Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * User-space Probes (UProbes) |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 17 | * |
| 18 | * Copyright (C) IBM Corporation, 2008-2012 |
| 19 | * Authors: |
| 20 | * Srikar Dronamraju |
| 21 | * Jim Keniston |
| 22 | * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra |
| 23 | */ |
| 24 | |
| 25 | #include <linux/kernel.h> |
| 26 | #include <linux/highmem.h> |
| 27 | #include <linux/pagemap.h> /* read_mapping_page */ |
| 28 | #include <linux/slab.h> |
| 29 | #include <linux/sched.h> |
| 30 | #include <linux/sched/mm.h> |
| 31 | #include <linux/sched/coredump.h> |
| 32 | #include <linux/export.h> |
| 33 | #include <linux/rmap.h> /* anon_vma_prepare */ |
| 34 | #include <linux/mmu_notifier.h> /* set_pte_at_notify */ |
| 35 | #include <linux/swap.h> /* try_to_free_swap */ |
| 36 | #include <linux/ptrace.h> /* user_enable_single_step */ |
| 37 | #include <linux/kdebug.h> /* notifier mechanism */ |
| 38 | #include "../../mm/internal.h" /* munlock_vma_page */ |
| 39 | #include <linux/percpu-rwsem.h> |
| 40 | #include <linux/task_work.h> |
| 41 | #include <linux/shmem_fs.h> |
| 42 | |
| 43 | #include <linux/uprobes.h> |
| 44 | |
| 45 | #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) |
| 46 | #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE |
| 47 | |
| 48 | static struct rb_root uprobes_tree = RB_ROOT; |
| 49 | /* |
| 50 | * allows us to skip the uprobe_mmap if there are no uprobe events active |
| 51 | * at this time. Probably a fine grained per inode count is better? |
| 52 | */ |
| 53 | #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) |
| 54 | |
| 55 | static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ |
| 56 | |
| 57 | #define UPROBES_HASH_SZ 13 |
| 58 | /* serialize uprobe->pending_list */ |
| 59 | static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; |
| 60 | #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) |
| 61 | |
| 62 | static struct percpu_rw_semaphore dup_mmap_sem; |
| 63 | |
| 64 | /* Have a copy of original instruction */ |
| 65 | #define UPROBE_COPY_INSN 0 |
| 66 | |
| 67 | struct uprobe { |
| 68 | struct rb_node rb_node; /* node in the rb tree */ |
| 69 | atomic_t ref; |
| 70 | struct rw_semaphore register_rwsem; |
| 71 | struct rw_semaphore consumer_rwsem; |
| 72 | struct list_head pending_list; |
| 73 | struct uprobe_consumer *consumers; |
| 74 | struct inode *inode; /* Also hold a ref to inode */ |
| 75 | loff_t offset; |
| 76 | unsigned long flags; |
| 77 | |
| 78 | /* |
| 79 | * The generic code assumes that it has two members of unknown type |
| 80 | * owned by the arch-specific code: |
| 81 | * |
| 82 | * insn - copy_insn() saves the original instruction here for |
| 83 | * arch_uprobe_analyze_insn(). |
| 84 | * |
| 85 | * ixol - potentially modified instruction to execute out of |
| 86 | * line, copied to xol_area by xol_get_insn_slot(). |
| 87 | */ |
| 88 | struct arch_uprobe arch; |
| 89 | }; |
| 90 | |
| 91 | /* |
| 92 | * Execute out of line area: anonymous executable mapping installed |
| 93 | * by the probed task to execute the copy of the original instruction |
| 94 | * mangled by set_swbp(). |
| 95 | * |
| 96 | * On a breakpoint hit, thread contests for a slot. It frees the |
| 97 | * slot after singlestep. Currently a fixed number of slots are |
| 98 | * allocated. |
| 99 | */ |
| 100 | struct xol_area { |
| 101 | wait_queue_head_t wq; /* if all slots are busy */ |
| 102 | atomic_t slot_count; /* number of in-use slots */ |
| 103 | unsigned long *bitmap; /* 0 = free slot */ |
| 104 | |
| 105 | struct vm_special_mapping xol_mapping; |
| 106 | struct page *pages[2]; |
| 107 | /* |
| 108 | * We keep the vma's vm_start rather than a pointer to the vma |
| 109 | * itself. The probed process or a naughty kernel module could make |
| 110 | * the vma go away, and we must handle that reasonably gracefully. |
| 111 | */ |
| 112 | unsigned long vaddr; /* Page(s) of instruction slots */ |
| 113 | }; |
| 114 | |
| 115 | /* |
| 116 | * valid_vma: Verify if the specified vma is an executable vma |
| 117 | * Relax restrictions while unregistering: vm_flags might have |
| 118 | * changed after breakpoint was inserted. |
| 119 | * - is_register: indicates if we are in register context. |
| 120 | * - Return 1 if the specified virtual address is in an |
| 121 | * executable vma. |
| 122 | */ |
| 123 | static bool valid_vma(struct vm_area_struct *vma, bool is_register) |
| 124 | { |
| 125 | vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; |
| 126 | |
| 127 | if (is_register) |
| 128 | flags |= VM_WRITE; |
| 129 | |
| 130 | return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; |
| 131 | } |
| 132 | |
| 133 | static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) |
| 134 | { |
| 135 | return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); |
| 136 | } |
| 137 | |
| 138 | static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) |
| 139 | { |
| 140 | return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); |
| 141 | } |
| 142 | |
| 143 | /** |
| 144 | * __replace_page - replace page in vma by new page. |
| 145 | * based on replace_page in mm/ksm.c |
| 146 | * |
| 147 | * @vma: vma that holds the pte pointing to page |
| 148 | * @addr: address the old @page is mapped at |
| 149 | * @page: the cowed page we are replacing by kpage |
| 150 | * @kpage: the modified page we replace page by |
| 151 | * |
| 152 | * Returns 0 on success, -EFAULT on failure. |
| 153 | */ |
| 154 | static int __replace_page(struct vm_area_struct *vma, unsigned long addr, |
| 155 | struct page *old_page, struct page *new_page) |
| 156 | { |
| 157 | struct mm_struct *mm = vma->vm_mm; |
| 158 | struct page_vma_mapped_walk pvmw = { |
| 159 | .page = old_page, |
| 160 | .vma = vma, |
| 161 | .address = addr, |
| 162 | }; |
| 163 | int err; |
| 164 | /* For mmu_notifiers */ |
| 165 | const unsigned long mmun_start = addr; |
| 166 | const unsigned long mmun_end = addr + PAGE_SIZE; |
| 167 | struct mem_cgroup *memcg; |
| 168 | |
| 169 | VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page); |
| 170 | |
| 171 | err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg, |
| 172 | false); |
| 173 | if (err) |
| 174 | return err; |
| 175 | |
| 176 | /* For try_to_free_swap() and munlock_vma_page() below */ |
| 177 | lock_page(old_page); |
| 178 | |
| 179 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); |
| 180 | err = -EAGAIN; |
| 181 | if (!page_vma_mapped_walk(&pvmw)) { |
| 182 | mem_cgroup_cancel_charge(new_page, memcg, false); |
| 183 | goto unlock; |
| 184 | } |
| 185 | VM_BUG_ON_PAGE(addr != pvmw.address, old_page); |
| 186 | |
| 187 | get_page(new_page); |
| 188 | page_add_new_anon_rmap(new_page, vma, addr, false); |
| 189 | mem_cgroup_commit_charge(new_page, memcg, false, false); |
| 190 | lru_cache_add_active_or_unevictable(new_page, vma); |
| 191 | |
| 192 | if (!PageAnon(old_page)) { |
| 193 | dec_mm_counter(mm, mm_counter_file(old_page)); |
| 194 | inc_mm_counter(mm, MM_ANONPAGES); |
| 195 | } |
| 196 | |
| 197 | flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); |
| 198 | ptep_clear_flush_notify(vma, addr, pvmw.pte); |
| 199 | set_pte_at_notify(mm, addr, pvmw.pte, |
| 200 | mk_pte(new_page, vma->vm_page_prot)); |
| 201 | |
| 202 | page_remove_rmap(old_page, false); |
| 203 | if (!page_mapped(old_page)) |
| 204 | try_to_free_swap(old_page); |
| 205 | page_vma_mapped_walk_done(&pvmw); |
| 206 | |
| 207 | if (vma->vm_flags & VM_LOCKED) |
| 208 | munlock_vma_page(old_page); |
| 209 | put_page(old_page); |
| 210 | |
| 211 | err = 0; |
| 212 | unlock: |
| 213 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
| 214 | unlock_page(old_page); |
| 215 | return err; |
| 216 | } |
| 217 | |
| 218 | /** |
| 219 | * is_swbp_insn - check if instruction is breakpoint instruction. |
| 220 | * @insn: instruction to be checked. |
| 221 | * Default implementation of is_swbp_insn |
| 222 | * Returns true if @insn is a breakpoint instruction. |
| 223 | */ |
| 224 | bool __weak is_swbp_insn(uprobe_opcode_t *insn) |
| 225 | { |
| 226 | return *insn == UPROBE_SWBP_INSN; |
| 227 | } |
| 228 | |
| 229 | /** |
| 230 | * is_trap_insn - check if instruction is breakpoint instruction. |
| 231 | * @insn: instruction to be checked. |
| 232 | * Default implementation of is_trap_insn |
| 233 | * Returns true if @insn is a breakpoint instruction. |
| 234 | * |
| 235 | * This function is needed for the case where an architecture has multiple |
| 236 | * trap instructions (like powerpc). |
| 237 | */ |
| 238 | bool __weak is_trap_insn(uprobe_opcode_t *insn) |
| 239 | { |
| 240 | return is_swbp_insn(insn); |
| 241 | } |
| 242 | |
| 243 | static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) |
| 244 | { |
| 245 | void *kaddr = kmap_atomic(page); |
| 246 | memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); |
| 247 | kunmap_atomic(kaddr); |
| 248 | } |
| 249 | |
| 250 | static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) |
| 251 | { |
| 252 | void *kaddr = kmap_atomic(page); |
| 253 | memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); |
| 254 | kunmap_atomic(kaddr); |
| 255 | } |
| 256 | |
| 257 | static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) |
| 258 | { |
| 259 | uprobe_opcode_t old_opcode; |
| 260 | bool is_swbp; |
| 261 | |
| 262 | /* |
| 263 | * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. |
| 264 | * We do not check if it is any other 'trap variant' which could |
| 265 | * be conditional trap instruction such as the one powerpc supports. |
| 266 | * |
| 267 | * The logic is that we do not care if the underlying instruction |
| 268 | * is a trap variant; uprobes always wins over any other (gdb) |
| 269 | * breakpoint. |
| 270 | */ |
| 271 | copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); |
| 272 | is_swbp = is_swbp_insn(&old_opcode); |
| 273 | |
| 274 | if (is_swbp_insn(new_opcode)) { |
| 275 | if (is_swbp) /* register: already installed? */ |
| 276 | return 0; |
| 277 | } else { |
| 278 | if (!is_swbp) /* unregister: was it changed by us? */ |
| 279 | return 0; |
| 280 | } |
| 281 | |
| 282 | return 1; |
| 283 | } |
| 284 | |
| 285 | /* |
| 286 | * NOTE: |
| 287 | * Expect the breakpoint instruction to be the smallest size instruction for |
| 288 | * the architecture. If an arch has variable length instruction and the |
| 289 | * breakpoint instruction is not of the smallest length instruction |
| 290 | * supported by that architecture then we need to modify is_trap_at_addr and |
| 291 | * uprobe_write_opcode accordingly. This would never be a problem for archs |
| 292 | * that have fixed length instructions. |
| 293 | * |
| 294 | * uprobe_write_opcode - write the opcode at a given virtual address. |
| 295 | * @mm: the probed process address space. |
| 296 | * @vaddr: the virtual address to store the opcode. |
| 297 | * @opcode: opcode to be written at @vaddr. |
| 298 | * |
| 299 | * Called with mm->mmap_sem held for write. |
| 300 | * Return 0 (success) or a negative errno. |
| 301 | */ |
| 302 | int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, |
| 303 | unsigned long vaddr, uprobe_opcode_t opcode) |
| 304 | { |
| 305 | struct page *old_page, *new_page; |
| 306 | struct vm_area_struct *vma; |
| 307 | int ret; |
| 308 | |
| 309 | retry: |
| 310 | /* Read the page with vaddr into memory */ |
| 311 | ret = get_user_pages_remote(NULL, mm, vaddr, 1, |
| 312 | FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL); |
| 313 | if (ret <= 0) |
| 314 | return ret; |
| 315 | |
| 316 | ret = verify_opcode(old_page, vaddr, &opcode); |
| 317 | if (ret <= 0) |
| 318 | goto put_old; |
| 319 | |
| 320 | ret = anon_vma_prepare(vma); |
| 321 | if (ret) |
| 322 | goto put_old; |
| 323 | |
| 324 | ret = -ENOMEM; |
| 325 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); |
| 326 | if (!new_page) |
| 327 | goto put_old; |
| 328 | |
| 329 | __SetPageUptodate(new_page); |
| 330 | copy_highpage(new_page, old_page); |
| 331 | copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); |
| 332 | |
| 333 | ret = __replace_page(vma, vaddr, old_page, new_page); |
| 334 | put_page(new_page); |
| 335 | put_old: |
| 336 | put_page(old_page); |
| 337 | |
| 338 | if (unlikely(ret == -EAGAIN)) |
| 339 | goto retry; |
| 340 | return ret; |
| 341 | } |
| 342 | |
| 343 | /** |
| 344 | * set_swbp - store breakpoint at a given address. |
| 345 | * @auprobe: arch specific probepoint information. |
| 346 | * @mm: the probed process address space. |
| 347 | * @vaddr: the virtual address to insert the opcode. |
| 348 | * |
| 349 | * For mm @mm, store the breakpoint instruction at @vaddr. |
| 350 | * Return 0 (success) or a negative errno. |
| 351 | */ |
| 352 | int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) |
| 353 | { |
| 354 | return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); |
| 355 | } |
| 356 | |
| 357 | /** |
| 358 | * set_orig_insn - Restore the original instruction. |
| 359 | * @mm: the probed process address space. |
| 360 | * @auprobe: arch specific probepoint information. |
| 361 | * @vaddr: the virtual address to insert the opcode. |
| 362 | * |
| 363 | * For mm @mm, restore the original opcode (opcode) at @vaddr. |
| 364 | * Return 0 (success) or a negative errno. |
| 365 | */ |
| 366 | int __weak |
| 367 | set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) |
| 368 | { |
| 369 | return uprobe_write_opcode(auprobe, mm, vaddr, |
| 370 | *(uprobe_opcode_t *)&auprobe->insn); |
| 371 | } |
| 372 | |
| 373 | static struct uprobe *get_uprobe(struct uprobe *uprobe) |
| 374 | { |
| 375 | atomic_inc(&uprobe->ref); |
| 376 | return uprobe; |
| 377 | } |
| 378 | |
| 379 | static void put_uprobe(struct uprobe *uprobe) |
| 380 | { |
| 381 | if (atomic_dec_and_test(&uprobe->ref)) |
| 382 | kfree(uprobe); |
| 383 | } |
| 384 | |
| 385 | static int match_uprobe(struct uprobe *l, struct uprobe *r) |
| 386 | { |
| 387 | if (l->inode < r->inode) |
| 388 | return -1; |
| 389 | |
| 390 | if (l->inode > r->inode) |
| 391 | return 1; |
| 392 | |
| 393 | if (l->offset < r->offset) |
| 394 | return -1; |
| 395 | |
| 396 | if (l->offset > r->offset) |
| 397 | return 1; |
| 398 | |
| 399 | return 0; |
| 400 | } |
| 401 | |
| 402 | static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) |
| 403 | { |
| 404 | struct uprobe u = { .inode = inode, .offset = offset }; |
| 405 | struct rb_node *n = uprobes_tree.rb_node; |
| 406 | struct uprobe *uprobe; |
| 407 | int match; |
| 408 | |
| 409 | while (n) { |
| 410 | uprobe = rb_entry(n, struct uprobe, rb_node); |
| 411 | match = match_uprobe(&u, uprobe); |
| 412 | if (!match) |
| 413 | return get_uprobe(uprobe); |
| 414 | |
| 415 | if (match < 0) |
| 416 | n = n->rb_left; |
| 417 | else |
| 418 | n = n->rb_right; |
| 419 | } |
| 420 | return NULL; |
| 421 | } |
| 422 | |
| 423 | /* |
| 424 | * Find a uprobe corresponding to a given inode:offset |
| 425 | * Acquires uprobes_treelock |
| 426 | */ |
| 427 | static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) |
| 428 | { |
| 429 | struct uprobe *uprobe; |
| 430 | |
| 431 | spin_lock(&uprobes_treelock); |
| 432 | uprobe = __find_uprobe(inode, offset); |
| 433 | spin_unlock(&uprobes_treelock); |
| 434 | |
| 435 | return uprobe; |
| 436 | } |
| 437 | |
| 438 | static struct uprobe *__insert_uprobe(struct uprobe *uprobe) |
| 439 | { |
| 440 | struct rb_node **p = &uprobes_tree.rb_node; |
| 441 | struct rb_node *parent = NULL; |
| 442 | struct uprobe *u; |
| 443 | int match; |
| 444 | |
| 445 | while (*p) { |
| 446 | parent = *p; |
| 447 | u = rb_entry(parent, struct uprobe, rb_node); |
| 448 | match = match_uprobe(uprobe, u); |
| 449 | if (!match) |
| 450 | return get_uprobe(u); |
| 451 | |
| 452 | if (match < 0) |
| 453 | p = &parent->rb_left; |
| 454 | else |
| 455 | p = &parent->rb_right; |
| 456 | |
| 457 | } |
| 458 | |
| 459 | u = NULL; |
| 460 | rb_link_node(&uprobe->rb_node, parent, p); |
| 461 | rb_insert_color(&uprobe->rb_node, &uprobes_tree); |
| 462 | /* get access + creation ref */ |
| 463 | atomic_set(&uprobe->ref, 2); |
| 464 | |
| 465 | return u; |
| 466 | } |
| 467 | |
| 468 | /* |
| 469 | * Acquire uprobes_treelock. |
| 470 | * Matching uprobe already exists in rbtree; |
| 471 | * increment (access refcount) and return the matching uprobe. |
| 472 | * |
| 473 | * No matching uprobe; insert the uprobe in rb_tree; |
| 474 | * get a double refcount (access + creation) and return NULL. |
| 475 | */ |
| 476 | static struct uprobe *insert_uprobe(struct uprobe *uprobe) |
| 477 | { |
| 478 | struct uprobe *u; |
| 479 | |
| 480 | spin_lock(&uprobes_treelock); |
| 481 | u = __insert_uprobe(uprobe); |
| 482 | spin_unlock(&uprobes_treelock); |
| 483 | |
| 484 | return u; |
| 485 | } |
| 486 | |
| 487 | static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) |
| 488 | { |
| 489 | struct uprobe *uprobe, *cur_uprobe; |
| 490 | |
| 491 | uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); |
| 492 | if (!uprobe) |
| 493 | return NULL; |
| 494 | |
| 495 | uprobe->inode = inode; |
| 496 | uprobe->offset = offset; |
| 497 | init_rwsem(&uprobe->register_rwsem); |
| 498 | init_rwsem(&uprobe->consumer_rwsem); |
| 499 | |
| 500 | /* add to uprobes_tree, sorted on inode:offset */ |
| 501 | cur_uprobe = insert_uprobe(uprobe); |
| 502 | /* a uprobe exists for this inode:offset combination */ |
| 503 | if (cur_uprobe) { |
| 504 | kfree(uprobe); |
| 505 | uprobe = cur_uprobe; |
| 506 | } |
| 507 | |
| 508 | return uprobe; |
| 509 | } |
| 510 | |
| 511 | static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) |
| 512 | { |
| 513 | down_write(&uprobe->consumer_rwsem); |
| 514 | uc->next = uprobe->consumers; |
| 515 | uprobe->consumers = uc; |
| 516 | up_write(&uprobe->consumer_rwsem); |
| 517 | } |
| 518 | |
| 519 | /* |
| 520 | * For uprobe @uprobe, delete the consumer @uc. |
| 521 | * Return true if the @uc is deleted successfully |
| 522 | * or return false. |
| 523 | */ |
| 524 | static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) |
| 525 | { |
| 526 | struct uprobe_consumer **con; |
| 527 | bool ret = false; |
| 528 | |
| 529 | down_write(&uprobe->consumer_rwsem); |
| 530 | for (con = &uprobe->consumers; *con; con = &(*con)->next) { |
| 531 | if (*con == uc) { |
| 532 | *con = uc->next; |
| 533 | ret = true; |
| 534 | break; |
| 535 | } |
| 536 | } |
| 537 | up_write(&uprobe->consumer_rwsem); |
| 538 | |
| 539 | return ret; |
| 540 | } |
| 541 | |
| 542 | static int __copy_insn(struct address_space *mapping, struct file *filp, |
| 543 | void *insn, int nbytes, loff_t offset) |
| 544 | { |
| 545 | struct page *page; |
| 546 | /* |
| 547 | * Ensure that the page that has the original instruction is populated |
| 548 | * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), |
| 549 | * see uprobe_register(). |
| 550 | */ |
| 551 | if (mapping->a_ops->readpage) |
| 552 | page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); |
| 553 | else |
| 554 | page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); |
| 555 | if (IS_ERR(page)) |
| 556 | return PTR_ERR(page); |
| 557 | |
| 558 | copy_from_page(page, offset, insn, nbytes); |
| 559 | put_page(page); |
| 560 | |
| 561 | return 0; |
| 562 | } |
| 563 | |
| 564 | static int copy_insn(struct uprobe *uprobe, struct file *filp) |
| 565 | { |
| 566 | struct address_space *mapping = uprobe->inode->i_mapping; |
| 567 | loff_t offs = uprobe->offset; |
| 568 | void *insn = &uprobe->arch.insn; |
| 569 | int size = sizeof(uprobe->arch.insn); |
| 570 | int len, err = -EIO; |
| 571 | |
| 572 | /* Copy only available bytes, -EIO if nothing was read */ |
| 573 | do { |
| 574 | if (offs >= i_size_read(uprobe->inode)) |
| 575 | break; |
| 576 | |
| 577 | len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); |
| 578 | err = __copy_insn(mapping, filp, insn, len, offs); |
| 579 | if (err) |
| 580 | break; |
| 581 | |
| 582 | insn += len; |
| 583 | offs += len; |
| 584 | size -= len; |
| 585 | } while (size); |
| 586 | |
| 587 | return err; |
| 588 | } |
| 589 | |
| 590 | static int prepare_uprobe(struct uprobe *uprobe, struct file *file, |
| 591 | struct mm_struct *mm, unsigned long vaddr) |
| 592 | { |
| 593 | int ret = 0; |
| 594 | |
| 595 | if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) |
| 596 | return ret; |
| 597 | |
| 598 | /* TODO: move this into _register, until then we abuse this sem. */ |
| 599 | down_write(&uprobe->consumer_rwsem); |
| 600 | if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) |
| 601 | goto out; |
| 602 | |
| 603 | ret = copy_insn(uprobe, file); |
| 604 | if (ret) |
| 605 | goto out; |
| 606 | |
| 607 | ret = -ENOTSUPP; |
| 608 | if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) |
| 609 | goto out; |
| 610 | |
| 611 | ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); |
| 612 | if (ret) |
| 613 | goto out; |
| 614 | |
| 615 | /* uprobe_write_opcode() assumes we don't cross page boundary */ |
| 616 | BUG_ON((uprobe->offset & ~PAGE_MASK) + |
| 617 | UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); |
| 618 | |
| 619 | smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ |
| 620 | set_bit(UPROBE_COPY_INSN, &uprobe->flags); |
| 621 | |
| 622 | out: |
| 623 | up_write(&uprobe->consumer_rwsem); |
| 624 | |
| 625 | return ret; |
| 626 | } |
| 627 | |
| 628 | static inline bool consumer_filter(struct uprobe_consumer *uc, |
| 629 | enum uprobe_filter_ctx ctx, struct mm_struct *mm) |
| 630 | { |
| 631 | return !uc->filter || uc->filter(uc, ctx, mm); |
| 632 | } |
| 633 | |
| 634 | static bool filter_chain(struct uprobe *uprobe, |
| 635 | enum uprobe_filter_ctx ctx, struct mm_struct *mm) |
| 636 | { |
| 637 | struct uprobe_consumer *uc; |
| 638 | bool ret = false; |
| 639 | |
| 640 | down_read(&uprobe->consumer_rwsem); |
| 641 | for (uc = uprobe->consumers; uc; uc = uc->next) { |
| 642 | ret = consumer_filter(uc, ctx, mm); |
| 643 | if (ret) |
| 644 | break; |
| 645 | } |
| 646 | up_read(&uprobe->consumer_rwsem); |
| 647 | |
| 648 | return ret; |
| 649 | } |
| 650 | |
| 651 | static int |
| 652 | install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, |
| 653 | struct vm_area_struct *vma, unsigned long vaddr) |
| 654 | { |
| 655 | bool first_uprobe; |
| 656 | int ret; |
| 657 | |
| 658 | ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); |
| 659 | if (ret) |
| 660 | return ret; |
| 661 | |
| 662 | /* |
| 663 | * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), |
| 664 | * the task can hit this breakpoint right after __replace_page(). |
| 665 | */ |
| 666 | first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); |
| 667 | if (first_uprobe) |
| 668 | set_bit(MMF_HAS_UPROBES, &mm->flags); |
| 669 | |
| 670 | ret = set_swbp(&uprobe->arch, mm, vaddr); |
| 671 | if (!ret) |
| 672 | clear_bit(MMF_RECALC_UPROBES, &mm->flags); |
| 673 | else if (first_uprobe) |
| 674 | clear_bit(MMF_HAS_UPROBES, &mm->flags); |
| 675 | |
| 676 | return ret; |
| 677 | } |
| 678 | |
| 679 | static int |
| 680 | remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) |
| 681 | { |
| 682 | set_bit(MMF_RECALC_UPROBES, &mm->flags); |
| 683 | return set_orig_insn(&uprobe->arch, mm, vaddr); |
| 684 | } |
| 685 | |
| 686 | static inline bool uprobe_is_active(struct uprobe *uprobe) |
| 687 | { |
| 688 | return !RB_EMPTY_NODE(&uprobe->rb_node); |
| 689 | } |
| 690 | /* |
| 691 | * There could be threads that have already hit the breakpoint. They |
| 692 | * will recheck the current insn and restart if find_uprobe() fails. |
| 693 | * See find_active_uprobe(). |
| 694 | */ |
| 695 | static void delete_uprobe(struct uprobe *uprobe) |
| 696 | { |
| 697 | if (WARN_ON(!uprobe_is_active(uprobe))) |
| 698 | return; |
| 699 | |
| 700 | spin_lock(&uprobes_treelock); |
| 701 | rb_erase(&uprobe->rb_node, &uprobes_tree); |
| 702 | spin_unlock(&uprobes_treelock); |
| 703 | RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ |
| 704 | put_uprobe(uprobe); |
| 705 | } |
| 706 | |
| 707 | struct map_info { |
| 708 | struct map_info *next; |
| 709 | struct mm_struct *mm; |
| 710 | unsigned long vaddr; |
| 711 | }; |
| 712 | |
| 713 | static inline struct map_info *free_map_info(struct map_info *info) |
| 714 | { |
| 715 | struct map_info *next = info->next; |
| 716 | kfree(info); |
| 717 | return next; |
| 718 | } |
| 719 | |
| 720 | static struct map_info * |
| 721 | build_map_info(struct address_space *mapping, loff_t offset, bool is_register) |
| 722 | { |
| 723 | unsigned long pgoff = offset >> PAGE_SHIFT; |
| 724 | struct vm_area_struct *vma; |
| 725 | struct map_info *curr = NULL; |
| 726 | struct map_info *prev = NULL; |
| 727 | struct map_info *info; |
| 728 | int more = 0; |
| 729 | |
| 730 | again: |
| 731 | i_mmap_lock_read(mapping); |
| 732 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { |
| 733 | if (!valid_vma(vma, is_register)) |
| 734 | continue; |
| 735 | |
| 736 | if (!prev && !more) { |
| 737 | /* |
| 738 | * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through |
| 739 | * reclaim. This is optimistic, no harm done if it fails. |
| 740 | */ |
| 741 | prev = kmalloc(sizeof(struct map_info), |
| 742 | GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); |
| 743 | if (prev) |
| 744 | prev->next = NULL; |
| 745 | } |
| 746 | if (!prev) { |
| 747 | more++; |
| 748 | continue; |
| 749 | } |
| 750 | |
| 751 | if (!mmget_not_zero(vma->vm_mm)) |
| 752 | continue; |
| 753 | |
| 754 | info = prev; |
| 755 | prev = prev->next; |
| 756 | info->next = curr; |
| 757 | curr = info; |
| 758 | |
| 759 | info->mm = vma->vm_mm; |
| 760 | info->vaddr = offset_to_vaddr(vma, offset); |
| 761 | } |
| 762 | i_mmap_unlock_read(mapping); |
| 763 | |
| 764 | if (!more) |
| 765 | goto out; |
| 766 | |
| 767 | prev = curr; |
| 768 | while (curr) { |
| 769 | mmput(curr->mm); |
| 770 | curr = curr->next; |
| 771 | } |
| 772 | |
| 773 | do { |
| 774 | info = kmalloc(sizeof(struct map_info), GFP_KERNEL); |
| 775 | if (!info) { |
| 776 | curr = ERR_PTR(-ENOMEM); |
| 777 | goto out; |
| 778 | } |
| 779 | info->next = prev; |
| 780 | prev = info; |
| 781 | } while (--more); |
| 782 | |
| 783 | goto again; |
| 784 | out: |
| 785 | while (prev) |
| 786 | prev = free_map_info(prev); |
| 787 | return curr; |
| 788 | } |
| 789 | |
| 790 | static int |
| 791 | register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) |
| 792 | { |
| 793 | bool is_register = !!new; |
| 794 | struct map_info *info; |
| 795 | int err = 0; |
| 796 | |
| 797 | percpu_down_write(&dup_mmap_sem); |
| 798 | info = build_map_info(uprobe->inode->i_mapping, |
| 799 | uprobe->offset, is_register); |
| 800 | if (IS_ERR(info)) { |
| 801 | err = PTR_ERR(info); |
| 802 | goto out; |
| 803 | } |
| 804 | |
| 805 | while (info) { |
| 806 | struct mm_struct *mm = info->mm; |
| 807 | struct vm_area_struct *vma; |
| 808 | |
| 809 | if (err && is_register) |
| 810 | goto free; |
| 811 | |
| 812 | down_write(&mm->mmap_sem); |
| 813 | vma = find_vma(mm, info->vaddr); |
| 814 | if (!vma || !valid_vma(vma, is_register) || |
| 815 | file_inode(vma->vm_file) != uprobe->inode) |
| 816 | goto unlock; |
| 817 | |
| 818 | if (vma->vm_start > info->vaddr || |
| 819 | vaddr_to_offset(vma, info->vaddr) != uprobe->offset) |
| 820 | goto unlock; |
| 821 | |
| 822 | if (is_register) { |
| 823 | /* consult only the "caller", new consumer. */ |
| 824 | if (consumer_filter(new, |
| 825 | UPROBE_FILTER_REGISTER, mm)) |
| 826 | err = install_breakpoint(uprobe, mm, vma, info->vaddr); |
| 827 | } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { |
| 828 | if (!filter_chain(uprobe, |
| 829 | UPROBE_FILTER_UNREGISTER, mm)) |
| 830 | err |= remove_breakpoint(uprobe, mm, info->vaddr); |
| 831 | } |
| 832 | |
| 833 | unlock: |
| 834 | up_write(&mm->mmap_sem); |
| 835 | free: |
| 836 | mmput(mm); |
| 837 | info = free_map_info(info); |
| 838 | } |
| 839 | out: |
| 840 | percpu_up_write(&dup_mmap_sem); |
| 841 | return err; |
| 842 | } |
| 843 | |
| 844 | static void |
| 845 | __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) |
| 846 | { |
| 847 | int err; |
| 848 | |
| 849 | if (WARN_ON(!consumer_del(uprobe, uc))) |
| 850 | return; |
| 851 | |
| 852 | err = register_for_each_vma(uprobe, NULL); |
| 853 | /* TODO : cant unregister? schedule a worker thread */ |
| 854 | if (!uprobe->consumers && !err) |
| 855 | delete_uprobe(uprobe); |
| 856 | } |
| 857 | |
| 858 | /* |
| 859 | * uprobe_unregister - unregister an already registered probe. |
| 860 | * @inode: the file in which the probe has to be removed. |
| 861 | * @offset: offset from the start of the file. |
| 862 | * @uc: identify which probe if multiple probes are colocated. |
| 863 | */ |
| 864 | void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) |
| 865 | { |
| 866 | struct uprobe *uprobe; |
| 867 | |
| 868 | uprobe = find_uprobe(inode, offset); |
| 869 | if (WARN_ON(!uprobe)) |
| 870 | return; |
| 871 | |
| 872 | down_write(&uprobe->register_rwsem); |
| 873 | __uprobe_unregister(uprobe, uc); |
| 874 | up_write(&uprobe->register_rwsem); |
| 875 | put_uprobe(uprobe); |
| 876 | } |
| 877 | EXPORT_SYMBOL_GPL(uprobe_unregister); |
| 878 | |
| 879 | /* |
| 880 | * __uprobe_register - register a probe |
| 881 | * @inode: the file in which the probe has to be placed. |
| 882 | * @offset: offset from the start of the file. |
| 883 | * @uc: information on howto handle the probe.. |
| 884 | * |
| 885 | * Apart from the access refcount, __uprobe_register() takes a creation |
| 886 | * refcount (thro alloc_uprobe) if and only if this @uprobe is getting |
| 887 | * inserted into the rbtree (i.e first consumer for a @inode:@offset |
| 888 | * tuple). Creation refcount stops uprobe_unregister from freeing the |
| 889 | * @uprobe even before the register operation is complete. Creation |
| 890 | * refcount is released when the last @uc for the @uprobe |
| 891 | * unregisters. Caller of __uprobe_register() is required to keep @inode |
| 892 | * (and the containing mount) referenced. |
| 893 | * |
| 894 | * Return errno if it cannot successully install probes |
| 895 | * else return 0 (success) |
| 896 | */ |
| 897 | static int __uprobe_register(struct inode *inode, loff_t offset, |
| 898 | struct uprobe_consumer *uc) |
| 899 | { |
| 900 | struct uprobe *uprobe; |
| 901 | int ret; |
| 902 | |
| 903 | /* Uprobe must have at least one set consumer */ |
| 904 | if (!uc->handler && !uc->ret_handler) |
| 905 | return -EINVAL; |
| 906 | |
| 907 | /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ |
| 908 | if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) |
| 909 | return -EIO; |
| 910 | /* Racy, just to catch the obvious mistakes */ |
| 911 | if (offset > i_size_read(inode)) |
| 912 | return -EINVAL; |
| 913 | |
| 914 | retry: |
| 915 | uprobe = alloc_uprobe(inode, offset); |
| 916 | if (!uprobe) |
| 917 | return -ENOMEM; |
| 918 | /* |
| 919 | * We can race with uprobe_unregister()->delete_uprobe(). |
| 920 | * Check uprobe_is_active() and retry if it is false. |
| 921 | */ |
| 922 | down_write(&uprobe->register_rwsem); |
| 923 | ret = -EAGAIN; |
| 924 | if (likely(uprobe_is_active(uprobe))) { |
| 925 | consumer_add(uprobe, uc); |
| 926 | ret = register_for_each_vma(uprobe, uc); |
| 927 | if (ret) |
| 928 | __uprobe_unregister(uprobe, uc); |
| 929 | } |
| 930 | up_write(&uprobe->register_rwsem); |
| 931 | put_uprobe(uprobe); |
| 932 | |
| 933 | if (unlikely(ret == -EAGAIN)) |
| 934 | goto retry; |
| 935 | return ret; |
| 936 | } |
| 937 | |
| 938 | int uprobe_register(struct inode *inode, loff_t offset, |
| 939 | struct uprobe_consumer *uc) |
| 940 | { |
| 941 | return __uprobe_register(inode, offset, uc); |
| 942 | } |
| 943 | EXPORT_SYMBOL_GPL(uprobe_register); |
| 944 | |
| 945 | /* |
| 946 | * uprobe_apply - unregister an already registered probe. |
| 947 | * @inode: the file in which the probe has to be removed. |
| 948 | * @offset: offset from the start of the file. |
| 949 | * @uc: consumer which wants to add more or remove some breakpoints |
| 950 | * @add: add or remove the breakpoints |
| 951 | */ |
| 952 | int uprobe_apply(struct inode *inode, loff_t offset, |
| 953 | struct uprobe_consumer *uc, bool add) |
| 954 | { |
| 955 | struct uprobe *uprobe; |
| 956 | struct uprobe_consumer *con; |
| 957 | int ret = -ENOENT; |
| 958 | |
| 959 | uprobe = find_uprobe(inode, offset); |
| 960 | if (WARN_ON(!uprobe)) |
| 961 | return ret; |
| 962 | |
| 963 | down_write(&uprobe->register_rwsem); |
| 964 | for (con = uprobe->consumers; con && con != uc ; con = con->next) |
| 965 | ; |
| 966 | if (con) |
| 967 | ret = register_for_each_vma(uprobe, add ? uc : NULL); |
| 968 | up_write(&uprobe->register_rwsem); |
| 969 | put_uprobe(uprobe); |
| 970 | |
| 971 | return ret; |
| 972 | } |
| 973 | |
| 974 | static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) |
| 975 | { |
| 976 | struct vm_area_struct *vma; |
| 977 | int err = 0; |
| 978 | |
| 979 | down_read(&mm->mmap_sem); |
| 980 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
| 981 | unsigned long vaddr; |
| 982 | loff_t offset; |
| 983 | |
| 984 | if (!valid_vma(vma, false) || |
| 985 | file_inode(vma->vm_file) != uprobe->inode) |
| 986 | continue; |
| 987 | |
| 988 | offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; |
| 989 | if (uprobe->offset < offset || |
| 990 | uprobe->offset >= offset + vma->vm_end - vma->vm_start) |
| 991 | continue; |
| 992 | |
| 993 | vaddr = offset_to_vaddr(vma, uprobe->offset); |
| 994 | err |= remove_breakpoint(uprobe, mm, vaddr); |
| 995 | } |
| 996 | up_read(&mm->mmap_sem); |
| 997 | |
| 998 | return err; |
| 999 | } |
| 1000 | |
| 1001 | static struct rb_node * |
| 1002 | find_node_in_range(struct inode *inode, loff_t min, loff_t max) |
| 1003 | { |
| 1004 | struct rb_node *n = uprobes_tree.rb_node; |
| 1005 | |
| 1006 | while (n) { |
| 1007 | struct uprobe *u = rb_entry(n, struct uprobe, rb_node); |
| 1008 | |
| 1009 | if (inode < u->inode) { |
| 1010 | n = n->rb_left; |
| 1011 | } else if (inode > u->inode) { |
| 1012 | n = n->rb_right; |
| 1013 | } else { |
| 1014 | if (max < u->offset) |
| 1015 | n = n->rb_left; |
| 1016 | else if (min > u->offset) |
| 1017 | n = n->rb_right; |
| 1018 | else |
| 1019 | break; |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | return n; |
| 1024 | } |
| 1025 | |
| 1026 | /* |
| 1027 | * For a given range in vma, build a list of probes that need to be inserted. |
| 1028 | */ |
| 1029 | static void build_probe_list(struct inode *inode, |
| 1030 | struct vm_area_struct *vma, |
| 1031 | unsigned long start, unsigned long end, |
| 1032 | struct list_head *head) |
| 1033 | { |
| 1034 | loff_t min, max; |
| 1035 | struct rb_node *n, *t; |
| 1036 | struct uprobe *u; |
| 1037 | |
| 1038 | INIT_LIST_HEAD(head); |
| 1039 | min = vaddr_to_offset(vma, start); |
| 1040 | max = min + (end - start) - 1; |
| 1041 | |
| 1042 | spin_lock(&uprobes_treelock); |
| 1043 | n = find_node_in_range(inode, min, max); |
| 1044 | if (n) { |
| 1045 | for (t = n; t; t = rb_prev(t)) { |
| 1046 | u = rb_entry(t, struct uprobe, rb_node); |
| 1047 | if (u->inode != inode || u->offset < min) |
| 1048 | break; |
| 1049 | list_add(&u->pending_list, head); |
| 1050 | get_uprobe(u); |
| 1051 | } |
| 1052 | for (t = n; (t = rb_next(t)); ) { |
| 1053 | u = rb_entry(t, struct uprobe, rb_node); |
| 1054 | if (u->inode != inode || u->offset > max) |
| 1055 | break; |
| 1056 | list_add(&u->pending_list, head); |
| 1057 | get_uprobe(u); |
| 1058 | } |
| 1059 | } |
| 1060 | spin_unlock(&uprobes_treelock); |
| 1061 | } |
| 1062 | |
| 1063 | /* |
| 1064 | * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. |
| 1065 | * |
| 1066 | * Currently we ignore all errors and always return 0, the callers |
| 1067 | * can't handle the failure anyway. |
| 1068 | */ |
| 1069 | int uprobe_mmap(struct vm_area_struct *vma) |
| 1070 | { |
| 1071 | struct list_head tmp_list; |
| 1072 | struct uprobe *uprobe, *u; |
| 1073 | struct inode *inode; |
| 1074 | |
| 1075 | if (no_uprobe_events() || !valid_vma(vma, true)) |
| 1076 | return 0; |
| 1077 | |
| 1078 | inode = file_inode(vma->vm_file); |
| 1079 | if (!inode) |
| 1080 | return 0; |
| 1081 | |
| 1082 | mutex_lock(uprobes_mmap_hash(inode)); |
| 1083 | build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); |
| 1084 | /* |
| 1085 | * We can race with uprobe_unregister(), this uprobe can be already |
| 1086 | * removed. But in this case filter_chain() must return false, all |
| 1087 | * consumers have gone away. |
| 1088 | */ |
| 1089 | list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { |
| 1090 | if (!fatal_signal_pending(current) && |
| 1091 | filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { |
| 1092 | unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); |
| 1093 | install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); |
| 1094 | } |
| 1095 | put_uprobe(uprobe); |
| 1096 | } |
| 1097 | mutex_unlock(uprobes_mmap_hash(inode)); |
| 1098 | |
| 1099 | return 0; |
| 1100 | } |
| 1101 | |
| 1102 | static bool |
| 1103 | vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| 1104 | { |
| 1105 | loff_t min, max; |
| 1106 | struct inode *inode; |
| 1107 | struct rb_node *n; |
| 1108 | |
| 1109 | inode = file_inode(vma->vm_file); |
| 1110 | |
| 1111 | min = vaddr_to_offset(vma, start); |
| 1112 | max = min + (end - start) - 1; |
| 1113 | |
| 1114 | spin_lock(&uprobes_treelock); |
| 1115 | n = find_node_in_range(inode, min, max); |
| 1116 | spin_unlock(&uprobes_treelock); |
| 1117 | |
| 1118 | return !!n; |
| 1119 | } |
| 1120 | |
| 1121 | /* |
| 1122 | * Called in context of a munmap of a vma. |
| 1123 | */ |
| 1124 | void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| 1125 | { |
| 1126 | if (no_uprobe_events() || !valid_vma(vma, false)) |
| 1127 | return; |
| 1128 | |
| 1129 | if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ |
| 1130 | return; |
| 1131 | |
| 1132 | if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || |
| 1133 | test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) |
| 1134 | return; |
| 1135 | |
| 1136 | if (vma_has_uprobes(vma, start, end)) |
| 1137 | set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); |
| 1138 | } |
| 1139 | |
| 1140 | /* Slot allocation for XOL */ |
| 1141 | static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) |
| 1142 | { |
| 1143 | struct vm_area_struct *vma; |
| 1144 | int ret; |
| 1145 | |
| 1146 | if (down_write_killable(&mm->mmap_sem)) |
| 1147 | return -EINTR; |
| 1148 | |
| 1149 | if (mm->uprobes_state.xol_area) { |
| 1150 | ret = -EALREADY; |
| 1151 | goto fail; |
| 1152 | } |
| 1153 | |
| 1154 | if (!area->vaddr) { |
| 1155 | /* Try to map as high as possible, this is only a hint. */ |
| 1156 | area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, |
| 1157 | PAGE_SIZE, 0, 0); |
| 1158 | if (area->vaddr & ~PAGE_MASK) { |
| 1159 | ret = area->vaddr; |
| 1160 | goto fail; |
| 1161 | } |
| 1162 | } |
| 1163 | |
| 1164 | vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, |
| 1165 | VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, |
| 1166 | &area->xol_mapping); |
| 1167 | if (IS_ERR(vma)) { |
| 1168 | ret = PTR_ERR(vma); |
| 1169 | goto fail; |
| 1170 | } |
| 1171 | |
| 1172 | ret = 0; |
| 1173 | /* pairs with get_xol_area() */ |
| 1174 | smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ |
| 1175 | fail: |
| 1176 | up_write(&mm->mmap_sem); |
| 1177 | |
| 1178 | return ret; |
| 1179 | } |
| 1180 | |
| 1181 | static struct xol_area *__create_xol_area(unsigned long vaddr) |
| 1182 | { |
| 1183 | struct mm_struct *mm = current->mm; |
| 1184 | uprobe_opcode_t insn = UPROBE_SWBP_INSN; |
| 1185 | struct xol_area *area; |
| 1186 | |
| 1187 | area = kmalloc(sizeof(*area), GFP_KERNEL); |
| 1188 | if (unlikely(!area)) |
| 1189 | goto out; |
| 1190 | |
| 1191 | area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), |
| 1192 | GFP_KERNEL); |
| 1193 | if (!area->bitmap) |
| 1194 | goto free_area; |
| 1195 | |
| 1196 | area->xol_mapping.name = "[uprobes]"; |
| 1197 | area->xol_mapping.fault = NULL; |
| 1198 | area->xol_mapping.pages = area->pages; |
| 1199 | area->pages[0] = alloc_page(GFP_HIGHUSER); |
| 1200 | if (!area->pages[0]) |
| 1201 | goto free_bitmap; |
| 1202 | area->pages[1] = NULL; |
| 1203 | |
| 1204 | area->vaddr = vaddr; |
| 1205 | init_waitqueue_head(&area->wq); |
| 1206 | /* Reserve the 1st slot for get_trampoline_vaddr() */ |
| 1207 | set_bit(0, area->bitmap); |
| 1208 | atomic_set(&area->slot_count, 1); |
| 1209 | arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); |
| 1210 | |
| 1211 | if (!xol_add_vma(mm, area)) |
| 1212 | return area; |
| 1213 | |
| 1214 | __free_page(area->pages[0]); |
| 1215 | free_bitmap: |
| 1216 | kfree(area->bitmap); |
| 1217 | free_area: |
| 1218 | kfree(area); |
| 1219 | out: |
| 1220 | return NULL; |
| 1221 | } |
| 1222 | |
| 1223 | /* |
| 1224 | * get_xol_area - Allocate process's xol_area if necessary. |
| 1225 | * This area will be used for storing instructions for execution out of line. |
| 1226 | * |
| 1227 | * Returns the allocated area or NULL. |
| 1228 | */ |
| 1229 | static struct xol_area *get_xol_area(void) |
| 1230 | { |
| 1231 | struct mm_struct *mm = current->mm; |
| 1232 | struct xol_area *area; |
| 1233 | |
| 1234 | if (!mm->uprobes_state.xol_area) |
| 1235 | __create_xol_area(0); |
| 1236 | |
| 1237 | /* Pairs with xol_add_vma() smp_store_release() */ |
| 1238 | area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ |
| 1239 | return area; |
| 1240 | } |
| 1241 | |
| 1242 | /* |
| 1243 | * uprobe_clear_state - Free the area allocated for slots. |
| 1244 | */ |
| 1245 | void uprobe_clear_state(struct mm_struct *mm) |
| 1246 | { |
| 1247 | struct xol_area *area = mm->uprobes_state.xol_area; |
| 1248 | |
| 1249 | if (!area) |
| 1250 | return; |
| 1251 | |
| 1252 | put_page(area->pages[0]); |
| 1253 | kfree(area->bitmap); |
| 1254 | kfree(area); |
| 1255 | } |
| 1256 | |
| 1257 | void uprobe_start_dup_mmap(void) |
| 1258 | { |
| 1259 | percpu_down_read(&dup_mmap_sem); |
| 1260 | } |
| 1261 | |
| 1262 | void uprobe_end_dup_mmap(void) |
| 1263 | { |
| 1264 | percpu_up_read(&dup_mmap_sem); |
| 1265 | } |
| 1266 | |
| 1267 | void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) |
| 1268 | { |
| 1269 | if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { |
| 1270 | set_bit(MMF_HAS_UPROBES, &newmm->flags); |
| 1271 | /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ |
| 1272 | set_bit(MMF_RECALC_UPROBES, &newmm->flags); |
| 1273 | } |
| 1274 | } |
| 1275 | |
| 1276 | /* |
| 1277 | * - search for a free slot. |
| 1278 | */ |
| 1279 | static unsigned long xol_take_insn_slot(struct xol_area *area) |
| 1280 | { |
| 1281 | unsigned long slot_addr; |
| 1282 | int slot_nr; |
| 1283 | |
| 1284 | do { |
| 1285 | slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); |
| 1286 | if (slot_nr < UINSNS_PER_PAGE) { |
| 1287 | if (!test_and_set_bit(slot_nr, area->bitmap)) |
| 1288 | break; |
| 1289 | |
| 1290 | slot_nr = UINSNS_PER_PAGE; |
| 1291 | continue; |
| 1292 | } |
| 1293 | wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); |
| 1294 | } while (slot_nr >= UINSNS_PER_PAGE); |
| 1295 | |
| 1296 | slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); |
| 1297 | atomic_inc(&area->slot_count); |
| 1298 | |
| 1299 | return slot_addr; |
| 1300 | } |
| 1301 | |
| 1302 | /* |
| 1303 | * xol_get_insn_slot - allocate a slot for xol. |
| 1304 | * Returns the allocated slot address or 0. |
| 1305 | */ |
| 1306 | static unsigned long xol_get_insn_slot(struct uprobe *uprobe) |
| 1307 | { |
| 1308 | struct xol_area *area; |
| 1309 | unsigned long xol_vaddr; |
| 1310 | |
| 1311 | area = get_xol_area(); |
| 1312 | if (!area) |
| 1313 | return 0; |
| 1314 | |
| 1315 | xol_vaddr = xol_take_insn_slot(area); |
| 1316 | if (unlikely(!xol_vaddr)) |
| 1317 | return 0; |
| 1318 | |
| 1319 | arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, |
| 1320 | &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); |
| 1321 | |
| 1322 | return xol_vaddr; |
| 1323 | } |
| 1324 | |
| 1325 | /* |
| 1326 | * xol_free_insn_slot - If slot was earlier allocated by |
| 1327 | * @xol_get_insn_slot(), make the slot available for |
| 1328 | * subsequent requests. |
| 1329 | */ |
| 1330 | static void xol_free_insn_slot(struct task_struct *tsk) |
| 1331 | { |
| 1332 | struct xol_area *area; |
| 1333 | unsigned long vma_end; |
| 1334 | unsigned long slot_addr; |
| 1335 | |
| 1336 | if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) |
| 1337 | return; |
| 1338 | |
| 1339 | slot_addr = tsk->utask->xol_vaddr; |
| 1340 | if (unlikely(!slot_addr)) |
| 1341 | return; |
| 1342 | |
| 1343 | area = tsk->mm->uprobes_state.xol_area; |
| 1344 | vma_end = area->vaddr + PAGE_SIZE; |
| 1345 | if (area->vaddr <= slot_addr && slot_addr < vma_end) { |
| 1346 | unsigned long offset; |
| 1347 | int slot_nr; |
| 1348 | |
| 1349 | offset = slot_addr - area->vaddr; |
| 1350 | slot_nr = offset / UPROBE_XOL_SLOT_BYTES; |
| 1351 | if (slot_nr >= UINSNS_PER_PAGE) |
| 1352 | return; |
| 1353 | |
| 1354 | clear_bit(slot_nr, area->bitmap); |
| 1355 | atomic_dec(&area->slot_count); |
| 1356 | smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ |
| 1357 | if (waitqueue_active(&area->wq)) |
| 1358 | wake_up(&area->wq); |
| 1359 | |
| 1360 | tsk->utask->xol_vaddr = 0; |
| 1361 | } |
| 1362 | } |
| 1363 | |
| 1364 | void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, |
| 1365 | void *src, unsigned long len) |
| 1366 | { |
| 1367 | /* Initialize the slot */ |
| 1368 | copy_to_page(page, vaddr, src, len); |
| 1369 | |
| 1370 | /* |
| 1371 | * We probably need flush_icache_user_range() but it needs vma. |
| 1372 | * This should work on most of architectures by default. If |
| 1373 | * architecture needs to do something different it can define |
| 1374 | * its own version of the function. |
| 1375 | */ |
| 1376 | flush_dcache_page(page); |
| 1377 | } |
| 1378 | |
| 1379 | /** |
| 1380 | * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs |
| 1381 | * @regs: Reflects the saved state of the task after it has hit a breakpoint |
| 1382 | * instruction. |
| 1383 | * Return the address of the breakpoint instruction. |
| 1384 | */ |
| 1385 | unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) |
| 1386 | { |
| 1387 | return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; |
| 1388 | } |
| 1389 | |
| 1390 | unsigned long uprobe_get_trap_addr(struct pt_regs *regs) |
| 1391 | { |
| 1392 | struct uprobe_task *utask = current->utask; |
| 1393 | |
| 1394 | if (unlikely(utask && utask->active_uprobe)) |
| 1395 | return utask->vaddr; |
| 1396 | |
| 1397 | return instruction_pointer(regs); |
| 1398 | } |
| 1399 | |
| 1400 | static struct return_instance *free_ret_instance(struct return_instance *ri) |
| 1401 | { |
| 1402 | struct return_instance *next = ri->next; |
| 1403 | put_uprobe(ri->uprobe); |
| 1404 | kfree(ri); |
| 1405 | return next; |
| 1406 | } |
| 1407 | |
| 1408 | /* |
| 1409 | * Called with no locks held. |
| 1410 | * Called in context of an exiting or an exec-ing thread. |
| 1411 | */ |
| 1412 | void uprobe_free_utask(struct task_struct *t) |
| 1413 | { |
| 1414 | struct uprobe_task *utask = t->utask; |
| 1415 | struct return_instance *ri; |
| 1416 | |
| 1417 | if (!utask) |
| 1418 | return; |
| 1419 | |
| 1420 | if (utask->active_uprobe) |
| 1421 | put_uprobe(utask->active_uprobe); |
| 1422 | |
| 1423 | ri = utask->return_instances; |
| 1424 | while (ri) |
| 1425 | ri = free_ret_instance(ri); |
| 1426 | |
| 1427 | xol_free_insn_slot(t); |
| 1428 | kfree(utask); |
| 1429 | t->utask = NULL; |
| 1430 | } |
| 1431 | |
| 1432 | /* |
| 1433 | * Allocate a uprobe_task object for the task if if necessary. |
| 1434 | * Called when the thread hits a breakpoint. |
| 1435 | * |
| 1436 | * Returns: |
| 1437 | * - pointer to new uprobe_task on success |
| 1438 | * - NULL otherwise |
| 1439 | */ |
| 1440 | static struct uprobe_task *get_utask(void) |
| 1441 | { |
| 1442 | if (!current->utask) |
| 1443 | current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); |
| 1444 | return current->utask; |
| 1445 | } |
| 1446 | |
| 1447 | static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) |
| 1448 | { |
| 1449 | struct uprobe_task *n_utask; |
| 1450 | struct return_instance **p, *o, *n; |
| 1451 | |
| 1452 | n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); |
| 1453 | if (!n_utask) |
| 1454 | return -ENOMEM; |
| 1455 | t->utask = n_utask; |
| 1456 | |
| 1457 | p = &n_utask->return_instances; |
| 1458 | for (o = o_utask->return_instances; o; o = o->next) { |
| 1459 | n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); |
| 1460 | if (!n) |
| 1461 | return -ENOMEM; |
| 1462 | |
| 1463 | *n = *o; |
| 1464 | get_uprobe(n->uprobe); |
| 1465 | n->next = NULL; |
| 1466 | |
| 1467 | *p = n; |
| 1468 | p = &n->next; |
| 1469 | n_utask->depth++; |
| 1470 | } |
| 1471 | |
| 1472 | return 0; |
| 1473 | } |
| 1474 | |
| 1475 | static void uprobe_warn(struct task_struct *t, const char *msg) |
| 1476 | { |
| 1477 | pr_warn("uprobe: %s:%d failed to %s\n", |
| 1478 | current->comm, current->pid, msg); |
| 1479 | } |
| 1480 | |
| 1481 | static void dup_xol_work(struct callback_head *work) |
| 1482 | { |
| 1483 | if (current->flags & PF_EXITING) |
| 1484 | return; |
| 1485 | |
| 1486 | if (!__create_xol_area(current->utask->dup_xol_addr) && |
| 1487 | !fatal_signal_pending(current)) |
| 1488 | uprobe_warn(current, "dup xol area"); |
| 1489 | } |
| 1490 | |
| 1491 | /* |
| 1492 | * Called in context of a new clone/fork from copy_process. |
| 1493 | */ |
| 1494 | void uprobe_copy_process(struct task_struct *t, unsigned long flags) |
| 1495 | { |
| 1496 | struct uprobe_task *utask = current->utask; |
| 1497 | struct mm_struct *mm = current->mm; |
| 1498 | struct xol_area *area; |
| 1499 | |
| 1500 | t->utask = NULL; |
| 1501 | |
| 1502 | if (!utask || !utask->return_instances) |
| 1503 | return; |
| 1504 | |
| 1505 | if (mm == t->mm && !(flags & CLONE_VFORK)) |
| 1506 | return; |
| 1507 | |
| 1508 | if (dup_utask(t, utask)) |
| 1509 | return uprobe_warn(t, "dup ret instances"); |
| 1510 | |
| 1511 | /* The task can fork() after dup_xol_work() fails */ |
| 1512 | area = mm->uprobes_state.xol_area; |
| 1513 | if (!area) |
| 1514 | return uprobe_warn(t, "dup xol area"); |
| 1515 | |
| 1516 | if (mm == t->mm) |
| 1517 | return; |
| 1518 | |
| 1519 | t->utask->dup_xol_addr = area->vaddr; |
| 1520 | init_task_work(&t->utask->dup_xol_work, dup_xol_work); |
| 1521 | task_work_add(t, &t->utask->dup_xol_work, true); |
| 1522 | } |
| 1523 | |
| 1524 | /* |
| 1525 | * Current area->vaddr notion assume the trampoline address is always |
| 1526 | * equal area->vaddr. |
| 1527 | * |
| 1528 | * Returns -1 in case the xol_area is not allocated. |
| 1529 | */ |
| 1530 | static unsigned long get_trampoline_vaddr(void) |
| 1531 | { |
| 1532 | struct xol_area *area; |
| 1533 | unsigned long trampoline_vaddr = -1; |
| 1534 | |
| 1535 | /* Pairs with xol_add_vma() smp_store_release() */ |
| 1536 | area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ |
| 1537 | if (area) |
| 1538 | trampoline_vaddr = area->vaddr; |
| 1539 | |
| 1540 | return trampoline_vaddr; |
| 1541 | } |
| 1542 | |
| 1543 | static void cleanup_return_instances(struct uprobe_task *utask, bool chained, |
| 1544 | struct pt_regs *regs) |
| 1545 | { |
| 1546 | struct return_instance *ri = utask->return_instances; |
| 1547 | enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; |
| 1548 | |
| 1549 | while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { |
| 1550 | ri = free_ret_instance(ri); |
| 1551 | utask->depth--; |
| 1552 | } |
| 1553 | utask->return_instances = ri; |
| 1554 | } |
| 1555 | |
| 1556 | static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) |
| 1557 | { |
| 1558 | struct return_instance *ri; |
| 1559 | struct uprobe_task *utask; |
| 1560 | unsigned long orig_ret_vaddr, trampoline_vaddr; |
| 1561 | bool chained; |
| 1562 | |
| 1563 | if (!get_xol_area()) |
| 1564 | return; |
| 1565 | |
| 1566 | utask = get_utask(); |
| 1567 | if (!utask) |
| 1568 | return; |
| 1569 | |
| 1570 | if (utask->depth >= MAX_URETPROBE_DEPTH) { |
| 1571 | printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" |
| 1572 | " nestedness limit pid/tgid=%d/%d\n", |
| 1573 | current->pid, current->tgid); |
| 1574 | return; |
| 1575 | } |
| 1576 | |
| 1577 | ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); |
| 1578 | if (!ri) |
| 1579 | return; |
| 1580 | |
| 1581 | trampoline_vaddr = get_trampoline_vaddr(); |
| 1582 | orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); |
| 1583 | if (orig_ret_vaddr == -1) |
| 1584 | goto fail; |
| 1585 | |
| 1586 | /* drop the entries invalidated by longjmp() */ |
| 1587 | chained = (orig_ret_vaddr == trampoline_vaddr); |
| 1588 | cleanup_return_instances(utask, chained, regs); |
| 1589 | |
| 1590 | /* |
| 1591 | * We don't want to keep trampoline address in stack, rather keep the |
| 1592 | * original return address of first caller thru all the consequent |
| 1593 | * instances. This also makes breakpoint unwrapping easier. |
| 1594 | */ |
| 1595 | if (chained) { |
| 1596 | if (!utask->return_instances) { |
| 1597 | /* |
| 1598 | * This situation is not possible. Likely we have an |
| 1599 | * attack from user-space. |
| 1600 | */ |
| 1601 | uprobe_warn(current, "handle tail call"); |
| 1602 | goto fail; |
| 1603 | } |
| 1604 | orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; |
| 1605 | } |
| 1606 | |
| 1607 | ri->uprobe = get_uprobe(uprobe); |
| 1608 | ri->func = instruction_pointer(regs); |
| 1609 | ri->stack = user_stack_pointer(regs); |
| 1610 | ri->orig_ret_vaddr = orig_ret_vaddr; |
| 1611 | ri->chained = chained; |
| 1612 | |
| 1613 | utask->depth++; |
| 1614 | ri->next = utask->return_instances; |
| 1615 | utask->return_instances = ri; |
| 1616 | |
| 1617 | return; |
| 1618 | fail: |
| 1619 | kfree(ri); |
| 1620 | } |
| 1621 | |
| 1622 | /* Prepare to single-step probed instruction out of line. */ |
| 1623 | static int |
| 1624 | pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) |
| 1625 | { |
| 1626 | struct uprobe_task *utask; |
| 1627 | unsigned long xol_vaddr; |
| 1628 | int err; |
| 1629 | |
| 1630 | utask = get_utask(); |
| 1631 | if (!utask) |
| 1632 | return -ENOMEM; |
| 1633 | |
| 1634 | xol_vaddr = xol_get_insn_slot(uprobe); |
| 1635 | if (!xol_vaddr) |
| 1636 | return -ENOMEM; |
| 1637 | |
| 1638 | utask->xol_vaddr = xol_vaddr; |
| 1639 | utask->vaddr = bp_vaddr; |
| 1640 | |
| 1641 | err = arch_uprobe_pre_xol(&uprobe->arch, regs); |
| 1642 | if (unlikely(err)) { |
| 1643 | xol_free_insn_slot(current); |
| 1644 | return err; |
| 1645 | } |
| 1646 | |
| 1647 | utask->active_uprobe = uprobe; |
| 1648 | utask->state = UTASK_SSTEP; |
| 1649 | return 0; |
| 1650 | } |
| 1651 | |
| 1652 | /* |
| 1653 | * If we are singlestepping, then ensure this thread is not connected to |
| 1654 | * non-fatal signals until completion of singlestep. When xol insn itself |
| 1655 | * triggers the signal, restart the original insn even if the task is |
| 1656 | * already SIGKILL'ed (since coredump should report the correct ip). This |
| 1657 | * is even more important if the task has a handler for SIGSEGV/etc, The |
| 1658 | * _same_ instruction should be repeated again after return from the signal |
| 1659 | * handler, and SSTEP can never finish in this case. |
| 1660 | */ |
| 1661 | bool uprobe_deny_signal(void) |
| 1662 | { |
| 1663 | struct task_struct *t = current; |
| 1664 | struct uprobe_task *utask = t->utask; |
| 1665 | |
| 1666 | if (likely(!utask || !utask->active_uprobe)) |
| 1667 | return false; |
| 1668 | |
| 1669 | WARN_ON_ONCE(utask->state != UTASK_SSTEP); |
| 1670 | |
| 1671 | if (signal_pending(t)) { |
| 1672 | spin_lock_irq(&t->sighand->siglock); |
| 1673 | clear_tsk_thread_flag(t, TIF_SIGPENDING); |
| 1674 | spin_unlock_irq(&t->sighand->siglock); |
| 1675 | |
| 1676 | if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { |
| 1677 | utask->state = UTASK_SSTEP_TRAPPED; |
| 1678 | set_tsk_thread_flag(t, TIF_UPROBE); |
| 1679 | } |
| 1680 | } |
| 1681 | |
| 1682 | return true; |
| 1683 | } |
| 1684 | |
| 1685 | static void mmf_recalc_uprobes(struct mm_struct *mm) |
| 1686 | { |
| 1687 | struct vm_area_struct *vma; |
| 1688 | |
| 1689 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
| 1690 | if (!valid_vma(vma, false)) |
| 1691 | continue; |
| 1692 | /* |
| 1693 | * This is not strictly accurate, we can race with |
| 1694 | * uprobe_unregister() and see the already removed |
| 1695 | * uprobe if delete_uprobe() was not yet called. |
| 1696 | * Or this uprobe can be filtered out. |
| 1697 | */ |
| 1698 | if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) |
| 1699 | return; |
| 1700 | } |
| 1701 | |
| 1702 | clear_bit(MMF_HAS_UPROBES, &mm->flags); |
| 1703 | } |
| 1704 | |
| 1705 | static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) |
| 1706 | { |
| 1707 | struct page *page; |
| 1708 | uprobe_opcode_t opcode; |
| 1709 | int result; |
| 1710 | |
| 1711 | pagefault_disable(); |
| 1712 | result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); |
| 1713 | pagefault_enable(); |
| 1714 | |
| 1715 | if (likely(result == 0)) |
| 1716 | goto out; |
| 1717 | |
| 1718 | /* |
| 1719 | * The NULL 'tsk' here ensures that any faults that occur here |
| 1720 | * will not be accounted to the task. 'mm' *is* current->mm, |
| 1721 | * but we treat this as a 'remote' access since it is |
| 1722 | * essentially a kernel access to the memory. |
| 1723 | */ |
| 1724 | result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page, |
| 1725 | NULL, NULL); |
| 1726 | if (result < 0) |
| 1727 | return result; |
| 1728 | |
| 1729 | copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); |
| 1730 | put_page(page); |
| 1731 | out: |
| 1732 | /* This needs to return true for any variant of the trap insn */ |
| 1733 | return is_trap_insn(&opcode); |
| 1734 | } |
| 1735 | |
| 1736 | static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) |
| 1737 | { |
| 1738 | struct mm_struct *mm = current->mm; |
| 1739 | struct uprobe *uprobe = NULL; |
| 1740 | struct vm_area_struct *vma; |
| 1741 | |
| 1742 | down_read(&mm->mmap_sem); |
| 1743 | vma = find_vma(mm, bp_vaddr); |
| 1744 | if (vma && vma->vm_start <= bp_vaddr) { |
| 1745 | if (valid_vma(vma, false)) { |
| 1746 | struct inode *inode = file_inode(vma->vm_file); |
| 1747 | loff_t offset = vaddr_to_offset(vma, bp_vaddr); |
| 1748 | |
| 1749 | uprobe = find_uprobe(inode, offset); |
| 1750 | } |
| 1751 | |
| 1752 | if (!uprobe) |
| 1753 | *is_swbp = is_trap_at_addr(mm, bp_vaddr); |
| 1754 | } else { |
| 1755 | *is_swbp = -EFAULT; |
| 1756 | } |
| 1757 | |
| 1758 | if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) |
| 1759 | mmf_recalc_uprobes(mm); |
| 1760 | up_read(&mm->mmap_sem); |
| 1761 | |
| 1762 | return uprobe; |
| 1763 | } |
| 1764 | |
| 1765 | static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) |
| 1766 | { |
| 1767 | struct uprobe_consumer *uc; |
| 1768 | int remove = UPROBE_HANDLER_REMOVE; |
| 1769 | bool need_prep = false; /* prepare return uprobe, when needed */ |
| 1770 | |
| 1771 | down_read(&uprobe->register_rwsem); |
| 1772 | for (uc = uprobe->consumers; uc; uc = uc->next) { |
| 1773 | int rc = 0; |
| 1774 | |
| 1775 | if (uc->handler) { |
| 1776 | rc = uc->handler(uc, regs); |
| 1777 | WARN(rc & ~UPROBE_HANDLER_MASK, |
| 1778 | "bad rc=0x%x from %pf()\n", rc, uc->handler); |
| 1779 | } |
| 1780 | |
| 1781 | if (uc->ret_handler) |
| 1782 | need_prep = true; |
| 1783 | |
| 1784 | remove &= rc; |
| 1785 | } |
| 1786 | |
| 1787 | if (need_prep && !remove) |
| 1788 | prepare_uretprobe(uprobe, regs); /* put bp at return */ |
| 1789 | |
| 1790 | if (remove && uprobe->consumers) { |
| 1791 | WARN_ON(!uprobe_is_active(uprobe)); |
| 1792 | unapply_uprobe(uprobe, current->mm); |
| 1793 | } |
| 1794 | up_read(&uprobe->register_rwsem); |
| 1795 | } |
| 1796 | |
| 1797 | static void |
| 1798 | handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) |
| 1799 | { |
| 1800 | struct uprobe *uprobe = ri->uprobe; |
| 1801 | struct uprobe_consumer *uc; |
| 1802 | |
| 1803 | down_read(&uprobe->register_rwsem); |
| 1804 | for (uc = uprobe->consumers; uc; uc = uc->next) { |
| 1805 | if (uc->ret_handler) |
| 1806 | uc->ret_handler(uc, ri->func, regs); |
| 1807 | } |
| 1808 | up_read(&uprobe->register_rwsem); |
| 1809 | } |
| 1810 | |
| 1811 | static struct return_instance *find_next_ret_chain(struct return_instance *ri) |
| 1812 | { |
| 1813 | bool chained; |
| 1814 | |
| 1815 | do { |
| 1816 | chained = ri->chained; |
| 1817 | ri = ri->next; /* can't be NULL if chained */ |
| 1818 | } while (chained); |
| 1819 | |
| 1820 | return ri; |
| 1821 | } |
| 1822 | |
| 1823 | static void handle_trampoline(struct pt_regs *regs) |
| 1824 | { |
| 1825 | struct uprobe_task *utask; |
| 1826 | struct return_instance *ri, *next; |
| 1827 | bool valid; |
| 1828 | |
| 1829 | utask = current->utask; |
| 1830 | if (!utask) |
| 1831 | goto sigill; |
| 1832 | |
| 1833 | ri = utask->return_instances; |
| 1834 | if (!ri) |
| 1835 | goto sigill; |
| 1836 | |
| 1837 | do { |
| 1838 | /* |
| 1839 | * We should throw out the frames invalidated by longjmp(). |
| 1840 | * If this chain is valid, then the next one should be alive |
| 1841 | * or NULL; the latter case means that nobody but ri->func |
| 1842 | * could hit this trampoline on return. TODO: sigaltstack(). |
| 1843 | */ |
| 1844 | next = find_next_ret_chain(ri); |
| 1845 | valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); |
| 1846 | |
| 1847 | instruction_pointer_set(regs, ri->orig_ret_vaddr); |
| 1848 | do { |
| 1849 | if (valid) |
| 1850 | handle_uretprobe_chain(ri, regs); |
| 1851 | ri = free_ret_instance(ri); |
| 1852 | utask->depth--; |
| 1853 | } while (ri != next); |
| 1854 | } while (!valid); |
| 1855 | |
| 1856 | utask->return_instances = ri; |
| 1857 | return; |
| 1858 | |
| 1859 | sigill: |
| 1860 | uprobe_warn(current, "handle uretprobe, sending SIGILL."); |
| 1861 | force_sig_info(SIGILL, SEND_SIG_FORCED, current); |
| 1862 | |
| 1863 | } |
| 1864 | |
| 1865 | bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) |
| 1866 | { |
| 1867 | return false; |
| 1868 | } |
| 1869 | |
| 1870 | bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, |
| 1871 | struct pt_regs *regs) |
| 1872 | { |
| 1873 | return true; |
| 1874 | } |
| 1875 | |
| 1876 | /* |
| 1877 | * Run handler and ask thread to singlestep. |
| 1878 | * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. |
| 1879 | */ |
| 1880 | static void handle_swbp(struct pt_regs *regs) |
| 1881 | { |
| 1882 | struct uprobe *uprobe; |
| 1883 | unsigned long bp_vaddr; |
| 1884 | int uninitialized_var(is_swbp); |
| 1885 | |
| 1886 | bp_vaddr = uprobe_get_swbp_addr(regs); |
| 1887 | if (bp_vaddr == get_trampoline_vaddr()) |
| 1888 | return handle_trampoline(regs); |
| 1889 | |
| 1890 | uprobe = find_active_uprobe(bp_vaddr, &is_swbp); |
| 1891 | if (!uprobe) { |
| 1892 | if (is_swbp > 0) { |
| 1893 | /* No matching uprobe; signal SIGTRAP. */ |
| 1894 | send_sig(SIGTRAP, current, 0); |
| 1895 | } else { |
| 1896 | /* |
| 1897 | * Either we raced with uprobe_unregister() or we can't |
| 1898 | * access this memory. The latter is only possible if |
| 1899 | * another thread plays with our ->mm. In both cases |
| 1900 | * we can simply restart. If this vma was unmapped we |
| 1901 | * can pretend this insn was not executed yet and get |
| 1902 | * the (correct) SIGSEGV after restart. |
| 1903 | */ |
| 1904 | instruction_pointer_set(regs, bp_vaddr); |
| 1905 | } |
| 1906 | return; |
| 1907 | } |
| 1908 | |
| 1909 | /* change it in advance for ->handler() and restart */ |
| 1910 | instruction_pointer_set(regs, bp_vaddr); |
| 1911 | |
| 1912 | /* |
| 1913 | * TODO: move copy_insn/etc into _register and remove this hack. |
| 1914 | * After we hit the bp, _unregister + _register can install the |
| 1915 | * new and not-yet-analyzed uprobe at the same address, restart. |
| 1916 | */ |
| 1917 | if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) |
| 1918 | goto out; |
| 1919 | |
| 1920 | /* |
| 1921 | * Pairs with the smp_wmb() in prepare_uprobe(). |
| 1922 | * |
| 1923 | * Guarantees that if we see the UPROBE_COPY_INSN bit set, then |
| 1924 | * we must also see the stores to &uprobe->arch performed by the |
| 1925 | * prepare_uprobe() call. |
| 1926 | */ |
| 1927 | smp_rmb(); |
| 1928 | |
| 1929 | /* Tracing handlers use ->utask to communicate with fetch methods */ |
| 1930 | if (!get_utask()) |
| 1931 | goto out; |
| 1932 | |
| 1933 | if (arch_uprobe_ignore(&uprobe->arch, regs)) |
| 1934 | goto out; |
| 1935 | |
| 1936 | handler_chain(uprobe, regs); |
| 1937 | |
| 1938 | if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) |
| 1939 | goto out; |
| 1940 | |
| 1941 | if (!pre_ssout(uprobe, regs, bp_vaddr)) |
| 1942 | return; |
| 1943 | |
| 1944 | /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ |
| 1945 | out: |
| 1946 | put_uprobe(uprobe); |
| 1947 | } |
| 1948 | |
| 1949 | /* |
| 1950 | * Perform required fix-ups and disable singlestep. |
| 1951 | * Allow pending signals to take effect. |
| 1952 | */ |
| 1953 | static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) |
| 1954 | { |
| 1955 | struct uprobe *uprobe; |
| 1956 | int err = 0; |
| 1957 | |
| 1958 | uprobe = utask->active_uprobe; |
| 1959 | if (utask->state == UTASK_SSTEP_ACK) |
| 1960 | err = arch_uprobe_post_xol(&uprobe->arch, regs); |
| 1961 | else if (utask->state == UTASK_SSTEP_TRAPPED) |
| 1962 | arch_uprobe_abort_xol(&uprobe->arch, regs); |
| 1963 | else |
| 1964 | WARN_ON_ONCE(1); |
| 1965 | |
| 1966 | put_uprobe(uprobe); |
| 1967 | utask->active_uprobe = NULL; |
| 1968 | utask->state = UTASK_RUNNING; |
| 1969 | xol_free_insn_slot(current); |
| 1970 | |
| 1971 | spin_lock_irq(¤t->sighand->siglock); |
| 1972 | recalc_sigpending(); /* see uprobe_deny_signal() */ |
| 1973 | spin_unlock_irq(¤t->sighand->siglock); |
| 1974 | |
| 1975 | if (unlikely(err)) { |
| 1976 | uprobe_warn(current, "execute the probed insn, sending SIGILL."); |
| 1977 | force_sig_info(SIGILL, SEND_SIG_FORCED, current); |
| 1978 | } |
| 1979 | } |
| 1980 | |
| 1981 | /* |
| 1982 | * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and |
| 1983 | * allows the thread to return from interrupt. After that handle_swbp() |
| 1984 | * sets utask->active_uprobe. |
| 1985 | * |
| 1986 | * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag |
| 1987 | * and allows the thread to return from interrupt. |
| 1988 | * |
| 1989 | * While returning to userspace, thread notices the TIF_UPROBE flag and calls |
| 1990 | * uprobe_notify_resume(). |
| 1991 | */ |
| 1992 | void uprobe_notify_resume(struct pt_regs *regs) |
| 1993 | { |
| 1994 | struct uprobe_task *utask; |
| 1995 | |
| 1996 | clear_thread_flag(TIF_UPROBE); |
| 1997 | |
| 1998 | utask = current->utask; |
| 1999 | if (utask && utask->active_uprobe) |
| 2000 | handle_singlestep(utask, regs); |
| 2001 | else |
| 2002 | handle_swbp(regs); |
| 2003 | } |
| 2004 | |
| 2005 | /* |
| 2006 | * uprobe_pre_sstep_notifier gets called from interrupt context as part of |
| 2007 | * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. |
| 2008 | */ |
| 2009 | int uprobe_pre_sstep_notifier(struct pt_regs *regs) |
| 2010 | { |
| 2011 | if (!current->mm) |
| 2012 | return 0; |
| 2013 | |
| 2014 | if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && |
| 2015 | (!current->utask || !current->utask->return_instances)) |
| 2016 | return 0; |
| 2017 | |
| 2018 | set_thread_flag(TIF_UPROBE); |
| 2019 | return 1; |
| 2020 | } |
| 2021 | |
| 2022 | /* |
| 2023 | * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier |
| 2024 | * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. |
| 2025 | */ |
| 2026 | int uprobe_post_sstep_notifier(struct pt_regs *regs) |
| 2027 | { |
| 2028 | struct uprobe_task *utask = current->utask; |
| 2029 | |
| 2030 | if (!current->mm || !utask || !utask->active_uprobe) |
| 2031 | /* task is currently not uprobed */ |
| 2032 | return 0; |
| 2033 | |
| 2034 | utask->state = UTASK_SSTEP_ACK; |
| 2035 | set_thread_flag(TIF_UPROBE); |
| 2036 | return 1; |
| 2037 | } |
| 2038 | |
| 2039 | static struct notifier_block uprobe_exception_nb = { |
| 2040 | .notifier_call = arch_uprobe_exception_notify, |
| 2041 | .priority = INT_MAX-1, /* notified after kprobes, kgdb */ |
| 2042 | }; |
| 2043 | |
| 2044 | static int __init init_uprobes(void) |
| 2045 | { |
| 2046 | int i; |
| 2047 | |
| 2048 | for (i = 0; i < UPROBES_HASH_SZ; i++) |
| 2049 | mutex_init(&uprobes_mmap_mutex[i]); |
| 2050 | |
| 2051 | if (percpu_init_rwsem(&dup_mmap_sem)) |
| 2052 | return -ENOMEM; |
| 2053 | |
| 2054 | return register_die_notifier(&uprobe_exception_nb); |
| 2055 | } |
| 2056 | __initcall(init_uprobes); |