Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * linux/kernel/time/tick-broadcast.c |
| 3 | * |
| 4 | * This file contains functions which emulate a local clock-event |
| 5 | * device via a broadcast event source. |
| 6 | * |
| 7 | * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
| 8 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
| 9 | * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner |
| 10 | * |
| 11 | * This code is licenced under the GPL version 2. For details see |
| 12 | * kernel-base/COPYING. |
| 13 | */ |
| 14 | #include <linux/cpu.h> |
| 15 | #include <linux/err.h> |
| 16 | #include <linux/hrtimer.h> |
| 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/percpu.h> |
| 19 | #include <linux/profile.h> |
| 20 | #include <linux/sched.h> |
| 21 | #include <linux/smp.h> |
| 22 | #include <linux/module.h> |
| 23 | |
| 24 | #include "tick-internal.h" |
| 25 | |
| 26 | /* |
| 27 | * Broadcast support for broken x86 hardware, where the local apic |
| 28 | * timer stops in C3 state. |
| 29 | */ |
| 30 | |
| 31 | static struct tick_device tick_broadcast_device; |
| 32 | static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly; |
| 33 | static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly; |
| 34 | static cpumask_var_t tmpmask __cpumask_var_read_mostly; |
| 35 | static int tick_broadcast_forced; |
| 36 | |
| 37 | static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock); |
| 38 | |
| 39 | #ifdef CONFIG_TICK_ONESHOT |
| 40 | static void tick_broadcast_setup_oneshot(struct clock_event_device *bc); |
| 41 | static void tick_broadcast_clear_oneshot(int cpu); |
| 42 | static void tick_resume_broadcast_oneshot(struct clock_event_device *bc); |
| 43 | #else |
| 44 | static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); } |
| 45 | static inline void tick_broadcast_clear_oneshot(int cpu) { } |
| 46 | static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { } |
| 47 | #endif |
| 48 | |
| 49 | /* |
| 50 | * Debugging: see timer_list.c |
| 51 | */ |
| 52 | struct tick_device *tick_get_broadcast_device(void) |
| 53 | { |
| 54 | return &tick_broadcast_device; |
| 55 | } |
| 56 | |
| 57 | struct cpumask *tick_get_broadcast_mask(void) |
| 58 | { |
| 59 | return tick_broadcast_mask; |
| 60 | } |
| 61 | |
| 62 | /* |
| 63 | * Start the device in periodic mode |
| 64 | */ |
| 65 | static void tick_broadcast_start_periodic(struct clock_event_device *bc) |
| 66 | { |
| 67 | if (bc) |
| 68 | tick_setup_periodic(bc, 1); |
| 69 | } |
| 70 | |
| 71 | /* |
| 72 | * Check, if the device can be utilized as broadcast device: |
| 73 | */ |
| 74 | static bool tick_check_broadcast_device(struct clock_event_device *curdev, |
| 75 | struct clock_event_device *newdev) |
| 76 | { |
| 77 | if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) || |
| 78 | (newdev->features & CLOCK_EVT_FEAT_PERCPU) || |
| 79 | (newdev->features & CLOCK_EVT_FEAT_C3STOP)) |
| 80 | return false; |
| 81 | |
| 82 | if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT && |
| 83 | !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) |
| 84 | return false; |
| 85 | |
| 86 | return !curdev || newdev->rating > curdev->rating; |
| 87 | } |
| 88 | |
| 89 | /* |
| 90 | * Conditionally install/replace broadcast device |
| 91 | */ |
| 92 | void tick_install_broadcast_device(struct clock_event_device *dev) |
| 93 | { |
| 94 | struct clock_event_device *cur = tick_broadcast_device.evtdev; |
| 95 | |
| 96 | if (!tick_check_broadcast_device(cur, dev)) |
| 97 | return; |
| 98 | |
| 99 | if (!try_module_get(dev->owner)) |
| 100 | return; |
| 101 | |
| 102 | clockevents_exchange_device(cur, dev); |
| 103 | if (cur) |
| 104 | cur->event_handler = clockevents_handle_noop; |
| 105 | tick_broadcast_device.evtdev = dev; |
| 106 | if (!cpumask_empty(tick_broadcast_mask)) |
| 107 | tick_broadcast_start_periodic(dev); |
| 108 | /* |
| 109 | * Inform all cpus about this. We might be in a situation |
| 110 | * where we did not switch to oneshot mode because the per cpu |
| 111 | * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack |
| 112 | * of a oneshot capable broadcast device. Without that |
| 113 | * notification the systems stays stuck in periodic mode |
| 114 | * forever. |
| 115 | */ |
| 116 | if (dev->features & CLOCK_EVT_FEAT_ONESHOT) |
| 117 | tick_clock_notify(); |
| 118 | } |
| 119 | |
| 120 | /* |
| 121 | * Check, if the device is the broadcast device |
| 122 | */ |
| 123 | int tick_is_broadcast_device(struct clock_event_device *dev) |
| 124 | { |
| 125 | return (dev && tick_broadcast_device.evtdev == dev); |
| 126 | } |
| 127 | |
| 128 | int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq) |
| 129 | { |
| 130 | int ret = -ENODEV; |
| 131 | |
| 132 | if (tick_is_broadcast_device(dev)) { |
| 133 | raw_spin_lock(&tick_broadcast_lock); |
| 134 | ret = __clockevents_update_freq(dev, freq); |
| 135 | raw_spin_unlock(&tick_broadcast_lock); |
| 136 | } |
| 137 | return ret; |
| 138 | } |
| 139 | |
| 140 | |
| 141 | static void err_broadcast(const struct cpumask *mask) |
| 142 | { |
| 143 | pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n"); |
| 144 | } |
| 145 | |
| 146 | static void tick_device_setup_broadcast_func(struct clock_event_device *dev) |
| 147 | { |
| 148 | if (!dev->broadcast) |
| 149 | dev->broadcast = tick_broadcast; |
| 150 | if (!dev->broadcast) { |
| 151 | pr_warn_once("%s depends on broadcast, but no broadcast function available\n", |
| 152 | dev->name); |
| 153 | dev->broadcast = err_broadcast; |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | /* |
| 158 | * Check, if the device is disfunctional and a place holder, which |
| 159 | * needs to be handled by the broadcast device. |
| 160 | */ |
| 161 | int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) |
| 162 | { |
| 163 | struct clock_event_device *bc = tick_broadcast_device.evtdev; |
| 164 | unsigned long flags; |
| 165 | int ret = 0; |
| 166 | |
| 167 | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| 168 | |
| 169 | /* |
| 170 | * Devices might be registered with both periodic and oneshot |
| 171 | * mode disabled. This signals, that the device needs to be |
| 172 | * operated from the broadcast device and is a placeholder for |
| 173 | * the cpu local device. |
| 174 | */ |
| 175 | if (!tick_device_is_functional(dev)) { |
| 176 | dev->event_handler = tick_handle_periodic; |
| 177 | tick_device_setup_broadcast_func(dev); |
| 178 | cpumask_set_cpu(cpu, tick_broadcast_mask); |
| 179 | if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) |
| 180 | tick_broadcast_start_periodic(bc); |
| 181 | else |
| 182 | tick_broadcast_setup_oneshot(bc); |
| 183 | ret = 1; |
| 184 | } else { |
| 185 | /* |
| 186 | * Clear the broadcast bit for this cpu if the |
| 187 | * device is not power state affected. |
| 188 | */ |
| 189 | if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) |
| 190 | cpumask_clear_cpu(cpu, tick_broadcast_mask); |
| 191 | else |
| 192 | tick_device_setup_broadcast_func(dev); |
| 193 | |
| 194 | /* |
| 195 | * Clear the broadcast bit if the CPU is not in |
| 196 | * periodic broadcast on state. |
| 197 | */ |
| 198 | if (!cpumask_test_cpu(cpu, tick_broadcast_on)) |
| 199 | cpumask_clear_cpu(cpu, tick_broadcast_mask); |
| 200 | |
| 201 | switch (tick_broadcast_device.mode) { |
| 202 | case TICKDEV_MODE_ONESHOT: |
| 203 | /* |
| 204 | * If the system is in oneshot mode we can |
| 205 | * unconditionally clear the oneshot mask bit, |
| 206 | * because the CPU is running and therefore |
| 207 | * not in an idle state which causes the power |
| 208 | * state affected device to stop. Let the |
| 209 | * caller initialize the device. |
| 210 | */ |
| 211 | tick_broadcast_clear_oneshot(cpu); |
| 212 | ret = 0; |
| 213 | break; |
| 214 | |
| 215 | case TICKDEV_MODE_PERIODIC: |
| 216 | /* |
| 217 | * If the system is in periodic mode, check |
| 218 | * whether the broadcast device can be |
| 219 | * switched off now. |
| 220 | */ |
| 221 | if (cpumask_empty(tick_broadcast_mask) && bc) |
| 222 | clockevents_shutdown(bc); |
| 223 | /* |
| 224 | * If we kept the cpu in the broadcast mask, |
| 225 | * tell the caller to leave the per cpu device |
| 226 | * in shutdown state. The periodic interrupt |
| 227 | * is delivered by the broadcast device, if |
| 228 | * the broadcast device exists and is not |
| 229 | * hrtimer based. |
| 230 | */ |
| 231 | if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER)) |
| 232 | ret = cpumask_test_cpu(cpu, tick_broadcast_mask); |
| 233 | break; |
| 234 | default: |
| 235 | break; |
| 236 | } |
| 237 | } |
| 238 | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| 239 | return ret; |
| 240 | } |
| 241 | |
| 242 | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| 243 | int tick_receive_broadcast(void) |
| 244 | { |
| 245 | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); |
| 246 | struct clock_event_device *evt = td->evtdev; |
| 247 | |
| 248 | if (!evt) |
| 249 | return -ENODEV; |
| 250 | |
| 251 | if (!evt->event_handler) |
| 252 | return -EINVAL; |
| 253 | |
| 254 | evt->event_handler(evt); |
| 255 | return 0; |
| 256 | } |
| 257 | #endif |
| 258 | |
| 259 | /* |
| 260 | * Broadcast the event to the cpus, which are set in the mask (mangled). |
| 261 | */ |
| 262 | static bool tick_do_broadcast(struct cpumask *mask) |
| 263 | { |
| 264 | int cpu = smp_processor_id(); |
| 265 | struct tick_device *td; |
| 266 | bool local = false; |
| 267 | |
| 268 | /* |
| 269 | * Check, if the current cpu is in the mask |
| 270 | */ |
| 271 | if (cpumask_test_cpu(cpu, mask)) { |
| 272 | struct clock_event_device *bc = tick_broadcast_device.evtdev; |
| 273 | |
| 274 | cpumask_clear_cpu(cpu, mask); |
| 275 | /* |
| 276 | * We only run the local handler, if the broadcast |
| 277 | * device is not hrtimer based. Otherwise we run into |
| 278 | * a hrtimer recursion. |
| 279 | * |
| 280 | * local timer_interrupt() |
| 281 | * local_handler() |
| 282 | * expire_hrtimers() |
| 283 | * bc_handler() |
| 284 | * local_handler() |
| 285 | * expire_hrtimers() |
| 286 | */ |
| 287 | local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER); |
| 288 | } |
| 289 | |
| 290 | if (!cpumask_empty(mask)) { |
| 291 | /* |
| 292 | * It might be necessary to actually check whether the devices |
| 293 | * have different broadcast functions. For now, just use the |
| 294 | * one of the first device. This works as long as we have this |
| 295 | * misfeature only on x86 (lapic) |
| 296 | */ |
| 297 | td = &per_cpu(tick_cpu_device, cpumask_first(mask)); |
| 298 | td->evtdev->broadcast(mask); |
| 299 | } |
| 300 | return local; |
| 301 | } |
| 302 | |
| 303 | /* |
| 304 | * Periodic broadcast: |
| 305 | * - invoke the broadcast handlers |
| 306 | */ |
| 307 | static bool tick_do_periodic_broadcast(void) |
| 308 | { |
| 309 | cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); |
| 310 | return tick_do_broadcast(tmpmask); |
| 311 | } |
| 312 | |
| 313 | /* |
| 314 | * Event handler for periodic broadcast ticks |
| 315 | */ |
| 316 | static void tick_handle_periodic_broadcast(struct clock_event_device *dev) |
| 317 | { |
| 318 | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); |
| 319 | bool bc_local; |
| 320 | |
| 321 | raw_spin_lock(&tick_broadcast_lock); |
| 322 | |
| 323 | /* Handle spurious interrupts gracefully */ |
| 324 | if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) { |
| 325 | raw_spin_unlock(&tick_broadcast_lock); |
| 326 | return; |
| 327 | } |
| 328 | |
| 329 | bc_local = tick_do_periodic_broadcast(); |
| 330 | |
| 331 | if (clockevent_state_oneshot(dev)) { |
| 332 | ktime_t next = ktime_add(dev->next_event, tick_period); |
| 333 | |
| 334 | clockevents_program_event(dev, next, true); |
| 335 | } |
| 336 | raw_spin_unlock(&tick_broadcast_lock); |
| 337 | |
| 338 | /* |
| 339 | * We run the handler of the local cpu after dropping |
| 340 | * tick_broadcast_lock because the handler might deadlock when |
| 341 | * trying to switch to oneshot mode. |
| 342 | */ |
| 343 | if (bc_local) |
| 344 | td->evtdev->event_handler(td->evtdev); |
| 345 | } |
| 346 | |
| 347 | /** |
| 348 | * tick_broadcast_control - Enable/disable or force broadcast mode |
| 349 | * @mode: The selected broadcast mode |
| 350 | * |
| 351 | * Called when the system enters a state where affected tick devices |
| 352 | * might stop. Note: TICK_BROADCAST_FORCE cannot be undone. |
| 353 | */ |
| 354 | void tick_broadcast_control(enum tick_broadcast_mode mode) |
| 355 | { |
| 356 | struct clock_event_device *bc, *dev; |
| 357 | struct tick_device *td; |
| 358 | int cpu, bc_stopped; |
| 359 | unsigned long flags; |
| 360 | |
| 361 | /* Protects also the local clockevent device. */ |
| 362 | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| 363 | td = this_cpu_ptr(&tick_cpu_device); |
| 364 | dev = td->evtdev; |
| 365 | |
| 366 | /* |
| 367 | * Is the device not affected by the powerstate ? |
| 368 | */ |
| 369 | if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) |
| 370 | goto out; |
| 371 | |
| 372 | if (!tick_device_is_functional(dev)) |
| 373 | goto out; |
| 374 | |
| 375 | cpu = smp_processor_id(); |
| 376 | bc = tick_broadcast_device.evtdev; |
| 377 | bc_stopped = cpumask_empty(tick_broadcast_mask); |
| 378 | |
| 379 | switch (mode) { |
| 380 | case TICK_BROADCAST_FORCE: |
| 381 | tick_broadcast_forced = 1; |
| 382 | case TICK_BROADCAST_ON: |
| 383 | cpumask_set_cpu(cpu, tick_broadcast_on); |
| 384 | if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) { |
| 385 | /* |
| 386 | * Only shutdown the cpu local device, if: |
| 387 | * |
| 388 | * - the broadcast device exists |
| 389 | * - the broadcast device is not a hrtimer based one |
| 390 | * - the broadcast device is in periodic mode to |
| 391 | * avoid a hickup during switch to oneshot mode |
| 392 | */ |
| 393 | if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) && |
| 394 | tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) |
| 395 | clockevents_shutdown(dev); |
| 396 | } |
| 397 | break; |
| 398 | |
| 399 | case TICK_BROADCAST_OFF: |
| 400 | if (tick_broadcast_forced) |
| 401 | break; |
| 402 | cpumask_clear_cpu(cpu, tick_broadcast_on); |
| 403 | if (!tick_device_is_functional(dev)) |
| 404 | break; |
| 405 | if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) { |
| 406 | if (tick_broadcast_device.mode == |
| 407 | TICKDEV_MODE_PERIODIC) |
| 408 | tick_setup_periodic(dev, 0); |
| 409 | } |
| 410 | break; |
| 411 | } |
| 412 | |
| 413 | if (bc) { |
| 414 | if (cpumask_empty(tick_broadcast_mask)) { |
| 415 | if (!bc_stopped) |
| 416 | clockevents_shutdown(bc); |
| 417 | } else if (bc_stopped) { |
| 418 | if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) |
| 419 | tick_broadcast_start_periodic(bc); |
| 420 | else |
| 421 | tick_broadcast_setup_oneshot(bc); |
| 422 | } |
| 423 | } |
| 424 | out: |
| 425 | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| 426 | } |
| 427 | EXPORT_SYMBOL_GPL(tick_broadcast_control); |
| 428 | |
| 429 | /* |
| 430 | * Set the periodic handler depending on broadcast on/off |
| 431 | */ |
| 432 | void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) |
| 433 | { |
| 434 | if (!broadcast) |
| 435 | dev->event_handler = tick_handle_periodic; |
| 436 | else |
| 437 | dev->event_handler = tick_handle_periodic_broadcast; |
| 438 | } |
| 439 | |
| 440 | #ifdef CONFIG_HOTPLUG_CPU |
| 441 | /* |
| 442 | * Remove a CPU from broadcasting |
| 443 | */ |
| 444 | void tick_shutdown_broadcast(unsigned int cpu) |
| 445 | { |
| 446 | struct clock_event_device *bc; |
| 447 | unsigned long flags; |
| 448 | |
| 449 | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| 450 | |
| 451 | bc = tick_broadcast_device.evtdev; |
| 452 | cpumask_clear_cpu(cpu, tick_broadcast_mask); |
| 453 | cpumask_clear_cpu(cpu, tick_broadcast_on); |
| 454 | |
| 455 | if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { |
| 456 | if (bc && cpumask_empty(tick_broadcast_mask)) |
| 457 | clockevents_shutdown(bc); |
| 458 | } |
| 459 | |
| 460 | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| 461 | } |
| 462 | #endif |
| 463 | |
| 464 | void tick_suspend_broadcast(void) |
| 465 | { |
| 466 | struct clock_event_device *bc; |
| 467 | unsigned long flags; |
| 468 | |
| 469 | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| 470 | |
| 471 | bc = tick_broadcast_device.evtdev; |
| 472 | if (bc) |
| 473 | clockevents_shutdown(bc); |
| 474 | |
| 475 | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| 476 | } |
| 477 | |
| 478 | /* |
| 479 | * This is called from tick_resume_local() on a resuming CPU. That's |
| 480 | * called from the core resume function, tick_unfreeze() and the magic XEN |
| 481 | * resume hackery. |
| 482 | * |
| 483 | * In none of these cases the broadcast device mode can change and the |
| 484 | * bit of the resuming CPU in the broadcast mask is safe as well. |
| 485 | */ |
| 486 | bool tick_resume_check_broadcast(void) |
| 487 | { |
| 488 | if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) |
| 489 | return false; |
| 490 | else |
| 491 | return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask); |
| 492 | } |
| 493 | |
| 494 | void tick_resume_broadcast(void) |
| 495 | { |
| 496 | struct clock_event_device *bc; |
| 497 | unsigned long flags; |
| 498 | |
| 499 | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| 500 | |
| 501 | bc = tick_broadcast_device.evtdev; |
| 502 | |
| 503 | if (bc) { |
| 504 | clockevents_tick_resume(bc); |
| 505 | |
| 506 | switch (tick_broadcast_device.mode) { |
| 507 | case TICKDEV_MODE_PERIODIC: |
| 508 | if (!cpumask_empty(tick_broadcast_mask)) |
| 509 | tick_broadcast_start_periodic(bc); |
| 510 | break; |
| 511 | case TICKDEV_MODE_ONESHOT: |
| 512 | if (!cpumask_empty(tick_broadcast_mask)) |
| 513 | tick_resume_broadcast_oneshot(bc); |
| 514 | break; |
| 515 | } |
| 516 | } |
| 517 | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| 518 | } |
| 519 | |
| 520 | #ifdef CONFIG_TICK_ONESHOT |
| 521 | |
| 522 | static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly; |
| 523 | static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly; |
| 524 | static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly; |
| 525 | |
| 526 | /* |
| 527 | * Exposed for debugging: see timer_list.c |
| 528 | */ |
| 529 | struct cpumask *tick_get_broadcast_oneshot_mask(void) |
| 530 | { |
| 531 | return tick_broadcast_oneshot_mask; |
| 532 | } |
| 533 | |
| 534 | /* |
| 535 | * Called before going idle with interrupts disabled. Checks whether a |
| 536 | * broadcast event from the other core is about to happen. We detected |
| 537 | * that in tick_broadcast_oneshot_control(). The callsite can use this |
| 538 | * to avoid a deep idle transition as we are about to get the |
| 539 | * broadcast IPI right away. |
| 540 | */ |
| 541 | int tick_check_broadcast_expired(void) |
| 542 | { |
| 543 | return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); |
| 544 | } |
| 545 | |
| 546 | /* |
| 547 | * Set broadcast interrupt affinity |
| 548 | */ |
| 549 | static void tick_broadcast_set_affinity(struct clock_event_device *bc, |
| 550 | const struct cpumask *cpumask) |
| 551 | { |
| 552 | if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ)) |
| 553 | return; |
| 554 | |
| 555 | if (cpumask_equal(bc->cpumask, cpumask)) |
| 556 | return; |
| 557 | |
| 558 | bc->cpumask = cpumask; |
| 559 | irq_set_affinity(bc->irq, bc->cpumask); |
| 560 | } |
| 561 | |
| 562 | static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu, |
| 563 | ktime_t expires) |
| 564 | { |
| 565 | if (!clockevent_state_oneshot(bc)) |
| 566 | clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); |
| 567 | |
| 568 | clockevents_program_event(bc, expires, 1); |
| 569 | tick_broadcast_set_affinity(bc, cpumask_of(cpu)); |
| 570 | } |
| 571 | |
| 572 | static void tick_resume_broadcast_oneshot(struct clock_event_device *bc) |
| 573 | { |
| 574 | clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); |
| 575 | } |
| 576 | |
| 577 | /* |
| 578 | * Called from irq_enter() when idle was interrupted to reenable the |
| 579 | * per cpu device. |
| 580 | */ |
| 581 | void tick_check_oneshot_broadcast_this_cpu(void) |
| 582 | { |
| 583 | if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) { |
| 584 | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); |
| 585 | |
| 586 | /* |
| 587 | * We might be in the middle of switching over from |
| 588 | * periodic to oneshot. If the CPU has not yet |
| 589 | * switched over, leave the device alone. |
| 590 | */ |
| 591 | if (td->mode == TICKDEV_MODE_ONESHOT) { |
| 592 | clockevents_switch_state(td->evtdev, |
| 593 | CLOCK_EVT_STATE_ONESHOT); |
| 594 | } |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | /* |
| 599 | * Handle oneshot mode broadcasting |
| 600 | */ |
| 601 | static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) |
| 602 | { |
| 603 | struct tick_device *td; |
| 604 | ktime_t now, next_event; |
| 605 | int cpu, next_cpu = 0; |
| 606 | bool bc_local; |
| 607 | |
| 608 | raw_spin_lock(&tick_broadcast_lock); |
| 609 | dev->next_event = KTIME_MAX; |
| 610 | next_event = KTIME_MAX; |
| 611 | cpumask_clear(tmpmask); |
| 612 | now = ktime_get(); |
| 613 | /* Find all expired events */ |
| 614 | for_each_cpu(cpu, tick_broadcast_oneshot_mask) { |
| 615 | /* |
| 616 | * Required for !SMP because for_each_cpu() reports |
| 617 | * unconditionally CPU0 as set on UP kernels. |
| 618 | */ |
| 619 | if (!IS_ENABLED(CONFIG_SMP) && |
| 620 | cpumask_empty(tick_broadcast_oneshot_mask)) |
| 621 | break; |
| 622 | |
| 623 | td = &per_cpu(tick_cpu_device, cpu); |
| 624 | if (td->evtdev->next_event <= now) { |
| 625 | cpumask_set_cpu(cpu, tmpmask); |
| 626 | /* |
| 627 | * Mark the remote cpu in the pending mask, so |
| 628 | * it can avoid reprogramming the cpu local |
| 629 | * timer in tick_broadcast_oneshot_control(). |
| 630 | */ |
| 631 | cpumask_set_cpu(cpu, tick_broadcast_pending_mask); |
| 632 | } else if (td->evtdev->next_event < next_event) { |
| 633 | next_event = td->evtdev->next_event; |
| 634 | next_cpu = cpu; |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | /* |
| 639 | * Remove the current cpu from the pending mask. The event is |
| 640 | * delivered immediately in tick_do_broadcast() ! |
| 641 | */ |
| 642 | cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask); |
| 643 | |
| 644 | /* Take care of enforced broadcast requests */ |
| 645 | cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask); |
| 646 | cpumask_clear(tick_broadcast_force_mask); |
| 647 | |
| 648 | /* |
| 649 | * Sanity check. Catch the case where we try to broadcast to |
| 650 | * offline cpus. |
| 651 | */ |
| 652 | if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask))) |
| 653 | cpumask_and(tmpmask, tmpmask, cpu_online_mask); |
| 654 | |
| 655 | /* |
| 656 | * Wakeup the cpus which have an expired event. |
| 657 | */ |
| 658 | bc_local = tick_do_broadcast(tmpmask); |
| 659 | |
| 660 | /* |
| 661 | * Two reasons for reprogram: |
| 662 | * |
| 663 | * - The global event did not expire any CPU local |
| 664 | * events. This happens in dyntick mode, as the maximum PIT |
| 665 | * delta is quite small. |
| 666 | * |
| 667 | * - There are pending events on sleeping CPUs which were not |
| 668 | * in the event mask |
| 669 | */ |
| 670 | if (next_event != KTIME_MAX) |
| 671 | tick_broadcast_set_event(dev, next_cpu, next_event); |
| 672 | |
| 673 | raw_spin_unlock(&tick_broadcast_lock); |
| 674 | |
| 675 | if (bc_local) { |
| 676 | td = this_cpu_ptr(&tick_cpu_device); |
| 677 | td->evtdev->event_handler(td->evtdev); |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu) |
| 682 | { |
| 683 | if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER)) |
| 684 | return 0; |
| 685 | if (bc->next_event == KTIME_MAX) |
| 686 | return 0; |
| 687 | return bc->bound_on == cpu ? -EBUSY : 0; |
| 688 | } |
| 689 | |
| 690 | static void broadcast_shutdown_local(struct clock_event_device *bc, |
| 691 | struct clock_event_device *dev) |
| 692 | { |
| 693 | /* |
| 694 | * For hrtimer based broadcasting we cannot shutdown the cpu |
| 695 | * local device if our own event is the first one to expire or |
| 696 | * if we own the broadcast timer. |
| 697 | */ |
| 698 | if (bc->features & CLOCK_EVT_FEAT_HRTIMER) { |
| 699 | if (broadcast_needs_cpu(bc, smp_processor_id())) |
| 700 | return; |
| 701 | if (dev->next_event < bc->next_event) |
| 702 | return; |
| 703 | } |
| 704 | clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); |
| 705 | } |
| 706 | |
| 707 | int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) |
| 708 | { |
| 709 | struct clock_event_device *bc, *dev; |
| 710 | int cpu, ret = 0; |
| 711 | ktime_t now; |
| 712 | |
| 713 | /* |
| 714 | * If there is no broadcast device, tell the caller not to go |
| 715 | * into deep idle. |
| 716 | */ |
| 717 | if (!tick_broadcast_device.evtdev) |
| 718 | return -EBUSY; |
| 719 | |
| 720 | dev = this_cpu_ptr(&tick_cpu_device)->evtdev; |
| 721 | |
| 722 | raw_spin_lock(&tick_broadcast_lock); |
| 723 | bc = tick_broadcast_device.evtdev; |
| 724 | cpu = smp_processor_id(); |
| 725 | |
| 726 | if (state == TICK_BROADCAST_ENTER) { |
| 727 | /* |
| 728 | * If the current CPU owns the hrtimer broadcast |
| 729 | * mechanism, it cannot go deep idle and we do not add |
| 730 | * the CPU to the broadcast mask. We don't have to go |
| 731 | * through the EXIT path as the local timer is not |
| 732 | * shutdown. |
| 733 | */ |
| 734 | ret = broadcast_needs_cpu(bc, cpu); |
| 735 | if (ret) |
| 736 | goto out; |
| 737 | |
| 738 | /* |
| 739 | * If the broadcast device is in periodic mode, we |
| 740 | * return. |
| 741 | */ |
| 742 | if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { |
| 743 | /* If it is a hrtimer based broadcast, return busy */ |
| 744 | if (bc->features & CLOCK_EVT_FEAT_HRTIMER) |
| 745 | ret = -EBUSY; |
| 746 | goto out; |
| 747 | } |
| 748 | |
| 749 | if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) { |
| 750 | WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask)); |
| 751 | |
| 752 | /* Conditionally shut down the local timer. */ |
| 753 | broadcast_shutdown_local(bc, dev); |
| 754 | |
| 755 | /* |
| 756 | * We only reprogram the broadcast timer if we |
| 757 | * did not mark ourself in the force mask and |
| 758 | * if the cpu local event is earlier than the |
| 759 | * broadcast event. If the current CPU is in |
| 760 | * the force mask, then we are going to be |
| 761 | * woken by the IPI right away; we return |
| 762 | * busy, so the CPU does not try to go deep |
| 763 | * idle. |
| 764 | */ |
| 765 | if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) { |
| 766 | ret = -EBUSY; |
| 767 | } else if (dev->next_event < bc->next_event) { |
| 768 | tick_broadcast_set_event(bc, cpu, dev->next_event); |
| 769 | /* |
| 770 | * In case of hrtimer broadcasts the |
| 771 | * programming might have moved the |
| 772 | * timer to this cpu. If yes, remove |
| 773 | * us from the broadcast mask and |
| 774 | * return busy. |
| 775 | */ |
| 776 | ret = broadcast_needs_cpu(bc, cpu); |
| 777 | if (ret) { |
| 778 | cpumask_clear_cpu(cpu, |
| 779 | tick_broadcast_oneshot_mask); |
| 780 | } |
| 781 | } |
| 782 | } |
| 783 | } else { |
| 784 | if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { |
| 785 | clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); |
| 786 | /* |
| 787 | * The cpu which was handling the broadcast |
| 788 | * timer marked this cpu in the broadcast |
| 789 | * pending mask and fired the broadcast |
| 790 | * IPI. So we are going to handle the expired |
| 791 | * event anyway via the broadcast IPI |
| 792 | * handler. No need to reprogram the timer |
| 793 | * with an already expired event. |
| 794 | */ |
| 795 | if (cpumask_test_and_clear_cpu(cpu, |
| 796 | tick_broadcast_pending_mask)) |
| 797 | goto out; |
| 798 | |
| 799 | /* |
| 800 | * Bail out if there is no next event. |
| 801 | */ |
| 802 | if (dev->next_event == KTIME_MAX) |
| 803 | goto out; |
| 804 | /* |
| 805 | * If the pending bit is not set, then we are |
| 806 | * either the CPU handling the broadcast |
| 807 | * interrupt or we got woken by something else. |
| 808 | * |
| 809 | * We are not longer in the broadcast mask, so |
| 810 | * if the cpu local expiry time is already |
| 811 | * reached, we would reprogram the cpu local |
| 812 | * timer with an already expired event. |
| 813 | * |
| 814 | * This can lead to a ping-pong when we return |
| 815 | * to idle and therefor rearm the broadcast |
| 816 | * timer before the cpu local timer was able |
| 817 | * to fire. This happens because the forced |
| 818 | * reprogramming makes sure that the event |
| 819 | * will happen in the future and depending on |
| 820 | * the min_delta setting this might be far |
| 821 | * enough out that the ping-pong starts. |
| 822 | * |
| 823 | * If the cpu local next_event has expired |
| 824 | * then we know that the broadcast timer |
| 825 | * next_event has expired as well and |
| 826 | * broadcast is about to be handled. So we |
| 827 | * avoid reprogramming and enforce that the |
| 828 | * broadcast handler, which did not run yet, |
| 829 | * will invoke the cpu local handler. |
| 830 | * |
| 831 | * We cannot call the handler directly from |
| 832 | * here, because we might be in a NOHZ phase |
| 833 | * and we did not go through the irq_enter() |
| 834 | * nohz fixups. |
| 835 | */ |
| 836 | now = ktime_get(); |
| 837 | if (dev->next_event <= now) { |
| 838 | cpumask_set_cpu(cpu, tick_broadcast_force_mask); |
| 839 | goto out; |
| 840 | } |
| 841 | /* |
| 842 | * We got woken by something else. Reprogram |
| 843 | * the cpu local timer device. |
| 844 | */ |
| 845 | tick_program_event(dev->next_event, 1); |
| 846 | } |
| 847 | } |
| 848 | out: |
| 849 | raw_spin_unlock(&tick_broadcast_lock); |
| 850 | return ret; |
| 851 | } |
| 852 | |
| 853 | /* |
| 854 | * Reset the one shot broadcast for a cpu |
| 855 | * |
| 856 | * Called with tick_broadcast_lock held |
| 857 | */ |
| 858 | static void tick_broadcast_clear_oneshot(int cpu) |
| 859 | { |
| 860 | cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); |
| 861 | cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); |
| 862 | } |
| 863 | |
| 864 | static void tick_broadcast_init_next_event(struct cpumask *mask, |
| 865 | ktime_t expires) |
| 866 | { |
| 867 | struct tick_device *td; |
| 868 | int cpu; |
| 869 | |
| 870 | for_each_cpu(cpu, mask) { |
| 871 | td = &per_cpu(tick_cpu_device, cpu); |
| 872 | if (td->evtdev) |
| 873 | td->evtdev->next_event = expires; |
| 874 | } |
| 875 | } |
| 876 | |
| 877 | /** |
| 878 | * tick_broadcast_setup_oneshot - setup the broadcast device |
| 879 | */ |
| 880 | static void tick_broadcast_setup_oneshot(struct clock_event_device *bc) |
| 881 | { |
| 882 | int cpu = smp_processor_id(); |
| 883 | |
| 884 | if (!bc) |
| 885 | return; |
| 886 | |
| 887 | /* Set it up only once ! */ |
| 888 | if (bc->event_handler != tick_handle_oneshot_broadcast) { |
| 889 | int was_periodic = clockevent_state_periodic(bc); |
| 890 | |
| 891 | bc->event_handler = tick_handle_oneshot_broadcast; |
| 892 | |
| 893 | /* |
| 894 | * We must be careful here. There might be other CPUs |
| 895 | * waiting for periodic broadcast. We need to set the |
| 896 | * oneshot_mask bits for those and program the |
| 897 | * broadcast device to fire. |
| 898 | */ |
| 899 | cpumask_copy(tmpmask, tick_broadcast_mask); |
| 900 | cpumask_clear_cpu(cpu, tmpmask); |
| 901 | cpumask_or(tick_broadcast_oneshot_mask, |
| 902 | tick_broadcast_oneshot_mask, tmpmask); |
| 903 | |
| 904 | if (was_periodic && !cpumask_empty(tmpmask)) { |
| 905 | clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); |
| 906 | tick_broadcast_init_next_event(tmpmask, |
| 907 | tick_next_period); |
| 908 | tick_broadcast_set_event(bc, cpu, tick_next_period); |
| 909 | } else |
| 910 | bc->next_event = KTIME_MAX; |
| 911 | } else { |
| 912 | /* |
| 913 | * The first cpu which switches to oneshot mode sets |
| 914 | * the bit for all other cpus which are in the general |
| 915 | * (periodic) broadcast mask. So the bit is set and |
| 916 | * would prevent the first broadcast enter after this |
| 917 | * to program the bc device. |
| 918 | */ |
| 919 | tick_broadcast_clear_oneshot(cpu); |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | /* |
| 924 | * Select oneshot operating mode for the broadcast device |
| 925 | */ |
| 926 | void tick_broadcast_switch_to_oneshot(void) |
| 927 | { |
| 928 | struct clock_event_device *bc; |
| 929 | unsigned long flags; |
| 930 | |
| 931 | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| 932 | |
| 933 | tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; |
| 934 | bc = tick_broadcast_device.evtdev; |
| 935 | if (bc) |
| 936 | tick_broadcast_setup_oneshot(bc); |
| 937 | |
| 938 | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| 939 | } |
| 940 | |
| 941 | #ifdef CONFIG_HOTPLUG_CPU |
| 942 | void hotplug_cpu__broadcast_tick_pull(int deadcpu) |
| 943 | { |
| 944 | struct clock_event_device *bc; |
| 945 | unsigned long flags; |
| 946 | |
| 947 | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| 948 | bc = tick_broadcast_device.evtdev; |
| 949 | |
| 950 | if (bc && broadcast_needs_cpu(bc, deadcpu)) { |
| 951 | /* This moves the broadcast assignment to this CPU: */ |
| 952 | clockevents_program_event(bc, bc->next_event, 1); |
| 953 | } |
| 954 | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| 955 | } |
| 956 | |
| 957 | /* |
| 958 | * Remove a dead CPU from broadcasting |
| 959 | */ |
| 960 | void tick_shutdown_broadcast_oneshot(unsigned int cpu) |
| 961 | { |
| 962 | unsigned long flags; |
| 963 | |
| 964 | raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| 965 | |
| 966 | /* |
| 967 | * Clear the broadcast masks for the dead cpu, but do not stop |
| 968 | * the broadcast device! |
| 969 | */ |
| 970 | cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); |
| 971 | cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); |
| 972 | cpumask_clear_cpu(cpu, tick_broadcast_force_mask); |
| 973 | |
| 974 | raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| 975 | } |
| 976 | #endif |
| 977 | |
| 978 | /* |
| 979 | * Check, whether the broadcast device is in one shot mode |
| 980 | */ |
| 981 | int tick_broadcast_oneshot_active(void) |
| 982 | { |
| 983 | return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; |
| 984 | } |
| 985 | |
| 986 | /* |
| 987 | * Check whether the broadcast device supports oneshot. |
| 988 | */ |
| 989 | bool tick_broadcast_oneshot_available(void) |
| 990 | { |
| 991 | struct clock_event_device *bc = tick_broadcast_device.evtdev; |
| 992 | |
| 993 | return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; |
| 994 | } |
| 995 | |
| 996 | #else |
| 997 | int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) |
| 998 | { |
| 999 | struct clock_event_device *bc = tick_broadcast_device.evtdev; |
| 1000 | |
| 1001 | if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER)) |
| 1002 | return -EBUSY; |
| 1003 | |
| 1004 | return 0; |
| 1005 | } |
| 1006 | #endif |
| 1007 | |
| 1008 | void __init tick_broadcast_init(void) |
| 1009 | { |
| 1010 | zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT); |
| 1011 | zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT); |
| 1012 | zalloc_cpumask_var(&tmpmask, GFP_NOWAIT); |
| 1013 | #ifdef CONFIG_TICK_ONESHOT |
| 1014 | zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT); |
| 1015 | zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT); |
| 1016 | zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT); |
| 1017 | #endif |
| 1018 | } |