blob: 60a2e76469852d42f4980dc0e0563fceb8276c8a [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
20#include <linux/bug.h>
21#include <linux/cache.h>
22#include <linux/rbtree.h>
23#include <linux/socket.h>
24#include <linux/refcount.h>
25
26#include <linux/atomic.h>
27#include <asm/types.h>
28#include <linux/spinlock.h>
29#include <linux/net.h>
30#include <linux/textsearch.h>
31#include <net/checksum.h>
32#include <linux/rcupdate.h>
33#include <linux/hrtimer.h>
34#include <linux/dma-mapping.h>
35#include <linux/netdev_features.h>
36#include <linux/sched.h>
37#include <linux/sched/clock.h>
38#include <net/flow_dissector.h>
39#include <linux/splice.h>
40#include <linux/in6.h>
41#include <linux/if_packet.h>
42#include <net/flow.h>
43
44/* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
217 */
218
219/* Don't change this without changing skb_csum_unnecessary! */
220#define CHECKSUM_NONE 0
221#define CHECKSUM_UNNECESSARY 1
222#define CHECKSUM_COMPLETE 2
223#define CHECKSUM_PARTIAL 3
224
225/* Maximum value in skb->csum_level */
226#define SKB_MAX_CSUM_LEVEL 3
227
228#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229#define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231#define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236/* return minimum truesize of one skb containing X bytes of data */
237#define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241struct net_device;
242struct scatterlist;
243struct pipe_inode_info;
244struct iov_iter;
245struct napi_struct;
246
247#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248struct nf_conntrack {
249 atomic_t use;
250};
251#endif
252
253#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254struct nf_bridge_info {
255 refcount_t use;
256 enum {
257 BRNF_PROTO_UNCHANGED,
258 BRNF_PROTO_8021Q,
259 BRNF_PROTO_PPPOE
260 } orig_proto:8;
261 u8 pkt_otherhost:1;
262 u8 in_prerouting:1;
263 u8 bridged_dnat:1;
264 __u16 frag_max_size;
265 struct net_device *physindev;
266
267 /* always valid & non-NULL from FORWARD on, for physdev match */
268 struct net_device *physoutdev;
269 union {
270 /* prerouting: detect dnat in orig/reply direction */
271 __be32 ipv4_daddr;
272 struct in6_addr ipv6_daddr;
273
274 /* after prerouting + nat detected: store original source
275 * mac since neigh resolution overwrites it, only used while
276 * skb is out in neigh layer.
277 */
278 char neigh_header[8];
279 };
280};
281#endif
282
283struct sk_buff_head {
284 /* These two members must be first. */
285 struct sk_buff *next;
286 struct sk_buff *prev;
287
288 __u32 qlen;
289 spinlock_t lock;
290};
291
292struct sk_buff;
293
294/* To allow 64K frame to be packed as single skb without frag_list we
295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296 * buffers which do not start on a page boundary.
297 *
298 * Since GRO uses frags we allocate at least 16 regardless of page
299 * size.
300 */
301#if (65536/PAGE_SIZE + 1) < 16
302#define MAX_SKB_FRAGS 16UL
303#else
304#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305#endif
306extern int sysctl_max_skb_frags;
307
308/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309 * segment using its current segmentation instead.
310 */
311#define GSO_BY_FRAGS 0xFFFF
312
313typedef struct skb_frag_struct skb_frag_t;
314
315struct skb_frag_struct {
316 struct {
317 struct page *p;
318 } page;
319#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 __u32 page_offset;
321 __u32 size;
322#else
323 __u16 page_offset;
324 __u16 size;
325#endif
326};
327
328static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329{
330 return frag->size;
331}
332
333static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334{
335 frag->size = size;
336}
337
338static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339{
340 frag->size += delta;
341}
342
343static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344{
345 frag->size -= delta;
346}
347
348static inline bool skb_frag_must_loop(struct page *p)
349{
350#if defined(CONFIG_HIGHMEM)
351 if (PageHighMem(p))
352 return true;
353#endif
354 return false;
355}
356
357/**
358 * skb_frag_foreach_page - loop over pages in a fragment
359 *
360 * @f: skb frag to operate on
361 * @f_off: offset from start of f->page.p
362 * @f_len: length from f_off to loop over
363 * @p: (temp var) current page
364 * @p_off: (temp var) offset from start of current page,
365 * non-zero only on first page.
366 * @p_len: (temp var) length in current page,
367 * < PAGE_SIZE only on first and last page.
368 * @copied: (temp var) length so far, excluding current p_len.
369 *
370 * A fragment can hold a compound page, in which case per-page
371 * operations, notably kmap_atomic, must be called for each
372 * regular page.
373 */
374#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
376 p_off = (f_off) & (PAGE_SIZE - 1), \
377 p_len = skb_frag_must_loop(p) ? \
378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
379 copied = 0; \
380 copied < f_len; \
381 copied += p_len, p++, p_off = 0, \
382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
383
384#define HAVE_HW_TIME_STAMP
385
386/**
387 * struct skb_shared_hwtstamps - hardware time stamps
388 * @hwtstamp: hardware time stamp transformed into duration
389 * since arbitrary point in time
390 *
391 * Software time stamps generated by ktime_get_real() are stored in
392 * skb->tstamp.
393 *
394 * hwtstamps can only be compared against other hwtstamps from
395 * the same device.
396 *
397 * This structure is attached to packets as part of the
398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399 */
400struct skb_shared_hwtstamps {
401 ktime_t hwtstamp;
402};
403
404/* Definitions for tx_flags in struct skb_shared_info */
405enum {
406 /* generate hardware time stamp */
407 SKBTX_HW_TSTAMP = 1 << 0,
408
409 /* generate software time stamp when queueing packet to NIC */
410 SKBTX_SW_TSTAMP = 1 << 1,
411
412 /* device driver is going to provide hardware time stamp */
413 SKBTX_IN_PROGRESS = 1 << 2,
414
415 /* device driver supports TX zero-copy buffers */
416 SKBTX_DEV_ZEROCOPY = 1 << 3,
417
418 /* generate wifi status information (where possible) */
419 SKBTX_WIFI_STATUS = 1 << 4,
420
421 /* This indicates at least one fragment might be overwritten
422 * (as in vmsplice(), sendfile() ...)
423 * If we need to compute a TX checksum, we'll need to copy
424 * all frags to avoid possible bad checksum
425 */
426 SKBTX_SHARED_FRAG = 1 << 5,
427
428 /* generate software time stamp when entering packet scheduling */
429 SKBTX_SCHED_TSTAMP = 1 << 6,
430};
431
432#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
434 SKBTX_SCHED_TSTAMP)
435#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436
437/*
438 * The callback notifies userspace to release buffers when skb DMA is done in
439 * lower device, the skb last reference should be 0 when calling this.
440 * The zerocopy_success argument is true if zero copy transmit occurred,
441 * false on data copy or out of memory error caused by data copy attempt.
442 * The ctx field is used to track device context.
443 * The desc field is used to track userspace buffer index.
444 */
445struct ubuf_info {
446 void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 union {
448 struct {
449 unsigned long desc;
450 void *ctx;
451 };
452 struct {
453 u32 id;
454 u16 len;
455 u16 zerocopy:1;
456 u32 bytelen;
457 };
458 };
459 refcount_t refcnt;
460
461 struct mmpin {
462 struct user_struct *user;
463 unsigned int num_pg;
464 } mmp;
465};
466
467#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468
469int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
470void mm_unaccount_pinned_pages(struct mmpin *mmp);
471
472struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
473struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
474 struct ubuf_info *uarg);
475
476static inline void sock_zerocopy_get(struct ubuf_info *uarg)
477{
478 refcount_inc(&uarg->refcnt);
479}
480
481void sock_zerocopy_put(struct ubuf_info *uarg);
482void sock_zerocopy_put_abort(struct ubuf_info *uarg);
483
484void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
485
486int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
487 struct msghdr *msg, int len,
488 struct ubuf_info *uarg);
489
490/* This data is invariant across clones and lives at
491 * the end of the header data, ie. at skb->end.
492 */
493struct skb_shared_info {
494 __u8 __unused;
495 __u8 meta_len;
496 __u8 nr_frags;
497 __u8 tx_flags;
498 unsigned short gso_size;
499 /* Warning: this field is not always filled in (UFO)! */
500 unsigned short gso_segs;
501 struct sk_buff *frag_list;
502 struct skb_shared_hwtstamps hwtstamps;
503 unsigned int gso_type;
504 u32 tskey;
505
506 /*
507 * Warning : all fields before dataref are cleared in __alloc_skb()
508 */
509 atomic_t dataref;
510
511 /* Intermediate layers must ensure that destructor_arg
512 * remains valid until skb destructor */
513 void * destructor_arg;
514
515 /* must be last field, see pskb_expand_head() */
516 skb_frag_t frags[MAX_SKB_FRAGS];
517};
518
519/* We divide dataref into two halves. The higher 16 bits hold references
520 * to the payload part of skb->data. The lower 16 bits hold references to
521 * the entire skb->data. A clone of a headerless skb holds the length of
522 * the header in skb->hdr_len.
523 *
524 * All users must obey the rule that the skb->data reference count must be
525 * greater than or equal to the payload reference count.
526 *
527 * Holding a reference to the payload part means that the user does not
528 * care about modifications to the header part of skb->data.
529 */
530#define SKB_DATAREF_SHIFT 16
531#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
532
533
534enum {
535 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
536 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
537 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
538};
539
540enum {
541 SKB_GSO_TCPV4 = 1 << 0,
542
543 /* This indicates the skb is from an untrusted source. */
544 SKB_GSO_DODGY = 1 << 1,
545
546 /* This indicates the tcp segment has CWR set. */
547 SKB_GSO_TCP_ECN = 1 << 2,
548
549 SKB_GSO_TCP_FIXEDID = 1 << 3,
550
551 SKB_GSO_TCPV6 = 1 << 4,
552
553 SKB_GSO_FCOE = 1 << 5,
554
555 SKB_GSO_GRE = 1 << 6,
556
557 SKB_GSO_GRE_CSUM = 1 << 7,
558
559 SKB_GSO_IPXIP4 = 1 << 8,
560
561 SKB_GSO_IPXIP6 = 1 << 9,
562
563 SKB_GSO_UDP_TUNNEL = 1 << 10,
564
565 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
566
567 SKB_GSO_PARTIAL = 1 << 12,
568
569 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
570
571 SKB_GSO_SCTP = 1 << 14,
572
573 SKB_GSO_ESP = 1 << 15,
574
575 SKB_GSO_UDP = 1 << 16,
576
577 SKB_GSO_UDP_L4 = 1 << 17,
578};
579
580#if BITS_PER_LONG > 32
581#define NET_SKBUFF_DATA_USES_OFFSET 1
582#endif
583
584#ifdef NET_SKBUFF_DATA_USES_OFFSET
585typedef unsigned int sk_buff_data_t;
586#else
587typedef unsigned char *sk_buff_data_t;
588#endif
589
590/**
591 * struct sk_buff - socket buffer
592 * @next: Next buffer in list
593 * @prev: Previous buffer in list
594 * @tstamp: Time we arrived/left
595 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
596 * @sk: Socket we are owned by
597 * @dev: Device we arrived on/are leaving by
598 * @cb: Control buffer. Free for use by every layer. Put private vars here
599 * @_skb_refdst: destination entry (with norefcount bit)
600 * @sp: the security path, used for xfrm
601 * @len: Length of actual data
602 * @data_len: Data length
603 * @mac_len: Length of link layer header
604 * @hdr_len: writable header length of cloned skb
605 * @csum: Checksum (must include start/offset pair)
606 * @csum_start: Offset from skb->head where checksumming should start
607 * @csum_offset: Offset from csum_start where checksum should be stored
608 * @priority: Packet queueing priority
609 * @ignore_df: allow local fragmentation
610 * @cloned: Head may be cloned (check refcnt to be sure)
611 * @ip_summed: Driver fed us an IP checksum
612 * @nohdr: Payload reference only, must not modify header
613 * @pkt_type: Packet class
614 * @fclone: skbuff clone status
615 * @ipvs_property: skbuff is owned by ipvs
616 * @tc_skip_classify: do not classify packet. set by IFB device
617 * @tc_at_ingress: used within tc_classify to distinguish in/egress
618 * @tc_redirected: packet was redirected by a tc action
619 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
620 * @peeked: this packet has been seen already, so stats have been
621 * done for it, don't do them again
622 * @nf_trace: netfilter packet trace flag
623 * @protocol: Packet protocol from driver
624 * @destructor: Destruct function
625 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
626 * @_nfct: Associated connection, if any (with nfctinfo bits)
627 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
628 * @skb_iif: ifindex of device we arrived on
629 * @tc_index: Traffic control index
630 * @hash: the packet hash
631 * @queue_mapping: Queue mapping for multiqueue devices
632 * @xmit_more: More SKBs are pending for this queue
633 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
634 * @ndisc_nodetype: router type (from link layer)
635 * @ooo_okay: allow the mapping of a socket to a queue to be changed
636 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
637 * ports.
638 * @sw_hash: indicates hash was computed in software stack
639 * @wifi_acked_valid: wifi_acked was set
640 * @wifi_acked: whether frame was acked on wifi or not
641 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
642 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
643 * @dst_pending_confirm: need to confirm neighbour
644 * @decrypted: Decrypted SKB
645 * @napi_id: id of the NAPI struct this skb came from
646 * @secmark: security marking
647 * @mark: Generic packet mark
648 * @vlan_proto: vlan encapsulation protocol
649 * @vlan_tci: vlan tag control information
650 * @inner_protocol: Protocol (encapsulation)
651 * @inner_transport_header: Inner transport layer header (encapsulation)
652 * @inner_network_header: Network layer header (encapsulation)
653 * @inner_mac_header: Link layer header (encapsulation)
654 * @transport_header: Transport layer header
655 * @network_header: Network layer header
656 * @mac_header: Link layer header
657 * @tail: Tail pointer
658 * @end: End pointer
659 * @head: Head of buffer
660 * @data: Data head pointer
661 * @truesize: Buffer size
662 * @users: User count - see {datagram,tcp}.c
663 */
664
665struct sk_buff {
666 union {
667 struct {
668 /* These two members must be first. */
669 struct sk_buff *next;
670 struct sk_buff *prev;
671
672 union {
673 struct net_device *dev;
674 /* Some protocols might use this space to store information,
675 * while device pointer would be NULL.
676 * UDP receive path is one user.
677 */
678 unsigned long dev_scratch;
679 };
680 };
681 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
682 struct list_head list;
683 };
684
685 union {
686 struct sock *sk;
687 int ip_defrag_offset;
688 };
689
690 union {
691 ktime_t tstamp;
692 u64 skb_mstamp;
693 };
694 /*
695 * This is the control buffer. It is free to use for every
696 * layer. Please put your private variables there. If you
697 * want to keep them across layers you have to do a skb_clone()
698 * first. This is owned by whoever has the skb queued ATM.
699 */
700 char cb[48] __aligned(8);
701
702 union {
703 struct {
704 unsigned long _skb_refdst;
705 void (*destructor)(struct sk_buff *skb);
706 };
707 struct list_head tcp_tsorted_anchor;
708 };
709
710#ifdef CONFIG_XFRM
711 struct sec_path *sp;
712#endif
713#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
714 unsigned long _nfct;
715#endif
716#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
717 struct nf_bridge_info *nf_bridge;
718#endif
719 unsigned int len,
720 data_len;
721 __u16 mac_len,
722 hdr_len;
723
724 /* Following fields are _not_ copied in __copy_skb_header()
725 * Note that queue_mapping is here mostly to fill a hole.
726 */
727 __u16 queue_mapping;
728
729/* if you move cloned around you also must adapt those constants */
730#ifdef __BIG_ENDIAN_BITFIELD
731#define CLONED_MASK (1 << 7)
732#else
733#define CLONED_MASK 1
734#endif
735#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
736
737 __u8 __cloned_offset[0];
738 __u8 cloned:1,
739 nohdr:1,
740 fclone:2,
741 peeked:1,
742 head_frag:1,
743 xmit_more:1,
744 pfmemalloc:1;
745
746 /* fields enclosed in headers_start/headers_end are copied
747 * using a single memcpy() in __copy_skb_header()
748 */
749 /* private: */
750 __u32 headers_start[0];
751 /* public: */
752
753/* if you move pkt_type around you also must adapt those constants */
754#ifdef __BIG_ENDIAN_BITFIELD
755#define PKT_TYPE_MAX (7 << 5)
756#else
757#define PKT_TYPE_MAX 7
758#endif
759#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
760
761 __u8 __pkt_type_offset[0];
762 __u8 pkt_type:3;
763 __u8 ignore_df:1;
764 __u8 nf_trace:1;
765 __u8 ip_summed:2;
766 __u8 ooo_okay:1;
767
768 __u8 l4_hash:1;
769 __u8 sw_hash:1;
770 __u8 wifi_acked_valid:1;
771 __u8 wifi_acked:1;
772 __u8 no_fcs:1;
773 /* Indicates the inner headers are valid in the skbuff. */
774 __u8 encapsulation:1;
775 __u8 encap_hdr_csum:1;
776 __u8 csum_valid:1;
777
778 __u8 csum_complete_sw:1;
779 __u8 csum_level:2;
780 __u8 csum_not_inet:1;
781 __u8 dst_pending_confirm:1;
782#ifdef CONFIG_IPV6_NDISC_NODETYPE
783 __u8 ndisc_nodetype:2;
784#endif
785 __u8 ipvs_property:1;
786
787 __u8 inner_protocol_type:1;
788 __u8 remcsum_offload:1;
789#ifdef CONFIG_NET_SWITCHDEV
790 __u8 offload_fwd_mark:1;
791 __u8 offload_mr_fwd_mark:1;
792#endif
793#ifdef CONFIG_NET_CLS_ACT
794 __u8 tc_skip_classify:1;
795 __u8 tc_at_ingress:1;
796 __u8 tc_redirected:1;
797 __u8 tc_from_ingress:1;
798#endif
799#ifdef CONFIG_TLS_DEVICE
800 __u8 decrypted:1;
801#endif
802
803#ifdef CONFIG_NET_SCHED
804 __u16 tc_index; /* traffic control index */
805#endif
806
807 union {
808 __wsum csum;
809 struct {
810 __u16 csum_start;
811 __u16 csum_offset;
812 };
813 };
814 __u32 priority;
815 int skb_iif;
816 __u32 hash;
817 __be16 vlan_proto;
818 __u16 vlan_tci;
819#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
820 union {
821 unsigned int napi_id;
822 unsigned int sender_cpu;
823 };
824#endif
825#ifdef CONFIG_NETWORK_SECMARK
826 __u32 secmark;
827#endif
828
829 union {
830 __u32 mark;
831 __u32 reserved_tailroom;
832 };
833
834 union {
835 __be16 inner_protocol;
836 __u8 inner_ipproto;
837 };
838
839 __u16 inner_transport_header;
840 __u16 inner_network_header;
841 __u16 inner_mac_header;
842
843 __be16 protocol;
844 __u16 transport_header;
845 __u16 network_header;
846 __u16 mac_header;
847
848 /* private: */
849 __u32 headers_end[0];
850 /* public: */
851
852 /* These elements must be at the end, see alloc_skb() for details. */
853 sk_buff_data_t tail;
854 sk_buff_data_t end;
855 unsigned char *head,
856 *data;
857 unsigned int truesize;
858 refcount_t users;
859};
860
861#ifdef __KERNEL__
862/*
863 * Handling routines are only of interest to the kernel
864 */
865
866#define SKB_ALLOC_FCLONE 0x01
867#define SKB_ALLOC_RX 0x02
868#define SKB_ALLOC_NAPI 0x04
869
870/* Returns true if the skb was allocated from PFMEMALLOC reserves */
871static inline bool skb_pfmemalloc(const struct sk_buff *skb)
872{
873 return unlikely(skb->pfmemalloc);
874}
875
876/*
877 * skb might have a dst pointer attached, refcounted or not.
878 * _skb_refdst low order bit is set if refcount was _not_ taken
879 */
880#define SKB_DST_NOREF 1UL
881#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
882
883#define SKB_NFCT_PTRMASK ~(7UL)
884/**
885 * skb_dst - returns skb dst_entry
886 * @skb: buffer
887 *
888 * Returns skb dst_entry, regardless of reference taken or not.
889 */
890static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
891{
892 /* If refdst was not refcounted, check we still are in a
893 * rcu_read_lock section
894 */
895 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
896 !rcu_read_lock_held() &&
897 !rcu_read_lock_bh_held());
898 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
899}
900
901/**
902 * skb_dst_set - sets skb dst
903 * @skb: buffer
904 * @dst: dst entry
905 *
906 * Sets skb dst, assuming a reference was taken on dst and should
907 * be released by skb_dst_drop()
908 */
909static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
910{
911 skb->_skb_refdst = (unsigned long)dst;
912}
913
914/**
915 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
916 * @skb: buffer
917 * @dst: dst entry
918 *
919 * Sets skb dst, assuming a reference was not taken on dst.
920 * If dst entry is cached, we do not take reference and dst_release
921 * will be avoided by refdst_drop. If dst entry is not cached, we take
922 * reference, so that last dst_release can destroy the dst immediately.
923 */
924static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
925{
926 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
927 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
928}
929
930/**
931 * skb_dst_is_noref - Test if skb dst isn't refcounted
932 * @skb: buffer
933 */
934static inline bool skb_dst_is_noref(const struct sk_buff *skb)
935{
936 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
937}
938
939static inline struct rtable *skb_rtable(const struct sk_buff *skb)
940{
941 return (struct rtable *)skb_dst(skb);
942}
943
944/* For mangling skb->pkt_type from user space side from applications
945 * such as nft, tc, etc, we only allow a conservative subset of
946 * possible pkt_types to be set.
947*/
948static inline bool skb_pkt_type_ok(u32 ptype)
949{
950 return ptype <= PACKET_OTHERHOST;
951}
952
953static inline unsigned int skb_napi_id(const struct sk_buff *skb)
954{
955#ifdef CONFIG_NET_RX_BUSY_POLL
956 return skb->napi_id;
957#else
958 return 0;
959#endif
960}
961
962/* decrement the reference count and return true if we can free the skb */
963static inline bool skb_unref(struct sk_buff *skb)
964{
965 if (unlikely(!skb))
966 return false;
967 if (likely(refcount_read(&skb->users) == 1))
968 smp_rmb();
969 else if (likely(!refcount_dec_and_test(&skb->users)))
970 return false;
971
972 return true;
973}
974
975void skb_release_head_state(struct sk_buff *skb);
976void kfree_skb(struct sk_buff *skb);
977void kfree_skb_list(struct sk_buff *segs);
978void skb_tx_error(struct sk_buff *skb);
979void consume_skb(struct sk_buff *skb);
980void __consume_stateless_skb(struct sk_buff *skb);
981void __kfree_skb(struct sk_buff *skb);
982extern struct kmem_cache *skbuff_head_cache;
983
984void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
985bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
986 bool *fragstolen, int *delta_truesize);
987
988struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
989 int node);
990struct sk_buff *__build_skb(void *data, unsigned int frag_size);
991struct sk_buff *build_skb(void *data, unsigned int frag_size);
992static inline struct sk_buff *alloc_skb(unsigned int size,
993 gfp_t priority)
994{
995 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
996}
997
998struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
999 unsigned long data_len,
1000 int max_page_order,
1001 int *errcode,
1002 gfp_t gfp_mask);
1003
1004/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1005struct sk_buff_fclones {
1006 struct sk_buff skb1;
1007
1008 struct sk_buff skb2;
1009
1010 refcount_t fclone_ref;
1011};
1012
1013/**
1014 * skb_fclone_busy - check if fclone is busy
1015 * @sk: socket
1016 * @skb: buffer
1017 *
1018 * Returns true if skb is a fast clone, and its clone is not freed.
1019 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1020 * so we also check that this didnt happen.
1021 */
1022static inline bool skb_fclone_busy(const struct sock *sk,
1023 const struct sk_buff *skb)
1024{
1025 const struct sk_buff_fclones *fclones;
1026
1027 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1028
1029 return skb->fclone == SKB_FCLONE_ORIG &&
1030 refcount_read(&fclones->fclone_ref) > 1 &&
1031 fclones->skb2.sk == sk;
1032}
1033
1034static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1035 gfp_t priority)
1036{
1037 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1038}
1039
1040struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1041void skb_headers_offset_update(struct sk_buff *skb, int off);
1042int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1043struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1044void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1045struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1046struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1047 gfp_t gfp_mask, bool fclone);
1048static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1049 gfp_t gfp_mask)
1050{
1051 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1052}
1053
1054int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1055struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1056 unsigned int headroom);
1057struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1058 int newtailroom, gfp_t priority);
1059int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1060 int offset, int len);
1061int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1062 int offset, int len);
1063int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1064int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1065
1066/**
1067 * skb_pad - zero pad the tail of an skb
1068 * @skb: buffer to pad
1069 * @pad: space to pad
1070 *
1071 * Ensure that a buffer is followed by a padding area that is zero
1072 * filled. Used by network drivers which may DMA or transfer data
1073 * beyond the buffer end onto the wire.
1074 *
1075 * May return error in out of memory cases. The skb is freed on error.
1076 */
1077static inline int skb_pad(struct sk_buff *skb, int pad)
1078{
1079 return __skb_pad(skb, pad, true);
1080}
1081#define dev_kfree_skb(a) consume_skb(a)
1082
1083int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1084 int getfrag(void *from, char *to, int offset,
1085 int len, int odd, struct sk_buff *skb),
1086 void *from, int length);
1087
1088int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1089 int offset, size_t size);
1090
1091struct skb_seq_state {
1092 __u32 lower_offset;
1093 __u32 upper_offset;
1094 __u32 frag_idx;
1095 __u32 stepped_offset;
1096 struct sk_buff *root_skb;
1097 struct sk_buff *cur_skb;
1098 __u8 *frag_data;
1099};
1100
1101void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1102 unsigned int to, struct skb_seq_state *st);
1103unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1104 struct skb_seq_state *st);
1105void skb_abort_seq_read(struct skb_seq_state *st);
1106
1107unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1108 unsigned int to, struct ts_config *config);
1109
1110/*
1111 * Packet hash types specify the type of hash in skb_set_hash.
1112 *
1113 * Hash types refer to the protocol layer addresses which are used to
1114 * construct a packet's hash. The hashes are used to differentiate or identify
1115 * flows of the protocol layer for the hash type. Hash types are either
1116 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1117 *
1118 * Properties of hashes:
1119 *
1120 * 1) Two packets in different flows have different hash values
1121 * 2) Two packets in the same flow should have the same hash value
1122 *
1123 * A hash at a higher layer is considered to be more specific. A driver should
1124 * set the most specific hash possible.
1125 *
1126 * A driver cannot indicate a more specific hash than the layer at which a hash
1127 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1128 *
1129 * A driver may indicate a hash level which is less specific than the
1130 * actual layer the hash was computed on. For instance, a hash computed
1131 * at L4 may be considered an L3 hash. This should only be done if the
1132 * driver can't unambiguously determine that the HW computed the hash at
1133 * the higher layer. Note that the "should" in the second property above
1134 * permits this.
1135 */
1136enum pkt_hash_types {
1137 PKT_HASH_TYPE_NONE, /* Undefined type */
1138 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1139 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1140 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1141};
1142
1143static inline void skb_clear_hash(struct sk_buff *skb)
1144{
1145 skb->hash = 0;
1146 skb->sw_hash = 0;
1147 skb->l4_hash = 0;
1148}
1149
1150static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1151{
1152 if (!skb->l4_hash)
1153 skb_clear_hash(skb);
1154}
1155
1156static inline void
1157__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1158{
1159 skb->l4_hash = is_l4;
1160 skb->sw_hash = is_sw;
1161 skb->hash = hash;
1162}
1163
1164static inline void
1165skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1166{
1167 /* Used by drivers to set hash from HW */
1168 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1169}
1170
1171static inline void
1172__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1173{
1174 __skb_set_hash(skb, hash, true, is_l4);
1175}
1176
1177void __skb_get_hash(struct sk_buff *skb);
1178u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1179u32 skb_get_poff(const struct sk_buff *skb);
1180u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1181 const struct flow_keys_basic *keys, int hlen);
1182__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1183 void *data, int hlen_proto);
1184
1185static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1186 int thoff, u8 ip_proto)
1187{
1188 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1189}
1190
1191void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1192 const struct flow_dissector_key *key,
1193 unsigned int key_count);
1194
1195bool __skb_flow_dissect(const struct sk_buff *skb,
1196 struct flow_dissector *flow_dissector,
1197 void *target_container,
1198 void *data, __be16 proto, int nhoff, int hlen,
1199 unsigned int flags);
1200
1201static inline bool skb_flow_dissect(const struct sk_buff *skb,
1202 struct flow_dissector *flow_dissector,
1203 void *target_container, unsigned int flags)
1204{
1205 return __skb_flow_dissect(skb, flow_dissector, target_container,
1206 NULL, 0, 0, 0, flags);
1207}
1208
1209static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1210 struct flow_keys *flow,
1211 unsigned int flags)
1212{
1213 memset(flow, 0, sizeof(*flow));
1214 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1215 NULL, 0, 0, 0, flags);
1216}
1217
1218static inline bool
1219skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1220 struct flow_keys_basic *flow, void *data,
1221 __be16 proto, int nhoff, int hlen,
1222 unsigned int flags)
1223{
1224 memset(flow, 0, sizeof(*flow));
1225 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1226 data, proto, nhoff, hlen, flags);
1227}
1228
1229void
1230skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1231 struct flow_dissector *flow_dissector,
1232 void *target_container);
1233
1234static inline __u32 skb_get_hash(struct sk_buff *skb)
1235{
1236 if (!skb->l4_hash && !skb->sw_hash)
1237 __skb_get_hash(skb);
1238
1239 return skb->hash;
1240}
1241
1242static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1243{
1244 if (!skb->l4_hash && !skb->sw_hash) {
1245 struct flow_keys keys;
1246 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1247
1248 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1249 }
1250
1251 return skb->hash;
1252}
1253
1254__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1255
1256static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1257{
1258 return skb->hash;
1259}
1260
1261static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1262{
1263 to->hash = from->hash;
1264 to->sw_hash = from->sw_hash;
1265 to->l4_hash = from->l4_hash;
1266};
1267
1268#ifdef NET_SKBUFF_DATA_USES_OFFSET
1269static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1270{
1271 return skb->head + skb->end;
1272}
1273
1274static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1275{
1276 return skb->end;
1277}
1278#else
1279static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1280{
1281 return skb->end;
1282}
1283
1284static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1285{
1286 return skb->end - skb->head;
1287}
1288#endif
1289
1290/* Internal */
1291#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1292
1293static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1294{
1295 return &skb_shinfo(skb)->hwtstamps;
1296}
1297
1298static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1299{
1300 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1301
1302 return is_zcopy ? skb_uarg(skb) : NULL;
1303}
1304
1305static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1306{
1307 if (skb && uarg && !skb_zcopy(skb)) {
1308 sock_zerocopy_get(uarg);
1309 skb_shinfo(skb)->destructor_arg = uarg;
1310 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1311 }
1312}
1313
1314static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1315{
1316 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1317 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1318}
1319
1320static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1321{
1322 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1323}
1324
1325static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1326{
1327 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1328}
1329
1330/* Release a reference on a zerocopy structure */
1331static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1332{
1333 struct ubuf_info *uarg = skb_zcopy(skb);
1334
1335 if (uarg) {
1336 if (uarg->callback == sock_zerocopy_callback) {
1337 uarg->zerocopy = uarg->zerocopy && zerocopy;
1338 sock_zerocopy_put(uarg);
1339 } else if (!skb_zcopy_is_nouarg(skb)) {
1340 uarg->callback(uarg, zerocopy);
1341 }
1342
1343 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1344 }
1345}
1346
1347/* Abort a zerocopy operation and revert zckey on error in send syscall */
1348static inline void skb_zcopy_abort(struct sk_buff *skb)
1349{
1350 struct ubuf_info *uarg = skb_zcopy(skb);
1351
1352 if (uarg) {
1353 sock_zerocopy_put_abort(uarg);
1354 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1355 }
1356}
1357
1358static inline void skb_mark_not_on_list(struct sk_buff *skb)
1359{
1360 skb->next = NULL;
1361}
1362
1363static inline void skb_list_del_init(struct sk_buff *skb)
1364{
1365 __list_del_entry(&skb->list);
1366 skb_mark_not_on_list(skb);
1367}
1368
1369/**
1370 * skb_queue_empty - check if a queue is empty
1371 * @list: queue head
1372 *
1373 * Returns true if the queue is empty, false otherwise.
1374 */
1375static inline int skb_queue_empty(const struct sk_buff_head *list)
1376{
1377 return list->next == (const struct sk_buff *) list;
1378}
1379
1380/**
1381 * skb_queue_is_last - check if skb is the last entry in the queue
1382 * @list: queue head
1383 * @skb: buffer
1384 *
1385 * Returns true if @skb is the last buffer on the list.
1386 */
1387static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1388 const struct sk_buff *skb)
1389{
1390 return skb->next == (const struct sk_buff *) list;
1391}
1392
1393/**
1394 * skb_queue_is_first - check if skb is the first entry in the queue
1395 * @list: queue head
1396 * @skb: buffer
1397 *
1398 * Returns true if @skb is the first buffer on the list.
1399 */
1400static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1401 const struct sk_buff *skb)
1402{
1403 return skb->prev == (const struct sk_buff *) list;
1404}
1405
1406/**
1407 * skb_queue_next - return the next packet in the queue
1408 * @list: queue head
1409 * @skb: current buffer
1410 *
1411 * Return the next packet in @list after @skb. It is only valid to
1412 * call this if skb_queue_is_last() evaluates to false.
1413 */
1414static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1415 const struct sk_buff *skb)
1416{
1417 /* This BUG_ON may seem severe, but if we just return then we
1418 * are going to dereference garbage.
1419 */
1420 BUG_ON(skb_queue_is_last(list, skb));
1421 return skb->next;
1422}
1423
1424/**
1425 * skb_queue_prev - return the prev packet in the queue
1426 * @list: queue head
1427 * @skb: current buffer
1428 *
1429 * Return the prev packet in @list before @skb. It is only valid to
1430 * call this if skb_queue_is_first() evaluates to false.
1431 */
1432static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1433 const struct sk_buff *skb)
1434{
1435 /* This BUG_ON may seem severe, but if we just return then we
1436 * are going to dereference garbage.
1437 */
1438 BUG_ON(skb_queue_is_first(list, skb));
1439 return skb->prev;
1440}
1441
1442/**
1443 * skb_get - reference buffer
1444 * @skb: buffer to reference
1445 *
1446 * Makes another reference to a socket buffer and returns a pointer
1447 * to the buffer.
1448 */
1449static inline struct sk_buff *skb_get(struct sk_buff *skb)
1450{
1451 refcount_inc(&skb->users);
1452 return skb;
1453}
1454
1455/*
1456 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1457 */
1458
1459/**
1460 * skb_cloned - is the buffer a clone
1461 * @skb: buffer to check
1462 *
1463 * Returns true if the buffer was generated with skb_clone() and is
1464 * one of multiple shared copies of the buffer. Cloned buffers are
1465 * shared data so must not be written to under normal circumstances.
1466 */
1467static inline int skb_cloned(const struct sk_buff *skb)
1468{
1469 return skb->cloned &&
1470 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1471}
1472
1473static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1474{
1475 might_sleep_if(gfpflags_allow_blocking(pri));
1476
1477 if (skb_cloned(skb))
1478 return pskb_expand_head(skb, 0, 0, pri);
1479
1480 return 0;
1481}
1482
1483/**
1484 * skb_header_cloned - is the header a clone
1485 * @skb: buffer to check
1486 *
1487 * Returns true if modifying the header part of the buffer requires
1488 * the data to be copied.
1489 */
1490static inline int skb_header_cloned(const struct sk_buff *skb)
1491{
1492 int dataref;
1493
1494 if (!skb->cloned)
1495 return 0;
1496
1497 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1498 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1499 return dataref != 1;
1500}
1501
1502static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1503{
1504 might_sleep_if(gfpflags_allow_blocking(pri));
1505
1506 if (skb_header_cloned(skb))
1507 return pskb_expand_head(skb, 0, 0, pri);
1508
1509 return 0;
1510}
1511
1512/**
1513 * __skb_header_release - release reference to header
1514 * @skb: buffer to operate on
1515 */
1516static inline void __skb_header_release(struct sk_buff *skb)
1517{
1518 skb->nohdr = 1;
1519 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1520}
1521
1522
1523/**
1524 * skb_shared - is the buffer shared
1525 * @skb: buffer to check
1526 *
1527 * Returns true if more than one person has a reference to this
1528 * buffer.
1529 */
1530static inline int skb_shared(const struct sk_buff *skb)
1531{
1532 return refcount_read(&skb->users) != 1;
1533}
1534
1535/**
1536 * skb_share_check - check if buffer is shared and if so clone it
1537 * @skb: buffer to check
1538 * @pri: priority for memory allocation
1539 *
1540 * If the buffer is shared the buffer is cloned and the old copy
1541 * drops a reference. A new clone with a single reference is returned.
1542 * If the buffer is not shared the original buffer is returned. When
1543 * being called from interrupt status or with spinlocks held pri must
1544 * be GFP_ATOMIC.
1545 *
1546 * NULL is returned on a memory allocation failure.
1547 */
1548static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1549{
1550 might_sleep_if(gfpflags_allow_blocking(pri));
1551 if (skb_shared(skb)) {
1552 struct sk_buff *nskb = skb_clone(skb, pri);
1553
1554 if (likely(nskb))
1555 consume_skb(skb);
1556 else
1557 kfree_skb(skb);
1558 skb = nskb;
1559 }
1560 return skb;
1561}
1562
1563/*
1564 * Copy shared buffers into a new sk_buff. We effectively do COW on
1565 * packets to handle cases where we have a local reader and forward
1566 * and a couple of other messy ones. The normal one is tcpdumping
1567 * a packet thats being forwarded.
1568 */
1569
1570/**
1571 * skb_unshare - make a copy of a shared buffer
1572 * @skb: buffer to check
1573 * @pri: priority for memory allocation
1574 *
1575 * If the socket buffer is a clone then this function creates a new
1576 * copy of the data, drops a reference count on the old copy and returns
1577 * the new copy with the reference count at 1. If the buffer is not a clone
1578 * the original buffer is returned. When called with a spinlock held or
1579 * from interrupt state @pri must be %GFP_ATOMIC
1580 *
1581 * %NULL is returned on a memory allocation failure.
1582 */
1583static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1584 gfp_t pri)
1585{
1586 might_sleep_if(gfpflags_allow_blocking(pri));
1587 if (skb_cloned(skb)) {
1588 struct sk_buff *nskb = skb_copy(skb, pri);
1589
1590 /* Free our shared copy */
1591 if (likely(nskb))
1592 consume_skb(skb);
1593 else
1594 kfree_skb(skb);
1595 skb = nskb;
1596 }
1597 return skb;
1598}
1599
1600/**
1601 * skb_peek - peek at the head of an &sk_buff_head
1602 * @list_: list to peek at
1603 *
1604 * Peek an &sk_buff. Unlike most other operations you _MUST_
1605 * be careful with this one. A peek leaves the buffer on the
1606 * list and someone else may run off with it. You must hold
1607 * the appropriate locks or have a private queue to do this.
1608 *
1609 * Returns %NULL for an empty list or a pointer to the head element.
1610 * The reference count is not incremented and the reference is therefore
1611 * volatile. Use with caution.
1612 */
1613static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1614{
1615 struct sk_buff *skb = list_->next;
1616
1617 if (skb == (struct sk_buff *)list_)
1618 skb = NULL;
1619 return skb;
1620}
1621
1622/**
1623 * skb_peek_next - peek skb following the given one from a queue
1624 * @skb: skb to start from
1625 * @list_: list to peek at
1626 *
1627 * Returns %NULL when the end of the list is met or a pointer to the
1628 * next element. The reference count is not incremented and the
1629 * reference is therefore volatile. Use with caution.
1630 */
1631static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1632 const struct sk_buff_head *list_)
1633{
1634 struct sk_buff *next = skb->next;
1635
1636 if (next == (struct sk_buff *)list_)
1637 next = NULL;
1638 return next;
1639}
1640
1641/**
1642 * skb_peek_tail - peek at the tail of an &sk_buff_head
1643 * @list_: list to peek at
1644 *
1645 * Peek an &sk_buff. Unlike most other operations you _MUST_
1646 * be careful with this one. A peek leaves the buffer on the
1647 * list and someone else may run off with it. You must hold
1648 * the appropriate locks or have a private queue to do this.
1649 *
1650 * Returns %NULL for an empty list or a pointer to the tail element.
1651 * The reference count is not incremented and the reference is therefore
1652 * volatile. Use with caution.
1653 */
1654static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1655{
1656 struct sk_buff *skb = list_->prev;
1657
1658 if (skb == (struct sk_buff *)list_)
1659 skb = NULL;
1660 return skb;
1661
1662}
1663
1664/**
1665 * skb_queue_len - get queue length
1666 * @list_: list to measure
1667 *
1668 * Return the length of an &sk_buff queue.
1669 */
1670static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1671{
1672 return list_->qlen;
1673}
1674
1675/**
1676 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1677 * @list: queue to initialize
1678 *
1679 * This initializes only the list and queue length aspects of
1680 * an sk_buff_head object. This allows to initialize the list
1681 * aspects of an sk_buff_head without reinitializing things like
1682 * the spinlock. It can also be used for on-stack sk_buff_head
1683 * objects where the spinlock is known to not be used.
1684 */
1685static inline void __skb_queue_head_init(struct sk_buff_head *list)
1686{
1687 list->prev = list->next = (struct sk_buff *)list;
1688 list->qlen = 0;
1689}
1690
1691/*
1692 * This function creates a split out lock class for each invocation;
1693 * this is needed for now since a whole lot of users of the skb-queue
1694 * infrastructure in drivers have different locking usage (in hardirq)
1695 * than the networking core (in softirq only). In the long run either the
1696 * network layer or drivers should need annotation to consolidate the
1697 * main types of usage into 3 classes.
1698 */
1699static inline void skb_queue_head_init(struct sk_buff_head *list)
1700{
1701 spin_lock_init(&list->lock);
1702 __skb_queue_head_init(list);
1703}
1704
1705static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1706 struct lock_class_key *class)
1707{
1708 skb_queue_head_init(list);
1709 lockdep_set_class(&list->lock, class);
1710}
1711
1712/*
1713 * Insert an sk_buff on a list.
1714 *
1715 * The "__skb_xxxx()" functions are the non-atomic ones that
1716 * can only be called with interrupts disabled.
1717 */
1718void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1719 struct sk_buff_head *list);
1720static inline void __skb_insert(struct sk_buff *newsk,
1721 struct sk_buff *prev, struct sk_buff *next,
1722 struct sk_buff_head *list)
1723{
1724 newsk->next = next;
1725 newsk->prev = prev;
1726 next->prev = prev->next = newsk;
1727 list->qlen++;
1728}
1729
1730static inline void __skb_queue_splice(const struct sk_buff_head *list,
1731 struct sk_buff *prev,
1732 struct sk_buff *next)
1733{
1734 struct sk_buff *first = list->next;
1735 struct sk_buff *last = list->prev;
1736
1737 first->prev = prev;
1738 prev->next = first;
1739
1740 last->next = next;
1741 next->prev = last;
1742}
1743
1744/**
1745 * skb_queue_splice - join two skb lists, this is designed for stacks
1746 * @list: the new list to add
1747 * @head: the place to add it in the first list
1748 */
1749static inline void skb_queue_splice(const struct sk_buff_head *list,
1750 struct sk_buff_head *head)
1751{
1752 if (!skb_queue_empty(list)) {
1753 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1754 head->qlen += list->qlen;
1755 }
1756}
1757
1758/**
1759 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1760 * @list: the new list to add
1761 * @head: the place to add it in the first list
1762 *
1763 * The list at @list is reinitialised
1764 */
1765static inline void skb_queue_splice_init(struct sk_buff_head *list,
1766 struct sk_buff_head *head)
1767{
1768 if (!skb_queue_empty(list)) {
1769 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1770 head->qlen += list->qlen;
1771 __skb_queue_head_init(list);
1772 }
1773}
1774
1775/**
1776 * skb_queue_splice_tail - join two skb lists, each list being a queue
1777 * @list: the new list to add
1778 * @head: the place to add it in the first list
1779 */
1780static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1781 struct sk_buff_head *head)
1782{
1783 if (!skb_queue_empty(list)) {
1784 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1785 head->qlen += list->qlen;
1786 }
1787}
1788
1789/**
1790 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1791 * @list: the new list to add
1792 * @head: the place to add it in the first list
1793 *
1794 * Each of the lists is a queue.
1795 * The list at @list is reinitialised
1796 */
1797static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1798 struct sk_buff_head *head)
1799{
1800 if (!skb_queue_empty(list)) {
1801 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1802 head->qlen += list->qlen;
1803 __skb_queue_head_init(list);
1804 }
1805}
1806
1807/**
1808 * __skb_queue_after - queue a buffer at the list head
1809 * @list: list to use
1810 * @prev: place after this buffer
1811 * @newsk: buffer to queue
1812 *
1813 * Queue a buffer int the middle of a list. This function takes no locks
1814 * and you must therefore hold required locks before calling it.
1815 *
1816 * A buffer cannot be placed on two lists at the same time.
1817 */
1818static inline void __skb_queue_after(struct sk_buff_head *list,
1819 struct sk_buff *prev,
1820 struct sk_buff *newsk)
1821{
1822 __skb_insert(newsk, prev, prev->next, list);
1823}
1824
1825void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1826 struct sk_buff_head *list);
1827
1828static inline void __skb_queue_before(struct sk_buff_head *list,
1829 struct sk_buff *next,
1830 struct sk_buff *newsk)
1831{
1832 __skb_insert(newsk, next->prev, next, list);
1833}
1834
1835/**
1836 * __skb_queue_head - queue a buffer at the list head
1837 * @list: list to use
1838 * @newsk: buffer to queue
1839 *
1840 * Queue a buffer at the start of a list. This function takes no locks
1841 * and you must therefore hold required locks before calling it.
1842 *
1843 * A buffer cannot be placed on two lists at the same time.
1844 */
1845void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1846static inline void __skb_queue_head(struct sk_buff_head *list,
1847 struct sk_buff *newsk)
1848{
1849 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1850}
1851
1852/**
1853 * __skb_queue_tail - queue a buffer at the list tail
1854 * @list: list to use
1855 * @newsk: buffer to queue
1856 *
1857 * Queue a buffer at the end of a list. This function takes no locks
1858 * and you must therefore hold required locks before calling it.
1859 *
1860 * A buffer cannot be placed on two lists at the same time.
1861 */
1862void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1863static inline void __skb_queue_tail(struct sk_buff_head *list,
1864 struct sk_buff *newsk)
1865{
1866 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1867}
1868
1869/*
1870 * remove sk_buff from list. _Must_ be called atomically, and with
1871 * the list known..
1872 */
1873void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1874static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1875{
1876 struct sk_buff *next, *prev;
1877
1878 list->qlen--;
1879 next = skb->next;
1880 prev = skb->prev;
1881 skb->next = skb->prev = NULL;
1882 next->prev = prev;
1883 prev->next = next;
1884}
1885
1886/**
1887 * __skb_dequeue - remove from the head of the queue
1888 * @list: list to dequeue from
1889 *
1890 * Remove the head of the list. This function does not take any locks
1891 * so must be used with appropriate locks held only. The head item is
1892 * returned or %NULL if the list is empty.
1893 */
1894struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1895static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1896{
1897 struct sk_buff *skb = skb_peek(list);
1898 if (skb)
1899 __skb_unlink(skb, list);
1900 return skb;
1901}
1902
1903/**
1904 * __skb_dequeue_tail - remove from the tail of the queue
1905 * @list: list to dequeue from
1906 *
1907 * Remove the tail of the list. This function does not take any locks
1908 * so must be used with appropriate locks held only. The tail item is
1909 * returned or %NULL if the list is empty.
1910 */
1911struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1912static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1913{
1914 struct sk_buff *skb = skb_peek_tail(list);
1915 if (skb)
1916 __skb_unlink(skb, list);
1917 return skb;
1918}
1919
1920
1921static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1922{
1923 return skb->data_len;
1924}
1925
1926static inline unsigned int skb_headlen(const struct sk_buff *skb)
1927{
1928 return skb->len - skb->data_len;
1929}
1930
1931static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1932{
1933 unsigned int i, len = 0;
1934
1935 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1936 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1937 return len;
1938}
1939
1940static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1941{
1942 return skb_headlen(skb) + __skb_pagelen(skb);
1943}
1944
1945/**
1946 * __skb_fill_page_desc - initialise a paged fragment in an skb
1947 * @skb: buffer containing fragment to be initialised
1948 * @i: paged fragment index to initialise
1949 * @page: the page to use for this fragment
1950 * @off: the offset to the data with @page
1951 * @size: the length of the data
1952 *
1953 * Initialises the @i'th fragment of @skb to point to &size bytes at
1954 * offset @off within @page.
1955 *
1956 * Does not take any additional reference on the fragment.
1957 */
1958static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1959 struct page *page, int off, int size)
1960{
1961 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1962
1963 /*
1964 * Propagate page pfmemalloc to the skb if we can. The problem is
1965 * that not all callers have unique ownership of the page but rely
1966 * on page_is_pfmemalloc doing the right thing(tm).
1967 */
1968 frag->page.p = page;
1969 frag->page_offset = off;
1970 skb_frag_size_set(frag, size);
1971
1972 page = compound_head(page);
1973 if (page_is_pfmemalloc(page))
1974 skb->pfmemalloc = true;
1975}
1976
1977/**
1978 * skb_fill_page_desc - initialise a paged fragment in an skb
1979 * @skb: buffer containing fragment to be initialised
1980 * @i: paged fragment index to initialise
1981 * @page: the page to use for this fragment
1982 * @off: the offset to the data with @page
1983 * @size: the length of the data
1984 *
1985 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1986 * @skb to point to @size bytes at offset @off within @page. In
1987 * addition updates @skb such that @i is the last fragment.
1988 *
1989 * Does not take any additional reference on the fragment.
1990 */
1991static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1992 struct page *page, int off, int size)
1993{
1994 __skb_fill_page_desc(skb, i, page, off, size);
1995 skb_shinfo(skb)->nr_frags = i + 1;
1996}
1997
1998void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1999 int size, unsigned int truesize);
2000
2001void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2002 unsigned int truesize);
2003
2004#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
2005#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
2006#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2007
2008#ifdef NET_SKBUFF_DATA_USES_OFFSET
2009static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2010{
2011 return skb->head + skb->tail;
2012}
2013
2014static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2015{
2016 skb->tail = skb->data - skb->head;
2017}
2018
2019static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2020{
2021 skb_reset_tail_pointer(skb);
2022 skb->tail += offset;
2023}
2024
2025#else /* NET_SKBUFF_DATA_USES_OFFSET */
2026static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2027{
2028 return skb->tail;
2029}
2030
2031static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2032{
2033 skb->tail = skb->data;
2034}
2035
2036static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2037{
2038 skb->tail = skb->data + offset;
2039}
2040
2041#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2042
2043/*
2044 * Add data to an sk_buff
2045 */
2046void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2047void *skb_put(struct sk_buff *skb, unsigned int len);
2048static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2049{
2050 void *tmp = skb_tail_pointer(skb);
2051 SKB_LINEAR_ASSERT(skb);
2052 skb->tail += len;
2053 skb->len += len;
2054 return tmp;
2055}
2056
2057static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2058{
2059 void *tmp = __skb_put(skb, len);
2060
2061 memset(tmp, 0, len);
2062 return tmp;
2063}
2064
2065static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2066 unsigned int len)
2067{
2068 void *tmp = __skb_put(skb, len);
2069
2070 memcpy(tmp, data, len);
2071 return tmp;
2072}
2073
2074static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2075{
2076 *(u8 *)__skb_put(skb, 1) = val;
2077}
2078
2079static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2080{
2081 void *tmp = skb_put(skb, len);
2082
2083 memset(tmp, 0, len);
2084
2085 return tmp;
2086}
2087
2088static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2089 unsigned int len)
2090{
2091 void *tmp = skb_put(skb, len);
2092
2093 memcpy(tmp, data, len);
2094
2095 return tmp;
2096}
2097
2098static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2099{
2100 *(u8 *)skb_put(skb, 1) = val;
2101}
2102
2103void *skb_push(struct sk_buff *skb, unsigned int len);
2104static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2105{
2106 skb->data -= len;
2107 skb->len += len;
2108 return skb->data;
2109}
2110
2111void *skb_pull(struct sk_buff *skb, unsigned int len);
2112static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2113{
2114 skb->len -= len;
2115 BUG_ON(skb->len < skb->data_len);
2116 return skb->data += len;
2117}
2118
2119static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2120{
2121 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2122}
2123
2124void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2125
2126static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2127{
2128 if (len > skb_headlen(skb) &&
2129 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2130 return NULL;
2131 skb->len -= len;
2132 return skb->data += len;
2133}
2134
2135static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2136{
2137 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2138}
2139
2140static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2141{
2142 if (likely(len <= skb_headlen(skb)))
2143 return 1;
2144 if (unlikely(len > skb->len))
2145 return 0;
2146 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2147}
2148
2149void skb_condense(struct sk_buff *skb);
2150
2151/**
2152 * skb_headroom - bytes at buffer head
2153 * @skb: buffer to check
2154 *
2155 * Return the number of bytes of free space at the head of an &sk_buff.
2156 */
2157static inline unsigned int skb_headroom(const struct sk_buff *skb)
2158{
2159 return skb->data - skb->head;
2160}
2161
2162/**
2163 * skb_tailroom - bytes at buffer end
2164 * @skb: buffer to check
2165 *
2166 * Return the number of bytes of free space at the tail of an sk_buff
2167 */
2168static inline int skb_tailroom(const struct sk_buff *skb)
2169{
2170 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2171}
2172
2173/**
2174 * skb_availroom - bytes at buffer end
2175 * @skb: buffer to check
2176 *
2177 * Return the number of bytes of free space at the tail of an sk_buff
2178 * allocated by sk_stream_alloc()
2179 */
2180static inline int skb_availroom(const struct sk_buff *skb)
2181{
2182 if (skb_is_nonlinear(skb))
2183 return 0;
2184
2185 return skb->end - skb->tail - skb->reserved_tailroom;
2186}
2187
2188/**
2189 * skb_reserve - adjust headroom
2190 * @skb: buffer to alter
2191 * @len: bytes to move
2192 *
2193 * Increase the headroom of an empty &sk_buff by reducing the tail
2194 * room. This is only allowed for an empty buffer.
2195 */
2196static inline void skb_reserve(struct sk_buff *skb, int len)
2197{
2198 skb->data += len;
2199 skb->tail += len;
2200}
2201
2202/**
2203 * skb_tailroom_reserve - adjust reserved_tailroom
2204 * @skb: buffer to alter
2205 * @mtu: maximum amount of headlen permitted
2206 * @needed_tailroom: minimum amount of reserved_tailroom
2207 *
2208 * Set reserved_tailroom so that headlen can be as large as possible but
2209 * not larger than mtu and tailroom cannot be smaller than
2210 * needed_tailroom.
2211 * The required headroom should already have been reserved before using
2212 * this function.
2213 */
2214static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2215 unsigned int needed_tailroom)
2216{
2217 SKB_LINEAR_ASSERT(skb);
2218 if (mtu < skb_tailroom(skb) - needed_tailroom)
2219 /* use at most mtu */
2220 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2221 else
2222 /* use up to all available space */
2223 skb->reserved_tailroom = needed_tailroom;
2224}
2225
2226#define ENCAP_TYPE_ETHER 0
2227#define ENCAP_TYPE_IPPROTO 1
2228
2229static inline void skb_set_inner_protocol(struct sk_buff *skb,
2230 __be16 protocol)
2231{
2232 skb->inner_protocol = protocol;
2233 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2234}
2235
2236static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2237 __u8 ipproto)
2238{
2239 skb->inner_ipproto = ipproto;
2240 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2241}
2242
2243static inline void skb_reset_inner_headers(struct sk_buff *skb)
2244{
2245 skb->inner_mac_header = skb->mac_header;
2246 skb->inner_network_header = skb->network_header;
2247 skb->inner_transport_header = skb->transport_header;
2248}
2249
2250static inline void skb_reset_mac_len(struct sk_buff *skb)
2251{
2252 skb->mac_len = skb->network_header - skb->mac_header;
2253}
2254
2255static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2256 *skb)
2257{
2258 return skb->head + skb->inner_transport_header;
2259}
2260
2261static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2262{
2263 return skb_inner_transport_header(skb) - skb->data;
2264}
2265
2266static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2267{
2268 skb->inner_transport_header = skb->data - skb->head;
2269}
2270
2271static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2272 const int offset)
2273{
2274 skb_reset_inner_transport_header(skb);
2275 skb->inner_transport_header += offset;
2276}
2277
2278static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2279{
2280 return skb->head + skb->inner_network_header;
2281}
2282
2283static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2284{
2285 skb->inner_network_header = skb->data - skb->head;
2286}
2287
2288static inline void skb_set_inner_network_header(struct sk_buff *skb,
2289 const int offset)
2290{
2291 skb_reset_inner_network_header(skb);
2292 skb->inner_network_header += offset;
2293}
2294
2295static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2296{
2297 return skb->head + skb->inner_mac_header;
2298}
2299
2300static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2301{
2302 skb->inner_mac_header = skb->data - skb->head;
2303}
2304
2305static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2306 const int offset)
2307{
2308 skb_reset_inner_mac_header(skb);
2309 skb->inner_mac_header += offset;
2310}
2311static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2312{
2313 return skb->transport_header != (typeof(skb->transport_header))~0U;
2314}
2315
2316static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2317{
2318 return skb->head + skb->transport_header;
2319}
2320
2321static inline void skb_reset_transport_header(struct sk_buff *skb)
2322{
2323 skb->transport_header = skb->data - skb->head;
2324}
2325
2326static inline void skb_set_transport_header(struct sk_buff *skb,
2327 const int offset)
2328{
2329 skb_reset_transport_header(skb);
2330 skb->transport_header += offset;
2331}
2332
2333static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2334{
2335 return skb->head + skb->network_header;
2336}
2337
2338static inline void skb_reset_network_header(struct sk_buff *skb)
2339{
2340 skb->network_header = skb->data - skb->head;
2341}
2342
2343static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2344{
2345 skb_reset_network_header(skb);
2346 skb->network_header += offset;
2347}
2348
2349static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2350{
2351 return skb->head + skb->mac_header;
2352}
2353
2354static inline int skb_mac_offset(const struct sk_buff *skb)
2355{
2356 return skb_mac_header(skb) - skb->data;
2357}
2358
2359static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2360{
2361 return skb->network_header - skb->mac_header;
2362}
2363
2364static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2365{
2366 return skb->mac_header != (typeof(skb->mac_header))~0U;
2367}
2368
2369static inline void skb_reset_mac_header(struct sk_buff *skb)
2370{
2371 skb->mac_header = skb->data - skb->head;
2372}
2373
2374static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2375{
2376 skb_reset_mac_header(skb);
2377 skb->mac_header += offset;
2378}
2379
2380static inline void skb_pop_mac_header(struct sk_buff *skb)
2381{
2382 skb->mac_header = skb->network_header;
2383}
2384
2385static inline void skb_probe_transport_header(struct sk_buff *skb,
2386 const int offset_hint)
2387{
2388 struct flow_keys_basic keys;
2389
2390 if (skb_transport_header_was_set(skb))
2391 return;
2392
2393 if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
2394 skb_set_transport_header(skb, keys.control.thoff);
2395 else
2396 skb_set_transport_header(skb, offset_hint);
2397}
2398
2399static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2400{
2401 if (skb_mac_header_was_set(skb)) {
2402 const unsigned char *old_mac = skb_mac_header(skb);
2403
2404 skb_set_mac_header(skb, -skb->mac_len);
2405 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2406 }
2407}
2408
2409static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2410{
2411 return skb->csum_start - skb_headroom(skb);
2412}
2413
2414static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2415{
2416 return skb->head + skb->csum_start;
2417}
2418
2419static inline int skb_transport_offset(const struct sk_buff *skb)
2420{
2421 return skb_transport_header(skb) - skb->data;
2422}
2423
2424static inline u32 skb_network_header_len(const struct sk_buff *skb)
2425{
2426 return skb->transport_header - skb->network_header;
2427}
2428
2429static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2430{
2431 return skb->inner_transport_header - skb->inner_network_header;
2432}
2433
2434static inline int skb_network_offset(const struct sk_buff *skb)
2435{
2436 return skb_network_header(skb) - skb->data;
2437}
2438
2439static inline int skb_inner_network_offset(const struct sk_buff *skb)
2440{
2441 return skb_inner_network_header(skb) - skb->data;
2442}
2443
2444static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2445{
2446 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2447}
2448
2449/*
2450 * CPUs often take a performance hit when accessing unaligned memory
2451 * locations. The actual performance hit varies, it can be small if the
2452 * hardware handles it or large if we have to take an exception and fix it
2453 * in software.
2454 *
2455 * Since an ethernet header is 14 bytes network drivers often end up with
2456 * the IP header at an unaligned offset. The IP header can be aligned by
2457 * shifting the start of the packet by 2 bytes. Drivers should do this
2458 * with:
2459 *
2460 * skb_reserve(skb, NET_IP_ALIGN);
2461 *
2462 * The downside to this alignment of the IP header is that the DMA is now
2463 * unaligned. On some architectures the cost of an unaligned DMA is high
2464 * and this cost outweighs the gains made by aligning the IP header.
2465 *
2466 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2467 * to be overridden.
2468 */
2469#ifndef NET_IP_ALIGN
2470#define NET_IP_ALIGN 2
2471#endif
2472
2473/*
2474 * The networking layer reserves some headroom in skb data (via
2475 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2476 * the header has to grow. In the default case, if the header has to grow
2477 * 32 bytes or less we avoid the reallocation.
2478 *
2479 * Unfortunately this headroom changes the DMA alignment of the resulting
2480 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2481 * on some architectures. An architecture can override this value,
2482 * perhaps setting it to a cacheline in size (since that will maintain
2483 * cacheline alignment of the DMA). It must be a power of 2.
2484 *
2485 * Various parts of the networking layer expect at least 32 bytes of
2486 * headroom, you should not reduce this.
2487 *
2488 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2489 * to reduce average number of cache lines per packet.
2490 * get_rps_cpus() for example only access one 64 bytes aligned block :
2491 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2492 */
2493#ifndef NET_SKB_PAD
2494#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2495#endif
2496
2497int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2498
2499static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2500{
2501 if (unlikely(skb_is_nonlinear(skb))) {
2502 WARN_ON(1);
2503 return;
2504 }
2505 skb->len = len;
2506 skb_set_tail_pointer(skb, len);
2507}
2508
2509static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2510{
2511 __skb_set_length(skb, len);
2512}
2513
2514void skb_trim(struct sk_buff *skb, unsigned int len);
2515
2516static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2517{
2518 if (skb->data_len)
2519 return ___pskb_trim(skb, len);
2520 __skb_trim(skb, len);
2521 return 0;
2522}
2523
2524static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2525{
2526 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2527}
2528
2529/**
2530 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2531 * @skb: buffer to alter
2532 * @len: new length
2533 *
2534 * This is identical to pskb_trim except that the caller knows that
2535 * the skb is not cloned so we should never get an error due to out-
2536 * of-memory.
2537 */
2538static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2539{
2540 int err = pskb_trim(skb, len);
2541 BUG_ON(err);
2542}
2543
2544static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2545{
2546 unsigned int diff = len - skb->len;
2547
2548 if (skb_tailroom(skb) < diff) {
2549 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2550 GFP_ATOMIC);
2551 if (ret)
2552 return ret;
2553 }
2554 __skb_set_length(skb, len);
2555 return 0;
2556}
2557
2558/**
2559 * skb_orphan - orphan a buffer
2560 * @skb: buffer to orphan
2561 *
2562 * If a buffer currently has an owner then we call the owner's
2563 * destructor function and make the @skb unowned. The buffer continues
2564 * to exist but is no longer charged to its former owner.
2565 */
2566static inline void skb_orphan(struct sk_buff *skb)
2567{
2568 if (skb->destructor) {
2569 skb->destructor(skb);
2570 skb->destructor = NULL;
2571 skb->sk = NULL;
2572 } else {
2573 BUG_ON(skb->sk);
2574 }
2575}
2576
2577/**
2578 * skb_orphan_frags - orphan the frags contained in a buffer
2579 * @skb: buffer to orphan frags from
2580 * @gfp_mask: allocation mask for replacement pages
2581 *
2582 * For each frag in the SKB which needs a destructor (i.e. has an
2583 * owner) create a copy of that frag and release the original
2584 * page by calling the destructor.
2585 */
2586static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2587{
2588 if (likely(!skb_zcopy(skb)))
2589 return 0;
2590 if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2591 return 0;
2592 return skb_copy_ubufs(skb, gfp_mask);
2593}
2594
2595/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2596static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2597{
2598 if (likely(!skb_zcopy(skb)))
2599 return 0;
2600 return skb_copy_ubufs(skb, gfp_mask);
2601}
2602
2603/**
2604 * __skb_queue_purge - empty a list
2605 * @list: list to empty
2606 *
2607 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2608 * the list and one reference dropped. This function does not take the
2609 * list lock and the caller must hold the relevant locks to use it.
2610 */
2611void skb_queue_purge(struct sk_buff_head *list);
2612static inline void __skb_queue_purge(struct sk_buff_head *list)
2613{
2614 struct sk_buff *skb;
2615 while ((skb = __skb_dequeue(list)) != NULL)
2616 kfree_skb(skb);
2617}
2618
2619unsigned int skb_rbtree_purge(struct rb_root *root);
2620
2621void *netdev_alloc_frag(unsigned int fragsz);
2622
2623struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2624 gfp_t gfp_mask);
2625
2626/**
2627 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2628 * @dev: network device to receive on
2629 * @length: length to allocate
2630 *
2631 * Allocate a new &sk_buff and assign it a usage count of one. The
2632 * buffer has unspecified headroom built in. Users should allocate
2633 * the headroom they think they need without accounting for the
2634 * built in space. The built in space is used for optimisations.
2635 *
2636 * %NULL is returned if there is no free memory. Although this function
2637 * allocates memory it can be called from an interrupt.
2638 */
2639static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2640 unsigned int length)
2641{
2642 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2643}
2644
2645/* legacy helper around __netdev_alloc_skb() */
2646static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2647 gfp_t gfp_mask)
2648{
2649 return __netdev_alloc_skb(NULL, length, gfp_mask);
2650}
2651
2652/* legacy helper around netdev_alloc_skb() */
2653static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2654{
2655 return netdev_alloc_skb(NULL, length);
2656}
2657
2658
2659static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2660 unsigned int length, gfp_t gfp)
2661{
2662 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2663
2664 if (NET_IP_ALIGN && skb)
2665 skb_reserve(skb, NET_IP_ALIGN);
2666 return skb;
2667}
2668
2669static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2670 unsigned int length)
2671{
2672 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2673}
2674
2675static inline void skb_free_frag(void *addr)
2676{
2677 page_frag_free(addr);
2678}
2679
2680void *napi_alloc_frag(unsigned int fragsz);
2681struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2682 unsigned int length, gfp_t gfp_mask);
2683static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2684 unsigned int length)
2685{
2686 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2687}
2688void napi_consume_skb(struct sk_buff *skb, int budget);
2689
2690void __kfree_skb_flush(void);
2691void __kfree_skb_defer(struct sk_buff *skb);
2692
2693/**
2694 * __dev_alloc_pages - allocate page for network Rx
2695 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2696 * @order: size of the allocation
2697 *
2698 * Allocate a new page.
2699 *
2700 * %NULL is returned if there is no free memory.
2701*/
2702static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2703 unsigned int order)
2704{
2705 /* This piece of code contains several assumptions.
2706 * 1. This is for device Rx, therefor a cold page is preferred.
2707 * 2. The expectation is the user wants a compound page.
2708 * 3. If requesting a order 0 page it will not be compound
2709 * due to the check to see if order has a value in prep_new_page
2710 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2711 * code in gfp_to_alloc_flags that should be enforcing this.
2712 */
2713 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2714
2715 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2716}
2717
2718static inline struct page *dev_alloc_pages(unsigned int order)
2719{
2720 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2721}
2722
2723/**
2724 * __dev_alloc_page - allocate a page for network Rx
2725 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2726 *
2727 * Allocate a new page.
2728 *
2729 * %NULL is returned if there is no free memory.
2730 */
2731static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2732{
2733 return __dev_alloc_pages(gfp_mask, 0);
2734}
2735
2736static inline struct page *dev_alloc_page(void)
2737{
2738 return dev_alloc_pages(0);
2739}
2740
2741/**
2742 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2743 * @page: The page that was allocated from skb_alloc_page
2744 * @skb: The skb that may need pfmemalloc set
2745 */
2746static inline void skb_propagate_pfmemalloc(struct page *page,
2747 struct sk_buff *skb)
2748{
2749 if (page_is_pfmemalloc(page))
2750 skb->pfmemalloc = true;
2751}
2752
2753/**
2754 * skb_frag_page - retrieve the page referred to by a paged fragment
2755 * @frag: the paged fragment
2756 *
2757 * Returns the &struct page associated with @frag.
2758 */
2759static inline struct page *skb_frag_page(const skb_frag_t *frag)
2760{
2761 return frag->page.p;
2762}
2763
2764/**
2765 * __skb_frag_ref - take an addition reference on a paged fragment.
2766 * @frag: the paged fragment
2767 *
2768 * Takes an additional reference on the paged fragment @frag.
2769 */
2770static inline void __skb_frag_ref(skb_frag_t *frag)
2771{
2772 get_page(skb_frag_page(frag));
2773}
2774
2775/**
2776 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2777 * @skb: the buffer
2778 * @f: the fragment offset.
2779 *
2780 * Takes an additional reference on the @f'th paged fragment of @skb.
2781 */
2782static inline void skb_frag_ref(struct sk_buff *skb, int f)
2783{
2784 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2785}
2786
2787/**
2788 * __skb_frag_unref - release a reference on a paged fragment.
2789 * @frag: the paged fragment
2790 *
2791 * Releases a reference on the paged fragment @frag.
2792 */
2793static inline void __skb_frag_unref(skb_frag_t *frag)
2794{
2795 put_page(skb_frag_page(frag));
2796}
2797
2798/**
2799 * skb_frag_unref - release a reference on a paged fragment of an skb.
2800 * @skb: the buffer
2801 * @f: the fragment offset
2802 *
2803 * Releases a reference on the @f'th paged fragment of @skb.
2804 */
2805static inline void skb_frag_unref(struct sk_buff *skb, int f)
2806{
2807 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2808}
2809
2810/**
2811 * skb_frag_address - gets the address of the data contained in a paged fragment
2812 * @frag: the paged fragment buffer
2813 *
2814 * Returns the address of the data within @frag. The page must already
2815 * be mapped.
2816 */
2817static inline void *skb_frag_address(const skb_frag_t *frag)
2818{
2819 return page_address(skb_frag_page(frag)) + frag->page_offset;
2820}
2821
2822/**
2823 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2824 * @frag: the paged fragment buffer
2825 *
2826 * Returns the address of the data within @frag. Checks that the page
2827 * is mapped and returns %NULL otherwise.
2828 */
2829static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2830{
2831 void *ptr = page_address(skb_frag_page(frag));
2832 if (unlikely(!ptr))
2833 return NULL;
2834
2835 return ptr + frag->page_offset;
2836}
2837
2838/**
2839 * __skb_frag_set_page - sets the page contained in a paged fragment
2840 * @frag: the paged fragment
2841 * @page: the page to set
2842 *
2843 * Sets the fragment @frag to contain @page.
2844 */
2845static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2846{
2847 frag->page.p = page;
2848}
2849
2850/**
2851 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2852 * @skb: the buffer
2853 * @f: the fragment offset
2854 * @page: the page to set
2855 *
2856 * Sets the @f'th fragment of @skb to contain @page.
2857 */
2858static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2859 struct page *page)
2860{
2861 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2862}
2863
2864bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2865
2866/**
2867 * skb_frag_dma_map - maps a paged fragment via the DMA API
2868 * @dev: the device to map the fragment to
2869 * @frag: the paged fragment to map
2870 * @offset: the offset within the fragment (starting at the
2871 * fragment's own offset)
2872 * @size: the number of bytes to map
2873 * @dir: the direction of the mapping (``PCI_DMA_*``)
2874 *
2875 * Maps the page associated with @frag to @device.
2876 */
2877static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2878 const skb_frag_t *frag,
2879 size_t offset, size_t size,
2880 enum dma_data_direction dir)
2881{
2882 return dma_map_page(dev, skb_frag_page(frag),
2883 frag->page_offset + offset, size, dir);
2884}
2885
2886static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2887 gfp_t gfp_mask)
2888{
2889 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2890}
2891
2892
2893static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2894 gfp_t gfp_mask)
2895{
2896 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2897}
2898
2899
2900/**
2901 * skb_clone_writable - is the header of a clone writable
2902 * @skb: buffer to check
2903 * @len: length up to which to write
2904 *
2905 * Returns true if modifying the header part of the cloned buffer
2906 * does not requires the data to be copied.
2907 */
2908static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2909{
2910 return !skb_header_cloned(skb) &&
2911 skb_headroom(skb) + len <= skb->hdr_len;
2912}
2913
2914static inline int skb_try_make_writable(struct sk_buff *skb,
2915 unsigned int write_len)
2916{
2917 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2918 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2919}
2920
2921static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2922 int cloned)
2923{
2924 int delta = 0;
2925
2926 if (headroom > skb_headroom(skb))
2927 delta = headroom - skb_headroom(skb);
2928
2929 if (delta || cloned)
2930 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2931 GFP_ATOMIC);
2932 return 0;
2933}
2934
2935/**
2936 * skb_cow - copy header of skb when it is required
2937 * @skb: buffer to cow
2938 * @headroom: needed headroom
2939 *
2940 * If the skb passed lacks sufficient headroom or its data part
2941 * is shared, data is reallocated. If reallocation fails, an error
2942 * is returned and original skb is not changed.
2943 *
2944 * The result is skb with writable area skb->head...skb->tail
2945 * and at least @headroom of space at head.
2946 */
2947static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2948{
2949 return __skb_cow(skb, headroom, skb_cloned(skb));
2950}
2951
2952/**
2953 * skb_cow_head - skb_cow but only making the head writable
2954 * @skb: buffer to cow
2955 * @headroom: needed headroom
2956 *
2957 * This function is identical to skb_cow except that we replace the
2958 * skb_cloned check by skb_header_cloned. It should be used when
2959 * you only need to push on some header and do not need to modify
2960 * the data.
2961 */
2962static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2963{
2964 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2965}
2966
2967/**
2968 * skb_padto - pad an skbuff up to a minimal size
2969 * @skb: buffer to pad
2970 * @len: minimal length
2971 *
2972 * Pads up a buffer to ensure the trailing bytes exist and are
2973 * blanked. If the buffer already contains sufficient data it
2974 * is untouched. Otherwise it is extended. Returns zero on
2975 * success. The skb is freed on error.
2976 */
2977static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2978{
2979 unsigned int size = skb->len;
2980 if (likely(size >= len))
2981 return 0;
2982 return skb_pad(skb, len - size);
2983}
2984
2985/**
2986 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2987 * @skb: buffer to pad
2988 * @len: minimal length
2989 * @free_on_error: free buffer on error
2990 *
2991 * Pads up a buffer to ensure the trailing bytes exist and are
2992 * blanked. If the buffer already contains sufficient data it
2993 * is untouched. Otherwise it is extended. Returns zero on
2994 * success. The skb is freed on error if @free_on_error is true.
2995 */
2996static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2997 bool free_on_error)
2998{
2999 unsigned int size = skb->len;
3000
3001 if (unlikely(size < len)) {
3002 len -= size;
3003 if (__skb_pad(skb, len, free_on_error))
3004 return -ENOMEM;
3005 __skb_put(skb, len);
3006 }
3007 return 0;
3008}
3009
3010/**
3011 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3012 * @skb: buffer to pad
3013 * @len: minimal length
3014 *
3015 * Pads up a buffer to ensure the trailing bytes exist and are
3016 * blanked. If the buffer already contains sufficient data it
3017 * is untouched. Otherwise it is extended. Returns zero on
3018 * success. The skb is freed on error.
3019 */
3020static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3021{
3022 return __skb_put_padto(skb, len, true);
3023}
3024
3025static inline int skb_add_data(struct sk_buff *skb,
3026 struct iov_iter *from, int copy)
3027{
3028 const int off = skb->len;
3029
3030 if (skb->ip_summed == CHECKSUM_NONE) {
3031 __wsum csum = 0;
3032 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3033 &csum, from)) {
3034 skb->csum = csum_block_add(skb->csum, csum, off);
3035 return 0;
3036 }
3037 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3038 return 0;
3039
3040 __skb_trim(skb, off);
3041 return -EFAULT;
3042}
3043
3044static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3045 const struct page *page, int off)
3046{
3047 if (skb_zcopy(skb))
3048 return false;
3049 if (i) {
3050 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3051
3052 return page == skb_frag_page(frag) &&
3053 off == frag->page_offset + skb_frag_size(frag);
3054 }
3055 return false;
3056}
3057
3058static inline int __skb_linearize(struct sk_buff *skb)
3059{
3060 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3061}
3062
3063/**
3064 * skb_linearize - convert paged skb to linear one
3065 * @skb: buffer to linarize
3066 *
3067 * If there is no free memory -ENOMEM is returned, otherwise zero
3068 * is returned and the old skb data released.
3069 */
3070static inline int skb_linearize(struct sk_buff *skb)
3071{
3072 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3073}
3074
3075/**
3076 * skb_has_shared_frag - can any frag be overwritten
3077 * @skb: buffer to test
3078 *
3079 * Return true if the skb has at least one frag that might be modified
3080 * by an external entity (as in vmsplice()/sendfile())
3081 */
3082static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3083{
3084 return skb_is_nonlinear(skb) &&
3085 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3086}
3087
3088/**
3089 * skb_linearize_cow - make sure skb is linear and writable
3090 * @skb: buffer to process
3091 *
3092 * If there is no free memory -ENOMEM is returned, otherwise zero
3093 * is returned and the old skb data released.
3094 */
3095static inline int skb_linearize_cow(struct sk_buff *skb)
3096{
3097 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3098 __skb_linearize(skb) : 0;
3099}
3100
3101static __always_inline void
3102__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3103 unsigned int off)
3104{
3105 if (skb->ip_summed == CHECKSUM_COMPLETE)
3106 skb->csum = csum_block_sub(skb->csum,
3107 csum_partial(start, len, 0), off);
3108 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3109 skb_checksum_start_offset(skb) < 0)
3110 skb->ip_summed = CHECKSUM_NONE;
3111}
3112
3113/**
3114 * skb_postpull_rcsum - update checksum for received skb after pull
3115 * @skb: buffer to update
3116 * @start: start of data before pull
3117 * @len: length of data pulled
3118 *
3119 * After doing a pull on a received packet, you need to call this to
3120 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3121 * CHECKSUM_NONE so that it can be recomputed from scratch.
3122 */
3123static inline void skb_postpull_rcsum(struct sk_buff *skb,
3124 const void *start, unsigned int len)
3125{
3126 __skb_postpull_rcsum(skb, start, len, 0);
3127}
3128
3129static __always_inline void
3130__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3131 unsigned int off)
3132{
3133 if (skb->ip_summed == CHECKSUM_COMPLETE)
3134 skb->csum = csum_block_add(skb->csum,
3135 csum_partial(start, len, 0), off);
3136}
3137
3138/**
3139 * skb_postpush_rcsum - update checksum for received skb after push
3140 * @skb: buffer to update
3141 * @start: start of data after push
3142 * @len: length of data pushed
3143 *
3144 * After doing a push on a received packet, you need to call this to
3145 * update the CHECKSUM_COMPLETE checksum.
3146 */
3147static inline void skb_postpush_rcsum(struct sk_buff *skb,
3148 const void *start, unsigned int len)
3149{
3150 __skb_postpush_rcsum(skb, start, len, 0);
3151}
3152
3153void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3154
3155/**
3156 * skb_push_rcsum - push skb and update receive checksum
3157 * @skb: buffer to update
3158 * @len: length of data pulled
3159 *
3160 * This function performs an skb_push on the packet and updates
3161 * the CHECKSUM_COMPLETE checksum. It should be used on
3162 * receive path processing instead of skb_push unless you know
3163 * that the checksum difference is zero (e.g., a valid IP header)
3164 * or you are setting ip_summed to CHECKSUM_NONE.
3165 */
3166static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3167{
3168 skb_push(skb, len);
3169 skb_postpush_rcsum(skb, skb->data, len);
3170 return skb->data;
3171}
3172
3173int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3174/**
3175 * pskb_trim_rcsum - trim received skb and update checksum
3176 * @skb: buffer to trim
3177 * @len: new length
3178 *
3179 * This is exactly the same as pskb_trim except that it ensures the
3180 * checksum of received packets are still valid after the operation.
3181 */
3182
3183static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3184{
3185 if (likely(len >= skb->len))
3186 return 0;
3187 return pskb_trim_rcsum_slow(skb, len);
3188}
3189
3190static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3191{
3192 if (skb->ip_summed == CHECKSUM_COMPLETE)
3193 skb->ip_summed = CHECKSUM_NONE;
3194 __skb_trim(skb, len);
3195 return 0;
3196}
3197
3198static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3199{
3200 if (skb->ip_summed == CHECKSUM_COMPLETE)
3201 skb->ip_summed = CHECKSUM_NONE;
3202 return __skb_grow(skb, len);
3203}
3204
3205#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3206#define skb_rb_first(root) rb_to_skb(rb_first(root))
3207#define skb_rb_last(root) rb_to_skb(rb_last(root))
3208#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3209#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3210
3211#define skb_queue_walk(queue, skb) \
3212 for (skb = (queue)->next; \
3213 skb != (struct sk_buff *)(queue); \
3214 skb = skb->next)
3215
3216#define skb_queue_walk_safe(queue, skb, tmp) \
3217 for (skb = (queue)->next, tmp = skb->next; \
3218 skb != (struct sk_buff *)(queue); \
3219 skb = tmp, tmp = skb->next)
3220
3221#define skb_queue_walk_from(queue, skb) \
3222 for (; skb != (struct sk_buff *)(queue); \
3223 skb = skb->next)
3224
3225#define skb_rbtree_walk(skb, root) \
3226 for (skb = skb_rb_first(root); skb != NULL; \
3227 skb = skb_rb_next(skb))
3228
3229#define skb_rbtree_walk_from(skb) \
3230 for (; skb != NULL; \
3231 skb = skb_rb_next(skb))
3232
3233#define skb_rbtree_walk_from_safe(skb, tmp) \
3234 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3235 skb = tmp)
3236
3237#define skb_queue_walk_from_safe(queue, skb, tmp) \
3238 for (tmp = skb->next; \
3239 skb != (struct sk_buff *)(queue); \
3240 skb = tmp, tmp = skb->next)
3241
3242#define skb_queue_reverse_walk(queue, skb) \
3243 for (skb = (queue)->prev; \
3244 skb != (struct sk_buff *)(queue); \
3245 skb = skb->prev)
3246
3247#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3248 for (skb = (queue)->prev, tmp = skb->prev; \
3249 skb != (struct sk_buff *)(queue); \
3250 skb = tmp, tmp = skb->prev)
3251
3252#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3253 for (tmp = skb->prev; \
3254 skb != (struct sk_buff *)(queue); \
3255 skb = tmp, tmp = skb->prev)
3256
3257static inline bool skb_has_frag_list(const struct sk_buff *skb)
3258{
3259 return skb_shinfo(skb)->frag_list != NULL;
3260}
3261
3262static inline void skb_frag_list_init(struct sk_buff *skb)
3263{
3264 skb_shinfo(skb)->frag_list = NULL;
3265}
3266
3267#define skb_walk_frags(skb, iter) \
3268 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3269
3270
3271int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3272 const struct sk_buff *skb);
3273struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3274 struct sk_buff_head *queue,
3275 unsigned int flags,
3276 void (*destructor)(struct sock *sk,
3277 struct sk_buff *skb),
3278 int *peeked, int *off, int *err,
3279 struct sk_buff **last);
3280struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3281 void (*destructor)(struct sock *sk,
3282 struct sk_buff *skb),
3283 int *peeked, int *off, int *err,
3284 struct sk_buff **last);
3285struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3286 void (*destructor)(struct sock *sk,
3287 struct sk_buff *skb),
3288 int *peeked, int *off, int *err);
3289struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3290 int *err);
3291__poll_t datagram_poll(struct file *file, struct socket *sock,
3292 struct poll_table_struct *wait);
3293int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3294 struct iov_iter *to, int size);
3295static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3296 struct msghdr *msg, int size)
3297{
3298 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3299}
3300int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3301 struct msghdr *msg);
3302int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3303 struct iov_iter *from, int len);
3304int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3305void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3306void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3307static inline void skb_free_datagram_locked(struct sock *sk,
3308 struct sk_buff *skb)
3309{
3310 __skb_free_datagram_locked(sk, skb, 0);
3311}
3312int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3313int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3314int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3315__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3316 int len, __wsum csum);
3317int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3318 struct pipe_inode_info *pipe, unsigned int len,
3319 unsigned int flags);
3320int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3321 int len);
3322int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3323void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3324unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3325int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3326 int len, int hlen);
3327void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3328int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3329void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3330bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3331bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3332struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3333struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3334int skb_ensure_writable(struct sk_buff *skb, int write_len);
3335int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3336int skb_vlan_pop(struct sk_buff *skb);
3337int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3338struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3339 gfp_t gfp);
3340
3341static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3342{
3343 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3344}
3345
3346static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3347{
3348 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3349}
3350
3351struct skb_checksum_ops {
3352 __wsum (*update)(const void *mem, int len, __wsum wsum);
3353 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3354};
3355
3356extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3357
3358__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3359 __wsum csum, const struct skb_checksum_ops *ops);
3360__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3361 __wsum csum);
3362
3363static inline void * __must_check
3364__skb_header_pointer(const struct sk_buff *skb, int offset,
3365 int len, void *data, int hlen, void *buffer)
3366{
3367 if (hlen - offset >= len)
3368 return data + offset;
3369
3370 if (!skb ||
3371 skb_copy_bits(skb, offset, buffer, len) < 0)
3372 return NULL;
3373
3374 return buffer;
3375}
3376
3377static inline void * __must_check
3378skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3379{
3380 return __skb_header_pointer(skb, offset, len, skb->data,
3381 skb_headlen(skb), buffer);
3382}
3383
3384/**
3385 * skb_needs_linearize - check if we need to linearize a given skb
3386 * depending on the given device features.
3387 * @skb: socket buffer to check
3388 * @features: net device features
3389 *
3390 * Returns true if either:
3391 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3392 * 2. skb is fragmented and the device does not support SG.
3393 */
3394static inline bool skb_needs_linearize(struct sk_buff *skb,
3395 netdev_features_t features)
3396{
3397 return skb_is_nonlinear(skb) &&
3398 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3399 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3400}
3401
3402static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3403 void *to,
3404 const unsigned int len)
3405{
3406 memcpy(to, skb->data, len);
3407}
3408
3409static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3410 const int offset, void *to,
3411 const unsigned int len)
3412{
3413 memcpy(to, skb->data + offset, len);
3414}
3415
3416static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3417 const void *from,
3418 const unsigned int len)
3419{
3420 memcpy(skb->data, from, len);
3421}
3422
3423static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3424 const int offset,
3425 const void *from,
3426 const unsigned int len)
3427{
3428 memcpy(skb->data + offset, from, len);
3429}
3430
3431void skb_init(void);
3432
3433static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3434{
3435 return skb->tstamp;
3436}
3437
3438/**
3439 * skb_get_timestamp - get timestamp from a skb
3440 * @skb: skb to get stamp from
3441 * @stamp: pointer to struct timeval to store stamp in
3442 *
3443 * Timestamps are stored in the skb as offsets to a base timestamp.
3444 * This function converts the offset back to a struct timeval and stores
3445 * it in stamp.
3446 */
3447static inline void skb_get_timestamp(const struct sk_buff *skb,
3448 struct timeval *stamp)
3449{
3450 *stamp = ktime_to_timeval(skb->tstamp);
3451}
3452
3453static inline void skb_get_timestampns(const struct sk_buff *skb,
3454 struct timespec *stamp)
3455{
3456 *stamp = ktime_to_timespec(skb->tstamp);
3457}
3458
3459static inline void __net_timestamp(struct sk_buff *skb)
3460{
3461 skb->tstamp = ktime_get_real();
3462}
3463
3464static inline ktime_t net_timedelta(ktime_t t)
3465{
3466 return ktime_sub(ktime_get_real(), t);
3467}
3468
3469static inline ktime_t net_invalid_timestamp(void)
3470{
3471 return 0;
3472}
3473
3474static inline u8 skb_metadata_len(const struct sk_buff *skb)
3475{
3476 return skb_shinfo(skb)->meta_len;
3477}
3478
3479static inline void *skb_metadata_end(const struct sk_buff *skb)
3480{
3481 return skb_mac_header(skb);
3482}
3483
3484static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3485 const struct sk_buff *skb_b,
3486 u8 meta_len)
3487{
3488 const void *a = skb_metadata_end(skb_a);
3489 const void *b = skb_metadata_end(skb_b);
3490 /* Using more efficient varaiant than plain call to memcmp(). */
3491#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3492 u64 diffs = 0;
3493
3494 switch (meta_len) {
3495#define __it(x, op) (x -= sizeof(u##op))
3496#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3497 case 32: diffs |= __it_diff(a, b, 64);
3498 case 24: diffs |= __it_diff(a, b, 64);
3499 case 16: diffs |= __it_diff(a, b, 64);
3500 case 8: diffs |= __it_diff(a, b, 64);
3501 break;
3502 case 28: diffs |= __it_diff(a, b, 64);
3503 case 20: diffs |= __it_diff(a, b, 64);
3504 case 12: diffs |= __it_diff(a, b, 64);
3505 case 4: diffs |= __it_diff(a, b, 32);
3506 break;
3507 }
3508 return diffs;
3509#else
3510 return memcmp(a - meta_len, b - meta_len, meta_len);
3511#endif
3512}
3513
3514static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3515 const struct sk_buff *skb_b)
3516{
3517 u8 len_a = skb_metadata_len(skb_a);
3518 u8 len_b = skb_metadata_len(skb_b);
3519
3520 if (!(len_a | len_b))
3521 return false;
3522
3523 return len_a != len_b ?
3524 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3525}
3526
3527static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3528{
3529 skb_shinfo(skb)->meta_len = meta_len;
3530}
3531
3532static inline void skb_metadata_clear(struct sk_buff *skb)
3533{
3534 skb_metadata_set(skb, 0);
3535}
3536
3537struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3538
3539#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3540
3541void skb_clone_tx_timestamp(struct sk_buff *skb);
3542bool skb_defer_rx_timestamp(struct sk_buff *skb);
3543
3544#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3545
3546static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3547{
3548}
3549
3550static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3551{
3552 return false;
3553}
3554
3555#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3556
3557/**
3558 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3559 *
3560 * PHY drivers may accept clones of transmitted packets for
3561 * timestamping via their phy_driver.txtstamp method. These drivers
3562 * must call this function to return the skb back to the stack with a
3563 * timestamp.
3564 *
3565 * @skb: clone of the the original outgoing packet
3566 * @hwtstamps: hardware time stamps
3567 *
3568 */
3569void skb_complete_tx_timestamp(struct sk_buff *skb,
3570 struct skb_shared_hwtstamps *hwtstamps);
3571
3572void __skb_tstamp_tx(struct sk_buff *orig_skb,
3573 struct skb_shared_hwtstamps *hwtstamps,
3574 struct sock *sk, int tstype);
3575
3576/**
3577 * skb_tstamp_tx - queue clone of skb with send time stamps
3578 * @orig_skb: the original outgoing packet
3579 * @hwtstamps: hardware time stamps, may be NULL if not available
3580 *
3581 * If the skb has a socket associated, then this function clones the
3582 * skb (thus sharing the actual data and optional structures), stores
3583 * the optional hardware time stamping information (if non NULL) or
3584 * generates a software time stamp (otherwise), then queues the clone
3585 * to the error queue of the socket. Errors are silently ignored.
3586 */
3587void skb_tstamp_tx(struct sk_buff *orig_skb,
3588 struct skb_shared_hwtstamps *hwtstamps);
3589
3590/**
3591 * skb_tx_timestamp() - Driver hook for transmit timestamping
3592 *
3593 * Ethernet MAC Drivers should call this function in their hard_xmit()
3594 * function immediately before giving the sk_buff to the MAC hardware.
3595 *
3596 * Specifically, one should make absolutely sure that this function is
3597 * called before TX completion of this packet can trigger. Otherwise
3598 * the packet could potentially already be freed.
3599 *
3600 * @skb: A socket buffer.
3601 */
3602static inline void skb_tx_timestamp(struct sk_buff *skb)
3603{
3604 skb_clone_tx_timestamp(skb);
3605 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3606 skb_tstamp_tx(skb, NULL);
3607}
3608
3609/**
3610 * skb_complete_wifi_ack - deliver skb with wifi status
3611 *
3612 * @skb: the original outgoing packet
3613 * @acked: ack status
3614 *
3615 */
3616void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3617
3618__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3619__sum16 __skb_checksum_complete(struct sk_buff *skb);
3620
3621static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3622{
3623 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3624 skb->csum_valid ||
3625 (skb->ip_summed == CHECKSUM_PARTIAL &&
3626 skb_checksum_start_offset(skb) >= 0));
3627}
3628
3629/**
3630 * skb_checksum_complete - Calculate checksum of an entire packet
3631 * @skb: packet to process
3632 *
3633 * This function calculates the checksum over the entire packet plus
3634 * the value of skb->csum. The latter can be used to supply the
3635 * checksum of a pseudo header as used by TCP/UDP. It returns the
3636 * checksum.
3637 *
3638 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3639 * this function can be used to verify that checksum on received
3640 * packets. In that case the function should return zero if the
3641 * checksum is correct. In particular, this function will return zero
3642 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3643 * hardware has already verified the correctness of the checksum.
3644 */
3645static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3646{
3647 return skb_csum_unnecessary(skb) ?
3648 0 : __skb_checksum_complete(skb);
3649}
3650
3651static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3652{
3653 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3654 if (skb->csum_level == 0)
3655 skb->ip_summed = CHECKSUM_NONE;
3656 else
3657 skb->csum_level--;
3658 }
3659}
3660
3661static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3662{
3663 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3664 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3665 skb->csum_level++;
3666 } else if (skb->ip_summed == CHECKSUM_NONE) {
3667 skb->ip_summed = CHECKSUM_UNNECESSARY;
3668 skb->csum_level = 0;
3669 }
3670}
3671
3672/* Check if we need to perform checksum complete validation.
3673 *
3674 * Returns true if checksum complete is needed, false otherwise
3675 * (either checksum is unnecessary or zero checksum is allowed).
3676 */
3677static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3678 bool zero_okay,
3679 __sum16 check)
3680{
3681 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3682 skb->csum_valid = 1;
3683 __skb_decr_checksum_unnecessary(skb);
3684 return false;
3685 }
3686
3687 return true;
3688}
3689
3690/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3691 * in checksum_init.
3692 */
3693#define CHECKSUM_BREAK 76
3694
3695/* Unset checksum-complete
3696 *
3697 * Unset checksum complete can be done when packet is being modified
3698 * (uncompressed for instance) and checksum-complete value is
3699 * invalidated.
3700 */
3701static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3702{
3703 if (skb->ip_summed == CHECKSUM_COMPLETE)
3704 skb->ip_summed = CHECKSUM_NONE;
3705}
3706
3707/* Validate (init) checksum based on checksum complete.
3708 *
3709 * Return values:
3710 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3711 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3712 * checksum is stored in skb->csum for use in __skb_checksum_complete
3713 * non-zero: value of invalid checksum
3714 *
3715 */
3716static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3717 bool complete,
3718 __wsum psum)
3719{
3720 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3721 if (!csum_fold(csum_add(psum, skb->csum))) {
3722 skb->csum_valid = 1;
3723 return 0;
3724 }
3725 }
3726
3727 skb->csum = psum;
3728
3729 if (complete || skb->len <= CHECKSUM_BREAK) {
3730 __sum16 csum;
3731
3732 csum = __skb_checksum_complete(skb);
3733 skb->csum_valid = !csum;
3734 return csum;
3735 }
3736
3737 return 0;
3738}
3739
3740static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3741{
3742 return 0;
3743}
3744
3745/* Perform checksum validate (init). Note that this is a macro since we only
3746 * want to calculate the pseudo header which is an input function if necessary.
3747 * First we try to validate without any computation (checksum unnecessary) and
3748 * then calculate based on checksum complete calling the function to compute
3749 * pseudo header.
3750 *
3751 * Return values:
3752 * 0: checksum is validated or try to in skb_checksum_complete
3753 * non-zero: value of invalid checksum
3754 */
3755#define __skb_checksum_validate(skb, proto, complete, \
3756 zero_okay, check, compute_pseudo) \
3757({ \
3758 __sum16 __ret = 0; \
3759 skb->csum_valid = 0; \
3760 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3761 __ret = __skb_checksum_validate_complete(skb, \
3762 complete, compute_pseudo(skb, proto)); \
3763 __ret; \
3764})
3765
3766#define skb_checksum_init(skb, proto, compute_pseudo) \
3767 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3768
3769#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3770 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3771
3772#define skb_checksum_validate(skb, proto, compute_pseudo) \
3773 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3774
3775#define skb_checksum_validate_zero_check(skb, proto, check, \
3776 compute_pseudo) \
3777 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3778
3779#define skb_checksum_simple_validate(skb) \
3780 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3781
3782static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3783{
3784 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3785}
3786
3787static inline void __skb_checksum_convert(struct sk_buff *skb,
3788 __sum16 check, __wsum pseudo)
3789{
3790 skb->csum = ~pseudo;
3791 skb->ip_summed = CHECKSUM_COMPLETE;
3792}
3793
3794#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3795do { \
3796 if (__skb_checksum_convert_check(skb)) \
3797 __skb_checksum_convert(skb, check, \
3798 compute_pseudo(skb, proto)); \
3799} while (0)
3800
3801static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3802 u16 start, u16 offset)
3803{
3804 skb->ip_summed = CHECKSUM_PARTIAL;
3805 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3806 skb->csum_offset = offset - start;
3807}
3808
3809/* Update skbuf and packet to reflect the remote checksum offload operation.
3810 * When called, ptr indicates the starting point for skb->csum when
3811 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3812 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3813 */
3814static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3815 int start, int offset, bool nopartial)
3816{
3817 __wsum delta;
3818
3819 if (!nopartial) {
3820 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3821 return;
3822 }
3823
3824 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3825 __skb_checksum_complete(skb);
3826 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3827 }
3828
3829 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3830
3831 /* Adjust skb->csum since we changed the packet */
3832 skb->csum = csum_add(skb->csum, delta);
3833}
3834
3835static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3836{
3837#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3838 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3839#else
3840 return NULL;
3841#endif
3842}
3843
3844#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3845void nf_conntrack_destroy(struct nf_conntrack *nfct);
3846static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3847{
3848 if (nfct && atomic_dec_and_test(&nfct->use))
3849 nf_conntrack_destroy(nfct);
3850}
3851static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3852{
3853 if (nfct)
3854 atomic_inc(&nfct->use);
3855}
3856#endif
3857#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3858static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3859{
3860 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3861 kfree(nf_bridge);
3862}
3863static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3864{
3865 if (nf_bridge)
3866 refcount_inc(&nf_bridge->use);
3867}
3868#endif /* CONFIG_BRIDGE_NETFILTER */
3869static inline void nf_reset(struct sk_buff *skb)
3870{
3871#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3872 nf_conntrack_put(skb_nfct(skb));
3873 skb->_nfct = 0;
3874#endif
3875#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3876 nf_bridge_put(skb->nf_bridge);
3877 skb->nf_bridge = NULL;
3878#endif
3879}
3880
3881static inline void nf_reset_trace(struct sk_buff *skb)
3882{
3883#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3884 skb->nf_trace = 0;
3885#endif
3886}
3887
3888static inline void ipvs_reset(struct sk_buff *skb)
3889{
3890#if IS_ENABLED(CONFIG_IP_VS)
3891 skb->ipvs_property = 0;
3892#endif
3893}
3894
3895/* Note: This doesn't put any conntrack and bridge info in dst. */
3896static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3897 bool copy)
3898{
3899#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3900 dst->_nfct = src->_nfct;
3901 nf_conntrack_get(skb_nfct(src));
3902#endif
3903#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3904 dst->nf_bridge = src->nf_bridge;
3905 nf_bridge_get(src->nf_bridge);
3906#endif
3907#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3908 if (copy)
3909 dst->nf_trace = src->nf_trace;
3910#endif
3911}
3912
3913static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3914{
3915#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3916 nf_conntrack_put(skb_nfct(dst));
3917#endif
3918#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3919 nf_bridge_put(dst->nf_bridge);
3920#endif
3921 __nf_copy(dst, src, true);
3922}
3923
3924#ifdef CONFIG_NETWORK_SECMARK
3925static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3926{
3927 to->secmark = from->secmark;
3928}
3929
3930static inline void skb_init_secmark(struct sk_buff *skb)
3931{
3932 skb->secmark = 0;
3933}
3934#else
3935static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3936{ }
3937
3938static inline void skb_init_secmark(struct sk_buff *skb)
3939{ }
3940#endif
3941
3942static inline bool skb_irq_freeable(const struct sk_buff *skb)
3943{
3944 return !skb->destructor &&
3945#if IS_ENABLED(CONFIG_XFRM)
3946 !skb->sp &&
3947#endif
3948 !skb_nfct(skb) &&
3949 !skb->_skb_refdst &&
3950 !skb_has_frag_list(skb);
3951}
3952
3953static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3954{
3955 skb->queue_mapping = queue_mapping;
3956}
3957
3958static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3959{
3960 return skb->queue_mapping;
3961}
3962
3963static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3964{
3965 to->queue_mapping = from->queue_mapping;
3966}
3967
3968static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3969{
3970 skb->queue_mapping = rx_queue + 1;
3971}
3972
3973static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3974{
3975 return skb->queue_mapping - 1;
3976}
3977
3978static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3979{
3980 return skb->queue_mapping != 0;
3981}
3982
3983static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3984{
3985 skb->dst_pending_confirm = val;
3986}
3987
3988static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3989{
3990 return skb->dst_pending_confirm != 0;
3991}
3992
3993static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3994{
3995#ifdef CONFIG_XFRM
3996 return skb->sp;
3997#else
3998 return NULL;
3999#endif
4000}
4001
4002/* Keeps track of mac header offset relative to skb->head.
4003 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4004 * For non-tunnel skb it points to skb_mac_header() and for
4005 * tunnel skb it points to outer mac header.
4006 * Keeps track of level of encapsulation of network headers.
4007 */
4008struct skb_gso_cb {
4009 union {
4010 int mac_offset;
4011 int data_offset;
4012 };
4013 int encap_level;
4014 __wsum csum;
4015 __u16 csum_start;
4016};
4017#define SKB_SGO_CB_OFFSET 32
4018#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4019
4020static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4021{
4022 return (skb_mac_header(inner_skb) - inner_skb->head) -
4023 SKB_GSO_CB(inner_skb)->mac_offset;
4024}
4025
4026static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4027{
4028 int new_headroom, headroom;
4029 int ret;
4030
4031 headroom = skb_headroom(skb);
4032 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4033 if (ret)
4034 return ret;
4035
4036 new_headroom = skb_headroom(skb);
4037 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4038 return 0;
4039}
4040
4041static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4042{
4043 /* Do not update partial checksums if remote checksum is enabled. */
4044 if (skb->remcsum_offload)
4045 return;
4046
4047 SKB_GSO_CB(skb)->csum = res;
4048 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4049}
4050
4051/* Compute the checksum for a gso segment. First compute the checksum value
4052 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4053 * then add in skb->csum (checksum from csum_start to end of packet).
4054 * skb->csum and csum_start are then updated to reflect the checksum of the
4055 * resultant packet starting from the transport header-- the resultant checksum
4056 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4057 * header.
4058 */
4059static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4060{
4061 unsigned char *csum_start = skb_transport_header(skb);
4062 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4063 __wsum partial = SKB_GSO_CB(skb)->csum;
4064
4065 SKB_GSO_CB(skb)->csum = res;
4066 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4067
4068 return csum_fold(csum_partial(csum_start, plen, partial));
4069}
4070
4071static inline bool skb_is_gso(const struct sk_buff *skb)
4072{
4073 return skb_shinfo(skb)->gso_size;
4074}
4075
4076/* Note: Should be called only if skb_is_gso(skb) is true */
4077static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4078{
4079 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4080}
4081
4082/* Note: Should be called only if skb_is_gso(skb) is true */
4083static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4084{
4085 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4086}
4087
4088static inline void skb_gso_reset(struct sk_buff *skb)
4089{
4090 skb_shinfo(skb)->gso_size = 0;
4091 skb_shinfo(skb)->gso_segs = 0;
4092 skb_shinfo(skb)->gso_type = 0;
4093}
4094
4095static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4096 u16 increment)
4097{
4098 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4099 return;
4100 shinfo->gso_size += increment;
4101}
4102
4103static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4104 u16 decrement)
4105{
4106 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4107 return;
4108 shinfo->gso_size -= decrement;
4109}
4110
4111void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4112
4113static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4114{
4115 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4116 * wanted then gso_type will be set. */
4117 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4118
4119 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4120 unlikely(shinfo->gso_type == 0)) {
4121 __skb_warn_lro_forwarding(skb);
4122 return true;
4123 }
4124 return false;
4125}
4126
4127static inline void skb_forward_csum(struct sk_buff *skb)
4128{
4129 /* Unfortunately we don't support this one. Any brave souls? */
4130 if (skb->ip_summed == CHECKSUM_COMPLETE)
4131 skb->ip_summed = CHECKSUM_NONE;
4132}
4133
4134/**
4135 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4136 * @skb: skb to check
4137 *
4138 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4139 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4140 * use this helper, to document places where we make this assertion.
4141 */
4142static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4143{
4144#ifdef DEBUG
4145 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4146#endif
4147}
4148
4149bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4150
4151int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4152struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4153 unsigned int transport_len,
4154 __sum16(*skb_chkf)(struct sk_buff *skb));
4155
4156/**
4157 * skb_head_is_locked - Determine if the skb->head is locked down
4158 * @skb: skb to check
4159 *
4160 * The head on skbs build around a head frag can be removed if they are
4161 * not cloned. This function returns true if the skb head is locked down
4162 * due to either being allocated via kmalloc, or by being a clone with
4163 * multiple references to the head.
4164 */
4165static inline bool skb_head_is_locked(const struct sk_buff *skb)
4166{
4167 return !skb->head_frag || skb_cloned(skb);
4168}
4169
4170/* Local Checksum Offload.
4171 * Compute outer checksum based on the assumption that the
4172 * inner checksum will be offloaded later.
4173 * See Documentation/networking/checksum-offloads.txt for
4174 * explanation of how this works.
4175 * Fill in outer checksum adjustment (e.g. with sum of outer
4176 * pseudo-header) before calling.
4177 * Also ensure that inner checksum is in linear data area.
4178 */
4179static inline __wsum lco_csum(struct sk_buff *skb)
4180{
4181 unsigned char *csum_start = skb_checksum_start(skb);
4182 unsigned char *l4_hdr = skb_transport_header(skb);
4183 __wsum partial;
4184
4185 /* Start with complement of inner checksum adjustment */
4186 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4187 skb->csum_offset));
4188
4189 /* Add in checksum of our headers (incl. outer checksum
4190 * adjustment filled in by caller) and return result.
4191 */
4192 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4193}
4194
4195#endif /* __KERNEL__ */
4196#endif /* _LINUX_SKBUFF_H */