Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) |
| 3 | * Internal non-public definitions that provide either classic |
| 4 | * or preemptible semantics. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License as published by |
| 8 | * the Free Software Foundation; either version 2 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program; if not, you can access it online at |
| 18 | * http://www.gnu.org/licenses/gpl-2.0.html. |
| 19 | * |
| 20 | * Copyright Red Hat, 2009 |
| 21 | * Copyright IBM Corporation, 2009 |
| 22 | * |
| 23 | * Author: Ingo Molnar <mingo@elte.hu> |
| 24 | * Paul E. McKenney <paulmck@linux.vnet.ibm.com> |
| 25 | */ |
| 26 | |
| 27 | #include <linux/delay.h> |
| 28 | #include <linux/gfp.h> |
| 29 | #include <linux/oom.h> |
| 30 | #include <linux/sched/debug.h> |
| 31 | #include <linux/smpboot.h> |
| 32 | #include <linux/sched/isolation.h> |
| 33 | #include <uapi/linux/sched/types.h> |
| 34 | #include "../time/tick-internal.h" |
| 35 | |
| 36 | #ifdef CONFIG_RCU_BOOST |
| 37 | |
| 38 | #include "../locking/rtmutex_common.h" |
| 39 | |
| 40 | /* |
| 41 | * Control variables for per-CPU and per-rcu_node kthreads. These |
| 42 | * handle all flavors of RCU. |
| 43 | */ |
| 44 | static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); |
| 45 | DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); |
| 46 | DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); |
| 47 | DEFINE_PER_CPU(char, rcu_cpu_has_work); |
| 48 | |
| 49 | #else /* #ifdef CONFIG_RCU_BOOST */ |
| 50 | |
| 51 | /* |
| 52 | * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, |
| 53 | * all uses are in dead code. Provide a definition to keep the compiler |
| 54 | * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. |
| 55 | * This probably needs to be excluded from -rt builds. |
| 56 | */ |
| 57 | #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) |
| 58 | #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1) |
| 59 | |
| 60 | #endif /* #else #ifdef CONFIG_RCU_BOOST */ |
| 61 | |
| 62 | #ifdef CONFIG_RCU_NOCB_CPU |
| 63 | static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ |
| 64 | static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ |
| 65 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ |
| 66 | |
| 67 | /* |
| 68 | * Check the RCU kernel configuration parameters and print informative |
| 69 | * messages about anything out of the ordinary. |
| 70 | */ |
| 71 | static void __init rcu_bootup_announce_oddness(void) |
| 72 | { |
| 73 | if (IS_ENABLED(CONFIG_RCU_TRACE)) |
| 74 | pr_info("\tRCU event tracing is enabled.\n"); |
| 75 | if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || |
| 76 | (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) |
| 77 | pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", |
| 78 | RCU_FANOUT); |
| 79 | if (rcu_fanout_exact) |
| 80 | pr_info("\tHierarchical RCU autobalancing is disabled.\n"); |
| 81 | if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) |
| 82 | pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); |
| 83 | if (IS_ENABLED(CONFIG_PROVE_RCU)) |
| 84 | pr_info("\tRCU lockdep checking is enabled.\n"); |
| 85 | if (RCU_NUM_LVLS >= 4) |
| 86 | pr_info("\tFour(or more)-level hierarchy is enabled.\n"); |
| 87 | if (RCU_FANOUT_LEAF != 16) |
| 88 | pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", |
| 89 | RCU_FANOUT_LEAF); |
| 90 | if (rcu_fanout_leaf != RCU_FANOUT_LEAF) |
| 91 | pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", |
| 92 | rcu_fanout_leaf); |
| 93 | if (nr_cpu_ids != NR_CPUS) |
| 94 | pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); |
| 95 | #ifdef CONFIG_RCU_BOOST |
| 96 | pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", |
| 97 | kthread_prio, CONFIG_RCU_BOOST_DELAY); |
| 98 | #endif |
| 99 | if (blimit != DEFAULT_RCU_BLIMIT) |
| 100 | pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); |
| 101 | if (qhimark != DEFAULT_RCU_QHIMARK) |
| 102 | pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); |
| 103 | if (qlowmark != DEFAULT_RCU_QLOMARK) |
| 104 | pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); |
| 105 | if (jiffies_till_first_fqs != ULONG_MAX) |
| 106 | pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); |
| 107 | if (jiffies_till_next_fqs != ULONG_MAX) |
| 108 | pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); |
| 109 | if (rcu_kick_kthreads) |
| 110 | pr_info("\tKick kthreads if too-long grace period.\n"); |
| 111 | if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) |
| 112 | pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); |
| 113 | if (gp_preinit_delay) |
| 114 | pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); |
| 115 | if (gp_init_delay) |
| 116 | pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); |
| 117 | if (gp_cleanup_delay) |
| 118 | pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); |
| 119 | if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) |
| 120 | pr_info("\tRCU debug extended QS entry/exit.\n"); |
| 121 | rcupdate_announce_bootup_oddness(); |
| 122 | } |
| 123 | |
| 124 | #ifdef CONFIG_PREEMPT_RCU |
| 125 | |
| 126 | RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); |
| 127 | static struct rcu_state *const rcu_state_p = &rcu_preempt_state; |
| 128 | static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; |
| 129 | |
| 130 | static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, |
| 131 | bool wake); |
| 132 | static void rcu_read_unlock_special(struct task_struct *t); |
| 133 | |
| 134 | /* |
| 135 | * Tell them what RCU they are running. |
| 136 | */ |
| 137 | static void __init rcu_bootup_announce(void) |
| 138 | { |
| 139 | pr_info("Preemptible hierarchical RCU implementation.\n"); |
| 140 | rcu_bootup_announce_oddness(); |
| 141 | } |
| 142 | |
| 143 | /* Flags for rcu_preempt_ctxt_queue() decision table. */ |
| 144 | #define RCU_GP_TASKS 0x8 |
| 145 | #define RCU_EXP_TASKS 0x4 |
| 146 | #define RCU_GP_BLKD 0x2 |
| 147 | #define RCU_EXP_BLKD 0x1 |
| 148 | |
| 149 | /* |
| 150 | * Queues a task preempted within an RCU-preempt read-side critical |
| 151 | * section into the appropriate location within the ->blkd_tasks list, |
| 152 | * depending on the states of any ongoing normal and expedited grace |
| 153 | * periods. The ->gp_tasks pointer indicates which element the normal |
| 154 | * grace period is waiting on (NULL if none), and the ->exp_tasks pointer |
| 155 | * indicates which element the expedited grace period is waiting on (again, |
| 156 | * NULL if none). If a grace period is waiting on a given element in the |
| 157 | * ->blkd_tasks list, it also waits on all subsequent elements. Thus, |
| 158 | * adding a task to the tail of the list blocks any grace period that is |
| 159 | * already waiting on one of the elements. In contrast, adding a task |
| 160 | * to the head of the list won't block any grace period that is already |
| 161 | * waiting on one of the elements. |
| 162 | * |
| 163 | * This queuing is imprecise, and can sometimes make an ongoing grace |
| 164 | * period wait for a task that is not strictly speaking blocking it. |
| 165 | * Given the choice, we needlessly block a normal grace period rather than |
| 166 | * blocking an expedited grace period. |
| 167 | * |
| 168 | * Note that an endless sequence of expedited grace periods still cannot |
| 169 | * indefinitely postpone a normal grace period. Eventually, all of the |
| 170 | * fixed number of preempted tasks blocking the normal grace period that are |
| 171 | * not also blocking the expedited grace period will resume and complete |
| 172 | * their RCU read-side critical sections. At that point, the ->gp_tasks |
| 173 | * pointer will equal the ->exp_tasks pointer, at which point the end of |
| 174 | * the corresponding expedited grace period will also be the end of the |
| 175 | * normal grace period. |
| 176 | */ |
| 177 | static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) |
| 178 | __releases(rnp->lock) /* But leaves rrupts disabled. */ |
| 179 | { |
| 180 | int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + |
| 181 | (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + |
| 182 | (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + |
| 183 | (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); |
| 184 | struct task_struct *t = current; |
| 185 | |
| 186 | raw_lockdep_assert_held_rcu_node(rnp); |
| 187 | WARN_ON_ONCE(rdp->mynode != rnp); |
| 188 | WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); |
| 189 | /* RCU better not be waiting on newly onlined CPUs! */ |
| 190 | WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & |
| 191 | rdp->grpmask); |
| 192 | |
| 193 | /* |
| 194 | * Decide where to queue the newly blocked task. In theory, |
| 195 | * this could be an if-statement. In practice, when I tried |
| 196 | * that, it was quite messy. |
| 197 | */ |
| 198 | switch (blkd_state) { |
| 199 | case 0: |
| 200 | case RCU_EXP_TASKS: |
| 201 | case RCU_EXP_TASKS + RCU_GP_BLKD: |
| 202 | case RCU_GP_TASKS: |
| 203 | case RCU_GP_TASKS + RCU_EXP_TASKS: |
| 204 | |
| 205 | /* |
| 206 | * Blocking neither GP, or first task blocking the normal |
| 207 | * GP but not blocking the already-waiting expedited GP. |
| 208 | * Queue at the head of the list to avoid unnecessarily |
| 209 | * blocking the already-waiting GPs. |
| 210 | */ |
| 211 | list_add(&t->rcu_node_entry, &rnp->blkd_tasks); |
| 212 | break; |
| 213 | |
| 214 | case RCU_EXP_BLKD: |
| 215 | case RCU_GP_BLKD: |
| 216 | case RCU_GP_BLKD + RCU_EXP_BLKD: |
| 217 | case RCU_GP_TASKS + RCU_EXP_BLKD: |
| 218 | case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| 219 | case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| 220 | |
| 221 | /* |
| 222 | * First task arriving that blocks either GP, or first task |
| 223 | * arriving that blocks the expedited GP (with the normal |
| 224 | * GP already waiting), or a task arriving that blocks |
| 225 | * both GPs with both GPs already waiting. Queue at the |
| 226 | * tail of the list to avoid any GP waiting on any of the |
| 227 | * already queued tasks that are not blocking it. |
| 228 | */ |
| 229 | list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); |
| 230 | break; |
| 231 | |
| 232 | case RCU_EXP_TASKS + RCU_EXP_BLKD: |
| 233 | case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| 234 | case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: |
| 235 | |
| 236 | /* |
| 237 | * Second or subsequent task blocking the expedited GP. |
| 238 | * The task either does not block the normal GP, or is the |
| 239 | * first task blocking the normal GP. Queue just after |
| 240 | * the first task blocking the expedited GP. |
| 241 | */ |
| 242 | list_add(&t->rcu_node_entry, rnp->exp_tasks); |
| 243 | break; |
| 244 | |
| 245 | case RCU_GP_TASKS + RCU_GP_BLKD: |
| 246 | case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: |
| 247 | |
| 248 | /* |
| 249 | * Second or subsequent task blocking the normal GP. |
| 250 | * The task does not block the expedited GP. Queue just |
| 251 | * after the first task blocking the normal GP. |
| 252 | */ |
| 253 | list_add(&t->rcu_node_entry, rnp->gp_tasks); |
| 254 | break; |
| 255 | |
| 256 | default: |
| 257 | |
| 258 | /* Yet another exercise in excessive paranoia. */ |
| 259 | WARN_ON_ONCE(1); |
| 260 | break; |
| 261 | } |
| 262 | |
| 263 | /* |
| 264 | * We have now queued the task. If it was the first one to |
| 265 | * block either grace period, update the ->gp_tasks and/or |
| 266 | * ->exp_tasks pointers, respectively, to reference the newly |
| 267 | * blocked tasks. |
| 268 | */ |
| 269 | if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { |
| 270 | rnp->gp_tasks = &t->rcu_node_entry; |
| 271 | WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); |
| 272 | } |
| 273 | if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) |
| 274 | rnp->exp_tasks = &t->rcu_node_entry; |
| 275 | WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != |
| 276 | !(rnp->qsmask & rdp->grpmask)); |
| 277 | WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != |
| 278 | !(rnp->expmask & rdp->grpmask)); |
| 279 | raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ |
| 280 | |
| 281 | /* |
| 282 | * Report the quiescent state for the expedited GP. This expedited |
| 283 | * GP should not be able to end until we report, so there should be |
| 284 | * no need to check for a subsequent expedited GP. (Though we are |
| 285 | * still in a quiescent state in any case.) |
| 286 | */ |
| 287 | if (blkd_state & RCU_EXP_BLKD && |
| 288 | t->rcu_read_unlock_special.b.exp_need_qs) { |
| 289 | t->rcu_read_unlock_special.b.exp_need_qs = false; |
| 290 | rcu_report_exp_rdp(rdp->rsp, rdp, true); |
| 291 | } else { |
| 292 | WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs); |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * Record a preemptible-RCU quiescent state for the specified CPU. |
| 298 | * Note that this does not necessarily mean that the task currently running |
| 299 | * on the CPU is in a quiescent state: Instead, it means that the current |
| 300 | * grace period need not wait on any RCU read-side critical section that |
| 301 | * starts later on this CPU. It also means that if the current task is |
| 302 | * in an RCU read-side critical section, it has already added itself to |
| 303 | * some leaf rcu_node structure's ->blkd_tasks list. In addition to the |
| 304 | * current task, there might be any number of other tasks blocked while |
| 305 | * in an RCU read-side critical section. |
| 306 | * |
| 307 | * Callers to this function must disable preemption. |
| 308 | */ |
| 309 | static void rcu_preempt_qs(void) |
| 310 | { |
| 311 | RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n"); |
| 312 | if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) { |
| 313 | trace_rcu_grace_period(TPS("rcu_preempt"), |
| 314 | __this_cpu_read(rcu_data_p->gp_seq), |
| 315 | TPS("cpuqs")); |
| 316 | __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false); |
| 317 | barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ |
| 318 | current->rcu_read_unlock_special.b.need_qs = false; |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | /* |
| 323 | * We have entered the scheduler, and the current task might soon be |
| 324 | * context-switched away from. If this task is in an RCU read-side |
| 325 | * critical section, we will no longer be able to rely on the CPU to |
| 326 | * record that fact, so we enqueue the task on the blkd_tasks list. |
| 327 | * The task will dequeue itself when it exits the outermost enclosing |
| 328 | * RCU read-side critical section. Therefore, the current grace period |
| 329 | * cannot be permitted to complete until the blkd_tasks list entries |
| 330 | * predating the current grace period drain, in other words, until |
| 331 | * rnp->gp_tasks becomes NULL. |
| 332 | * |
| 333 | * Caller must disable interrupts. |
| 334 | */ |
| 335 | static void rcu_preempt_note_context_switch(bool preempt) |
| 336 | { |
| 337 | struct task_struct *t = current; |
| 338 | struct rcu_data *rdp; |
| 339 | struct rcu_node *rnp; |
| 340 | |
| 341 | lockdep_assert_irqs_disabled(); |
| 342 | WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0); |
| 343 | if (t->rcu_read_lock_nesting > 0 && |
| 344 | !t->rcu_read_unlock_special.b.blocked) { |
| 345 | |
| 346 | /* Possibly blocking in an RCU read-side critical section. */ |
| 347 | rdp = this_cpu_ptr(rcu_state_p->rda); |
| 348 | rnp = rdp->mynode; |
| 349 | raw_spin_lock_rcu_node(rnp); |
| 350 | t->rcu_read_unlock_special.b.blocked = true; |
| 351 | t->rcu_blocked_node = rnp; |
| 352 | |
| 353 | /* |
| 354 | * Verify the CPU's sanity, trace the preemption, and |
| 355 | * then queue the task as required based on the states |
| 356 | * of any ongoing and expedited grace periods. |
| 357 | */ |
| 358 | WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); |
| 359 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); |
| 360 | trace_rcu_preempt_task(rdp->rsp->name, |
| 361 | t->pid, |
| 362 | (rnp->qsmask & rdp->grpmask) |
| 363 | ? rnp->gp_seq |
| 364 | : rcu_seq_snap(&rnp->gp_seq)); |
| 365 | rcu_preempt_ctxt_queue(rnp, rdp); |
| 366 | } else if (t->rcu_read_lock_nesting < 0 && |
| 367 | t->rcu_read_unlock_special.s) { |
| 368 | |
| 369 | /* |
| 370 | * Complete exit from RCU read-side critical section on |
| 371 | * behalf of preempted instance of __rcu_read_unlock(). |
| 372 | */ |
| 373 | rcu_read_unlock_special(t); |
| 374 | } |
| 375 | |
| 376 | /* |
| 377 | * Either we were not in an RCU read-side critical section to |
| 378 | * begin with, or we have now recorded that critical section |
| 379 | * globally. Either way, we can now note a quiescent state |
| 380 | * for this CPU. Again, if we were in an RCU read-side critical |
| 381 | * section, and if that critical section was blocking the current |
| 382 | * grace period, then the fact that the task has been enqueued |
| 383 | * means that we continue to block the current grace period. |
| 384 | */ |
| 385 | rcu_preempt_qs(); |
| 386 | } |
| 387 | |
| 388 | /* |
| 389 | * Check for preempted RCU readers blocking the current grace period |
| 390 | * for the specified rcu_node structure. If the caller needs a reliable |
| 391 | * answer, it must hold the rcu_node's ->lock. |
| 392 | */ |
| 393 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
| 394 | { |
| 395 | return rnp->gp_tasks != NULL; |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * Preemptible RCU implementation for rcu_read_lock(). |
| 400 | * Just increment ->rcu_read_lock_nesting, shared state will be updated |
| 401 | * if we block. |
| 402 | */ |
| 403 | void __rcu_read_lock(void) |
| 404 | { |
| 405 | current->rcu_read_lock_nesting++; |
| 406 | barrier(); /* critical section after entry code. */ |
| 407 | } |
| 408 | EXPORT_SYMBOL_GPL(__rcu_read_lock); |
| 409 | |
| 410 | /* |
| 411 | * Preemptible RCU implementation for rcu_read_unlock(). |
| 412 | * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost |
| 413 | * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then |
| 414 | * invoke rcu_read_unlock_special() to clean up after a context switch |
| 415 | * in an RCU read-side critical section and other special cases. |
| 416 | */ |
| 417 | void __rcu_read_unlock(void) |
| 418 | { |
| 419 | struct task_struct *t = current; |
| 420 | |
| 421 | if (t->rcu_read_lock_nesting != 1) { |
| 422 | --t->rcu_read_lock_nesting; |
| 423 | } else { |
| 424 | barrier(); /* critical section before exit code. */ |
| 425 | t->rcu_read_lock_nesting = INT_MIN; |
| 426 | barrier(); /* assign before ->rcu_read_unlock_special load */ |
| 427 | if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) |
| 428 | rcu_read_unlock_special(t); |
| 429 | barrier(); /* ->rcu_read_unlock_special load before assign */ |
| 430 | t->rcu_read_lock_nesting = 0; |
| 431 | } |
| 432 | #ifdef CONFIG_PROVE_LOCKING |
| 433 | { |
| 434 | int rrln = READ_ONCE(t->rcu_read_lock_nesting); |
| 435 | |
| 436 | WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2); |
| 437 | } |
| 438 | #endif /* #ifdef CONFIG_PROVE_LOCKING */ |
| 439 | } |
| 440 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); |
| 441 | |
| 442 | /* |
| 443 | * Advance a ->blkd_tasks-list pointer to the next entry, instead |
| 444 | * returning NULL if at the end of the list. |
| 445 | */ |
| 446 | static struct list_head *rcu_next_node_entry(struct task_struct *t, |
| 447 | struct rcu_node *rnp) |
| 448 | { |
| 449 | struct list_head *np; |
| 450 | |
| 451 | np = t->rcu_node_entry.next; |
| 452 | if (np == &rnp->blkd_tasks) |
| 453 | np = NULL; |
| 454 | return np; |
| 455 | } |
| 456 | |
| 457 | /* |
| 458 | * Return true if the specified rcu_node structure has tasks that were |
| 459 | * preempted within an RCU read-side critical section. |
| 460 | */ |
| 461 | static bool rcu_preempt_has_tasks(struct rcu_node *rnp) |
| 462 | { |
| 463 | return !list_empty(&rnp->blkd_tasks); |
| 464 | } |
| 465 | |
| 466 | /* |
| 467 | * Handle special cases during rcu_read_unlock(), such as needing to |
| 468 | * notify RCU core processing or task having blocked during the RCU |
| 469 | * read-side critical section. |
| 470 | */ |
| 471 | static void rcu_read_unlock_special(struct task_struct *t) |
| 472 | { |
| 473 | bool empty_exp; |
| 474 | bool empty_norm; |
| 475 | bool empty_exp_now; |
| 476 | unsigned long flags; |
| 477 | struct list_head *np; |
| 478 | bool drop_boost_mutex = false; |
| 479 | struct rcu_data *rdp; |
| 480 | struct rcu_node *rnp; |
| 481 | union rcu_special special; |
| 482 | |
| 483 | /* NMI handlers cannot block and cannot safely manipulate state. */ |
| 484 | if (in_nmi()) |
| 485 | return; |
| 486 | |
| 487 | local_irq_save(flags); |
| 488 | |
| 489 | /* |
| 490 | * If RCU core is waiting for this CPU to exit its critical section, |
| 491 | * report the fact that it has exited. Because irqs are disabled, |
| 492 | * t->rcu_read_unlock_special cannot change. |
| 493 | */ |
| 494 | special = t->rcu_read_unlock_special; |
| 495 | if (special.b.need_qs) { |
| 496 | rcu_preempt_qs(); |
| 497 | t->rcu_read_unlock_special.b.need_qs = false; |
| 498 | if (!t->rcu_read_unlock_special.s) { |
| 499 | local_irq_restore(flags); |
| 500 | return; |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | /* |
| 505 | * Respond to a request for an expedited grace period, but only if |
| 506 | * we were not preempted, meaning that we were running on the same |
| 507 | * CPU throughout. If we were preempted, the exp_need_qs flag |
| 508 | * would have been cleared at the time of the first preemption, |
| 509 | * and the quiescent state would be reported when we were dequeued. |
| 510 | */ |
| 511 | if (special.b.exp_need_qs) { |
| 512 | WARN_ON_ONCE(special.b.blocked); |
| 513 | t->rcu_read_unlock_special.b.exp_need_qs = false; |
| 514 | rdp = this_cpu_ptr(rcu_state_p->rda); |
| 515 | rcu_report_exp_rdp(rcu_state_p, rdp, true); |
| 516 | if (!t->rcu_read_unlock_special.s) { |
| 517 | local_irq_restore(flags); |
| 518 | return; |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | /* Hardware IRQ handlers cannot block, complain if they get here. */ |
| 523 | if (in_irq() || in_serving_softirq()) { |
| 524 | lockdep_rcu_suspicious(__FILE__, __LINE__, |
| 525 | "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); |
| 526 | pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n", |
| 527 | t->rcu_read_unlock_special.s, |
| 528 | t->rcu_read_unlock_special.b.blocked, |
| 529 | t->rcu_read_unlock_special.b.exp_need_qs, |
| 530 | t->rcu_read_unlock_special.b.need_qs); |
| 531 | local_irq_restore(flags); |
| 532 | return; |
| 533 | } |
| 534 | |
| 535 | /* Clean up if blocked during RCU read-side critical section. */ |
| 536 | if (special.b.blocked) { |
| 537 | t->rcu_read_unlock_special.b.blocked = false; |
| 538 | |
| 539 | /* |
| 540 | * Remove this task from the list it blocked on. The task |
| 541 | * now remains queued on the rcu_node corresponding to the |
| 542 | * CPU it first blocked on, so there is no longer any need |
| 543 | * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. |
| 544 | */ |
| 545 | rnp = t->rcu_blocked_node; |
| 546 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
| 547 | WARN_ON_ONCE(rnp != t->rcu_blocked_node); |
| 548 | WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); |
| 549 | empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); |
| 550 | WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && |
| 551 | (!empty_norm || rnp->qsmask)); |
| 552 | empty_exp = sync_rcu_preempt_exp_done(rnp); |
| 553 | smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ |
| 554 | np = rcu_next_node_entry(t, rnp); |
| 555 | list_del_init(&t->rcu_node_entry); |
| 556 | t->rcu_blocked_node = NULL; |
| 557 | trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), |
| 558 | rnp->gp_seq, t->pid); |
| 559 | if (&t->rcu_node_entry == rnp->gp_tasks) |
| 560 | rnp->gp_tasks = np; |
| 561 | if (&t->rcu_node_entry == rnp->exp_tasks) |
| 562 | rnp->exp_tasks = np; |
| 563 | if (IS_ENABLED(CONFIG_RCU_BOOST)) { |
| 564 | /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ |
| 565 | drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; |
| 566 | if (&t->rcu_node_entry == rnp->boost_tasks) |
| 567 | rnp->boost_tasks = np; |
| 568 | } |
| 569 | |
| 570 | /* |
| 571 | * If this was the last task on the current list, and if |
| 572 | * we aren't waiting on any CPUs, report the quiescent state. |
| 573 | * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, |
| 574 | * so we must take a snapshot of the expedited state. |
| 575 | */ |
| 576 | empty_exp_now = sync_rcu_preempt_exp_done(rnp); |
| 577 | if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { |
| 578 | trace_rcu_quiescent_state_report(TPS("preempt_rcu"), |
| 579 | rnp->gp_seq, |
| 580 | 0, rnp->qsmask, |
| 581 | rnp->level, |
| 582 | rnp->grplo, |
| 583 | rnp->grphi, |
| 584 | !!rnp->gp_tasks); |
| 585 | rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); |
| 586 | } else { |
| 587 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 588 | } |
| 589 | |
| 590 | /* Unboost if we were boosted. */ |
| 591 | if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) |
| 592 | rt_mutex_futex_unlock(&rnp->boost_mtx); |
| 593 | |
| 594 | /* |
| 595 | * If this was the last task on the expedited lists, |
| 596 | * then we need to report up the rcu_node hierarchy. |
| 597 | */ |
| 598 | if (!empty_exp && empty_exp_now) |
| 599 | rcu_report_exp_rnp(rcu_state_p, rnp, true); |
| 600 | } else { |
| 601 | local_irq_restore(flags); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | /* |
| 606 | * Dump detailed information for all tasks blocking the current RCU |
| 607 | * grace period on the specified rcu_node structure. |
| 608 | */ |
| 609 | static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) |
| 610 | { |
| 611 | unsigned long flags; |
| 612 | struct task_struct *t; |
| 613 | |
| 614 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 615 | if (!rcu_preempt_blocked_readers_cgp(rnp)) { |
| 616 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 617 | return; |
| 618 | } |
| 619 | t = list_entry(rnp->gp_tasks->prev, |
| 620 | struct task_struct, rcu_node_entry); |
| 621 | list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { |
| 622 | /* |
| 623 | * We could be printing a lot while holding a spinlock. |
| 624 | * Avoid triggering hard lockup. |
| 625 | */ |
| 626 | touch_nmi_watchdog(); |
| 627 | sched_show_task(t); |
| 628 | } |
| 629 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 630 | } |
| 631 | |
| 632 | /* |
| 633 | * Dump detailed information for all tasks blocking the current RCU |
| 634 | * grace period. |
| 635 | */ |
| 636 | static void rcu_print_detail_task_stall(struct rcu_state *rsp) |
| 637 | { |
| 638 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 639 | |
| 640 | rcu_print_detail_task_stall_rnp(rnp); |
| 641 | rcu_for_each_leaf_node(rsp, rnp) |
| 642 | rcu_print_detail_task_stall_rnp(rnp); |
| 643 | } |
| 644 | |
| 645 | static void rcu_print_task_stall_begin(struct rcu_node *rnp) |
| 646 | { |
| 647 | pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", |
| 648 | rnp->level, rnp->grplo, rnp->grphi); |
| 649 | } |
| 650 | |
| 651 | static void rcu_print_task_stall_end(void) |
| 652 | { |
| 653 | pr_cont("\n"); |
| 654 | } |
| 655 | |
| 656 | /* |
| 657 | * Scan the current list of tasks blocked within RCU read-side critical |
| 658 | * sections, printing out the tid of each. |
| 659 | */ |
| 660 | static int rcu_print_task_stall(struct rcu_node *rnp) |
| 661 | { |
| 662 | struct task_struct *t; |
| 663 | int ndetected = 0; |
| 664 | |
| 665 | if (!rcu_preempt_blocked_readers_cgp(rnp)) |
| 666 | return 0; |
| 667 | rcu_print_task_stall_begin(rnp); |
| 668 | t = list_entry(rnp->gp_tasks->prev, |
| 669 | struct task_struct, rcu_node_entry); |
| 670 | list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { |
| 671 | pr_cont(" P%d", t->pid); |
| 672 | ndetected++; |
| 673 | } |
| 674 | rcu_print_task_stall_end(); |
| 675 | return ndetected; |
| 676 | } |
| 677 | |
| 678 | /* |
| 679 | * Scan the current list of tasks blocked within RCU read-side critical |
| 680 | * sections, printing out the tid of each that is blocking the current |
| 681 | * expedited grace period. |
| 682 | */ |
| 683 | static int rcu_print_task_exp_stall(struct rcu_node *rnp) |
| 684 | { |
| 685 | struct task_struct *t; |
| 686 | int ndetected = 0; |
| 687 | |
| 688 | if (!rnp->exp_tasks) |
| 689 | return 0; |
| 690 | t = list_entry(rnp->exp_tasks->prev, |
| 691 | struct task_struct, rcu_node_entry); |
| 692 | list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { |
| 693 | pr_cont(" P%d", t->pid); |
| 694 | ndetected++; |
| 695 | } |
| 696 | return ndetected; |
| 697 | } |
| 698 | |
| 699 | /* |
| 700 | * Check that the list of blocked tasks for the newly completed grace |
| 701 | * period is in fact empty. It is a serious bug to complete a grace |
| 702 | * period that still has RCU readers blocked! This function must be |
| 703 | * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock |
| 704 | * must be held by the caller. |
| 705 | * |
| 706 | * Also, if there are blocked tasks on the list, they automatically |
| 707 | * block the newly created grace period, so set up ->gp_tasks accordingly. |
| 708 | */ |
| 709 | static void |
| 710 | rcu_preempt_check_blocked_tasks(struct rcu_state *rsp, struct rcu_node *rnp) |
| 711 | { |
| 712 | struct task_struct *t; |
| 713 | |
| 714 | RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); |
| 715 | if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) |
| 716 | dump_blkd_tasks(rsp, rnp, 10); |
| 717 | if (rcu_preempt_has_tasks(rnp) && |
| 718 | (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { |
| 719 | rnp->gp_tasks = rnp->blkd_tasks.next; |
| 720 | t = container_of(rnp->gp_tasks, struct task_struct, |
| 721 | rcu_node_entry); |
| 722 | trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), |
| 723 | rnp->gp_seq, t->pid); |
| 724 | } |
| 725 | WARN_ON_ONCE(rnp->qsmask); |
| 726 | } |
| 727 | |
| 728 | /* |
| 729 | * Check for a quiescent state from the current CPU. When a task blocks, |
| 730 | * the task is recorded in the corresponding CPU's rcu_node structure, |
| 731 | * which is checked elsewhere. |
| 732 | * |
| 733 | * Caller must disable hard irqs. |
| 734 | */ |
| 735 | static void rcu_preempt_check_callbacks(void) |
| 736 | { |
| 737 | struct rcu_state *rsp = &rcu_preempt_state; |
| 738 | struct task_struct *t = current; |
| 739 | |
| 740 | if (t->rcu_read_lock_nesting == 0) { |
| 741 | rcu_preempt_qs(); |
| 742 | return; |
| 743 | } |
| 744 | if (t->rcu_read_lock_nesting > 0 && |
| 745 | __this_cpu_read(rcu_data_p->core_needs_qs) && |
| 746 | __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm) && |
| 747 | !t->rcu_read_unlock_special.b.need_qs && |
| 748 | time_after(jiffies, rsp->gp_start + HZ)) |
| 749 | t->rcu_read_unlock_special.b.need_qs = true; |
| 750 | } |
| 751 | |
| 752 | /** |
| 753 | * call_rcu() - Queue an RCU callback for invocation after a grace period. |
| 754 | * @head: structure to be used for queueing the RCU updates. |
| 755 | * @func: actual callback function to be invoked after the grace period |
| 756 | * |
| 757 | * The callback function will be invoked some time after a full grace |
| 758 | * period elapses, in other words after all pre-existing RCU read-side |
| 759 | * critical sections have completed. However, the callback function |
| 760 | * might well execute concurrently with RCU read-side critical sections |
| 761 | * that started after call_rcu() was invoked. RCU read-side critical |
| 762 | * sections are delimited by rcu_read_lock() and rcu_read_unlock(), |
| 763 | * and may be nested. |
| 764 | * |
| 765 | * Note that all CPUs must agree that the grace period extended beyond |
| 766 | * all pre-existing RCU read-side critical section. On systems with more |
| 767 | * than one CPU, this means that when "func()" is invoked, each CPU is |
| 768 | * guaranteed to have executed a full memory barrier since the end of its |
| 769 | * last RCU read-side critical section whose beginning preceded the call |
| 770 | * to call_rcu(). It also means that each CPU executing an RCU read-side |
| 771 | * critical section that continues beyond the start of "func()" must have |
| 772 | * executed a memory barrier after the call_rcu() but before the beginning |
| 773 | * of that RCU read-side critical section. Note that these guarantees |
| 774 | * include CPUs that are offline, idle, or executing in user mode, as |
| 775 | * well as CPUs that are executing in the kernel. |
| 776 | * |
| 777 | * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the |
| 778 | * resulting RCU callback function "func()", then both CPU A and CPU B are |
| 779 | * guaranteed to execute a full memory barrier during the time interval |
| 780 | * between the call to call_rcu() and the invocation of "func()" -- even |
| 781 | * if CPU A and CPU B are the same CPU (but again only if the system has |
| 782 | * more than one CPU). |
| 783 | */ |
| 784 | void call_rcu(struct rcu_head *head, rcu_callback_t func) |
| 785 | { |
| 786 | __call_rcu(head, func, rcu_state_p, -1, 0); |
| 787 | } |
| 788 | EXPORT_SYMBOL_GPL(call_rcu); |
| 789 | |
| 790 | /** |
| 791 | * synchronize_rcu - wait until a grace period has elapsed. |
| 792 | * |
| 793 | * Control will return to the caller some time after a full grace |
| 794 | * period has elapsed, in other words after all currently executing RCU |
| 795 | * read-side critical sections have completed. Note, however, that |
| 796 | * upon return from synchronize_rcu(), the caller might well be executing |
| 797 | * concurrently with new RCU read-side critical sections that began while |
| 798 | * synchronize_rcu() was waiting. RCU read-side critical sections are |
| 799 | * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. |
| 800 | * |
| 801 | * See the description of synchronize_sched() for more detailed |
| 802 | * information on memory-ordering guarantees. However, please note |
| 803 | * that -only- the memory-ordering guarantees apply. For example, |
| 804 | * synchronize_rcu() is -not- guaranteed to wait on things like code |
| 805 | * protected by preempt_disable(), instead, synchronize_rcu() is -only- |
| 806 | * guaranteed to wait on RCU read-side critical sections, that is, sections |
| 807 | * of code protected by rcu_read_lock(). |
| 808 | */ |
| 809 | void synchronize_rcu(void) |
| 810 | { |
| 811 | RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || |
| 812 | lock_is_held(&rcu_lock_map) || |
| 813 | lock_is_held(&rcu_sched_lock_map), |
| 814 | "Illegal synchronize_rcu() in RCU read-side critical section"); |
| 815 | if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) |
| 816 | return; |
| 817 | if (rcu_gp_is_expedited()) |
| 818 | synchronize_rcu_expedited(); |
| 819 | else |
| 820 | wait_rcu_gp(call_rcu); |
| 821 | } |
| 822 | EXPORT_SYMBOL_GPL(synchronize_rcu); |
| 823 | |
| 824 | /** |
| 825 | * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. |
| 826 | * |
| 827 | * Note that this primitive does not necessarily wait for an RCU grace period |
| 828 | * to complete. For example, if there are no RCU callbacks queued anywhere |
| 829 | * in the system, then rcu_barrier() is within its rights to return |
| 830 | * immediately, without waiting for anything, much less an RCU grace period. |
| 831 | */ |
| 832 | void rcu_barrier(void) |
| 833 | { |
| 834 | _rcu_barrier(rcu_state_p); |
| 835 | } |
| 836 | EXPORT_SYMBOL_GPL(rcu_barrier); |
| 837 | |
| 838 | /* |
| 839 | * Initialize preemptible RCU's state structures. |
| 840 | */ |
| 841 | static void __init __rcu_init_preempt(void) |
| 842 | { |
| 843 | rcu_init_one(rcu_state_p); |
| 844 | } |
| 845 | |
| 846 | /* |
| 847 | * Check for a task exiting while in a preemptible-RCU read-side |
| 848 | * critical section, clean up if so. No need to issue warnings, |
| 849 | * as debug_check_no_locks_held() already does this if lockdep |
| 850 | * is enabled. |
| 851 | */ |
| 852 | void exit_rcu(void) |
| 853 | { |
| 854 | struct task_struct *t = current; |
| 855 | |
| 856 | if (likely(list_empty(¤t->rcu_node_entry))) |
| 857 | return; |
| 858 | t->rcu_read_lock_nesting = 1; |
| 859 | barrier(); |
| 860 | t->rcu_read_unlock_special.b.blocked = true; |
| 861 | __rcu_read_unlock(); |
| 862 | } |
| 863 | |
| 864 | /* |
| 865 | * Dump the blocked-tasks state, but limit the list dump to the |
| 866 | * specified number of elements. |
| 867 | */ |
| 868 | static void |
| 869 | dump_blkd_tasks(struct rcu_state *rsp, struct rcu_node *rnp, int ncheck) |
| 870 | { |
| 871 | int cpu; |
| 872 | int i; |
| 873 | struct list_head *lhp; |
| 874 | bool onl; |
| 875 | struct rcu_data *rdp; |
| 876 | struct rcu_node *rnp1; |
| 877 | |
| 878 | raw_lockdep_assert_held_rcu_node(rnp); |
| 879 | pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", |
| 880 | __func__, rnp->grplo, rnp->grphi, rnp->level, |
| 881 | (long)rnp->gp_seq, (long)rnp->completedqs); |
| 882 | for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) |
| 883 | pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", |
| 884 | __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); |
| 885 | pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", |
| 886 | __func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks); |
| 887 | pr_info("%s: ->blkd_tasks", __func__); |
| 888 | i = 0; |
| 889 | list_for_each(lhp, &rnp->blkd_tasks) { |
| 890 | pr_cont(" %p", lhp); |
| 891 | if (++i >= 10) |
| 892 | break; |
| 893 | } |
| 894 | pr_cont("\n"); |
| 895 | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { |
| 896 | rdp = per_cpu_ptr(rsp->rda, cpu); |
| 897 | onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); |
| 898 | pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", |
| 899 | cpu, ".o"[onl], |
| 900 | (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, |
| 901 | (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | #else /* #ifdef CONFIG_PREEMPT_RCU */ |
| 906 | |
| 907 | static struct rcu_state *const rcu_state_p = &rcu_sched_state; |
| 908 | |
| 909 | /* |
| 910 | * Tell them what RCU they are running. |
| 911 | */ |
| 912 | static void __init rcu_bootup_announce(void) |
| 913 | { |
| 914 | pr_info("Hierarchical RCU implementation.\n"); |
| 915 | rcu_bootup_announce_oddness(); |
| 916 | } |
| 917 | |
| 918 | /* |
| 919 | * Because preemptible RCU does not exist, we never have to check for |
| 920 | * CPUs being in quiescent states. |
| 921 | */ |
| 922 | static void rcu_preempt_note_context_switch(bool preempt) |
| 923 | { |
| 924 | } |
| 925 | |
| 926 | /* |
| 927 | * Because preemptible RCU does not exist, there are never any preempted |
| 928 | * RCU readers. |
| 929 | */ |
| 930 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
| 931 | { |
| 932 | return 0; |
| 933 | } |
| 934 | |
| 935 | /* |
| 936 | * Because there is no preemptible RCU, there can be no readers blocked. |
| 937 | */ |
| 938 | static bool rcu_preempt_has_tasks(struct rcu_node *rnp) |
| 939 | { |
| 940 | return false; |
| 941 | } |
| 942 | |
| 943 | /* |
| 944 | * Because preemptible RCU does not exist, we never have to check for |
| 945 | * tasks blocked within RCU read-side critical sections. |
| 946 | */ |
| 947 | static void rcu_print_detail_task_stall(struct rcu_state *rsp) |
| 948 | { |
| 949 | } |
| 950 | |
| 951 | /* |
| 952 | * Because preemptible RCU does not exist, we never have to check for |
| 953 | * tasks blocked within RCU read-side critical sections. |
| 954 | */ |
| 955 | static int rcu_print_task_stall(struct rcu_node *rnp) |
| 956 | { |
| 957 | return 0; |
| 958 | } |
| 959 | |
| 960 | /* |
| 961 | * Because preemptible RCU does not exist, we never have to check for |
| 962 | * tasks blocked within RCU read-side critical sections that are |
| 963 | * blocking the current expedited grace period. |
| 964 | */ |
| 965 | static int rcu_print_task_exp_stall(struct rcu_node *rnp) |
| 966 | { |
| 967 | return 0; |
| 968 | } |
| 969 | |
| 970 | /* |
| 971 | * Because there is no preemptible RCU, there can be no readers blocked, |
| 972 | * so there is no need to check for blocked tasks. So check only for |
| 973 | * bogus qsmask values. |
| 974 | */ |
| 975 | static void |
| 976 | rcu_preempt_check_blocked_tasks(struct rcu_state *rsp, struct rcu_node *rnp) |
| 977 | { |
| 978 | WARN_ON_ONCE(rnp->qsmask); |
| 979 | } |
| 980 | |
| 981 | /* |
| 982 | * Because preemptible RCU does not exist, it never has any callbacks |
| 983 | * to check. |
| 984 | */ |
| 985 | static void rcu_preempt_check_callbacks(void) |
| 986 | { |
| 987 | } |
| 988 | |
| 989 | /* |
| 990 | * Because preemptible RCU does not exist, rcu_barrier() is just |
| 991 | * another name for rcu_barrier_sched(). |
| 992 | */ |
| 993 | void rcu_barrier(void) |
| 994 | { |
| 995 | rcu_barrier_sched(); |
| 996 | } |
| 997 | EXPORT_SYMBOL_GPL(rcu_barrier); |
| 998 | |
| 999 | /* |
| 1000 | * Because preemptible RCU does not exist, it need not be initialized. |
| 1001 | */ |
| 1002 | static void __init __rcu_init_preempt(void) |
| 1003 | { |
| 1004 | } |
| 1005 | |
| 1006 | /* |
| 1007 | * Because preemptible RCU does not exist, tasks cannot possibly exit |
| 1008 | * while in preemptible RCU read-side critical sections. |
| 1009 | */ |
| 1010 | void exit_rcu(void) |
| 1011 | { |
| 1012 | } |
| 1013 | |
| 1014 | /* |
| 1015 | * Dump the guaranteed-empty blocked-tasks state. Trust but verify. |
| 1016 | */ |
| 1017 | static void |
| 1018 | dump_blkd_tasks(struct rcu_state *rsp, struct rcu_node *rnp, int ncheck) |
| 1019 | { |
| 1020 | WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); |
| 1021 | } |
| 1022 | |
| 1023 | #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ |
| 1024 | |
| 1025 | #ifdef CONFIG_RCU_BOOST |
| 1026 | |
| 1027 | static void rcu_wake_cond(struct task_struct *t, int status) |
| 1028 | { |
| 1029 | /* |
| 1030 | * If the thread is yielding, only wake it when this |
| 1031 | * is invoked from idle |
| 1032 | */ |
| 1033 | if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) |
| 1034 | wake_up_process(t); |
| 1035 | } |
| 1036 | |
| 1037 | /* |
| 1038 | * Carry out RCU priority boosting on the task indicated by ->exp_tasks |
| 1039 | * or ->boost_tasks, advancing the pointer to the next task in the |
| 1040 | * ->blkd_tasks list. |
| 1041 | * |
| 1042 | * Note that irqs must be enabled: boosting the task can block. |
| 1043 | * Returns 1 if there are more tasks needing to be boosted. |
| 1044 | */ |
| 1045 | static int rcu_boost(struct rcu_node *rnp) |
| 1046 | { |
| 1047 | unsigned long flags; |
| 1048 | struct task_struct *t; |
| 1049 | struct list_head *tb; |
| 1050 | |
| 1051 | if (READ_ONCE(rnp->exp_tasks) == NULL && |
| 1052 | READ_ONCE(rnp->boost_tasks) == NULL) |
| 1053 | return 0; /* Nothing left to boost. */ |
| 1054 | |
| 1055 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 1056 | |
| 1057 | /* |
| 1058 | * Recheck under the lock: all tasks in need of boosting |
| 1059 | * might exit their RCU read-side critical sections on their own. |
| 1060 | */ |
| 1061 | if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { |
| 1062 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1063 | return 0; |
| 1064 | } |
| 1065 | |
| 1066 | /* |
| 1067 | * Preferentially boost tasks blocking expedited grace periods. |
| 1068 | * This cannot starve the normal grace periods because a second |
| 1069 | * expedited grace period must boost all blocked tasks, including |
| 1070 | * those blocking the pre-existing normal grace period. |
| 1071 | */ |
| 1072 | if (rnp->exp_tasks != NULL) |
| 1073 | tb = rnp->exp_tasks; |
| 1074 | else |
| 1075 | tb = rnp->boost_tasks; |
| 1076 | |
| 1077 | /* |
| 1078 | * We boost task t by manufacturing an rt_mutex that appears to |
| 1079 | * be held by task t. We leave a pointer to that rt_mutex where |
| 1080 | * task t can find it, and task t will release the mutex when it |
| 1081 | * exits its outermost RCU read-side critical section. Then |
| 1082 | * simply acquiring this artificial rt_mutex will boost task |
| 1083 | * t's priority. (Thanks to tglx for suggesting this approach!) |
| 1084 | * |
| 1085 | * Note that task t must acquire rnp->lock to remove itself from |
| 1086 | * the ->blkd_tasks list, which it will do from exit() if from |
| 1087 | * nowhere else. We therefore are guaranteed that task t will |
| 1088 | * stay around at least until we drop rnp->lock. Note that |
| 1089 | * rnp->lock also resolves races between our priority boosting |
| 1090 | * and task t's exiting its outermost RCU read-side critical |
| 1091 | * section. |
| 1092 | */ |
| 1093 | t = container_of(tb, struct task_struct, rcu_node_entry); |
| 1094 | rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); |
| 1095 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1096 | /* Lock only for side effect: boosts task t's priority. */ |
| 1097 | rt_mutex_lock(&rnp->boost_mtx); |
| 1098 | rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ |
| 1099 | |
| 1100 | return READ_ONCE(rnp->exp_tasks) != NULL || |
| 1101 | READ_ONCE(rnp->boost_tasks) != NULL; |
| 1102 | } |
| 1103 | |
| 1104 | /* |
| 1105 | * Priority-boosting kthread, one per leaf rcu_node. |
| 1106 | */ |
| 1107 | static int rcu_boost_kthread(void *arg) |
| 1108 | { |
| 1109 | struct rcu_node *rnp = (struct rcu_node *)arg; |
| 1110 | int spincnt = 0; |
| 1111 | int more2boost; |
| 1112 | |
| 1113 | trace_rcu_utilization(TPS("Start boost kthread@init")); |
| 1114 | for (;;) { |
| 1115 | rnp->boost_kthread_status = RCU_KTHREAD_WAITING; |
| 1116 | trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); |
| 1117 | rcu_wait(rnp->boost_tasks || rnp->exp_tasks); |
| 1118 | trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); |
| 1119 | rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; |
| 1120 | more2boost = rcu_boost(rnp); |
| 1121 | if (more2boost) |
| 1122 | spincnt++; |
| 1123 | else |
| 1124 | spincnt = 0; |
| 1125 | if (spincnt > 10) { |
| 1126 | rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; |
| 1127 | trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); |
| 1128 | schedule_timeout_interruptible(2); |
| 1129 | trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); |
| 1130 | spincnt = 0; |
| 1131 | } |
| 1132 | } |
| 1133 | /* NOTREACHED */ |
| 1134 | trace_rcu_utilization(TPS("End boost kthread@notreached")); |
| 1135 | return 0; |
| 1136 | } |
| 1137 | |
| 1138 | /* |
| 1139 | * Check to see if it is time to start boosting RCU readers that are |
| 1140 | * blocking the current grace period, and, if so, tell the per-rcu_node |
| 1141 | * kthread to start boosting them. If there is an expedited grace |
| 1142 | * period in progress, it is always time to boost. |
| 1143 | * |
| 1144 | * The caller must hold rnp->lock, which this function releases. |
| 1145 | * The ->boost_kthread_task is immortal, so we don't need to worry |
| 1146 | * about it going away. |
| 1147 | */ |
| 1148 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
| 1149 | __releases(rnp->lock) |
| 1150 | { |
| 1151 | struct task_struct *t; |
| 1152 | |
| 1153 | raw_lockdep_assert_held_rcu_node(rnp); |
| 1154 | if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { |
| 1155 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1156 | return; |
| 1157 | } |
| 1158 | if (rnp->exp_tasks != NULL || |
| 1159 | (rnp->gp_tasks != NULL && |
| 1160 | rnp->boost_tasks == NULL && |
| 1161 | rnp->qsmask == 0 && |
| 1162 | ULONG_CMP_GE(jiffies, rnp->boost_time))) { |
| 1163 | if (rnp->exp_tasks == NULL) |
| 1164 | rnp->boost_tasks = rnp->gp_tasks; |
| 1165 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1166 | t = rnp->boost_kthread_task; |
| 1167 | if (t) |
| 1168 | rcu_wake_cond(t, rnp->boost_kthread_status); |
| 1169 | } else { |
| 1170 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1171 | } |
| 1172 | } |
| 1173 | |
| 1174 | /* |
| 1175 | * Wake up the per-CPU kthread to invoke RCU callbacks. |
| 1176 | */ |
| 1177 | static void invoke_rcu_callbacks_kthread(void) |
| 1178 | { |
| 1179 | unsigned long flags; |
| 1180 | |
| 1181 | local_irq_save(flags); |
| 1182 | __this_cpu_write(rcu_cpu_has_work, 1); |
| 1183 | if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && |
| 1184 | current != __this_cpu_read(rcu_cpu_kthread_task)) { |
| 1185 | rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), |
| 1186 | __this_cpu_read(rcu_cpu_kthread_status)); |
| 1187 | } |
| 1188 | local_irq_restore(flags); |
| 1189 | } |
| 1190 | |
| 1191 | /* |
| 1192 | * Is the current CPU running the RCU-callbacks kthread? |
| 1193 | * Caller must have preemption disabled. |
| 1194 | */ |
| 1195 | static bool rcu_is_callbacks_kthread(void) |
| 1196 | { |
| 1197 | return __this_cpu_read(rcu_cpu_kthread_task) == current; |
| 1198 | } |
| 1199 | |
| 1200 | #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) |
| 1201 | |
| 1202 | /* |
| 1203 | * Do priority-boost accounting for the start of a new grace period. |
| 1204 | */ |
| 1205 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) |
| 1206 | { |
| 1207 | rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; |
| 1208 | } |
| 1209 | |
| 1210 | /* |
| 1211 | * Create an RCU-boost kthread for the specified node if one does not |
| 1212 | * already exist. We only create this kthread for preemptible RCU. |
| 1213 | * Returns zero if all is well, a negated errno otherwise. |
| 1214 | */ |
| 1215 | static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, |
| 1216 | struct rcu_node *rnp) |
| 1217 | { |
| 1218 | int rnp_index = rnp - &rsp->node[0]; |
| 1219 | unsigned long flags; |
| 1220 | struct sched_param sp; |
| 1221 | struct task_struct *t; |
| 1222 | |
| 1223 | if (rcu_state_p != rsp) |
| 1224 | return 0; |
| 1225 | |
| 1226 | if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) |
| 1227 | return 0; |
| 1228 | |
| 1229 | rsp->boost = 1; |
| 1230 | if (rnp->boost_kthread_task != NULL) |
| 1231 | return 0; |
| 1232 | t = kthread_create(rcu_boost_kthread, (void *)rnp, |
| 1233 | "rcub/%d", rnp_index); |
| 1234 | if (IS_ERR(t)) |
| 1235 | return PTR_ERR(t); |
| 1236 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 1237 | rnp->boost_kthread_task = t; |
| 1238 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1239 | sp.sched_priority = kthread_prio; |
| 1240 | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); |
| 1241 | wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ |
| 1242 | return 0; |
| 1243 | } |
| 1244 | |
| 1245 | static void rcu_kthread_do_work(void) |
| 1246 | { |
| 1247 | rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); |
| 1248 | rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); |
| 1249 | rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data)); |
| 1250 | } |
| 1251 | |
| 1252 | static void rcu_cpu_kthread_setup(unsigned int cpu) |
| 1253 | { |
| 1254 | struct sched_param sp; |
| 1255 | |
| 1256 | sp.sched_priority = kthread_prio; |
| 1257 | sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); |
| 1258 | } |
| 1259 | |
| 1260 | static void rcu_cpu_kthread_park(unsigned int cpu) |
| 1261 | { |
| 1262 | per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; |
| 1263 | } |
| 1264 | |
| 1265 | static int rcu_cpu_kthread_should_run(unsigned int cpu) |
| 1266 | { |
| 1267 | return __this_cpu_read(rcu_cpu_has_work); |
| 1268 | } |
| 1269 | |
| 1270 | /* |
| 1271 | * Per-CPU kernel thread that invokes RCU callbacks. This replaces the |
| 1272 | * RCU softirq used in flavors and configurations of RCU that do not |
| 1273 | * support RCU priority boosting. |
| 1274 | */ |
| 1275 | static void rcu_cpu_kthread(unsigned int cpu) |
| 1276 | { |
| 1277 | unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); |
| 1278 | char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); |
| 1279 | int spincnt; |
| 1280 | |
| 1281 | for (spincnt = 0; spincnt < 10; spincnt++) { |
| 1282 | trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); |
| 1283 | local_bh_disable(); |
| 1284 | *statusp = RCU_KTHREAD_RUNNING; |
| 1285 | this_cpu_inc(rcu_cpu_kthread_loops); |
| 1286 | local_irq_disable(); |
| 1287 | work = *workp; |
| 1288 | *workp = 0; |
| 1289 | local_irq_enable(); |
| 1290 | if (work) |
| 1291 | rcu_kthread_do_work(); |
| 1292 | local_bh_enable(); |
| 1293 | if (*workp == 0) { |
| 1294 | trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); |
| 1295 | *statusp = RCU_KTHREAD_WAITING; |
| 1296 | return; |
| 1297 | } |
| 1298 | } |
| 1299 | *statusp = RCU_KTHREAD_YIELDING; |
| 1300 | trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); |
| 1301 | schedule_timeout_interruptible(2); |
| 1302 | trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); |
| 1303 | *statusp = RCU_KTHREAD_WAITING; |
| 1304 | } |
| 1305 | |
| 1306 | /* |
| 1307 | * Set the per-rcu_node kthread's affinity to cover all CPUs that are |
| 1308 | * served by the rcu_node in question. The CPU hotplug lock is still |
| 1309 | * held, so the value of rnp->qsmaskinit will be stable. |
| 1310 | * |
| 1311 | * We don't include outgoingcpu in the affinity set, use -1 if there is |
| 1312 | * no outgoing CPU. If there are no CPUs left in the affinity set, |
| 1313 | * this function allows the kthread to execute on any CPU. |
| 1314 | */ |
| 1315 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
| 1316 | { |
| 1317 | struct task_struct *t = rnp->boost_kthread_task; |
| 1318 | unsigned long mask = rcu_rnp_online_cpus(rnp); |
| 1319 | cpumask_var_t cm; |
| 1320 | int cpu; |
| 1321 | |
| 1322 | if (!t) |
| 1323 | return; |
| 1324 | if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) |
| 1325 | return; |
| 1326 | for_each_leaf_node_possible_cpu(rnp, cpu) |
| 1327 | if ((mask & leaf_node_cpu_bit(rnp, cpu)) && |
| 1328 | cpu != outgoingcpu) |
| 1329 | cpumask_set_cpu(cpu, cm); |
| 1330 | if (cpumask_weight(cm) == 0) |
| 1331 | cpumask_setall(cm); |
| 1332 | set_cpus_allowed_ptr(t, cm); |
| 1333 | free_cpumask_var(cm); |
| 1334 | } |
| 1335 | |
| 1336 | static struct smp_hotplug_thread rcu_cpu_thread_spec = { |
| 1337 | .store = &rcu_cpu_kthread_task, |
| 1338 | .thread_should_run = rcu_cpu_kthread_should_run, |
| 1339 | .thread_fn = rcu_cpu_kthread, |
| 1340 | .thread_comm = "rcuc/%u", |
| 1341 | .setup = rcu_cpu_kthread_setup, |
| 1342 | .park = rcu_cpu_kthread_park, |
| 1343 | }; |
| 1344 | |
| 1345 | /* |
| 1346 | * Spawn boost kthreads -- called as soon as the scheduler is running. |
| 1347 | */ |
| 1348 | static void __init rcu_spawn_boost_kthreads(void) |
| 1349 | { |
| 1350 | struct rcu_node *rnp; |
| 1351 | int cpu; |
| 1352 | |
| 1353 | for_each_possible_cpu(cpu) |
| 1354 | per_cpu(rcu_cpu_has_work, cpu) = 0; |
| 1355 | BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); |
| 1356 | rcu_for_each_leaf_node(rcu_state_p, rnp) |
| 1357 | (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); |
| 1358 | } |
| 1359 | |
| 1360 | static void rcu_prepare_kthreads(int cpu) |
| 1361 | { |
| 1362 | struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); |
| 1363 | struct rcu_node *rnp = rdp->mynode; |
| 1364 | |
| 1365 | /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ |
| 1366 | if (rcu_scheduler_fully_active) |
| 1367 | (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); |
| 1368 | } |
| 1369 | |
| 1370 | #else /* #ifdef CONFIG_RCU_BOOST */ |
| 1371 | |
| 1372 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
| 1373 | __releases(rnp->lock) |
| 1374 | { |
| 1375 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1376 | } |
| 1377 | |
| 1378 | static void invoke_rcu_callbacks_kthread(void) |
| 1379 | { |
| 1380 | WARN_ON_ONCE(1); |
| 1381 | } |
| 1382 | |
| 1383 | static bool rcu_is_callbacks_kthread(void) |
| 1384 | { |
| 1385 | return false; |
| 1386 | } |
| 1387 | |
| 1388 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) |
| 1389 | { |
| 1390 | } |
| 1391 | |
| 1392 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
| 1393 | { |
| 1394 | } |
| 1395 | |
| 1396 | static void __init rcu_spawn_boost_kthreads(void) |
| 1397 | { |
| 1398 | } |
| 1399 | |
| 1400 | static void rcu_prepare_kthreads(int cpu) |
| 1401 | { |
| 1402 | } |
| 1403 | |
| 1404 | #endif /* #else #ifdef CONFIG_RCU_BOOST */ |
| 1405 | |
| 1406 | #if !defined(CONFIG_RCU_FAST_NO_HZ) |
| 1407 | |
| 1408 | /* |
| 1409 | * Check to see if any future RCU-related work will need to be done |
| 1410 | * by the current CPU, even if none need be done immediately, returning |
| 1411 | * 1 if so. This function is part of the RCU implementation; it is -not- |
| 1412 | * an exported member of the RCU API. |
| 1413 | * |
| 1414 | * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs |
| 1415 | * any flavor of RCU. |
| 1416 | */ |
| 1417 | int rcu_needs_cpu(u64 basemono, u64 *nextevt) |
| 1418 | { |
| 1419 | *nextevt = KTIME_MAX; |
| 1420 | return rcu_cpu_has_callbacks(NULL); |
| 1421 | } |
| 1422 | |
| 1423 | /* |
| 1424 | * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up |
| 1425 | * after it. |
| 1426 | */ |
| 1427 | static void rcu_cleanup_after_idle(void) |
| 1428 | { |
| 1429 | } |
| 1430 | |
| 1431 | /* |
| 1432 | * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, |
| 1433 | * is nothing. |
| 1434 | */ |
| 1435 | static void rcu_prepare_for_idle(void) |
| 1436 | { |
| 1437 | } |
| 1438 | |
| 1439 | /* |
| 1440 | * Don't bother keeping a running count of the number of RCU callbacks |
| 1441 | * posted because CONFIG_RCU_FAST_NO_HZ=n. |
| 1442 | */ |
| 1443 | static void rcu_idle_count_callbacks_posted(void) |
| 1444 | { |
| 1445 | } |
| 1446 | |
| 1447 | #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
| 1448 | |
| 1449 | /* |
| 1450 | * This code is invoked when a CPU goes idle, at which point we want |
| 1451 | * to have the CPU do everything required for RCU so that it can enter |
| 1452 | * the energy-efficient dyntick-idle mode. This is handled by a |
| 1453 | * state machine implemented by rcu_prepare_for_idle() below. |
| 1454 | * |
| 1455 | * The following three proprocessor symbols control this state machine: |
| 1456 | * |
| 1457 | * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted |
| 1458 | * to sleep in dyntick-idle mode with RCU callbacks pending. This |
| 1459 | * is sized to be roughly one RCU grace period. Those energy-efficiency |
| 1460 | * benchmarkers who might otherwise be tempted to set this to a large |
| 1461 | * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your |
| 1462 | * system. And if you are -that- concerned about energy efficiency, |
| 1463 | * just power the system down and be done with it! |
| 1464 | * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is |
| 1465 | * permitted to sleep in dyntick-idle mode with only lazy RCU |
| 1466 | * callbacks pending. Setting this too high can OOM your system. |
| 1467 | * |
| 1468 | * The values below work well in practice. If future workloads require |
| 1469 | * adjustment, they can be converted into kernel config parameters, though |
| 1470 | * making the state machine smarter might be a better option. |
| 1471 | */ |
| 1472 | #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ |
| 1473 | #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ |
| 1474 | |
| 1475 | static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; |
| 1476 | module_param(rcu_idle_gp_delay, int, 0644); |
| 1477 | static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; |
| 1478 | module_param(rcu_idle_lazy_gp_delay, int, 0644); |
| 1479 | |
| 1480 | /* |
| 1481 | * Try to advance callbacks for all flavors of RCU on the current CPU, but |
| 1482 | * only if it has been awhile since the last time we did so. Afterwards, |
| 1483 | * if there are any callbacks ready for immediate invocation, return true. |
| 1484 | */ |
| 1485 | static bool __maybe_unused rcu_try_advance_all_cbs(void) |
| 1486 | { |
| 1487 | bool cbs_ready = false; |
| 1488 | struct rcu_data *rdp; |
| 1489 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| 1490 | struct rcu_node *rnp; |
| 1491 | struct rcu_state *rsp; |
| 1492 | |
| 1493 | /* Exit early if we advanced recently. */ |
| 1494 | if (jiffies == rdtp->last_advance_all) |
| 1495 | return false; |
| 1496 | rdtp->last_advance_all = jiffies; |
| 1497 | |
| 1498 | for_each_rcu_flavor(rsp) { |
| 1499 | rdp = this_cpu_ptr(rsp->rda); |
| 1500 | rnp = rdp->mynode; |
| 1501 | |
| 1502 | /* |
| 1503 | * Don't bother checking unless a grace period has |
| 1504 | * completed since we last checked and there are |
| 1505 | * callbacks not yet ready to invoke. |
| 1506 | */ |
| 1507 | if ((rcu_seq_completed_gp(rdp->gp_seq, |
| 1508 | rcu_seq_current(&rnp->gp_seq)) || |
| 1509 | unlikely(READ_ONCE(rdp->gpwrap))) && |
| 1510 | rcu_segcblist_pend_cbs(&rdp->cblist)) |
| 1511 | note_gp_changes(rsp, rdp); |
| 1512 | |
| 1513 | if (rcu_segcblist_ready_cbs(&rdp->cblist)) |
| 1514 | cbs_ready = true; |
| 1515 | } |
| 1516 | return cbs_ready; |
| 1517 | } |
| 1518 | |
| 1519 | /* |
| 1520 | * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready |
| 1521 | * to invoke. If the CPU has callbacks, try to advance them. Tell the |
| 1522 | * caller to set the timeout based on whether or not there are non-lazy |
| 1523 | * callbacks. |
| 1524 | * |
| 1525 | * The caller must have disabled interrupts. |
| 1526 | */ |
| 1527 | int rcu_needs_cpu(u64 basemono, u64 *nextevt) |
| 1528 | { |
| 1529 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| 1530 | unsigned long dj; |
| 1531 | |
| 1532 | lockdep_assert_irqs_disabled(); |
| 1533 | |
| 1534 | /* Snapshot to detect later posting of non-lazy callback. */ |
| 1535 | rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; |
| 1536 | |
| 1537 | /* If no callbacks, RCU doesn't need the CPU. */ |
| 1538 | if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { |
| 1539 | *nextevt = KTIME_MAX; |
| 1540 | return 0; |
| 1541 | } |
| 1542 | |
| 1543 | /* Attempt to advance callbacks. */ |
| 1544 | if (rcu_try_advance_all_cbs()) { |
| 1545 | /* Some ready to invoke, so initiate later invocation. */ |
| 1546 | invoke_rcu_core(); |
| 1547 | return 1; |
| 1548 | } |
| 1549 | rdtp->last_accelerate = jiffies; |
| 1550 | |
| 1551 | /* Request timer delay depending on laziness, and round. */ |
| 1552 | if (!rdtp->all_lazy) { |
| 1553 | dj = round_up(rcu_idle_gp_delay + jiffies, |
| 1554 | rcu_idle_gp_delay) - jiffies; |
| 1555 | } else { |
| 1556 | dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; |
| 1557 | } |
| 1558 | *nextevt = basemono + dj * TICK_NSEC; |
| 1559 | return 0; |
| 1560 | } |
| 1561 | |
| 1562 | /* |
| 1563 | * Prepare a CPU for idle from an RCU perspective. The first major task |
| 1564 | * is to sense whether nohz mode has been enabled or disabled via sysfs. |
| 1565 | * The second major task is to check to see if a non-lazy callback has |
| 1566 | * arrived at a CPU that previously had only lazy callbacks. The third |
| 1567 | * major task is to accelerate (that is, assign grace-period numbers to) |
| 1568 | * any recently arrived callbacks. |
| 1569 | * |
| 1570 | * The caller must have disabled interrupts. |
| 1571 | */ |
| 1572 | static void rcu_prepare_for_idle(void) |
| 1573 | { |
| 1574 | bool needwake; |
| 1575 | struct rcu_data *rdp; |
| 1576 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| 1577 | struct rcu_node *rnp; |
| 1578 | struct rcu_state *rsp; |
| 1579 | int tne; |
| 1580 | |
| 1581 | lockdep_assert_irqs_disabled(); |
| 1582 | if (rcu_is_nocb_cpu(smp_processor_id())) |
| 1583 | return; |
| 1584 | |
| 1585 | /* Handle nohz enablement switches conservatively. */ |
| 1586 | tne = READ_ONCE(tick_nohz_active); |
| 1587 | if (tne != rdtp->tick_nohz_enabled_snap) { |
| 1588 | if (rcu_cpu_has_callbacks(NULL)) |
| 1589 | invoke_rcu_core(); /* force nohz to see update. */ |
| 1590 | rdtp->tick_nohz_enabled_snap = tne; |
| 1591 | return; |
| 1592 | } |
| 1593 | if (!tne) |
| 1594 | return; |
| 1595 | |
| 1596 | /* |
| 1597 | * If a non-lazy callback arrived at a CPU having only lazy |
| 1598 | * callbacks, invoke RCU core for the side-effect of recalculating |
| 1599 | * idle duration on re-entry to idle. |
| 1600 | */ |
| 1601 | if (rdtp->all_lazy && |
| 1602 | rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { |
| 1603 | rdtp->all_lazy = false; |
| 1604 | rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; |
| 1605 | invoke_rcu_core(); |
| 1606 | return; |
| 1607 | } |
| 1608 | |
| 1609 | /* |
| 1610 | * If we have not yet accelerated this jiffy, accelerate all |
| 1611 | * callbacks on this CPU. |
| 1612 | */ |
| 1613 | if (rdtp->last_accelerate == jiffies) |
| 1614 | return; |
| 1615 | rdtp->last_accelerate = jiffies; |
| 1616 | for_each_rcu_flavor(rsp) { |
| 1617 | rdp = this_cpu_ptr(rsp->rda); |
| 1618 | if (!rcu_segcblist_pend_cbs(&rdp->cblist)) |
| 1619 | continue; |
| 1620 | rnp = rdp->mynode; |
| 1621 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
| 1622 | needwake = rcu_accelerate_cbs(rsp, rnp, rdp); |
| 1623 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
| 1624 | if (needwake) |
| 1625 | rcu_gp_kthread_wake(rsp); |
| 1626 | } |
| 1627 | } |
| 1628 | |
| 1629 | /* |
| 1630 | * Clean up for exit from idle. Attempt to advance callbacks based on |
| 1631 | * any grace periods that elapsed while the CPU was idle, and if any |
| 1632 | * callbacks are now ready to invoke, initiate invocation. |
| 1633 | */ |
| 1634 | static void rcu_cleanup_after_idle(void) |
| 1635 | { |
| 1636 | lockdep_assert_irqs_disabled(); |
| 1637 | if (rcu_is_nocb_cpu(smp_processor_id())) |
| 1638 | return; |
| 1639 | if (rcu_try_advance_all_cbs()) |
| 1640 | invoke_rcu_core(); |
| 1641 | } |
| 1642 | |
| 1643 | /* |
| 1644 | * Keep a running count of the number of non-lazy callbacks posted |
| 1645 | * on this CPU. This running counter (which is never decremented) allows |
| 1646 | * rcu_prepare_for_idle() to detect when something out of the idle loop |
| 1647 | * posts a callback, even if an equal number of callbacks are invoked. |
| 1648 | * Of course, callbacks should only be posted from within a trace event |
| 1649 | * designed to be called from idle or from within RCU_NONIDLE(). |
| 1650 | */ |
| 1651 | static void rcu_idle_count_callbacks_posted(void) |
| 1652 | { |
| 1653 | __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); |
| 1654 | } |
| 1655 | |
| 1656 | /* |
| 1657 | * Data for flushing lazy RCU callbacks at OOM time. |
| 1658 | */ |
| 1659 | static atomic_t oom_callback_count; |
| 1660 | static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); |
| 1661 | |
| 1662 | /* |
| 1663 | * RCU OOM callback -- decrement the outstanding count and deliver the |
| 1664 | * wake-up if we are the last one. |
| 1665 | */ |
| 1666 | static void rcu_oom_callback(struct rcu_head *rhp) |
| 1667 | { |
| 1668 | if (atomic_dec_and_test(&oom_callback_count)) |
| 1669 | wake_up(&oom_callback_wq); |
| 1670 | } |
| 1671 | |
| 1672 | /* |
| 1673 | * Post an rcu_oom_notify callback on the current CPU if it has at |
| 1674 | * least one lazy callback. This will unnecessarily post callbacks |
| 1675 | * to CPUs that already have a non-lazy callback at the end of their |
| 1676 | * callback list, but this is an infrequent operation, so accept some |
| 1677 | * extra overhead to keep things simple. |
| 1678 | */ |
| 1679 | static void rcu_oom_notify_cpu(void *unused) |
| 1680 | { |
| 1681 | struct rcu_state *rsp; |
| 1682 | struct rcu_data *rdp; |
| 1683 | |
| 1684 | for_each_rcu_flavor(rsp) { |
| 1685 | rdp = raw_cpu_ptr(rsp->rda); |
| 1686 | if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) { |
| 1687 | atomic_inc(&oom_callback_count); |
| 1688 | rsp->call(&rdp->oom_head, rcu_oom_callback); |
| 1689 | } |
| 1690 | } |
| 1691 | } |
| 1692 | |
| 1693 | /* |
| 1694 | * If low on memory, ensure that each CPU has a non-lazy callback. |
| 1695 | * This will wake up CPUs that have only lazy callbacks, in turn |
| 1696 | * ensuring that they free up the corresponding memory in a timely manner. |
| 1697 | * Because an uncertain amount of memory will be freed in some uncertain |
| 1698 | * timeframe, we do not claim to have freed anything. |
| 1699 | */ |
| 1700 | static int rcu_oom_notify(struct notifier_block *self, |
| 1701 | unsigned long notused, void *nfreed) |
| 1702 | { |
| 1703 | int cpu; |
| 1704 | |
| 1705 | /* Wait for callbacks from earlier instance to complete. */ |
| 1706 | wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); |
| 1707 | smp_mb(); /* Ensure callback reuse happens after callback invocation. */ |
| 1708 | |
| 1709 | /* |
| 1710 | * Prevent premature wakeup: ensure that all increments happen |
| 1711 | * before there is a chance of the counter reaching zero. |
| 1712 | */ |
| 1713 | atomic_set(&oom_callback_count, 1); |
| 1714 | |
| 1715 | for_each_online_cpu(cpu) { |
| 1716 | smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); |
| 1717 | cond_resched_tasks_rcu_qs(); |
| 1718 | } |
| 1719 | |
| 1720 | /* Unconditionally decrement: no need to wake ourselves up. */ |
| 1721 | atomic_dec(&oom_callback_count); |
| 1722 | |
| 1723 | return NOTIFY_OK; |
| 1724 | } |
| 1725 | |
| 1726 | static struct notifier_block rcu_oom_nb = { |
| 1727 | .notifier_call = rcu_oom_notify |
| 1728 | }; |
| 1729 | |
| 1730 | static int __init rcu_register_oom_notifier(void) |
| 1731 | { |
| 1732 | register_oom_notifier(&rcu_oom_nb); |
| 1733 | return 0; |
| 1734 | } |
| 1735 | early_initcall(rcu_register_oom_notifier); |
| 1736 | |
| 1737 | #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
| 1738 | |
| 1739 | #ifdef CONFIG_RCU_FAST_NO_HZ |
| 1740 | |
| 1741 | static void print_cpu_stall_fast_no_hz(char *cp, int cpu) |
| 1742 | { |
| 1743 | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); |
| 1744 | unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; |
| 1745 | |
| 1746 | sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", |
| 1747 | rdtp->last_accelerate & 0xffff, jiffies & 0xffff, |
| 1748 | ulong2long(nlpd), |
| 1749 | rdtp->all_lazy ? 'L' : '.', |
| 1750 | rdtp->tick_nohz_enabled_snap ? '.' : 'D'); |
| 1751 | } |
| 1752 | |
| 1753 | #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ |
| 1754 | |
| 1755 | static void print_cpu_stall_fast_no_hz(char *cp, int cpu) |
| 1756 | { |
| 1757 | *cp = '\0'; |
| 1758 | } |
| 1759 | |
| 1760 | #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ |
| 1761 | |
| 1762 | /* Initiate the stall-info list. */ |
| 1763 | static void print_cpu_stall_info_begin(void) |
| 1764 | { |
| 1765 | pr_cont("\n"); |
| 1766 | } |
| 1767 | |
| 1768 | /* |
| 1769 | * Print out diagnostic information for the specified stalled CPU. |
| 1770 | * |
| 1771 | * If the specified CPU is aware of the current RCU grace period |
| 1772 | * (flavor specified by rsp), then print the number of scheduling |
| 1773 | * clock interrupts the CPU has taken during the time that it has |
| 1774 | * been aware. Otherwise, print the number of RCU grace periods |
| 1775 | * that this CPU is ignorant of, for example, "1" if the CPU was |
| 1776 | * aware of the previous grace period. |
| 1777 | * |
| 1778 | * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. |
| 1779 | */ |
| 1780 | static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) |
| 1781 | { |
| 1782 | unsigned long delta; |
| 1783 | char fast_no_hz[72]; |
| 1784 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); |
| 1785 | struct rcu_dynticks *rdtp = rdp->dynticks; |
| 1786 | char *ticks_title; |
| 1787 | unsigned long ticks_value; |
| 1788 | |
| 1789 | /* |
| 1790 | * We could be printing a lot while holding a spinlock. Avoid |
| 1791 | * triggering hard lockup. |
| 1792 | */ |
| 1793 | touch_nmi_watchdog(); |
| 1794 | |
| 1795 | ticks_value = rcu_seq_ctr(rsp->gp_seq - rdp->gp_seq); |
| 1796 | if (ticks_value) { |
| 1797 | ticks_title = "GPs behind"; |
| 1798 | } else { |
| 1799 | ticks_title = "ticks this GP"; |
| 1800 | ticks_value = rdp->ticks_this_gp; |
| 1801 | } |
| 1802 | print_cpu_stall_fast_no_hz(fast_no_hz, cpu); |
| 1803 | delta = rcu_seq_ctr(rdp->mynode->gp_seq - rdp->rcu_iw_gp_seq); |
| 1804 | pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%#lx softirq=%u/%u fqs=%ld %s\n", |
| 1805 | cpu, |
| 1806 | "O."[!!cpu_online(cpu)], |
| 1807 | "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)], |
| 1808 | "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)], |
| 1809 | !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' : |
| 1810 | rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' : |
| 1811 | "!."[!delta], |
| 1812 | ticks_value, ticks_title, |
| 1813 | rcu_dynticks_snap(rdtp) & 0xfff, |
| 1814 | rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, |
| 1815 | rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), |
| 1816 | READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, |
| 1817 | fast_no_hz); |
| 1818 | } |
| 1819 | |
| 1820 | /* Terminate the stall-info list. */ |
| 1821 | static void print_cpu_stall_info_end(void) |
| 1822 | { |
| 1823 | pr_err("\t"); |
| 1824 | } |
| 1825 | |
| 1826 | /* Zero ->ticks_this_gp for all flavors of RCU. */ |
| 1827 | static void zero_cpu_stall_ticks(struct rcu_data *rdp) |
| 1828 | { |
| 1829 | rdp->ticks_this_gp = 0; |
| 1830 | rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); |
| 1831 | } |
| 1832 | |
| 1833 | /* Increment ->ticks_this_gp for all flavors of RCU. */ |
| 1834 | static void increment_cpu_stall_ticks(void) |
| 1835 | { |
| 1836 | struct rcu_state *rsp; |
| 1837 | |
| 1838 | for_each_rcu_flavor(rsp) |
| 1839 | raw_cpu_inc(rsp->rda->ticks_this_gp); |
| 1840 | } |
| 1841 | |
| 1842 | #ifdef CONFIG_RCU_NOCB_CPU |
| 1843 | |
| 1844 | /* |
| 1845 | * Offload callback processing from the boot-time-specified set of CPUs |
| 1846 | * specified by rcu_nocb_mask. For each CPU in the set, there is a |
| 1847 | * kthread created that pulls the callbacks from the corresponding CPU, |
| 1848 | * waits for a grace period to elapse, and invokes the callbacks. |
| 1849 | * The no-CBs CPUs do a wake_up() on their kthread when they insert |
| 1850 | * a callback into any empty list, unless the rcu_nocb_poll boot parameter |
| 1851 | * has been specified, in which case each kthread actively polls its |
| 1852 | * CPU. (Which isn't so great for energy efficiency, but which does |
| 1853 | * reduce RCU's overhead on that CPU.) |
| 1854 | * |
| 1855 | * This is intended to be used in conjunction with Frederic Weisbecker's |
| 1856 | * adaptive-idle work, which would seriously reduce OS jitter on CPUs |
| 1857 | * running CPU-bound user-mode computations. |
| 1858 | * |
| 1859 | * Offloading of callback processing could also in theory be used as |
| 1860 | * an energy-efficiency measure because CPUs with no RCU callbacks |
| 1861 | * queued are more aggressive about entering dyntick-idle mode. |
| 1862 | */ |
| 1863 | |
| 1864 | |
| 1865 | /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ |
| 1866 | static int __init rcu_nocb_setup(char *str) |
| 1867 | { |
| 1868 | alloc_bootmem_cpumask_var(&rcu_nocb_mask); |
| 1869 | cpulist_parse(str, rcu_nocb_mask); |
| 1870 | return 1; |
| 1871 | } |
| 1872 | __setup("rcu_nocbs=", rcu_nocb_setup); |
| 1873 | |
| 1874 | static int __init parse_rcu_nocb_poll(char *arg) |
| 1875 | { |
| 1876 | rcu_nocb_poll = true; |
| 1877 | return 0; |
| 1878 | } |
| 1879 | early_param("rcu_nocb_poll", parse_rcu_nocb_poll); |
| 1880 | |
| 1881 | /* |
| 1882 | * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended |
| 1883 | * grace period. |
| 1884 | */ |
| 1885 | static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) |
| 1886 | { |
| 1887 | swake_up_all(sq); |
| 1888 | } |
| 1889 | |
| 1890 | static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) |
| 1891 | { |
| 1892 | return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; |
| 1893 | } |
| 1894 | |
| 1895 | static void rcu_init_one_nocb(struct rcu_node *rnp) |
| 1896 | { |
| 1897 | init_swait_queue_head(&rnp->nocb_gp_wq[0]); |
| 1898 | init_swait_queue_head(&rnp->nocb_gp_wq[1]); |
| 1899 | } |
| 1900 | |
| 1901 | /* Is the specified CPU a no-CBs CPU? */ |
| 1902 | bool rcu_is_nocb_cpu(int cpu) |
| 1903 | { |
| 1904 | if (cpumask_available(rcu_nocb_mask)) |
| 1905 | return cpumask_test_cpu(cpu, rcu_nocb_mask); |
| 1906 | return false; |
| 1907 | } |
| 1908 | |
| 1909 | /* |
| 1910 | * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock |
| 1911 | * and this function releases it. |
| 1912 | */ |
| 1913 | static void __wake_nocb_leader(struct rcu_data *rdp, bool force, |
| 1914 | unsigned long flags) |
| 1915 | __releases(rdp->nocb_lock) |
| 1916 | { |
| 1917 | struct rcu_data *rdp_leader = rdp->nocb_leader; |
| 1918 | |
| 1919 | lockdep_assert_held(&rdp->nocb_lock); |
| 1920 | if (!READ_ONCE(rdp_leader->nocb_kthread)) { |
| 1921 | raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); |
| 1922 | return; |
| 1923 | } |
| 1924 | if (rdp_leader->nocb_leader_sleep || force) { |
| 1925 | /* Prior smp_mb__after_atomic() orders against prior enqueue. */ |
| 1926 | WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); |
| 1927 | del_timer(&rdp->nocb_timer); |
| 1928 | raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); |
| 1929 | smp_mb(); /* ->nocb_leader_sleep before swake_up_one(). */ |
| 1930 | swake_up_one(&rdp_leader->nocb_wq); |
| 1931 | } else { |
| 1932 | raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); |
| 1933 | } |
| 1934 | } |
| 1935 | |
| 1936 | /* |
| 1937 | * Kick the leader kthread for this NOCB group, but caller has not |
| 1938 | * acquired locks. |
| 1939 | */ |
| 1940 | static void wake_nocb_leader(struct rcu_data *rdp, bool force) |
| 1941 | { |
| 1942 | unsigned long flags; |
| 1943 | |
| 1944 | raw_spin_lock_irqsave(&rdp->nocb_lock, flags); |
| 1945 | __wake_nocb_leader(rdp, force, flags); |
| 1946 | } |
| 1947 | |
| 1948 | /* |
| 1949 | * Arrange to wake the leader kthread for this NOCB group at some |
| 1950 | * future time when it is safe to do so. |
| 1951 | */ |
| 1952 | static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype, |
| 1953 | const char *reason) |
| 1954 | { |
| 1955 | unsigned long flags; |
| 1956 | |
| 1957 | raw_spin_lock_irqsave(&rdp->nocb_lock, flags); |
| 1958 | if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) |
| 1959 | mod_timer(&rdp->nocb_timer, jiffies + 1); |
| 1960 | WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); |
| 1961 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason); |
| 1962 | raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); |
| 1963 | } |
| 1964 | |
| 1965 | /* |
| 1966 | * Does the specified CPU need an RCU callback for the specified flavor |
| 1967 | * of rcu_barrier()? |
| 1968 | */ |
| 1969 | static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) |
| 1970 | { |
| 1971 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); |
| 1972 | unsigned long ret; |
| 1973 | #ifdef CONFIG_PROVE_RCU |
| 1974 | struct rcu_head *rhp; |
| 1975 | #endif /* #ifdef CONFIG_PROVE_RCU */ |
| 1976 | |
| 1977 | /* |
| 1978 | * Check count of all no-CBs callbacks awaiting invocation. |
| 1979 | * There needs to be a barrier before this function is called, |
| 1980 | * but associated with a prior determination that no more |
| 1981 | * callbacks would be posted. In the worst case, the first |
| 1982 | * barrier in _rcu_barrier() suffices (but the caller cannot |
| 1983 | * necessarily rely on this, not a substitute for the caller |
| 1984 | * getting the concurrency design right!). There must also be |
| 1985 | * a barrier between the following load an posting of a callback |
| 1986 | * (if a callback is in fact needed). This is associated with an |
| 1987 | * atomic_inc() in the caller. |
| 1988 | */ |
| 1989 | ret = atomic_long_read(&rdp->nocb_q_count); |
| 1990 | |
| 1991 | #ifdef CONFIG_PROVE_RCU |
| 1992 | rhp = READ_ONCE(rdp->nocb_head); |
| 1993 | if (!rhp) |
| 1994 | rhp = READ_ONCE(rdp->nocb_gp_head); |
| 1995 | if (!rhp) |
| 1996 | rhp = READ_ONCE(rdp->nocb_follower_head); |
| 1997 | |
| 1998 | /* Having no rcuo kthread but CBs after scheduler starts is bad! */ |
| 1999 | if (!READ_ONCE(rdp->nocb_kthread) && rhp && |
| 2000 | rcu_scheduler_fully_active) { |
| 2001 | /* RCU callback enqueued before CPU first came online??? */ |
| 2002 | pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", |
| 2003 | cpu, rhp->func); |
| 2004 | WARN_ON_ONCE(1); |
| 2005 | } |
| 2006 | #endif /* #ifdef CONFIG_PROVE_RCU */ |
| 2007 | |
| 2008 | return !!ret; |
| 2009 | } |
| 2010 | |
| 2011 | /* |
| 2012 | * Enqueue the specified string of rcu_head structures onto the specified |
| 2013 | * CPU's no-CBs lists. The CPU is specified by rdp, the head of the |
| 2014 | * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy |
| 2015 | * counts are supplied by rhcount and rhcount_lazy. |
| 2016 | * |
| 2017 | * If warranted, also wake up the kthread servicing this CPUs queues. |
| 2018 | */ |
| 2019 | static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, |
| 2020 | struct rcu_head *rhp, |
| 2021 | struct rcu_head **rhtp, |
| 2022 | int rhcount, int rhcount_lazy, |
| 2023 | unsigned long flags) |
| 2024 | { |
| 2025 | int len; |
| 2026 | struct rcu_head **old_rhpp; |
| 2027 | struct task_struct *t; |
| 2028 | |
| 2029 | /* Enqueue the callback on the nocb list and update counts. */ |
| 2030 | atomic_long_add(rhcount, &rdp->nocb_q_count); |
| 2031 | /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ |
| 2032 | old_rhpp = xchg(&rdp->nocb_tail, rhtp); |
| 2033 | WRITE_ONCE(*old_rhpp, rhp); |
| 2034 | atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); |
| 2035 | smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ |
| 2036 | |
| 2037 | /* If we are not being polled and there is a kthread, awaken it ... */ |
| 2038 | t = READ_ONCE(rdp->nocb_kthread); |
| 2039 | if (rcu_nocb_poll || !t) { |
| 2040 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
| 2041 | TPS("WakeNotPoll")); |
| 2042 | return; |
| 2043 | } |
| 2044 | len = atomic_long_read(&rdp->nocb_q_count); |
| 2045 | if (old_rhpp == &rdp->nocb_head) { |
| 2046 | if (!irqs_disabled_flags(flags)) { |
| 2047 | /* ... if queue was empty ... */ |
| 2048 | wake_nocb_leader(rdp, false); |
| 2049 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
| 2050 | TPS("WakeEmpty")); |
| 2051 | } else { |
| 2052 | wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE, |
| 2053 | TPS("WakeEmptyIsDeferred")); |
| 2054 | } |
| 2055 | rdp->qlen_last_fqs_check = 0; |
| 2056 | } else if (len > rdp->qlen_last_fqs_check + qhimark) { |
| 2057 | /* ... or if many callbacks queued. */ |
| 2058 | if (!irqs_disabled_flags(flags)) { |
| 2059 | wake_nocb_leader(rdp, true); |
| 2060 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
| 2061 | TPS("WakeOvf")); |
| 2062 | } else { |
| 2063 | wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE, |
| 2064 | TPS("WakeOvfIsDeferred")); |
| 2065 | } |
| 2066 | rdp->qlen_last_fqs_check = LONG_MAX / 2; |
| 2067 | } else { |
| 2068 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); |
| 2069 | } |
| 2070 | return; |
| 2071 | } |
| 2072 | |
| 2073 | /* |
| 2074 | * This is a helper for __call_rcu(), which invokes this when the normal |
| 2075 | * callback queue is inoperable. If this is not a no-CBs CPU, this |
| 2076 | * function returns failure back to __call_rcu(), which can complain |
| 2077 | * appropriately. |
| 2078 | * |
| 2079 | * Otherwise, this function queues the callback where the corresponding |
| 2080 | * "rcuo" kthread can find it. |
| 2081 | */ |
| 2082 | static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, |
| 2083 | bool lazy, unsigned long flags) |
| 2084 | { |
| 2085 | |
| 2086 | if (!rcu_is_nocb_cpu(rdp->cpu)) |
| 2087 | return false; |
| 2088 | __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); |
| 2089 | if (__is_kfree_rcu_offset((unsigned long)rhp->func)) |
| 2090 | trace_rcu_kfree_callback(rdp->rsp->name, rhp, |
| 2091 | (unsigned long)rhp->func, |
| 2092 | -atomic_long_read(&rdp->nocb_q_count_lazy), |
| 2093 | -atomic_long_read(&rdp->nocb_q_count)); |
| 2094 | else |
| 2095 | trace_rcu_callback(rdp->rsp->name, rhp, |
| 2096 | -atomic_long_read(&rdp->nocb_q_count_lazy), |
| 2097 | -atomic_long_read(&rdp->nocb_q_count)); |
| 2098 | |
| 2099 | /* |
| 2100 | * If called from an extended quiescent state with interrupts |
| 2101 | * disabled, invoke the RCU core in order to allow the idle-entry |
| 2102 | * deferred-wakeup check to function. |
| 2103 | */ |
| 2104 | if (irqs_disabled_flags(flags) && |
| 2105 | !rcu_is_watching() && |
| 2106 | cpu_online(smp_processor_id())) |
| 2107 | invoke_rcu_core(); |
| 2108 | |
| 2109 | return true; |
| 2110 | } |
| 2111 | |
| 2112 | /* |
| 2113 | * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is |
| 2114 | * not a no-CBs CPU. |
| 2115 | */ |
| 2116 | static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp, |
| 2117 | struct rcu_data *rdp, |
| 2118 | unsigned long flags) |
| 2119 | { |
| 2120 | lockdep_assert_irqs_disabled(); |
| 2121 | if (!rcu_is_nocb_cpu(smp_processor_id())) |
| 2122 | return false; /* Not NOCBs CPU, caller must migrate CBs. */ |
| 2123 | __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist), |
| 2124 | rcu_segcblist_tail(&rdp->cblist), |
| 2125 | rcu_segcblist_n_cbs(&rdp->cblist), |
| 2126 | rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags); |
| 2127 | rcu_segcblist_init(&rdp->cblist); |
| 2128 | rcu_segcblist_disable(&rdp->cblist); |
| 2129 | return true; |
| 2130 | } |
| 2131 | |
| 2132 | /* |
| 2133 | * If necessary, kick off a new grace period, and either way wait |
| 2134 | * for a subsequent grace period to complete. |
| 2135 | */ |
| 2136 | static void rcu_nocb_wait_gp(struct rcu_data *rdp) |
| 2137 | { |
| 2138 | unsigned long c; |
| 2139 | bool d; |
| 2140 | unsigned long flags; |
| 2141 | bool needwake; |
| 2142 | struct rcu_node *rnp = rdp->mynode; |
| 2143 | |
| 2144 | local_irq_save(flags); |
| 2145 | c = rcu_seq_snap(&rdp->rsp->gp_seq); |
| 2146 | if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { |
| 2147 | local_irq_restore(flags); |
| 2148 | } else { |
| 2149 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
| 2150 | needwake = rcu_start_this_gp(rnp, rdp, c); |
| 2151 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2152 | if (needwake) |
| 2153 | rcu_gp_kthread_wake(rdp->rsp); |
| 2154 | } |
| 2155 | |
| 2156 | /* |
| 2157 | * Wait for the grace period. Do so interruptibly to avoid messing |
| 2158 | * up the load average. |
| 2159 | */ |
| 2160 | trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait")); |
| 2161 | for (;;) { |
| 2162 | swait_event_interruptible_exclusive( |
| 2163 | rnp->nocb_gp_wq[rcu_seq_ctr(c) & 0x1], |
| 2164 | (d = rcu_seq_done(&rnp->gp_seq, c))); |
| 2165 | if (likely(d)) |
| 2166 | break; |
| 2167 | WARN_ON(signal_pending(current)); |
| 2168 | trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait")); |
| 2169 | } |
| 2170 | trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait")); |
| 2171 | smp_mb(); /* Ensure that CB invocation happens after GP end. */ |
| 2172 | } |
| 2173 | |
| 2174 | /* |
| 2175 | * Leaders come here to wait for additional callbacks to show up. |
| 2176 | * This function does not return until callbacks appear. |
| 2177 | */ |
| 2178 | static void nocb_leader_wait(struct rcu_data *my_rdp) |
| 2179 | { |
| 2180 | bool firsttime = true; |
| 2181 | unsigned long flags; |
| 2182 | bool gotcbs; |
| 2183 | struct rcu_data *rdp; |
| 2184 | struct rcu_head **tail; |
| 2185 | |
| 2186 | wait_again: |
| 2187 | |
| 2188 | /* Wait for callbacks to appear. */ |
| 2189 | if (!rcu_nocb_poll) { |
| 2190 | trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep")); |
| 2191 | swait_event_interruptible_exclusive(my_rdp->nocb_wq, |
| 2192 | !READ_ONCE(my_rdp->nocb_leader_sleep)); |
| 2193 | raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags); |
| 2194 | my_rdp->nocb_leader_sleep = true; |
| 2195 | WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); |
| 2196 | del_timer(&my_rdp->nocb_timer); |
| 2197 | raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags); |
| 2198 | } else if (firsttime) { |
| 2199 | firsttime = false; /* Don't drown trace log with "Poll"! */ |
| 2200 | trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll")); |
| 2201 | } |
| 2202 | |
| 2203 | /* |
| 2204 | * Each pass through the following loop checks a follower for CBs. |
| 2205 | * We are our own first follower. Any CBs found are moved to |
| 2206 | * nocb_gp_head, where they await a grace period. |
| 2207 | */ |
| 2208 | gotcbs = false; |
| 2209 | smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */ |
| 2210 | for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { |
| 2211 | rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); |
| 2212 | if (!rdp->nocb_gp_head) |
| 2213 | continue; /* No CBs here, try next follower. */ |
| 2214 | |
| 2215 | /* Move callbacks to wait-for-GP list, which is empty. */ |
| 2216 | WRITE_ONCE(rdp->nocb_head, NULL); |
| 2217 | rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); |
| 2218 | gotcbs = true; |
| 2219 | } |
| 2220 | |
| 2221 | /* No callbacks? Sleep a bit if polling, and go retry. */ |
| 2222 | if (unlikely(!gotcbs)) { |
| 2223 | WARN_ON(signal_pending(current)); |
| 2224 | if (rcu_nocb_poll) { |
| 2225 | schedule_timeout_interruptible(1); |
| 2226 | } else { |
| 2227 | trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, |
| 2228 | TPS("WokeEmpty")); |
| 2229 | } |
| 2230 | goto wait_again; |
| 2231 | } |
| 2232 | |
| 2233 | /* Wait for one grace period. */ |
| 2234 | rcu_nocb_wait_gp(my_rdp); |
| 2235 | |
| 2236 | /* Each pass through the following loop wakes a follower, if needed. */ |
| 2237 | for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { |
| 2238 | if (!rcu_nocb_poll && |
| 2239 | READ_ONCE(rdp->nocb_head) && |
| 2240 | READ_ONCE(my_rdp->nocb_leader_sleep)) { |
| 2241 | raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags); |
| 2242 | my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ |
| 2243 | raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags); |
| 2244 | } |
| 2245 | if (!rdp->nocb_gp_head) |
| 2246 | continue; /* No CBs, so no need to wake follower. */ |
| 2247 | |
| 2248 | /* Append callbacks to follower's "done" list. */ |
| 2249 | raw_spin_lock_irqsave(&rdp->nocb_lock, flags); |
| 2250 | tail = rdp->nocb_follower_tail; |
| 2251 | rdp->nocb_follower_tail = rdp->nocb_gp_tail; |
| 2252 | *tail = rdp->nocb_gp_head; |
| 2253 | raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); |
| 2254 | if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { |
| 2255 | /* List was empty, so wake up the follower. */ |
| 2256 | swake_up_one(&rdp->nocb_wq); |
| 2257 | } |
| 2258 | } |
| 2259 | |
| 2260 | /* If we (the leader) don't have CBs, go wait some more. */ |
| 2261 | if (!my_rdp->nocb_follower_head) |
| 2262 | goto wait_again; |
| 2263 | } |
| 2264 | |
| 2265 | /* |
| 2266 | * Followers come here to wait for additional callbacks to show up. |
| 2267 | * This function does not return until callbacks appear. |
| 2268 | */ |
| 2269 | static void nocb_follower_wait(struct rcu_data *rdp) |
| 2270 | { |
| 2271 | for (;;) { |
| 2272 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep")); |
| 2273 | swait_event_interruptible_exclusive(rdp->nocb_wq, |
| 2274 | READ_ONCE(rdp->nocb_follower_head)); |
| 2275 | if (smp_load_acquire(&rdp->nocb_follower_head)) { |
| 2276 | /* ^^^ Ensure CB invocation follows _head test. */ |
| 2277 | return; |
| 2278 | } |
| 2279 | WARN_ON(signal_pending(current)); |
| 2280 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty")); |
| 2281 | } |
| 2282 | } |
| 2283 | |
| 2284 | /* |
| 2285 | * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes |
| 2286 | * callbacks queued by the corresponding no-CBs CPU, however, there is |
| 2287 | * an optional leader-follower relationship so that the grace-period |
| 2288 | * kthreads don't have to do quite so many wakeups. |
| 2289 | */ |
| 2290 | static int rcu_nocb_kthread(void *arg) |
| 2291 | { |
| 2292 | int c, cl; |
| 2293 | unsigned long flags; |
| 2294 | struct rcu_head *list; |
| 2295 | struct rcu_head *next; |
| 2296 | struct rcu_head **tail; |
| 2297 | struct rcu_data *rdp = arg; |
| 2298 | |
| 2299 | /* Each pass through this loop invokes one batch of callbacks */ |
| 2300 | for (;;) { |
| 2301 | /* Wait for callbacks. */ |
| 2302 | if (rdp->nocb_leader == rdp) |
| 2303 | nocb_leader_wait(rdp); |
| 2304 | else |
| 2305 | nocb_follower_wait(rdp); |
| 2306 | |
| 2307 | /* Pull the ready-to-invoke callbacks onto local list. */ |
| 2308 | raw_spin_lock_irqsave(&rdp->nocb_lock, flags); |
| 2309 | list = rdp->nocb_follower_head; |
| 2310 | rdp->nocb_follower_head = NULL; |
| 2311 | tail = rdp->nocb_follower_tail; |
| 2312 | rdp->nocb_follower_tail = &rdp->nocb_follower_head; |
| 2313 | raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); |
| 2314 | BUG_ON(!list); |
| 2315 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty")); |
| 2316 | |
| 2317 | /* Each pass through the following loop invokes a callback. */ |
| 2318 | trace_rcu_batch_start(rdp->rsp->name, |
| 2319 | atomic_long_read(&rdp->nocb_q_count_lazy), |
| 2320 | atomic_long_read(&rdp->nocb_q_count), -1); |
| 2321 | c = cl = 0; |
| 2322 | while (list) { |
| 2323 | next = list->next; |
| 2324 | /* Wait for enqueuing to complete, if needed. */ |
| 2325 | while (next == NULL && &list->next != tail) { |
| 2326 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
| 2327 | TPS("WaitQueue")); |
| 2328 | schedule_timeout_interruptible(1); |
| 2329 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
| 2330 | TPS("WokeQueue")); |
| 2331 | next = list->next; |
| 2332 | } |
| 2333 | debug_rcu_head_unqueue(list); |
| 2334 | local_bh_disable(); |
| 2335 | if (__rcu_reclaim(rdp->rsp->name, list)) |
| 2336 | cl++; |
| 2337 | c++; |
| 2338 | local_bh_enable(); |
| 2339 | cond_resched_tasks_rcu_qs(); |
| 2340 | list = next; |
| 2341 | } |
| 2342 | trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); |
| 2343 | smp_mb__before_atomic(); /* _add after CB invocation. */ |
| 2344 | atomic_long_add(-c, &rdp->nocb_q_count); |
| 2345 | atomic_long_add(-cl, &rdp->nocb_q_count_lazy); |
| 2346 | } |
| 2347 | return 0; |
| 2348 | } |
| 2349 | |
| 2350 | /* Is a deferred wakeup of rcu_nocb_kthread() required? */ |
| 2351 | static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) |
| 2352 | { |
| 2353 | return READ_ONCE(rdp->nocb_defer_wakeup); |
| 2354 | } |
| 2355 | |
| 2356 | /* Do a deferred wakeup of rcu_nocb_kthread(). */ |
| 2357 | static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp) |
| 2358 | { |
| 2359 | unsigned long flags; |
| 2360 | int ndw; |
| 2361 | |
| 2362 | raw_spin_lock_irqsave(&rdp->nocb_lock, flags); |
| 2363 | if (!rcu_nocb_need_deferred_wakeup(rdp)) { |
| 2364 | raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); |
| 2365 | return; |
| 2366 | } |
| 2367 | ndw = READ_ONCE(rdp->nocb_defer_wakeup); |
| 2368 | WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); |
| 2369 | __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); |
| 2370 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); |
| 2371 | } |
| 2372 | |
| 2373 | /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ |
| 2374 | static void do_nocb_deferred_wakeup_timer(struct timer_list *t) |
| 2375 | { |
| 2376 | struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); |
| 2377 | |
| 2378 | do_nocb_deferred_wakeup_common(rdp); |
| 2379 | } |
| 2380 | |
| 2381 | /* |
| 2382 | * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. |
| 2383 | * This means we do an inexact common-case check. Note that if |
| 2384 | * we miss, ->nocb_timer will eventually clean things up. |
| 2385 | */ |
| 2386 | static void do_nocb_deferred_wakeup(struct rcu_data *rdp) |
| 2387 | { |
| 2388 | if (rcu_nocb_need_deferred_wakeup(rdp)) |
| 2389 | do_nocb_deferred_wakeup_common(rdp); |
| 2390 | } |
| 2391 | |
| 2392 | void __init rcu_init_nohz(void) |
| 2393 | { |
| 2394 | int cpu; |
| 2395 | bool need_rcu_nocb_mask = false; |
| 2396 | struct rcu_state *rsp; |
| 2397 | |
| 2398 | #if defined(CONFIG_NO_HZ_FULL) |
| 2399 | if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) |
| 2400 | need_rcu_nocb_mask = true; |
| 2401 | #endif /* #if defined(CONFIG_NO_HZ_FULL) */ |
| 2402 | |
| 2403 | if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { |
| 2404 | if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { |
| 2405 | pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); |
| 2406 | return; |
| 2407 | } |
| 2408 | } |
| 2409 | if (!cpumask_available(rcu_nocb_mask)) |
| 2410 | return; |
| 2411 | |
| 2412 | #if defined(CONFIG_NO_HZ_FULL) |
| 2413 | if (tick_nohz_full_running) |
| 2414 | cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); |
| 2415 | #endif /* #if defined(CONFIG_NO_HZ_FULL) */ |
| 2416 | |
| 2417 | if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { |
| 2418 | pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); |
| 2419 | cpumask_and(rcu_nocb_mask, cpu_possible_mask, |
| 2420 | rcu_nocb_mask); |
| 2421 | } |
| 2422 | if (cpumask_empty(rcu_nocb_mask)) |
| 2423 | pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); |
| 2424 | else |
| 2425 | pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", |
| 2426 | cpumask_pr_args(rcu_nocb_mask)); |
| 2427 | if (rcu_nocb_poll) |
| 2428 | pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); |
| 2429 | |
| 2430 | for_each_rcu_flavor(rsp) { |
| 2431 | for_each_cpu(cpu, rcu_nocb_mask) |
| 2432 | init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); |
| 2433 | rcu_organize_nocb_kthreads(rsp); |
| 2434 | } |
| 2435 | } |
| 2436 | |
| 2437 | /* Initialize per-rcu_data variables for no-CBs CPUs. */ |
| 2438 | static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) |
| 2439 | { |
| 2440 | rdp->nocb_tail = &rdp->nocb_head; |
| 2441 | init_swait_queue_head(&rdp->nocb_wq); |
| 2442 | rdp->nocb_follower_tail = &rdp->nocb_follower_head; |
| 2443 | raw_spin_lock_init(&rdp->nocb_lock); |
| 2444 | timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); |
| 2445 | } |
| 2446 | |
| 2447 | /* |
| 2448 | * If the specified CPU is a no-CBs CPU that does not already have its |
| 2449 | * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are |
| 2450 | * brought online out of order, this can require re-organizing the |
| 2451 | * leader-follower relationships. |
| 2452 | */ |
| 2453 | static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) |
| 2454 | { |
| 2455 | struct rcu_data *rdp; |
| 2456 | struct rcu_data *rdp_last; |
| 2457 | struct rcu_data *rdp_old_leader; |
| 2458 | struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); |
| 2459 | struct task_struct *t; |
| 2460 | |
| 2461 | /* |
| 2462 | * If this isn't a no-CBs CPU or if it already has an rcuo kthread, |
| 2463 | * then nothing to do. |
| 2464 | */ |
| 2465 | if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) |
| 2466 | return; |
| 2467 | |
| 2468 | /* If we didn't spawn the leader first, reorganize! */ |
| 2469 | rdp_old_leader = rdp_spawn->nocb_leader; |
| 2470 | if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { |
| 2471 | rdp_last = NULL; |
| 2472 | rdp = rdp_old_leader; |
| 2473 | do { |
| 2474 | rdp->nocb_leader = rdp_spawn; |
| 2475 | if (rdp_last && rdp != rdp_spawn) |
| 2476 | rdp_last->nocb_next_follower = rdp; |
| 2477 | if (rdp == rdp_spawn) { |
| 2478 | rdp = rdp->nocb_next_follower; |
| 2479 | } else { |
| 2480 | rdp_last = rdp; |
| 2481 | rdp = rdp->nocb_next_follower; |
| 2482 | rdp_last->nocb_next_follower = NULL; |
| 2483 | } |
| 2484 | } while (rdp); |
| 2485 | rdp_spawn->nocb_next_follower = rdp_old_leader; |
| 2486 | } |
| 2487 | |
| 2488 | /* Spawn the kthread for this CPU and RCU flavor. */ |
| 2489 | t = kthread_run(rcu_nocb_kthread, rdp_spawn, |
| 2490 | "rcuo%c/%d", rsp->abbr, cpu); |
| 2491 | BUG_ON(IS_ERR(t)); |
| 2492 | WRITE_ONCE(rdp_spawn->nocb_kthread, t); |
| 2493 | } |
| 2494 | |
| 2495 | /* |
| 2496 | * If the specified CPU is a no-CBs CPU that does not already have its |
| 2497 | * rcuo kthreads, spawn them. |
| 2498 | */ |
| 2499 | static void rcu_spawn_all_nocb_kthreads(int cpu) |
| 2500 | { |
| 2501 | struct rcu_state *rsp; |
| 2502 | |
| 2503 | if (rcu_scheduler_fully_active) |
| 2504 | for_each_rcu_flavor(rsp) |
| 2505 | rcu_spawn_one_nocb_kthread(rsp, cpu); |
| 2506 | } |
| 2507 | |
| 2508 | /* |
| 2509 | * Once the scheduler is running, spawn rcuo kthreads for all online |
| 2510 | * no-CBs CPUs. This assumes that the early_initcall()s happen before |
| 2511 | * non-boot CPUs come online -- if this changes, we will need to add |
| 2512 | * some mutual exclusion. |
| 2513 | */ |
| 2514 | static void __init rcu_spawn_nocb_kthreads(void) |
| 2515 | { |
| 2516 | int cpu; |
| 2517 | |
| 2518 | for_each_online_cpu(cpu) |
| 2519 | rcu_spawn_all_nocb_kthreads(cpu); |
| 2520 | } |
| 2521 | |
| 2522 | /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ |
| 2523 | static int rcu_nocb_leader_stride = -1; |
| 2524 | module_param(rcu_nocb_leader_stride, int, 0444); |
| 2525 | |
| 2526 | /* |
| 2527 | * Initialize leader-follower relationships for all no-CBs CPU. |
| 2528 | */ |
| 2529 | static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) |
| 2530 | { |
| 2531 | int cpu; |
| 2532 | int ls = rcu_nocb_leader_stride; |
| 2533 | int nl = 0; /* Next leader. */ |
| 2534 | struct rcu_data *rdp; |
| 2535 | struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ |
| 2536 | struct rcu_data *rdp_prev = NULL; |
| 2537 | |
| 2538 | if (!cpumask_available(rcu_nocb_mask)) |
| 2539 | return; |
| 2540 | if (ls == -1) { |
| 2541 | ls = int_sqrt(nr_cpu_ids); |
| 2542 | rcu_nocb_leader_stride = ls; |
| 2543 | } |
| 2544 | |
| 2545 | /* |
| 2546 | * Each pass through this loop sets up one rcu_data structure. |
| 2547 | * Should the corresponding CPU come online in the future, then |
| 2548 | * we will spawn the needed set of rcu_nocb_kthread() kthreads. |
| 2549 | */ |
| 2550 | for_each_cpu(cpu, rcu_nocb_mask) { |
| 2551 | rdp = per_cpu_ptr(rsp->rda, cpu); |
| 2552 | if (rdp->cpu >= nl) { |
| 2553 | /* New leader, set up for followers & next leader. */ |
| 2554 | nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; |
| 2555 | rdp->nocb_leader = rdp; |
| 2556 | rdp_leader = rdp; |
| 2557 | } else { |
| 2558 | /* Another follower, link to previous leader. */ |
| 2559 | rdp->nocb_leader = rdp_leader; |
| 2560 | rdp_prev->nocb_next_follower = rdp; |
| 2561 | } |
| 2562 | rdp_prev = rdp; |
| 2563 | } |
| 2564 | } |
| 2565 | |
| 2566 | /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ |
| 2567 | static bool init_nocb_callback_list(struct rcu_data *rdp) |
| 2568 | { |
| 2569 | if (!rcu_is_nocb_cpu(rdp->cpu)) |
| 2570 | return false; |
| 2571 | |
| 2572 | /* If there are early-boot callbacks, move them to nocb lists. */ |
| 2573 | if (!rcu_segcblist_empty(&rdp->cblist)) { |
| 2574 | rdp->nocb_head = rcu_segcblist_head(&rdp->cblist); |
| 2575 | rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist); |
| 2576 | atomic_long_set(&rdp->nocb_q_count, |
| 2577 | rcu_segcblist_n_cbs(&rdp->cblist)); |
| 2578 | atomic_long_set(&rdp->nocb_q_count_lazy, |
| 2579 | rcu_segcblist_n_lazy_cbs(&rdp->cblist)); |
| 2580 | rcu_segcblist_init(&rdp->cblist); |
| 2581 | } |
| 2582 | rcu_segcblist_disable(&rdp->cblist); |
| 2583 | return true; |
| 2584 | } |
| 2585 | |
| 2586 | #else /* #ifdef CONFIG_RCU_NOCB_CPU */ |
| 2587 | |
| 2588 | static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) |
| 2589 | { |
| 2590 | WARN_ON_ONCE(1); /* Should be dead code. */ |
| 2591 | return false; |
| 2592 | } |
| 2593 | |
| 2594 | static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) |
| 2595 | { |
| 2596 | } |
| 2597 | |
| 2598 | static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) |
| 2599 | { |
| 2600 | return NULL; |
| 2601 | } |
| 2602 | |
| 2603 | static void rcu_init_one_nocb(struct rcu_node *rnp) |
| 2604 | { |
| 2605 | } |
| 2606 | |
| 2607 | static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, |
| 2608 | bool lazy, unsigned long flags) |
| 2609 | { |
| 2610 | return false; |
| 2611 | } |
| 2612 | |
| 2613 | static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp, |
| 2614 | struct rcu_data *rdp, |
| 2615 | unsigned long flags) |
| 2616 | { |
| 2617 | return false; |
| 2618 | } |
| 2619 | |
| 2620 | static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) |
| 2621 | { |
| 2622 | } |
| 2623 | |
| 2624 | static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) |
| 2625 | { |
| 2626 | return false; |
| 2627 | } |
| 2628 | |
| 2629 | static void do_nocb_deferred_wakeup(struct rcu_data *rdp) |
| 2630 | { |
| 2631 | } |
| 2632 | |
| 2633 | static void rcu_spawn_all_nocb_kthreads(int cpu) |
| 2634 | { |
| 2635 | } |
| 2636 | |
| 2637 | static void __init rcu_spawn_nocb_kthreads(void) |
| 2638 | { |
| 2639 | } |
| 2640 | |
| 2641 | static bool init_nocb_callback_list(struct rcu_data *rdp) |
| 2642 | { |
| 2643 | return false; |
| 2644 | } |
| 2645 | |
| 2646 | #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ |
| 2647 | |
| 2648 | /* |
| 2649 | * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the |
| 2650 | * grace-period kthread will do force_quiescent_state() processing? |
| 2651 | * The idea is to avoid waking up RCU core processing on such a |
| 2652 | * CPU unless the grace period has extended for too long. |
| 2653 | * |
| 2654 | * This code relies on the fact that all NO_HZ_FULL CPUs are also |
| 2655 | * CONFIG_RCU_NOCB_CPU CPUs. |
| 2656 | */ |
| 2657 | static bool rcu_nohz_full_cpu(struct rcu_state *rsp) |
| 2658 | { |
| 2659 | #ifdef CONFIG_NO_HZ_FULL |
| 2660 | if (tick_nohz_full_cpu(smp_processor_id()) && |
| 2661 | (!rcu_gp_in_progress(rsp) || |
| 2662 | ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) |
| 2663 | return true; |
| 2664 | #endif /* #ifdef CONFIG_NO_HZ_FULL */ |
| 2665 | return false; |
| 2666 | } |
| 2667 | |
| 2668 | /* |
| 2669 | * Bind the RCU grace-period kthreads to the housekeeping CPU. |
| 2670 | */ |
| 2671 | static void rcu_bind_gp_kthread(void) |
| 2672 | { |
| 2673 | if (!tick_nohz_full_enabled()) |
| 2674 | return; |
| 2675 | housekeeping_affine(current, HK_FLAG_RCU); |
| 2676 | } |
| 2677 | |
| 2678 | /* Record the current task on dyntick-idle entry. */ |
| 2679 | static void rcu_dynticks_task_enter(void) |
| 2680 | { |
| 2681 | #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) |
| 2682 | WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); |
| 2683 | #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
| 2684 | } |
| 2685 | |
| 2686 | /* Record no current task on dyntick-idle exit. */ |
| 2687 | static void rcu_dynticks_task_exit(void) |
| 2688 | { |
| 2689 | #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) |
| 2690 | WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); |
| 2691 | #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
| 2692 | } |