); |
| 363 | |
| 364 | /* |
| 365 | * If the metadata doesn't fit, don't enable KASAN at all. |
| 366 | */ |
| 367 | if (*size <= cache->kasan_info.alloc_meta_offset || |
| 368 | *size <= cache->kasan_info.free_meta_offset) { |
| 369 | cache->kasan_info.alloc_meta_offset = 0; |
| 370 | cache->kasan_info.free_meta_offset = 0; |
| 371 | *size = orig_size; |
| 372 | return; |
| 373 | } |
| 374 | |
| 375 | *flags |= SLAB_KASAN; |
| 376 | } |
| 377 | |
| 378 | void kasan_cache_shrink(struct kmem_cache *cache) |
| 379 | { |
| 380 | quarantine_remove_cache(cache); |
| 381 | } |
| 382 | |
| 383 | void kasan_cache_shutdown(struct kmem_cache *cache) |
| 384 | { |
| 385 | if (!__kmem_cache_empty(cache)) |
| 386 | quarantine_remove_cache(cache); |
| 387 | } |
| 388 | |
| 389 | size_t kasan_metadata_size(struct kmem_cache *cache) |
| 390 | { |
| 391 | return (cache->kasan_info.alloc_meta_offset ? |
| 392 | sizeof(struct kasan_alloc_meta) : 0) + |
| 393 | (cache->kasan_info.free_meta_offset ? |
| 394 | sizeof(struct kasan_free_meta) : 0); |
| 395 | } |
| 396 | |
| 397 | void kasan_poison_slab(struct page *page) |
| 398 | { |
| 399 | kasan_poison_shadow(page_address(page), |
| 400 | PAGE_SIZE << compound_order(page), |
| 401 | KASAN_KMALLOC_REDZONE); |
| 402 | } |
| 403 | |
| 404 | void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) |
| 405 | { |
| 406 | kasan_unpoison_shadow(object, cache->object_size); |
| 407 | } |
| 408 | |
| 409 | void kasan_poison_object_data(struct kmem_cache *cache, void *object) |
| 410 | { |
| 411 | kasan_poison_shadow(object, |
| 412 | round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE), |
| 413 | KASAN_KMALLOC_REDZONE); |
| 414 | } |
| 415 | |
| 416 | static inline int in_irqentry_text(unsigned long ptr) |
| 417 | { |
| 418 | return (ptr >= (unsigned long)&__irqentry_text_start && |
| 419 | ptr < (unsigned long)&__irqentry_text_end) || |
| 420 | (ptr >= (unsigned long)&__softirqentry_text_start && |
| 421 | ptr < (unsigned long)&__softirqentry_text_end); |
| 422 | } |
| 423 | |
| 424 | static inline void filter_irq_stacks(struct stack_trace *trace) |
| 425 | { |
| 426 | int i; |
| 427 | |
| 428 | if (!trace->nr_entries) |
| 429 | return; |
| 430 | for (i = 0; i < trace->nr_entries; i++) |
| 431 | if (in_irqentry_text(trace->entries[i])) { |
| 432 | /* Include the irqentry function into the stack. */ |
| 433 | trace->nr_entries = i + 1; |
| 434 | break; |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | static inline depot_stack_handle_t save_stack(gfp_t flags) |
| 439 | { |
| 440 | unsigned long entries[KASAN_STACK_DEPTH]; |
| 441 | struct stack_trace trace = { |
| 442 | .nr_entries = 0, |
| 443 | .entries = entries, |
| 444 | .max_entries = KASAN_STACK_DEPTH, |
| 445 | .skip = 0 |
| 446 | }; |
| 447 | |
| 448 | save_stack_trace(&trace); |
| 449 | filter_irq_stacks(&trace); |
| 450 | if (trace.nr_entries != 0 && |
| 451 | trace.entries[trace.nr_entries-1] == ULONG_MAX) |
| 452 | trace.nr_entries--; |
| 453 | |
| 454 | return depot_save_stack(&trace, flags); |
| 455 | } |
| 456 | |
| 457 | static inline void set_track(struct kasan_track *track, gfp_t flags) |
| 458 | { |
| 459 | track->pid = current->pid; |
| 460 | track->stack = save_stack(flags); |
| 461 | } |
| 462 | |
| 463 | struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, |
| 464 | const void *object) |
| 465 | { |
| 466 | BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32); |
| 467 | return (void *)object + cache->kasan_info.alloc_meta_offset; |
| 468 | } |
| 469 | |
| 470 | struct kasan_free_meta *get_free_info(struct kmem_cache *cache, |
| 471 | const void *object) |
| 472 | { |
| 473 | BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); |
| 474 | return (void *)object + cache->kasan_info.free_meta_offset; |
| 475 | } |
| 476 | |
| 477 | void kasan_init_slab_obj(struct kmem_cache *cache, const void *object) |
| 478 | { |
| 479 | struct kasan_alloc_meta *alloc_info; |
| 480 | |
| 481 | if (!(cache->flags & SLAB_KASAN)) |
| 482 | return; |
| 483 | |
| 484 | alloc_info = get_alloc_info(cache, object); |
| 485 | __memset(alloc_info, 0, sizeof(*alloc_info)); |
| 486 | } |
| 487 | |
| 488 | void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags) |
| 489 | { |
| 490 | kasan_kmalloc(cache, object, cache->object_size, flags); |
| 491 | } |
| 492 | |
| 493 | static bool __kasan_slab_free(struct kmem_cache *cache, void *object, |
| 494 | unsigned long ip, bool quarantine) |
| 495 | { |
| 496 | s8 shadow_byte; |
| 497 | unsigned long rounded_up_size; |
| 498 | |
| 499 | if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != |
| 500 | object)) { |
| 501 | kasan_report_invalid_free(object, ip); |
| 502 | return true; |
| 503 | } |
| 504 | |
| 505 | /* RCU slabs could be legally used after free within the RCU period */ |
| 506 | if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) |
| 507 | return false; |
| 508 | |
| 509 | shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object)); |
| 510 | if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) { |
| 511 | kasan_report_invalid_free(object, ip); |
| 512 | return true; |
| 513 | } |
| 514 | |
| 515 | rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE); |
| 516 | kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE); |
| 517 | |
| 518 | if (!quarantine || unlikely(!(cache->flags & SLAB_KASAN))) |
| 519 | return false; |
| 520 | |
| 521 | set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT); |
| 522 | quarantine_put(get_free_info(cache, object), cache); |
| 523 | return true; |
| 524 | } |
| 525 | |
| 526 | bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) |
| 527 | { |
| 528 | return __kasan_slab_free(cache, object, ip, true); |
| 529 | } |
| 530 | |
| 531 | void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size, |
| 532 | gfp_t flags) |
| 533 | { |
| 534 | unsigned long redzone_start; |
| 535 | unsigned long redzone_end; |
| 536 | |
| 537 | if (gfpflags_allow_blocking(flags)) |
| 538 | quarantine_reduce(); |
| 539 | |
| 540 | if (unlikely(object == NULL)) |
| 541 | return; |
| 542 | |
| 543 | redzone_start = round_up((unsigned long)(object + size), |
| 544 | KASAN_SHADOW_SCALE_SIZE); |
| 545 | redzone_end = round_up((unsigned long)object + cache->object_size, |
| 546 | KASAN_SHADOW_SCALE_SIZE); |
| 547 | |
| 548 | kasan_unpoison_shadow(object, size); |
| 549 | kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, |
| 550 | KASAN_KMALLOC_REDZONE); |
| 551 | |
| 552 | if (cache->flags & SLAB_KASAN) |
| 553 | set_track(&get_alloc_info(cache, object)->alloc_track, flags); |
| 554 | } |
| 555 | EXPORT_SYMBOL(kasan_kmalloc); |
| 556 | |
| 557 | void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags) |
| 558 | { |
| 559 | struct page *page; |
| 560 | unsigned long redzone_start; |
| 561 | unsigned long redzone_end; |
| 562 | |
| 563 | if (gfpflags_allow_blocking(flags)) |
| 564 | quarantine_reduce(); |
| 565 | |
| 566 | if (unlikely(ptr == NULL)) |
| 567 | return; |
| 568 | |
| 569 | page = virt_to_page(ptr); |
| 570 | redzone_start = round_up((unsigned long)(ptr + size), |
| 571 | KASAN_SHADOW_SCALE_SIZE); |
| 572 | redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page)); |
| 573 | |
| 574 | kasan_unpoison_shadow(ptr, size); |
| 575 | kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, |
| 576 | KASAN_PAGE_REDZONE); |
| 577 | } |
| 578 | |
| 579 | void kasan_krealloc(const void *object, size_t size, gfp_t flags) |
| 580 | { |
| 581 | struct page *page; |
| 582 | |
| 583 | if (unlikely(object == ZERO_SIZE_PTR)) |
| 584 | return; |
| 585 | |
| 586 | page = virt_to_head_page(object); |
| 587 | |
| 588 | if (unlikely(!PageSlab(page))) |
| 589 | kasan_kmalloc_large(object, size, flags); |
| 590 | else |
| 591 | kasan_kmalloc(page->slab_cache, object, size, flags); |
| 592 | } |
| 593 | |
| 594 | void kasan_poison_kfree(void *ptr, unsigned long ip) |
| 595 | { |
| 596 | struct page *page; |
| 597 | |
| 598 | page = virt_to_head_page(ptr); |
| 599 | |
| 600 | if (unlikely(!PageSlab(page))) { |
| 601 | if (ptr != page_address(page)) { |
| 602 | kasan_report_invalid_free(ptr, ip); |
| 603 | return; |
| 604 | } |
| 605 | kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page), |
| 606 | KASAN_FREE_PAGE); |
| 607 | } else { |
| 608 | __kasan_slab_free(page->slab_cache, ptr, ip, false); |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | void kasan_kfree_large(void *ptr, unsigned long ip) |
| 613 | { |
| 614 | if (ptr != page_address(virt_to_head_page(ptr))) |
| 615 | kasan_report_invalid_free(ptr, ip); |
| 616 | /* The object will be poisoned by page_alloc. */ |
| 617 | } |
| 618 | |
| 619 | int kasan_module_alloc(void *addr, size_t size) |
| 620 | { |
| 621 | void *ret; |
| 622 | size_t scaled_size; |
| 623 | size_t shadow_size; |
| 624 | unsigned long shadow_start; |
| 625 | |
| 626 | shadow_start = (unsigned long)kasan_mem_to_shadow(addr); |
| 627 | scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT; |
| 628 | shadow_size = round_up(scaled_size, PAGE_SIZE); |
| 629 | |
| 630 | if (WARN_ON(!PAGE_ALIGNED(shadow_start))) |
| 631 | return -EINVAL; |
| 632 | |
| 633 | ret = __vmalloc_node_range(shadow_size, 1, shadow_start, |
| 634 | shadow_start + shadow_size, |
| 635 | GFP_KERNEL | __GFP_ZERO, |
| 636 | PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, |
| 637 | __builtin_return_address(0)); |
| 638 | |
| 639 | if (ret) { |
| 640 | find_vm_area(addr)->flags |= VM_KASAN; |
| 641 | kmemleak_ignore(ret); |
| 642 | return 0; |
| 643 | } |
| 644 | |
| 645 | return -ENOMEM; |
| 646 | } |
| 647 | |
| 648 | void kasan_free_shadow(const struct vm_struct *vm) |
| 649 | { |
| 650 | if (vm->flags & VM_KASAN) |
| 651 | vfree(kasan_mem_to_shadow(vm->addr)); |
| 652 | } |
| 653 | |
| 654 | static void register_global(struct kasan_global *global) |
| 655 | { |
| 656 | size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE); |
| 657 | |
| 658 | kasan_unpoison_shadow(global->beg, global->size); |
| 659 | |
| 660 | kasan_poison_shadow(global->beg + aligned_size, |
| 661 | global->size_with_redzone - aligned_size, |
| 662 | KASAN_GLOBAL_REDZONE); |
| 663 | } |
| 664 | |
| 665 | void __asan_register_globals(struct kasan_global *globals, size_t size) |
| 666 | { |
| 667 | int i; |
| 668 | |
| 669 | for (i = 0; i < size; i++) |
| 670 | register_global(&globals[i]); |
| 671 | } |
| 672 | EXPORT_SYMBOL(__asan_register_globals); |
| 673 | |
| 674 | void __asan_unregister_globals(struct kasan_global *globals, size_t size) |
| 675 | { |
| 676 | } |
| 677 | EXPORT_SYMBOL(__asan_unregister_globals); |
| 678 | |
| 679 | #define DEFINE_ASAN_LOAD_STORE(size) \ |
| 680 | void __asan_load##size(unsigned long addr) \ |
| 681 | { \ |
| 682 | check_memory_region_inline(addr, size, false, _RET_IP_);\ |
| 683 | } \ |
| 684 | EXPORT_SYMBOL(__asan_load##size); \ |
| 685 | __alias(__asan_load##size) \ |
| 686 | void __asan_load##size##_noabort(unsigned long); \ |
| 687 | EXPORT_SYMBOL(__asan_load##size##_noabort); \ |
| 688 | void __asan_store##size(unsigned long addr) \ |
| 689 | { \ |
| 690 | check_memory_region_inline(addr, size, true, _RET_IP_); \ |
| 691 | } \ |
| 692 | EXPORT_SYMBOL(__asan_store##size); \ |
| 693 | __alias(__asan_store##size) \ |
| 694 | void __asan_store##size##_noabort(unsigned long); \ |
| 695 | EXPORT_SYMBOL(__asan_store##size##_noabort) |
| 696 | |
| 697 | DEFINE_ASAN_LOAD_STORE(1); |
| 698 | DEFINE_ASAN_LOAD_STORE(2); |
| 699 | DEFINE_ASAN_LOAD_STORE(4); |
| 700 | DEFINE_ASAN_LOAD_STORE(8); |
| 701 | DEFINE_ASAN_LOAD_STORE(16); |
| 702 | |
| 703 | void __asan_loadN(unsigned long addr, size_t size) |
| 704 | { |
| 705 | check_memory_region(addr, size, false, _RET_IP_); |
| 706 | } |
| 707 | EXPORT_SYMBOL(__asan_loadN); |
| 708 | |
| 709 | __alias(__asan_loadN) |
| 710 | void __asan_loadN_noabort(unsigned long, size_t); |
| 711 | EXPORT_SYMBOL(__asan_loadN_noabort); |
| 712 | |
| 713 | void __asan_storeN(unsigned long addr, size_t size) |
| 714 | { |
| 715 | check_memory_region(addr, size, true, _RET_IP_); |
| 716 | } |
| 717 | EXPORT_SYMBOL(__asan_storeN); |
| 718 | |
| 719 | __alias(__asan_storeN) |
| 720 | void __asan_storeN_noabort(unsigned long, size_t); |
| 721 | EXPORT_SYMBOL(__asan_storeN_noabort); |
| 722 | |
| 723 | /* to shut up compiler complaints */ |
| 724 | void __asan_handle_no_return(void) {} |
| 725 | EXPORT_SYMBOL(__asan_handle_no_return); |
| 726 | |
| 727 | /* Emitted by compiler to poison large objects when they go out of scope. */ |
| 728 | void __asan_poison_stack_memory(const void *addr, size_t size) |
| 729 | { |
| 730 | /* |
| 731 | * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded |
| 732 | * by redzones, so we simply round up size to simplify logic. |
| 733 | */ |
| 734 | kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE), |
| 735 | KASAN_USE_AFTER_SCOPE); |
| 736 | } |
| 737 | EXPORT_SYMBOL(__asan_poison_stack_memory); |
| 738 | |
| 739 | /* Emitted by compiler to unpoison large objects when they go into scope. */ |
| 740 | void __asan_unpoison_stack_memory(const void *addr, size_t size) |
| 741 | { |
| 742 | kasan_unpoison_shadow(addr, size); |
| 743 | } |
| 744 | EXPORT_SYMBOL(__asan_unpoison_stack_memory); |
| 745 | |
| 746 | /* Emitted by compiler to poison alloca()ed objects. */ |
| 747 | void __asan_alloca_poison(unsigned long addr, size_t size) |
| 748 | { |
| 749 | size_t rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE); |
| 750 | size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) - |
| 751 | rounded_up_size; |
| 752 | size_t rounded_down_size = round_down(size, KASAN_SHADOW_SCALE_SIZE); |
| 753 | |
| 754 | const void *left_redzone = (const void *)(addr - |
| 755 | KASAN_ALLOCA_REDZONE_SIZE); |
| 756 | const void *right_redzone = (const void *)(addr + rounded_up_size); |
| 757 | |
| 758 | WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE)); |
| 759 | |
| 760 | kasan_unpoison_shadow((const void *)(addr + rounded_down_size), |
| 761 | size - rounded_down_size); |
| 762 | kasan_poison_shadow(left_redzone, KASAN_ALLOCA_REDZONE_SIZE, |
| 763 | KASAN_ALLOCA_LEFT); |
| 764 | kasan_poison_shadow(right_redzone, |
| 765 | padding_size + KASAN_ALLOCA_REDZONE_SIZE, |
| 766 | KASAN_ALLOCA_RIGHT); |
| 767 | } |
| 768 | EXPORT_SYMBOL(__asan_alloca_poison); |
| 769 | |
| 770 | /* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */ |
| 771 | void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom) |
| 772 | { |
| 773 | if (unlikely(!stack_top || stack_top > stack_bottom)) |
| 774 | return; |
| 775 | |
| 776 | kasan_unpoison_shadow(stack_top, stack_bottom - stack_top); |
| 777 | } |
| 778 | EXPORT_SYMBOL(__asan_allocas_unpoison); |
| 779 | |
| 780 | /* Emitted by the compiler to [un]poison local variables. */ |
| 781 | #define DEFINE_ASAN_SET_SHADOW(byte) \ |
| 782 | void __asan_set_shadow_##byte(const void *addr, size_t size) \ |
| 783 | { \ |
| 784 | __memset((void *)addr, 0x##byte, size); \ |
| 785 | } \ |
| 786 | EXPORT_SYMBOL(__asan_set_shadow_##byte) |
| 787 | |
| 788 | DEFINE_ASAN_SET_SHADOW(00); |
| 789 | DEFINE_ASAN_SET_SHADOW(f1); |
| 790 | DEFINE_ASAN_SET_SHADOW(f2); |
| 791 | DEFINE_ASAN_SET_SHADOW(f3); |
| 792 | DEFINE_ASAN_SET_SHADOW(f5); |
| 793 | DEFINE_ASAN_SET_SHADOW(f8); |
| 794 | |
| 795 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 796 | static bool shadow_mapped(unsigned long addr) |
| 797 | { |
| 798 | pgd_t *pgd = pgd_offset_k(addr); |
| 799 | p4d_t *p4d; |
| 800 | pud_t *pud; |
| 801 | pmd_t *pmd; |
| 802 | pte_t *pte; |
| 803 | |
| 804 | if (pgd_none(*pgd)) |
| 805 | return false; |
| 806 | p4d = p4d_offset(pgd, addr); |
| 807 | if (p4d_none(*p4d)) |
| 808 | return false; |
| 809 | pud = pud_offset(p4d, addr); |
| 810 | if (pud_none(*pud)) |
| 811 | return false; |
| 812 | |
| 813 | /* |
| 814 | * We can't use pud_large() or pud_huge(), the first one is |
| 815 | * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse |
| 816 | * pud_bad(), if pud is bad then it's bad because it's huge. |
| 817 | */ |
| 818 | if (pud_bad(*pud)) |
| 819 | return true; |
| 820 | pmd = pmd_offset(pud, addr); |
| 821 | if (pmd_none(*pmd)) |
| 822 | return false; |
| 823 | |
| 824 | if (pmd_bad(*pmd)) |
| 825 | return true; |
| 826 | pte = pte_offset_kernel(pmd, addr); |
| 827 | return !pte_none(*pte); |
| 828 | } |
| 829 | |
| 830 | static int __meminit kasan_mem_notifier(struct notifier_block *nb, |
| 831 | unsigned long action, void *data) |
| 832 | { |
| 833 | struct memory_notify *mem_data = data; |
| 834 | unsigned long nr_shadow_pages, start_kaddr, shadow_start; |
| 835 | unsigned long shadow_end, shadow_size; |
| 836 | |
| 837 | nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; |
| 838 | start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); |
| 839 | shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); |
| 840 | shadow_size = nr_shadow_pages << PAGE_SHIFT; |
| 841 | shadow_end = shadow_start + shadow_size; |
| 842 | |
| 843 | if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) || |
| 844 | WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT))) |
| 845 | return NOTIFY_BAD; |
| 846 | |
| 847 | switch (action) { |
| 848 | case MEM_GOING_ONLINE: { |
| 849 | void *ret; |
| 850 | |
| 851 | /* |
| 852 | * If shadow is mapped already than it must have been mapped |
| 853 | * during the boot. This could happen if we onlining previously |
| 854 | * offlined memory. |
| 855 | */ |
| 856 | if (shadow_mapped(shadow_start)) |
| 857 | return NOTIFY_OK; |
| 858 | |
| 859 | ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, |
| 860 | shadow_end, GFP_KERNEL, |
| 861 | PAGE_KERNEL, VM_NO_GUARD, |
| 862 | pfn_to_nid(mem_data->start_pfn), |
| 863 | __builtin_return_address(0)); |
| 864 | if (!ret) |
| 865 | return NOTIFY_BAD; |
| 866 | |
| 867 | kmemleak_ignore(ret); |
| 868 | return NOTIFY_OK; |
| 869 | } |
| 870 | case MEM_CANCEL_ONLINE: |
| 871 | case MEM_OFFLINE: { |
| 872 | struct vm_struct *vm; |
| 873 | |
| 874 | /* |
| 875 | * shadow_start was either mapped during boot by kasan_init() |
| 876 | * or during memory online by __vmalloc_node_range(). |
| 877 | * In the latter case we can use vfree() to free shadow. |
| 878 | * Non-NULL result of the find_vm_area() will tell us if |
| 879 | * that was the second case. |
| 880 | * |
| 881 | * Currently it's not possible to free shadow mapped |
| 882 | * during boot by kasan_init(). It's because the code |
| 883 | * to do that hasn't been written yet. So we'll just |
| 884 | * leak the memory. |
| 885 | */ |
| 886 | vm = find_vm_area((void *)shadow_start); |
| 887 | if (vm) |
| 888 | vfree((void *)shadow_start); |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | return NOTIFY_OK; |
| 893 | } |
| 894 | |
| 895 | static int __init kasan_memhotplug_init(void) |
| 896 | { |
| 897 | hotplug_memory_notifier(kasan_mem_notifier, 0); |
| 898 | |
| 899 | return 0; |
| 900 | } |
| 901 | |
| 902 | core_initcall(kasan_memhotplug_init); |
| 903 | #endif |