blob: 8a149df1c6a181a600fe5ef56ffdbe3d310f3f07 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/cleancache.h>
43#include <linux/uaccess.h>
44#include <linux/iversion.h>
45
46#include <linux/kthread.h>
47#include <linux/freezer.h>
48
49#include "ext4.h"
50#include "ext4_extents.h" /* Needed for trace points definition */
51#include "ext4_jbd2.h"
52#include "xattr.h"
53#include "acl.h"
54#include "mballoc.h"
55#include "fsmap.h"
56
57#define CREATE_TRACE_POINTS
58#include <trace/events/ext4.h>
59
60static struct ext4_lazy_init *ext4_li_info;
61static struct mutex ext4_li_mtx;
62static struct ratelimit_state ext4_mount_msg_ratelimit;
63
64static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67static int ext4_commit_super(struct super_block *sb, int sync);
68static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72static int ext4_sync_fs(struct super_block *sb, int wait);
73static int ext4_remount(struct super_block *sb, int *flags, char *data);
74static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75static int ext4_unfreeze(struct super_block *sb);
76static int ext4_freeze(struct super_block *sb);
77static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79static inline int ext2_feature_set_ok(struct super_block *sb);
80static inline int ext3_feature_set_ok(struct super_block *sb);
81static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82static void ext4_destroy_lazyinit_thread(void);
83static void ext4_unregister_li_request(struct super_block *sb);
84static void ext4_clear_request_list(void);
85static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87
88/*
89 * Lock ordering
90 *
91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
93 *
94 * page fault path:
95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96 * page lock -> i_data_sem (rw)
97 *
98 * buffered write path:
99 * sb_start_write -> i_mutex -> mmap_sem
100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
101 * i_data_sem (rw)
102 *
103 * truncate:
104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
106 * i_data_sem (rw)
107 *
108 * direct IO:
109 * sb_start_write -> i_mutex -> mmap_sem
110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
111 *
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
114 */
115
116#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123};
124MODULE_ALIAS_FS("ext2");
125MODULE_ALIAS("ext2");
126#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127#else
128#define IS_EXT2_SB(sb) (0)
129#endif
130
131
132static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
138};
139MODULE_ALIAS_FS("ext3");
140MODULE_ALIAS("ext3");
141#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142
143static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
145{
146 if (!ext4_has_feature_metadata_csum(sb))
147 return 1;
148
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
150}
151
152static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
154{
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
157 __u32 csum;
158
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
160
161 return cpu_to_le32(csum);
162}
163
164static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
166{
167 if (!ext4_has_metadata_csum(sb))
168 return 1;
169
170 return es->s_checksum == ext4_superblock_csum(sb, es);
171}
172
173void ext4_superblock_csum_set(struct super_block *sb)
174{
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
176
177 if (!ext4_has_metadata_csum(sb))
178 return;
179
180 es->s_checksum = ext4_superblock_csum(sb, es);
181}
182
183void *ext4_kvmalloc(size_t size, gfp_t flags)
184{
185 void *ret;
186
187 ret = kmalloc(size, flags | __GFP_NOWARN);
188 if (!ret)
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
190 return ret;
191}
192
193void *ext4_kvzalloc(size_t size, gfp_t flags)
194{
195 void *ret;
196
197 ret = kzalloc(size, flags | __GFP_NOWARN);
198 if (!ret)
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 return ret;
201}
202
203ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
205{
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
209}
210
211ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
213{
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
217}
218
219ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
221{
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
225}
226
227__u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
229{
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
233}
234
235__u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
237{
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
241}
242
243__u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
245{
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
249}
250
251__u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
253{
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
257}
258
259void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
261{
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
265}
266
267void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
269{
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
273}
274
275void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
277{
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
281}
282
283void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
285{
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
289}
290
291void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
293{
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
297}
298
299void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
301{
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
305}
306
307void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
309{
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
313}
314
315static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
316{
317 time64_t now = ktime_get_real_seconds();
318
319 now = clamp_val(now, 0, (1ull << 40) - 1);
320
321 *lo = cpu_to_le32(lower_32_bits(now));
322 *hi = upper_32_bits(now);
323}
324
325static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
326{
327 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
328}
329#define ext4_update_tstamp(es, tstamp) \
330 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
331#define ext4_get_tstamp(es, tstamp) \
332 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
333
334static void __save_error_info(struct super_block *sb, const char *func,
335 unsigned int line)
336{
337 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
338
339 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
340 if (bdev_read_only(sb->s_bdev))
341 return;
342 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
343 ext4_update_tstamp(es, s_last_error_time);
344 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
345 es->s_last_error_line = cpu_to_le32(line);
346 if (!es->s_first_error_time) {
347 es->s_first_error_time = es->s_last_error_time;
348 es->s_first_error_time_hi = es->s_last_error_time_hi;
349 strncpy(es->s_first_error_func, func,
350 sizeof(es->s_first_error_func));
351 es->s_first_error_line = cpu_to_le32(line);
352 es->s_first_error_ino = es->s_last_error_ino;
353 es->s_first_error_block = es->s_last_error_block;
354 }
355 /*
356 * Start the daily error reporting function if it hasn't been
357 * started already
358 */
359 if (!es->s_error_count)
360 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
361 le32_add_cpu(&es->s_error_count, 1);
362}
363
364static void save_error_info(struct super_block *sb, const char *func,
365 unsigned int line)
366{
367 __save_error_info(sb, func, line);
368 ext4_commit_super(sb, 1);
369}
370
371/*
372 * The del_gendisk() function uninitializes the disk-specific data
373 * structures, including the bdi structure, without telling anyone
374 * else. Once this happens, any attempt to call mark_buffer_dirty()
375 * (for example, by ext4_commit_super), will cause a kernel OOPS.
376 * This is a kludge to prevent these oops until we can put in a proper
377 * hook in del_gendisk() to inform the VFS and file system layers.
378 */
379static int block_device_ejected(struct super_block *sb)
380{
381 struct inode *bd_inode = sb->s_bdev->bd_inode;
382 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
383
384 return bdi->dev == NULL;
385}
386
387static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
388{
389 struct super_block *sb = journal->j_private;
390 struct ext4_sb_info *sbi = EXT4_SB(sb);
391 int error = is_journal_aborted(journal);
392 struct ext4_journal_cb_entry *jce;
393
394 BUG_ON(txn->t_state == T_FINISHED);
395
396 ext4_process_freed_data(sb, txn->t_tid);
397
398 spin_lock(&sbi->s_md_lock);
399 while (!list_empty(&txn->t_private_list)) {
400 jce = list_entry(txn->t_private_list.next,
401 struct ext4_journal_cb_entry, jce_list);
402 list_del_init(&jce->jce_list);
403 spin_unlock(&sbi->s_md_lock);
404 jce->jce_func(sb, jce, error);
405 spin_lock(&sbi->s_md_lock);
406 }
407 spin_unlock(&sbi->s_md_lock);
408}
409
410/* Deal with the reporting of failure conditions on a filesystem such as
411 * inconsistencies detected or read IO failures.
412 *
413 * On ext2, we can store the error state of the filesystem in the
414 * superblock. That is not possible on ext4, because we may have other
415 * write ordering constraints on the superblock which prevent us from
416 * writing it out straight away; and given that the journal is about to
417 * be aborted, we can't rely on the current, or future, transactions to
418 * write out the superblock safely.
419 *
420 * We'll just use the jbd2_journal_abort() error code to record an error in
421 * the journal instead. On recovery, the journal will complain about
422 * that error until we've noted it down and cleared it.
423 */
424
425static void ext4_handle_error(struct super_block *sb)
426{
427 if (test_opt(sb, WARN_ON_ERROR))
428 WARN_ON_ONCE(1);
429
430 if (sb_rdonly(sb))
431 return;
432
433 if (!test_opt(sb, ERRORS_CONT)) {
434 journal_t *journal = EXT4_SB(sb)->s_journal;
435
436 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
437 if (journal)
438 jbd2_journal_abort(journal, -EIO);
439 }
440 if (test_opt(sb, ERRORS_RO)) {
441 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
442 /*
443 * Make sure updated value of ->s_mount_flags will be visible
444 * before ->s_flags update
445 */
446 smp_wmb();
447 sb->s_flags |= SB_RDONLY;
448 }
449 if (test_opt(sb, ERRORS_PANIC)) {
450 if (EXT4_SB(sb)->s_journal &&
451 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
452 return;
453 panic("EXT4-fs (device %s): panic forced after error\n",
454 sb->s_id);
455 }
456}
457
458#define ext4_error_ratelimit(sb) \
459 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
460 "EXT4-fs error")
461
462void __ext4_error(struct super_block *sb, const char *function,
463 unsigned int line, const char *fmt, ...)
464{
465 struct va_format vaf;
466 va_list args;
467
468 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
469 return;
470
471 trace_ext4_error(sb, function, line);
472 if (ext4_error_ratelimit(sb)) {
473 va_start(args, fmt);
474 vaf.fmt = fmt;
475 vaf.va = &args;
476 printk(KERN_CRIT
477 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
478 sb->s_id, function, line, current->comm, &vaf);
479 va_end(args);
480 }
481 save_error_info(sb, function, line);
482 ext4_handle_error(sb);
483}
484
485void __ext4_error_inode(struct inode *inode, const char *function,
486 unsigned int line, ext4_fsblk_t block,
487 const char *fmt, ...)
488{
489 va_list args;
490 struct va_format vaf;
491 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
492
493 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
494 return;
495
496 trace_ext4_error(inode->i_sb, function, line);
497 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
498 es->s_last_error_block = cpu_to_le64(block);
499 if (ext4_error_ratelimit(inode->i_sb)) {
500 va_start(args, fmt);
501 vaf.fmt = fmt;
502 vaf.va = &args;
503 if (block)
504 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
505 "inode #%lu: block %llu: comm %s: %pV\n",
506 inode->i_sb->s_id, function, line, inode->i_ino,
507 block, current->comm, &vaf);
508 else
509 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
510 "inode #%lu: comm %s: %pV\n",
511 inode->i_sb->s_id, function, line, inode->i_ino,
512 current->comm, &vaf);
513 va_end(args);
514 }
515 save_error_info(inode->i_sb, function, line);
516 ext4_handle_error(inode->i_sb);
517}
518
519void __ext4_error_file(struct file *file, const char *function,
520 unsigned int line, ext4_fsblk_t block,
521 const char *fmt, ...)
522{
523 va_list args;
524 struct va_format vaf;
525 struct ext4_super_block *es;
526 struct inode *inode = file_inode(file);
527 char pathname[80], *path;
528
529 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
530 return;
531
532 trace_ext4_error(inode->i_sb, function, line);
533 es = EXT4_SB(inode->i_sb)->s_es;
534 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
535 if (ext4_error_ratelimit(inode->i_sb)) {
536 path = file_path(file, pathname, sizeof(pathname));
537 if (IS_ERR(path))
538 path = "(unknown)";
539 va_start(args, fmt);
540 vaf.fmt = fmt;
541 vaf.va = &args;
542 if (block)
543 printk(KERN_CRIT
544 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
545 "block %llu: comm %s: path %s: %pV\n",
546 inode->i_sb->s_id, function, line, inode->i_ino,
547 block, current->comm, path, &vaf);
548 else
549 printk(KERN_CRIT
550 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
551 "comm %s: path %s: %pV\n",
552 inode->i_sb->s_id, function, line, inode->i_ino,
553 current->comm, path, &vaf);
554 va_end(args);
555 }
556 save_error_info(inode->i_sb, function, line);
557 ext4_handle_error(inode->i_sb);
558}
559
560const char *ext4_decode_error(struct super_block *sb, int errno,
561 char nbuf[16])
562{
563 char *errstr = NULL;
564
565 switch (errno) {
566 case -EFSCORRUPTED:
567 errstr = "Corrupt filesystem";
568 break;
569 case -EFSBADCRC:
570 errstr = "Filesystem failed CRC";
571 break;
572 case -EIO:
573 errstr = "IO failure";
574 break;
575 case -ENOMEM:
576 errstr = "Out of memory";
577 break;
578 case -EROFS:
579 if (!sb || (EXT4_SB(sb)->s_journal &&
580 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
581 errstr = "Journal has aborted";
582 else
583 errstr = "Readonly filesystem";
584 break;
585 default:
586 /* If the caller passed in an extra buffer for unknown
587 * errors, textualise them now. Else we just return
588 * NULL. */
589 if (nbuf) {
590 /* Check for truncated error codes... */
591 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
592 errstr = nbuf;
593 }
594 break;
595 }
596
597 return errstr;
598}
599
600/* __ext4_std_error decodes expected errors from journaling functions
601 * automatically and invokes the appropriate error response. */
602
603void __ext4_std_error(struct super_block *sb, const char *function,
604 unsigned int line, int errno)
605{
606 char nbuf[16];
607 const char *errstr;
608
609 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
610 return;
611
612 /* Special case: if the error is EROFS, and we're not already
613 * inside a transaction, then there's really no point in logging
614 * an error. */
615 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
616 return;
617
618 if (ext4_error_ratelimit(sb)) {
619 errstr = ext4_decode_error(sb, errno, nbuf);
620 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
621 sb->s_id, function, line, errstr);
622 }
623
624 save_error_info(sb, function, line);
625 ext4_handle_error(sb);
626}
627
628/*
629 * ext4_abort is a much stronger failure handler than ext4_error. The
630 * abort function may be used to deal with unrecoverable failures such
631 * as journal IO errors or ENOMEM at a critical moment in log management.
632 *
633 * We unconditionally force the filesystem into an ABORT|READONLY state,
634 * unless the error response on the fs has been set to panic in which
635 * case we take the easy way out and panic immediately.
636 */
637
638void __ext4_abort(struct super_block *sb, const char *function,
639 unsigned int line, const char *fmt, ...)
640{
641 struct va_format vaf;
642 va_list args;
643
644 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
645 return;
646
647 save_error_info(sb, function, line);
648 va_start(args, fmt);
649 vaf.fmt = fmt;
650 vaf.va = &args;
651 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
652 sb->s_id, function, line, &vaf);
653 va_end(args);
654
655 if (sb_rdonly(sb) == 0) {
656 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
657 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
658 /*
659 * Make sure updated value of ->s_mount_flags will be visible
660 * before ->s_flags update
661 */
662 smp_wmb();
663 sb->s_flags |= SB_RDONLY;
664 if (EXT4_SB(sb)->s_journal)
665 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
666 save_error_info(sb, function, line);
667 }
668 if (test_opt(sb, ERRORS_PANIC)) {
669 if (EXT4_SB(sb)->s_journal &&
670 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
671 return;
672 panic("EXT4-fs panic from previous error\n");
673 }
674}
675
676void __ext4_msg(struct super_block *sb,
677 const char *prefix, const char *fmt, ...)
678{
679 struct va_format vaf;
680 va_list args;
681
682 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
683 return;
684
685 va_start(args, fmt);
686 vaf.fmt = fmt;
687 vaf.va = &args;
688 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
689 va_end(args);
690}
691
692#define ext4_warning_ratelimit(sb) \
693 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
694 "EXT4-fs warning")
695
696void __ext4_warning(struct super_block *sb, const char *function,
697 unsigned int line, const char *fmt, ...)
698{
699 struct va_format vaf;
700 va_list args;
701
702 if (!ext4_warning_ratelimit(sb))
703 return;
704
705 va_start(args, fmt);
706 vaf.fmt = fmt;
707 vaf.va = &args;
708 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
709 sb->s_id, function, line, &vaf);
710 va_end(args);
711}
712
713void __ext4_warning_inode(const struct inode *inode, const char *function,
714 unsigned int line, const char *fmt, ...)
715{
716 struct va_format vaf;
717 va_list args;
718
719 if (!ext4_warning_ratelimit(inode->i_sb))
720 return;
721
722 va_start(args, fmt);
723 vaf.fmt = fmt;
724 vaf.va = &args;
725 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
726 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
727 function, line, inode->i_ino, current->comm, &vaf);
728 va_end(args);
729}
730
731void __ext4_grp_locked_error(const char *function, unsigned int line,
732 struct super_block *sb, ext4_group_t grp,
733 unsigned long ino, ext4_fsblk_t block,
734 const char *fmt, ...)
735__releases(bitlock)
736__acquires(bitlock)
737{
738 struct va_format vaf;
739 va_list args;
740 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
741
742 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
743 return;
744
745 trace_ext4_error(sb, function, line);
746 es->s_last_error_ino = cpu_to_le32(ino);
747 es->s_last_error_block = cpu_to_le64(block);
748 __save_error_info(sb, function, line);
749
750 if (ext4_error_ratelimit(sb)) {
751 va_start(args, fmt);
752 vaf.fmt = fmt;
753 vaf.va = &args;
754 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
755 sb->s_id, function, line, grp);
756 if (ino)
757 printk(KERN_CONT "inode %lu: ", ino);
758 if (block)
759 printk(KERN_CONT "block %llu:",
760 (unsigned long long) block);
761 printk(KERN_CONT "%pV\n", &vaf);
762 va_end(args);
763 }
764
765 if (test_opt(sb, WARN_ON_ERROR))
766 WARN_ON_ONCE(1);
767
768 if (test_opt(sb, ERRORS_CONT)) {
769 ext4_commit_super(sb, 0);
770 return;
771 }
772
773 ext4_unlock_group(sb, grp);
774 ext4_commit_super(sb, 1);
775 ext4_handle_error(sb);
776 /*
777 * We only get here in the ERRORS_RO case; relocking the group
778 * may be dangerous, but nothing bad will happen since the
779 * filesystem will have already been marked read/only and the
780 * journal has been aborted. We return 1 as a hint to callers
781 * who might what to use the return value from
782 * ext4_grp_locked_error() to distinguish between the
783 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
784 * aggressively from the ext4 function in question, with a
785 * more appropriate error code.
786 */
787 ext4_lock_group(sb, grp);
788 return;
789}
790
791void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
792 ext4_group_t group,
793 unsigned int flags)
794{
795 struct ext4_sb_info *sbi = EXT4_SB(sb);
796 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
797 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
798 int ret;
799
800 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
801 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
802 &grp->bb_state);
803 if (!ret)
804 percpu_counter_sub(&sbi->s_freeclusters_counter,
805 grp->bb_free);
806 }
807
808 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
809 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
810 &grp->bb_state);
811 if (!ret && gdp) {
812 int count;
813
814 count = ext4_free_inodes_count(sb, gdp);
815 percpu_counter_sub(&sbi->s_freeinodes_counter,
816 count);
817 }
818 }
819}
820
821void ext4_update_dynamic_rev(struct super_block *sb)
822{
823 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
824
825 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
826 return;
827
828 ext4_warning(sb,
829 "updating to rev %d because of new feature flag, "
830 "running e2fsck is recommended",
831 EXT4_DYNAMIC_REV);
832
833 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
834 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
835 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
836 /* leave es->s_feature_*compat flags alone */
837 /* es->s_uuid will be set by e2fsck if empty */
838
839 /*
840 * The rest of the superblock fields should be zero, and if not it
841 * means they are likely already in use, so leave them alone. We
842 * can leave it up to e2fsck to clean up any inconsistencies there.
843 */
844}
845
846/*
847 * Open the external journal device
848 */
849static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
850{
851 struct block_device *bdev;
852 char b[BDEVNAME_SIZE];
853
854 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
855 if (IS_ERR(bdev))
856 goto fail;
857 return bdev;
858
859fail:
860 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
861 __bdevname(dev, b), PTR_ERR(bdev));
862 return NULL;
863}
864
865/*
866 * Release the journal device
867 */
868static void ext4_blkdev_put(struct block_device *bdev)
869{
870 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
871}
872
873static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
874{
875 struct block_device *bdev;
876 bdev = sbi->journal_bdev;
877 if (bdev) {
878 ext4_blkdev_put(bdev);
879 sbi->journal_bdev = NULL;
880 }
881}
882
883static inline struct inode *orphan_list_entry(struct list_head *l)
884{
885 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
886}
887
888static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
889{
890 struct list_head *l;
891
892 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
893 le32_to_cpu(sbi->s_es->s_last_orphan));
894
895 printk(KERN_ERR "sb_info orphan list:\n");
896 list_for_each(l, &sbi->s_orphan) {
897 struct inode *inode = orphan_list_entry(l);
898 printk(KERN_ERR " "
899 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
900 inode->i_sb->s_id, inode->i_ino, inode,
901 inode->i_mode, inode->i_nlink,
902 NEXT_ORPHAN(inode));
903 }
904}
905
906#ifdef CONFIG_QUOTA
907static int ext4_quota_off(struct super_block *sb, int type);
908
909static inline void ext4_quota_off_umount(struct super_block *sb)
910{
911 int type;
912
913 /* Use our quota_off function to clear inode flags etc. */
914 for (type = 0; type < EXT4_MAXQUOTAS; type++)
915 ext4_quota_off(sb, type);
916}
917
918/*
919 * This is a helper function which is used in the mount/remount
920 * codepaths (which holds s_umount) to fetch the quota file name.
921 */
922static inline char *get_qf_name(struct super_block *sb,
923 struct ext4_sb_info *sbi,
924 int type)
925{
926 return rcu_dereference_protected(sbi->s_qf_names[type],
927 lockdep_is_held(&sb->s_umount));
928}
929#else
930static inline void ext4_quota_off_umount(struct super_block *sb)
931{
932}
933#endif
934
935static void ext4_put_super(struct super_block *sb)
936{
937 struct ext4_sb_info *sbi = EXT4_SB(sb);
938 struct ext4_super_block *es = sbi->s_es;
939 int aborted = 0;
940 int i, err;
941
942 ext4_unregister_li_request(sb);
943 ext4_quota_off_umount(sb);
944
945 destroy_workqueue(sbi->rsv_conversion_wq);
946
947 if (sbi->s_journal) {
948 aborted = is_journal_aborted(sbi->s_journal);
949 err = jbd2_journal_destroy(sbi->s_journal);
950 sbi->s_journal = NULL;
951 if ((err < 0) && !aborted)
952 ext4_abort(sb, "Couldn't clean up the journal");
953 }
954
955 ext4_unregister_sysfs(sb);
956 ext4_es_unregister_shrinker(sbi);
957 del_timer_sync(&sbi->s_err_report);
958 ext4_release_system_zone(sb);
959 ext4_mb_release(sb);
960 ext4_ext_release(sb);
961
962 if (!sb_rdonly(sb) && !aborted) {
963 ext4_clear_feature_journal_needs_recovery(sb);
964 es->s_state = cpu_to_le16(sbi->s_mount_state);
965 }
966 if (!sb_rdonly(sb))
967 ext4_commit_super(sb, 1);
968
969 for (i = 0; i < sbi->s_gdb_count; i++)
970 brelse(sbi->s_group_desc[i]);
971 kvfree(sbi->s_group_desc);
972 kvfree(sbi->s_flex_groups);
973 percpu_counter_destroy(&sbi->s_freeclusters_counter);
974 percpu_counter_destroy(&sbi->s_freeinodes_counter);
975 percpu_counter_destroy(&sbi->s_dirs_counter);
976 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
977 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
978#ifdef CONFIG_QUOTA
979 for (i = 0; i < EXT4_MAXQUOTAS; i++)
980 kfree(get_qf_name(sb, sbi, i));
981#endif
982
983 /* Debugging code just in case the in-memory inode orphan list
984 * isn't empty. The on-disk one can be non-empty if we've
985 * detected an error and taken the fs readonly, but the
986 * in-memory list had better be clean by this point. */
987 if (!list_empty(&sbi->s_orphan))
988 dump_orphan_list(sb, sbi);
989 J_ASSERT(list_empty(&sbi->s_orphan));
990
991 sync_blockdev(sb->s_bdev);
992 invalidate_bdev(sb->s_bdev);
993 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
994 /*
995 * Invalidate the journal device's buffers. We don't want them
996 * floating about in memory - the physical journal device may
997 * hotswapped, and it breaks the `ro-after' testing code.
998 */
999 sync_blockdev(sbi->journal_bdev);
1000 invalidate_bdev(sbi->journal_bdev);
1001 ext4_blkdev_remove(sbi);
1002 }
1003 if (sbi->s_ea_inode_cache) {
1004 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1005 sbi->s_ea_inode_cache = NULL;
1006 }
1007 if (sbi->s_ea_block_cache) {
1008 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1009 sbi->s_ea_block_cache = NULL;
1010 }
1011 if (sbi->s_mmp_tsk)
1012 kthread_stop(sbi->s_mmp_tsk);
1013 brelse(sbi->s_sbh);
1014 sb->s_fs_info = NULL;
1015 /*
1016 * Now that we are completely done shutting down the
1017 * superblock, we need to actually destroy the kobject.
1018 */
1019 kobject_put(&sbi->s_kobj);
1020 wait_for_completion(&sbi->s_kobj_unregister);
1021 if (sbi->s_chksum_driver)
1022 crypto_free_shash(sbi->s_chksum_driver);
1023 kfree(sbi->s_blockgroup_lock);
1024 fs_put_dax(sbi->s_daxdev);
1025 kfree(sbi);
1026}
1027
1028static struct kmem_cache *ext4_inode_cachep;
1029
1030/*
1031 * Called inside transaction, so use GFP_NOFS
1032 */
1033static struct inode *ext4_alloc_inode(struct super_block *sb)
1034{
1035 struct ext4_inode_info *ei;
1036
1037 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1038 if (!ei)
1039 return NULL;
1040
1041 inode_set_iversion(&ei->vfs_inode, 1);
1042 spin_lock_init(&ei->i_raw_lock);
1043 INIT_LIST_HEAD(&ei->i_prealloc_list);
1044 spin_lock_init(&ei->i_prealloc_lock);
1045 ext4_es_init_tree(&ei->i_es_tree);
1046 rwlock_init(&ei->i_es_lock);
1047 INIT_LIST_HEAD(&ei->i_es_list);
1048 ei->i_es_all_nr = 0;
1049 ei->i_es_shk_nr = 0;
1050 ei->i_es_shrink_lblk = 0;
1051 ei->i_reserved_data_blocks = 0;
1052 ei->i_da_metadata_calc_len = 0;
1053 ei->i_da_metadata_calc_last_lblock = 0;
1054 spin_lock_init(&(ei->i_block_reservation_lock));
1055#ifdef CONFIG_QUOTA
1056 ei->i_reserved_quota = 0;
1057 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1058#endif
1059 ei->jinode = NULL;
1060 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1061 spin_lock_init(&ei->i_completed_io_lock);
1062 ei->i_sync_tid = 0;
1063 ei->i_datasync_tid = 0;
1064 atomic_set(&ei->i_unwritten, 0);
1065 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1066 return &ei->vfs_inode;
1067}
1068
1069static int ext4_drop_inode(struct inode *inode)
1070{
1071 int drop = generic_drop_inode(inode);
1072
1073 trace_ext4_drop_inode(inode, drop);
1074 return drop;
1075}
1076
1077static void ext4_i_callback(struct rcu_head *head)
1078{
1079 struct inode *inode = container_of(head, struct inode, i_rcu);
1080 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1081}
1082
1083static void ext4_destroy_inode(struct inode *inode)
1084{
1085 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1086 ext4_msg(inode->i_sb, KERN_ERR,
1087 "Inode %lu (%p): orphan list check failed!",
1088 inode->i_ino, EXT4_I(inode));
1089 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1090 EXT4_I(inode), sizeof(struct ext4_inode_info),
1091 true);
1092 dump_stack();
1093 }
1094 call_rcu(&inode->i_rcu, ext4_i_callback);
1095}
1096
1097static void init_once(void *foo)
1098{
1099 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1100
1101 INIT_LIST_HEAD(&ei->i_orphan);
1102 init_rwsem(&ei->xattr_sem);
1103 init_rwsem(&ei->i_data_sem);
1104 init_rwsem(&ei->i_mmap_sem);
1105 inode_init_once(&ei->vfs_inode);
1106}
1107
1108static int __init init_inodecache(void)
1109{
1110 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1111 sizeof(struct ext4_inode_info), 0,
1112 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1113 SLAB_ACCOUNT),
1114 offsetof(struct ext4_inode_info, i_data),
1115 sizeof_field(struct ext4_inode_info, i_data),
1116 init_once);
1117 if (ext4_inode_cachep == NULL)
1118 return -ENOMEM;
1119 return 0;
1120}
1121
1122static void destroy_inodecache(void)
1123{
1124 /*
1125 * Make sure all delayed rcu free inodes are flushed before we
1126 * destroy cache.
1127 */
1128 rcu_barrier();
1129 kmem_cache_destroy(ext4_inode_cachep);
1130}
1131
1132void ext4_clear_inode(struct inode *inode)
1133{
1134 invalidate_inode_buffers(inode);
1135 clear_inode(inode);
1136 dquot_drop(inode);
1137 ext4_discard_preallocations(inode);
1138 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1139 if (EXT4_I(inode)->jinode) {
1140 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1141 EXT4_I(inode)->jinode);
1142 jbd2_free_inode(EXT4_I(inode)->jinode);
1143 EXT4_I(inode)->jinode = NULL;
1144 }
1145 fscrypt_put_encryption_info(inode);
1146}
1147
1148static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1149 u64 ino, u32 generation)
1150{
1151 struct inode *inode;
1152
1153 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1154 return ERR_PTR(-ESTALE);
1155 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1156 return ERR_PTR(-ESTALE);
1157
1158 /* iget isn't really right if the inode is currently unallocated!!
1159 *
1160 * ext4_read_inode will return a bad_inode if the inode had been
1161 * deleted, so we should be safe.
1162 *
1163 * Currently we don't know the generation for parent directory, so
1164 * a generation of 0 means "accept any"
1165 */
1166 inode = ext4_iget_normal(sb, ino);
1167 if (IS_ERR(inode))
1168 return ERR_CAST(inode);
1169 if (generation && inode->i_generation != generation) {
1170 iput(inode);
1171 return ERR_PTR(-ESTALE);
1172 }
1173
1174 return inode;
1175}
1176
1177static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1178 int fh_len, int fh_type)
1179{
1180 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1181 ext4_nfs_get_inode);
1182}
1183
1184static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1185 int fh_len, int fh_type)
1186{
1187 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1188 ext4_nfs_get_inode);
1189}
1190
1191/*
1192 * Try to release metadata pages (indirect blocks, directories) which are
1193 * mapped via the block device. Since these pages could have journal heads
1194 * which would prevent try_to_free_buffers() from freeing them, we must use
1195 * jbd2 layer's try_to_free_buffers() function to release them.
1196 */
1197static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1198 gfp_t wait)
1199{
1200 journal_t *journal = EXT4_SB(sb)->s_journal;
1201
1202 WARN_ON(PageChecked(page));
1203 if (!page_has_buffers(page))
1204 return 0;
1205 if (journal)
1206 return jbd2_journal_try_to_free_buffers(journal, page,
1207 wait & ~__GFP_DIRECT_RECLAIM);
1208 return try_to_free_buffers(page);
1209}
1210
1211#ifdef CONFIG_EXT4_FS_ENCRYPTION
1212static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1213{
1214 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1215 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1216}
1217
1218static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1219 void *fs_data)
1220{
1221 handle_t *handle = fs_data;
1222 int res, res2, credits, retries = 0;
1223
1224 /*
1225 * Encrypting the root directory is not allowed because e2fsck expects
1226 * lost+found to exist and be unencrypted, and encrypting the root
1227 * directory would imply encrypting the lost+found directory as well as
1228 * the filename "lost+found" itself.
1229 */
1230 if (inode->i_ino == EXT4_ROOT_INO)
1231 return -EPERM;
1232
1233 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1234 return -EINVAL;
1235
1236 res = ext4_convert_inline_data(inode);
1237 if (res)
1238 return res;
1239
1240 /*
1241 * If a journal handle was specified, then the encryption context is
1242 * being set on a new inode via inheritance and is part of a larger
1243 * transaction to create the inode. Otherwise the encryption context is
1244 * being set on an existing inode in its own transaction. Only in the
1245 * latter case should the "retry on ENOSPC" logic be used.
1246 */
1247
1248 if (handle) {
1249 res = ext4_xattr_set_handle(handle, inode,
1250 EXT4_XATTR_INDEX_ENCRYPTION,
1251 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1252 ctx, len, 0);
1253 if (!res) {
1254 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1255 ext4_clear_inode_state(inode,
1256 EXT4_STATE_MAY_INLINE_DATA);
1257 /*
1258 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1259 * S_DAX may be disabled
1260 */
1261 ext4_set_inode_flags(inode);
1262 }
1263 return res;
1264 }
1265
1266 res = dquot_initialize(inode);
1267 if (res)
1268 return res;
1269retry:
1270 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1271 &credits);
1272 if (res)
1273 return res;
1274
1275 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1276 if (IS_ERR(handle))
1277 return PTR_ERR(handle);
1278
1279 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1280 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1281 ctx, len, 0);
1282 if (!res) {
1283 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1284 /*
1285 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1286 * S_DAX may be disabled
1287 */
1288 ext4_set_inode_flags(inode);
1289 res = ext4_mark_inode_dirty(handle, inode);
1290 if (res)
1291 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1292 }
1293 res2 = ext4_journal_stop(handle);
1294
1295 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1296 goto retry;
1297 if (!res)
1298 res = res2;
1299 return res;
1300}
1301
1302static bool ext4_dummy_context(struct inode *inode)
1303{
1304 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1305}
1306
1307static const struct fscrypt_operations ext4_cryptops = {
1308 .key_prefix = "ext4:",
1309 .get_context = ext4_get_context,
1310 .set_context = ext4_set_context,
1311 .dummy_context = ext4_dummy_context,
1312 .empty_dir = ext4_empty_dir,
1313 .max_namelen = EXT4_NAME_LEN,
1314};
1315#endif
1316
1317#ifdef CONFIG_QUOTA
1318static const char * const quotatypes[] = INITQFNAMES;
1319#define QTYPE2NAME(t) (quotatypes[t])
1320
1321static int ext4_write_dquot(struct dquot *dquot);
1322static int ext4_acquire_dquot(struct dquot *dquot);
1323static int ext4_release_dquot(struct dquot *dquot);
1324static int ext4_mark_dquot_dirty(struct dquot *dquot);
1325static int ext4_write_info(struct super_block *sb, int type);
1326static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1327 const struct path *path);
1328static int ext4_quota_on_mount(struct super_block *sb, int type);
1329static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1330 size_t len, loff_t off);
1331static ssize_t ext4_quota_write(struct super_block *sb, int type,
1332 const char *data, size_t len, loff_t off);
1333static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1334 unsigned int flags);
1335static int ext4_enable_quotas(struct super_block *sb);
1336static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1337
1338static struct dquot **ext4_get_dquots(struct inode *inode)
1339{
1340 return EXT4_I(inode)->i_dquot;
1341}
1342
1343static const struct dquot_operations ext4_quota_operations = {
1344 .get_reserved_space = ext4_get_reserved_space,
1345 .write_dquot = ext4_write_dquot,
1346 .acquire_dquot = ext4_acquire_dquot,
1347 .release_dquot = ext4_release_dquot,
1348 .mark_dirty = ext4_mark_dquot_dirty,
1349 .write_info = ext4_write_info,
1350 .alloc_dquot = dquot_alloc,
1351 .destroy_dquot = dquot_destroy,
1352 .get_projid = ext4_get_projid,
1353 .get_inode_usage = ext4_get_inode_usage,
1354 .get_next_id = ext4_get_next_id,
1355};
1356
1357static const struct quotactl_ops ext4_qctl_operations = {
1358 .quota_on = ext4_quota_on,
1359 .quota_off = ext4_quota_off,
1360 .quota_sync = dquot_quota_sync,
1361 .get_state = dquot_get_state,
1362 .set_info = dquot_set_dqinfo,
1363 .get_dqblk = dquot_get_dqblk,
1364 .set_dqblk = dquot_set_dqblk,
1365 .get_nextdqblk = dquot_get_next_dqblk,
1366};
1367#endif
1368
1369static const struct super_operations ext4_sops = {
1370 .alloc_inode = ext4_alloc_inode,
1371 .destroy_inode = ext4_destroy_inode,
1372 .write_inode = ext4_write_inode,
1373 .dirty_inode = ext4_dirty_inode,
1374 .drop_inode = ext4_drop_inode,
1375 .evict_inode = ext4_evict_inode,
1376 .put_super = ext4_put_super,
1377 .sync_fs = ext4_sync_fs,
1378 .freeze_fs = ext4_freeze,
1379 .unfreeze_fs = ext4_unfreeze,
1380 .statfs = ext4_statfs,
1381 .remount_fs = ext4_remount,
1382 .show_options = ext4_show_options,
1383#ifdef CONFIG_QUOTA
1384 .quota_read = ext4_quota_read,
1385 .quota_write = ext4_quota_write,
1386 .get_dquots = ext4_get_dquots,
1387#endif
1388 .bdev_try_to_free_page = bdev_try_to_free_page,
1389};
1390
1391static const struct export_operations ext4_export_ops = {
1392 .fh_to_dentry = ext4_fh_to_dentry,
1393 .fh_to_parent = ext4_fh_to_parent,
1394 .get_parent = ext4_get_parent,
1395};
1396
1397enum {
1398 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1399 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1400 Opt_nouid32, Opt_debug, Opt_removed,
1401 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1402 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1403 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1404 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1405 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1406 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1407 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1408 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1409 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1410 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1411 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1412 Opt_nowarn_on_error, Opt_mblk_io_submit,
1413 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1414 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1415 Opt_inode_readahead_blks, Opt_journal_ioprio,
1416 Opt_dioread_nolock, Opt_dioread_lock,
1417 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1418 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1419};
1420
1421static const match_table_t tokens = {
1422 {Opt_bsd_df, "bsddf"},
1423 {Opt_minix_df, "minixdf"},
1424 {Opt_grpid, "grpid"},
1425 {Opt_grpid, "bsdgroups"},
1426 {Opt_nogrpid, "nogrpid"},
1427 {Opt_nogrpid, "sysvgroups"},
1428 {Opt_resgid, "resgid=%u"},
1429 {Opt_resuid, "resuid=%u"},
1430 {Opt_sb, "sb=%u"},
1431 {Opt_err_cont, "errors=continue"},
1432 {Opt_err_panic, "errors=panic"},
1433 {Opt_err_ro, "errors=remount-ro"},
1434 {Opt_nouid32, "nouid32"},
1435 {Opt_debug, "debug"},
1436 {Opt_removed, "oldalloc"},
1437 {Opt_removed, "orlov"},
1438 {Opt_user_xattr, "user_xattr"},
1439 {Opt_nouser_xattr, "nouser_xattr"},
1440 {Opt_acl, "acl"},
1441 {Opt_noacl, "noacl"},
1442 {Opt_noload, "norecovery"},
1443 {Opt_noload, "noload"},
1444 {Opt_removed, "nobh"},
1445 {Opt_removed, "bh"},
1446 {Opt_commit, "commit=%u"},
1447 {Opt_min_batch_time, "min_batch_time=%u"},
1448 {Opt_max_batch_time, "max_batch_time=%u"},
1449 {Opt_journal_dev, "journal_dev=%u"},
1450 {Opt_journal_path, "journal_path=%s"},
1451 {Opt_journal_checksum, "journal_checksum"},
1452 {Opt_nojournal_checksum, "nojournal_checksum"},
1453 {Opt_journal_async_commit, "journal_async_commit"},
1454 {Opt_abort, "abort"},
1455 {Opt_data_journal, "data=journal"},
1456 {Opt_data_ordered, "data=ordered"},
1457 {Opt_data_writeback, "data=writeback"},
1458 {Opt_data_err_abort, "data_err=abort"},
1459 {Opt_data_err_ignore, "data_err=ignore"},
1460 {Opt_offusrjquota, "usrjquota="},
1461 {Opt_usrjquota, "usrjquota=%s"},
1462 {Opt_offgrpjquota, "grpjquota="},
1463 {Opt_grpjquota, "grpjquota=%s"},
1464 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1465 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1466 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1467 {Opt_grpquota, "grpquota"},
1468 {Opt_noquota, "noquota"},
1469 {Opt_quota, "quota"},
1470 {Opt_usrquota, "usrquota"},
1471 {Opt_prjquota, "prjquota"},
1472 {Opt_barrier, "barrier=%u"},
1473 {Opt_barrier, "barrier"},
1474 {Opt_nobarrier, "nobarrier"},
1475 {Opt_i_version, "i_version"},
1476 {Opt_dax, "dax"},
1477 {Opt_stripe, "stripe=%u"},
1478 {Opt_delalloc, "delalloc"},
1479 {Opt_warn_on_error, "warn_on_error"},
1480 {Opt_nowarn_on_error, "nowarn_on_error"},
1481 {Opt_lazytime, "lazytime"},
1482 {Opt_nolazytime, "nolazytime"},
1483 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1484 {Opt_nodelalloc, "nodelalloc"},
1485 {Opt_removed, "mblk_io_submit"},
1486 {Opt_removed, "nomblk_io_submit"},
1487 {Opt_block_validity, "block_validity"},
1488 {Opt_noblock_validity, "noblock_validity"},
1489 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1490 {Opt_journal_ioprio, "journal_ioprio=%u"},
1491 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1492 {Opt_auto_da_alloc, "auto_da_alloc"},
1493 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1494 {Opt_dioread_nolock, "dioread_nolock"},
1495 {Opt_dioread_lock, "dioread_lock"},
1496 {Opt_discard, "discard"},
1497 {Opt_nodiscard, "nodiscard"},
1498 {Opt_init_itable, "init_itable=%u"},
1499 {Opt_init_itable, "init_itable"},
1500 {Opt_noinit_itable, "noinit_itable"},
1501 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1502 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1503 {Opt_nombcache, "nombcache"},
1504 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1505 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1506 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1507 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1508 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1509 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1510 {Opt_err, NULL},
1511};
1512
1513static ext4_fsblk_t get_sb_block(void **data)
1514{
1515 ext4_fsblk_t sb_block;
1516 char *options = (char *) *data;
1517
1518 if (!options || strncmp(options, "sb=", 3) != 0)
1519 return 1; /* Default location */
1520
1521 options += 3;
1522 /* TODO: use simple_strtoll with >32bit ext4 */
1523 sb_block = simple_strtoul(options, &options, 0);
1524 if (*options && *options != ',') {
1525 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1526 (char *) *data);
1527 return 1;
1528 }
1529 if (*options == ',')
1530 options++;
1531 *data = (void *) options;
1532
1533 return sb_block;
1534}
1535
1536#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1537static const char deprecated_msg[] =
1538 "Mount option \"%s\" will be removed by %s\n"
1539 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1540
1541#ifdef CONFIG_QUOTA
1542static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1543{
1544 struct ext4_sb_info *sbi = EXT4_SB(sb);
1545 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1546 int ret = -1;
1547
1548 if (sb_any_quota_loaded(sb) && !old_qname) {
1549 ext4_msg(sb, KERN_ERR,
1550 "Cannot change journaled "
1551 "quota options when quota turned on");
1552 return -1;
1553 }
1554 if (ext4_has_feature_quota(sb)) {
1555 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1556 "ignored when QUOTA feature is enabled");
1557 return 1;
1558 }
1559 qname = match_strdup(args);
1560 if (!qname) {
1561 ext4_msg(sb, KERN_ERR,
1562 "Not enough memory for storing quotafile name");
1563 return -1;
1564 }
1565 if (old_qname) {
1566 if (strcmp(old_qname, qname) == 0)
1567 ret = 1;
1568 else
1569 ext4_msg(sb, KERN_ERR,
1570 "%s quota file already specified",
1571 QTYPE2NAME(qtype));
1572 goto errout;
1573 }
1574 if (strchr(qname, '/')) {
1575 ext4_msg(sb, KERN_ERR,
1576 "quotafile must be on filesystem root");
1577 goto errout;
1578 }
1579 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1580 set_opt(sb, QUOTA);
1581 return 1;
1582errout:
1583 kfree(qname);
1584 return ret;
1585}
1586
1587static int clear_qf_name(struct super_block *sb, int qtype)
1588{
1589
1590 struct ext4_sb_info *sbi = EXT4_SB(sb);
1591 char *old_qname = get_qf_name(sb, sbi, qtype);
1592
1593 if (sb_any_quota_loaded(sb) && old_qname) {
1594 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1595 " when quota turned on");
1596 return -1;
1597 }
1598 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1599 synchronize_rcu();
1600 kfree(old_qname);
1601 return 1;
1602}
1603#endif
1604
1605#define MOPT_SET 0x0001
1606#define MOPT_CLEAR 0x0002
1607#define MOPT_NOSUPPORT 0x0004
1608#define MOPT_EXPLICIT 0x0008
1609#define MOPT_CLEAR_ERR 0x0010
1610#define MOPT_GTE0 0x0020
1611#ifdef CONFIG_QUOTA
1612#define MOPT_Q 0
1613#define MOPT_QFMT 0x0040
1614#else
1615#define MOPT_Q MOPT_NOSUPPORT
1616#define MOPT_QFMT MOPT_NOSUPPORT
1617#endif
1618#define MOPT_DATAJ 0x0080
1619#define MOPT_NO_EXT2 0x0100
1620#define MOPT_NO_EXT3 0x0200
1621#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1622#define MOPT_STRING 0x0400
1623
1624static const struct mount_opts {
1625 int token;
1626 int mount_opt;
1627 int flags;
1628} ext4_mount_opts[] = {
1629 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1630 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1631 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1632 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1633 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1634 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1635 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1636 MOPT_EXT4_ONLY | MOPT_SET},
1637 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1638 MOPT_EXT4_ONLY | MOPT_CLEAR},
1639 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1640 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1641 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1642 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1643 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1644 MOPT_EXT4_ONLY | MOPT_CLEAR},
1645 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1646 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1647 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1648 MOPT_EXT4_ONLY | MOPT_CLEAR},
1649 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1650 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1651 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1652 EXT4_MOUNT_JOURNAL_CHECKSUM),
1653 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1654 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1655 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1656 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1657 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1658 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1659 MOPT_NO_EXT2},
1660 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1661 MOPT_NO_EXT2},
1662 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1663 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1664 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1665 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1666 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1667 {Opt_commit, 0, MOPT_GTE0},
1668 {Opt_max_batch_time, 0, MOPT_GTE0},
1669 {Opt_min_batch_time, 0, MOPT_GTE0},
1670 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1671 {Opt_init_itable, 0, MOPT_GTE0},
1672 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1673 {Opt_stripe, 0, MOPT_GTE0},
1674 {Opt_resuid, 0, MOPT_GTE0},
1675 {Opt_resgid, 0, MOPT_GTE0},
1676 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1677 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1678 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1679 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1680 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1681 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1682 MOPT_NO_EXT2 | MOPT_DATAJ},
1683 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1684 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1685#ifdef CONFIG_EXT4_FS_POSIX_ACL
1686 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1687 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1688#else
1689 {Opt_acl, 0, MOPT_NOSUPPORT},
1690 {Opt_noacl, 0, MOPT_NOSUPPORT},
1691#endif
1692 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1693 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1694 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1695 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1696 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1697 MOPT_SET | MOPT_Q},
1698 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1699 MOPT_SET | MOPT_Q},
1700 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1701 MOPT_SET | MOPT_Q},
1702 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1703 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1704 MOPT_CLEAR | MOPT_Q},
1705 {Opt_usrjquota, 0, MOPT_Q},
1706 {Opt_grpjquota, 0, MOPT_Q},
1707 {Opt_offusrjquota, 0, MOPT_Q},
1708 {Opt_offgrpjquota, 0, MOPT_Q},
1709 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1710 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1711 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1712 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1713 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1714 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1715 {Opt_err, 0, 0}
1716};
1717
1718static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1719 substring_t *args, unsigned long *journal_devnum,
1720 unsigned int *journal_ioprio, int is_remount)
1721{
1722 struct ext4_sb_info *sbi = EXT4_SB(sb);
1723 const struct mount_opts *m;
1724 kuid_t uid;
1725 kgid_t gid;
1726 int arg = 0;
1727
1728#ifdef CONFIG_QUOTA
1729 if (token == Opt_usrjquota)
1730 return set_qf_name(sb, USRQUOTA, &args[0]);
1731 else if (token == Opt_grpjquota)
1732 return set_qf_name(sb, GRPQUOTA, &args[0]);
1733 else if (token == Opt_offusrjquota)
1734 return clear_qf_name(sb, USRQUOTA);
1735 else if (token == Opt_offgrpjquota)
1736 return clear_qf_name(sb, GRPQUOTA);
1737#endif
1738 switch (token) {
1739 case Opt_noacl:
1740 case Opt_nouser_xattr:
1741 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1742 break;
1743 case Opt_sb:
1744 return 1; /* handled by get_sb_block() */
1745 case Opt_removed:
1746 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1747 return 1;
1748 case Opt_abort:
1749 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1750 return 1;
1751 case Opt_i_version:
1752 sb->s_flags |= SB_I_VERSION;
1753 return 1;
1754 case Opt_lazytime:
1755 sb->s_flags |= SB_LAZYTIME;
1756 return 1;
1757 case Opt_nolazytime:
1758 sb->s_flags &= ~SB_LAZYTIME;
1759 return 1;
1760 }
1761
1762 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1763 if (token == m->token)
1764 break;
1765
1766 if (m->token == Opt_err) {
1767 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1768 "or missing value", opt);
1769 return -1;
1770 }
1771
1772 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1773 ext4_msg(sb, KERN_ERR,
1774 "Mount option \"%s\" incompatible with ext2", opt);
1775 return -1;
1776 }
1777 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1778 ext4_msg(sb, KERN_ERR,
1779 "Mount option \"%s\" incompatible with ext3", opt);
1780 return -1;
1781 }
1782
1783 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1784 return -1;
1785 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1786 return -1;
1787 if (m->flags & MOPT_EXPLICIT) {
1788 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1789 set_opt2(sb, EXPLICIT_DELALLOC);
1790 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1791 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1792 } else
1793 return -1;
1794 }
1795 if (m->flags & MOPT_CLEAR_ERR)
1796 clear_opt(sb, ERRORS_MASK);
1797 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1798 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1799 "options when quota turned on");
1800 return -1;
1801 }
1802
1803 if (m->flags & MOPT_NOSUPPORT) {
1804 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1805 } else if (token == Opt_commit) {
1806 if (arg == 0)
1807 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1808 sbi->s_commit_interval = HZ * arg;
1809 } else if (token == Opt_debug_want_extra_isize) {
1810 sbi->s_want_extra_isize = arg;
1811 } else if (token == Opt_max_batch_time) {
1812 sbi->s_max_batch_time = arg;
1813 } else if (token == Opt_min_batch_time) {
1814 sbi->s_min_batch_time = arg;
1815 } else if (token == Opt_inode_readahead_blks) {
1816 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1817 ext4_msg(sb, KERN_ERR,
1818 "EXT4-fs: inode_readahead_blks must be "
1819 "0 or a power of 2 smaller than 2^31");
1820 return -1;
1821 }
1822 sbi->s_inode_readahead_blks = arg;
1823 } else if (token == Opt_init_itable) {
1824 set_opt(sb, INIT_INODE_TABLE);
1825 if (!args->from)
1826 arg = EXT4_DEF_LI_WAIT_MULT;
1827 sbi->s_li_wait_mult = arg;
1828 } else if (token == Opt_max_dir_size_kb) {
1829 sbi->s_max_dir_size_kb = arg;
1830 } else if (token == Opt_stripe) {
1831 sbi->s_stripe = arg;
1832 } else if (token == Opt_resuid) {
1833 uid = make_kuid(current_user_ns(), arg);
1834 if (!uid_valid(uid)) {
1835 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1836 return -1;
1837 }
1838 sbi->s_resuid = uid;
1839 } else if (token == Opt_resgid) {
1840 gid = make_kgid(current_user_ns(), arg);
1841 if (!gid_valid(gid)) {
1842 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1843 return -1;
1844 }
1845 sbi->s_resgid = gid;
1846 } else if (token == Opt_journal_dev) {
1847 if (is_remount) {
1848 ext4_msg(sb, KERN_ERR,
1849 "Cannot specify journal on remount");
1850 return -1;
1851 }
1852 *journal_devnum = arg;
1853 } else if (token == Opt_journal_path) {
1854 char *journal_path;
1855 struct inode *journal_inode;
1856 struct path path;
1857 int error;
1858
1859 if (is_remount) {
1860 ext4_msg(sb, KERN_ERR,
1861 "Cannot specify journal on remount");
1862 return -1;
1863 }
1864 journal_path = match_strdup(&args[0]);
1865 if (!journal_path) {
1866 ext4_msg(sb, KERN_ERR, "error: could not dup "
1867 "journal device string");
1868 return -1;
1869 }
1870
1871 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1872 if (error) {
1873 ext4_msg(sb, KERN_ERR, "error: could not find "
1874 "journal device path: error %d", error);
1875 kfree(journal_path);
1876 return -1;
1877 }
1878
1879 journal_inode = d_inode(path.dentry);
1880 if (!S_ISBLK(journal_inode->i_mode)) {
1881 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1882 "is not a block device", journal_path);
1883 path_put(&path);
1884 kfree(journal_path);
1885 return -1;
1886 }
1887
1888 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1889 path_put(&path);
1890 kfree(journal_path);
1891 } else if (token == Opt_journal_ioprio) {
1892 if (arg > 7) {
1893 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1894 " (must be 0-7)");
1895 return -1;
1896 }
1897 *journal_ioprio =
1898 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1899 } else if (token == Opt_test_dummy_encryption) {
1900#ifdef CONFIG_EXT4_FS_ENCRYPTION
1901 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1902 ext4_msg(sb, KERN_WARNING,
1903 "Test dummy encryption mode enabled");
1904#else
1905 ext4_msg(sb, KERN_WARNING,
1906 "Test dummy encryption mount option ignored");
1907#endif
1908 } else if (m->flags & MOPT_DATAJ) {
1909 if (is_remount) {
1910 if (!sbi->s_journal)
1911 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1912 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1913 ext4_msg(sb, KERN_ERR,
1914 "Cannot change data mode on remount");
1915 return -1;
1916 }
1917 } else {
1918 clear_opt(sb, DATA_FLAGS);
1919 sbi->s_mount_opt |= m->mount_opt;
1920 }
1921#ifdef CONFIG_QUOTA
1922 } else if (m->flags & MOPT_QFMT) {
1923 if (sb_any_quota_loaded(sb) &&
1924 sbi->s_jquota_fmt != m->mount_opt) {
1925 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1926 "quota options when quota turned on");
1927 return -1;
1928 }
1929 if (ext4_has_feature_quota(sb)) {
1930 ext4_msg(sb, KERN_INFO,
1931 "Quota format mount options ignored "
1932 "when QUOTA feature is enabled");
1933 return 1;
1934 }
1935 sbi->s_jquota_fmt = m->mount_opt;
1936#endif
1937 } else if (token == Opt_dax) {
1938#ifdef CONFIG_FS_DAX
1939 ext4_msg(sb, KERN_WARNING,
1940 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1941 sbi->s_mount_opt |= m->mount_opt;
1942#else
1943 ext4_msg(sb, KERN_INFO, "dax option not supported");
1944 return -1;
1945#endif
1946 } else if (token == Opt_data_err_abort) {
1947 sbi->s_mount_opt |= m->mount_opt;
1948 } else if (token == Opt_data_err_ignore) {
1949 sbi->s_mount_opt &= ~m->mount_opt;
1950 } else {
1951 if (!args->from)
1952 arg = 1;
1953 if (m->flags & MOPT_CLEAR)
1954 arg = !arg;
1955 else if (unlikely(!(m->flags & MOPT_SET))) {
1956 ext4_msg(sb, KERN_WARNING,
1957 "buggy handling of option %s", opt);
1958 WARN_ON(1);
1959 return -1;
1960 }
1961 if (arg != 0)
1962 sbi->s_mount_opt |= m->mount_opt;
1963 else
1964 sbi->s_mount_opt &= ~m->mount_opt;
1965 }
1966 return 1;
1967}
1968
1969static int parse_options(char *options, struct super_block *sb,
1970 unsigned long *journal_devnum,
1971 unsigned int *journal_ioprio,
1972 int is_remount)
1973{
1974 struct ext4_sb_info *sbi = EXT4_SB(sb);
1975 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
1976 substring_t args[MAX_OPT_ARGS];
1977 int token;
1978
1979 if (!options)
1980 return 1;
1981
1982 while ((p = strsep(&options, ",")) != NULL) {
1983 if (!*p)
1984 continue;
1985 /*
1986 * Initialize args struct so we know whether arg was
1987 * found; some options take optional arguments.
1988 */
1989 args[0].to = args[0].from = NULL;
1990 token = match_token(p, tokens, args);
1991 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1992 journal_ioprio, is_remount) < 0)
1993 return 0;
1994 }
1995#ifdef CONFIG_QUOTA
1996 /*
1997 * We do the test below only for project quotas. 'usrquota' and
1998 * 'grpquota' mount options are allowed even without quota feature
1999 * to support legacy quotas in quota files.
2000 */
2001 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2002 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2003 "Cannot enable project quota enforcement.");
2004 return 0;
2005 }
2006 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2007 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2008 if (usr_qf_name || grp_qf_name) {
2009 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2010 clear_opt(sb, USRQUOTA);
2011
2012 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2013 clear_opt(sb, GRPQUOTA);
2014
2015 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2016 ext4_msg(sb, KERN_ERR, "old and new quota "
2017 "format mixing");
2018 return 0;
2019 }
2020
2021 if (!sbi->s_jquota_fmt) {
2022 ext4_msg(sb, KERN_ERR, "journaled quota format "
2023 "not specified");
2024 return 0;
2025 }
2026 }
2027#endif
2028 if (test_opt(sb, DIOREAD_NOLOCK)) {
2029 int blocksize =
2030 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2031
2032 if (blocksize < PAGE_SIZE) {
2033 ext4_msg(sb, KERN_ERR, "can't mount with "
2034 "dioread_nolock if block size != PAGE_SIZE");
2035 return 0;
2036 }
2037 }
2038 return 1;
2039}
2040
2041static inline void ext4_show_quota_options(struct seq_file *seq,
2042 struct super_block *sb)
2043{
2044#if defined(CONFIG_QUOTA)
2045 struct ext4_sb_info *sbi = EXT4_SB(sb);
2046 char *usr_qf_name, *grp_qf_name;
2047
2048 if (sbi->s_jquota_fmt) {
2049 char *fmtname = "";
2050
2051 switch (sbi->s_jquota_fmt) {
2052 case QFMT_VFS_OLD:
2053 fmtname = "vfsold";
2054 break;
2055 case QFMT_VFS_V0:
2056 fmtname = "vfsv0";
2057 break;
2058 case QFMT_VFS_V1:
2059 fmtname = "vfsv1";
2060 break;
2061 }
2062 seq_printf(seq, ",jqfmt=%s", fmtname);
2063 }
2064
2065 rcu_read_lock();
2066 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2067 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2068 if (usr_qf_name)
2069 seq_show_option(seq, "usrjquota", usr_qf_name);
2070 if (grp_qf_name)
2071 seq_show_option(seq, "grpjquota", grp_qf_name);
2072 rcu_read_unlock();
2073#endif
2074}
2075
2076static const char *token2str(int token)
2077{
2078 const struct match_token *t;
2079
2080 for (t = tokens; t->token != Opt_err; t++)
2081 if (t->token == token && !strchr(t->pattern, '='))
2082 break;
2083 return t->pattern;
2084}
2085
2086/*
2087 * Show an option if
2088 * - it's set to a non-default value OR
2089 * - if the per-sb default is different from the global default
2090 */
2091static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2092 int nodefs)
2093{
2094 struct ext4_sb_info *sbi = EXT4_SB(sb);
2095 struct ext4_super_block *es = sbi->s_es;
2096 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2097 const struct mount_opts *m;
2098 char sep = nodefs ? '\n' : ',';
2099
2100#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2101#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2102
2103 if (sbi->s_sb_block != 1)
2104 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2105
2106 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2107 int want_set = m->flags & MOPT_SET;
2108 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2109 (m->flags & MOPT_CLEAR_ERR))
2110 continue;
2111 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2112 continue; /* skip if same as the default */
2113 if ((want_set &&
2114 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2115 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2116 continue; /* select Opt_noFoo vs Opt_Foo */
2117 SEQ_OPTS_PRINT("%s", token2str(m->token));
2118 }
2119
2120 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2121 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2122 SEQ_OPTS_PRINT("resuid=%u",
2123 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2124 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2125 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2126 SEQ_OPTS_PRINT("resgid=%u",
2127 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2128 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2129 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2130 SEQ_OPTS_PUTS("errors=remount-ro");
2131 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2132 SEQ_OPTS_PUTS("errors=continue");
2133 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2134 SEQ_OPTS_PUTS("errors=panic");
2135 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2136 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2137 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2138 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2139 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2140 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2141 if (sb->s_flags & SB_I_VERSION)
2142 SEQ_OPTS_PUTS("i_version");
2143 if (nodefs || sbi->s_stripe)
2144 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2145 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2146 (sbi->s_mount_opt ^ def_mount_opt)) {
2147 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2148 SEQ_OPTS_PUTS("data=journal");
2149 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2150 SEQ_OPTS_PUTS("data=ordered");
2151 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2152 SEQ_OPTS_PUTS("data=writeback");
2153 }
2154 if (nodefs ||
2155 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2156 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2157 sbi->s_inode_readahead_blks);
2158
2159 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2160 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2161 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2162 if (nodefs || sbi->s_max_dir_size_kb)
2163 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2164 if (test_opt(sb, DATA_ERR_ABORT))
2165 SEQ_OPTS_PUTS("data_err=abort");
2166 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2167 SEQ_OPTS_PUTS("test_dummy_encryption");
2168
2169 ext4_show_quota_options(seq, sb);
2170 return 0;
2171}
2172
2173static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2174{
2175 return _ext4_show_options(seq, root->d_sb, 0);
2176}
2177
2178int ext4_seq_options_show(struct seq_file *seq, void *offset)
2179{
2180 struct super_block *sb = seq->private;
2181 int rc;
2182
2183 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2184 rc = _ext4_show_options(seq, sb, 1);
2185 seq_puts(seq, "\n");
2186 return rc;
2187}
2188
2189static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2190 int read_only)
2191{
2192 struct ext4_sb_info *sbi = EXT4_SB(sb);
2193 int err = 0;
2194
2195 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2196 ext4_msg(sb, KERN_ERR, "revision level too high, "
2197 "forcing read-only mode");
2198 err = -EROFS;
2199 }
2200 if (read_only)
2201 goto done;
2202 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2203 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2204 "running e2fsck is recommended");
2205 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2206 ext4_msg(sb, KERN_WARNING,
2207 "warning: mounting fs with errors, "
2208 "running e2fsck is recommended");
2209 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2210 le16_to_cpu(es->s_mnt_count) >=
2211 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2212 ext4_msg(sb, KERN_WARNING,
2213 "warning: maximal mount count reached, "
2214 "running e2fsck is recommended");
2215 else if (le32_to_cpu(es->s_checkinterval) &&
2216 (ext4_get_tstamp(es, s_lastcheck) +
2217 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2218 ext4_msg(sb, KERN_WARNING,
2219 "warning: checktime reached, "
2220 "running e2fsck is recommended");
2221 if (!sbi->s_journal)
2222 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2223 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2224 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2225 le16_add_cpu(&es->s_mnt_count, 1);
2226 ext4_update_tstamp(es, s_mtime);
2227 ext4_update_dynamic_rev(sb);
2228 if (sbi->s_journal)
2229 ext4_set_feature_journal_needs_recovery(sb);
2230
2231 err = ext4_commit_super(sb, 1);
2232done:
2233 if (test_opt(sb, DEBUG))
2234 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2235 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2236 sb->s_blocksize,
2237 sbi->s_groups_count,
2238 EXT4_BLOCKS_PER_GROUP(sb),
2239 EXT4_INODES_PER_GROUP(sb),
2240 sbi->s_mount_opt, sbi->s_mount_opt2);
2241
2242 cleancache_init_fs(sb);
2243 return err;
2244}
2245
2246int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2247{
2248 struct ext4_sb_info *sbi = EXT4_SB(sb);
2249 struct flex_groups *new_groups;
2250 int size;
2251
2252 if (!sbi->s_log_groups_per_flex)
2253 return 0;
2254
2255 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2256 if (size <= sbi->s_flex_groups_allocated)
2257 return 0;
2258
2259 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2260 new_groups = kvzalloc(size, GFP_KERNEL);
2261 if (!new_groups) {
2262 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2263 size / (int) sizeof(struct flex_groups));
2264 return -ENOMEM;
2265 }
2266
2267 if (sbi->s_flex_groups) {
2268 memcpy(new_groups, sbi->s_flex_groups,
2269 (sbi->s_flex_groups_allocated *
2270 sizeof(struct flex_groups)));
2271 kvfree(sbi->s_flex_groups);
2272 }
2273 sbi->s_flex_groups = new_groups;
2274 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2275 return 0;
2276}
2277
2278static int ext4_fill_flex_info(struct super_block *sb)
2279{
2280 struct ext4_sb_info *sbi = EXT4_SB(sb);
2281 struct ext4_group_desc *gdp = NULL;
2282 ext4_group_t flex_group;
2283 int i, err;
2284
2285 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2286 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2287 sbi->s_log_groups_per_flex = 0;
2288 return 1;
2289 }
2290
2291 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2292 if (err)
2293 goto failed;
2294
2295 for (i = 0; i < sbi->s_groups_count; i++) {
2296 gdp = ext4_get_group_desc(sb, i, NULL);
2297
2298 flex_group = ext4_flex_group(sbi, i);
2299 atomic_add(ext4_free_inodes_count(sb, gdp),
2300 &sbi->s_flex_groups[flex_group].free_inodes);
2301 atomic64_add(ext4_free_group_clusters(sb, gdp),
2302 &sbi->s_flex_groups[flex_group].free_clusters);
2303 atomic_add(ext4_used_dirs_count(sb, gdp),
2304 &sbi->s_flex_groups[flex_group].used_dirs);
2305 }
2306
2307 return 1;
2308failed:
2309 return 0;
2310}
2311
2312static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2313 struct ext4_group_desc *gdp)
2314{
2315 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2316 __u16 crc = 0;
2317 __le32 le_group = cpu_to_le32(block_group);
2318 struct ext4_sb_info *sbi = EXT4_SB(sb);
2319
2320 if (ext4_has_metadata_csum(sbi->s_sb)) {
2321 /* Use new metadata_csum algorithm */
2322 __u32 csum32;
2323 __u16 dummy_csum = 0;
2324
2325 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2326 sizeof(le_group));
2327 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2328 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2329 sizeof(dummy_csum));
2330 offset += sizeof(dummy_csum);
2331 if (offset < sbi->s_desc_size)
2332 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2333 sbi->s_desc_size - offset);
2334
2335 crc = csum32 & 0xFFFF;
2336 goto out;
2337 }
2338
2339 /* old crc16 code */
2340 if (!ext4_has_feature_gdt_csum(sb))
2341 return 0;
2342
2343 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2344 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2345 crc = crc16(crc, (__u8 *)gdp, offset);
2346 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2347 /* for checksum of struct ext4_group_desc do the rest...*/
2348 if (ext4_has_feature_64bit(sb) &&
2349 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2350 crc = crc16(crc, (__u8 *)gdp + offset,
2351 le16_to_cpu(sbi->s_es->s_desc_size) -
2352 offset);
2353
2354out:
2355 return cpu_to_le16(crc);
2356}
2357
2358int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2359 struct ext4_group_desc *gdp)
2360{
2361 if (ext4_has_group_desc_csum(sb) &&
2362 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2363 return 0;
2364
2365 return 1;
2366}
2367
2368void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2369 struct ext4_group_desc *gdp)
2370{
2371 if (!ext4_has_group_desc_csum(sb))
2372 return;
2373 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2374}
2375
2376/* Called at mount-time, super-block is locked */
2377static int ext4_check_descriptors(struct super_block *sb,
2378 ext4_fsblk_t sb_block,
2379 ext4_group_t *first_not_zeroed)
2380{
2381 struct ext4_sb_info *sbi = EXT4_SB(sb);
2382 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2383 ext4_fsblk_t last_block;
2384 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2385 ext4_fsblk_t block_bitmap;
2386 ext4_fsblk_t inode_bitmap;
2387 ext4_fsblk_t inode_table;
2388 int flexbg_flag = 0;
2389 ext4_group_t i, grp = sbi->s_groups_count;
2390
2391 if (ext4_has_feature_flex_bg(sb))
2392 flexbg_flag = 1;
2393
2394 ext4_debug("Checking group descriptors");
2395
2396 for (i = 0; i < sbi->s_groups_count; i++) {
2397 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2398
2399 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2400 last_block = ext4_blocks_count(sbi->s_es) - 1;
2401 else
2402 last_block = first_block +
2403 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2404
2405 if ((grp == sbi->s_groups_count) &&
2406 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2407 grp = i;
2408
2409 block_bitmap = ext4_block_bitmap(sb, gdp);
2410 if (block_bitmap == sb_block) {
2411 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2412 "Block bitmap for group %u overlaps "
2413 "superblock", i);
2414 if (!sb_rdonly(sb))
2415 return 0;
2416 }
2417 if (block_bitmap >= sb_block + 1 &&
2418 block_bitmap <= last_bg_block) {
2419 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2420 "Block bitmap for group %u overlaps "
2421 "block group descriptors", i);
2422 if (!sb_rdonly(sb))
2423 return 0;
2424 }
2425 if (block_bitmap < first_block || block_bitmap > last_block) {
2426 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2427 "Block bitmap for group %u not in group "
2428 "(block %llu)!", i, block_bitmap);
2429 return 0;
2430 }
2431 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2432 if (inode_bitmap == sb_block) {
2433 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2434 "Inode bitmap for group %u overlaps "
2435 "superblock", i);
2436 if (!sb_rdonly(sb))
2437 return 0;
2438 }
2439 if (inode_bitmap >= sb_block + 1 &&
2440 inode_bitmap <= last_bg_block) {
2441 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2442 "Inode bitmap for group %u overlaps "
2443 "block group descriptors", i);
2444 if (!sb_rdonly(sb))
2445 return 0;
2446 }
2447 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2448 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2449 "Inode bitmap for group %u not in group "
2450 "(block %llu)!", i, inode_bitmap);
2451 return 0;
2452 }
2453 inode_table = ext4_inode_table(sb, gdp);
2454 if (inode_table == sb_block) {
2455 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2456 "Inode table for group %u overlaps "
2457 "superblock", i);
2458 if (!sb_rdonly(sb))
2459 return 0;
2460 }
2461 if (inode_table >= sb_block + 1 &&
2462 inode_table <= last_bg_block) {
2463 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2464 "Inode table for group %u overlaps "
2465 "block group descriptors", i);
2466 if (!sb_rdonly(sb))
2467 return 0;
2468 }
2469 if (inode_table < first_block ||
2470 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2471 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2472 "Inode table for group %u not in group "
2473 "(block %llu)!", i, inode_table);
2474 return 0;
2475 }
2476 ext4_lock_group(sb, i);
2477 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2478 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2479 "Checksum for group %u failed (%u!=%u)",
2480 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2481 gdp)), le16_to_cpu(gdp->bg_checksum));
2482 if (!sb_rdonly(sb)) {
2483 ext4_unlock_group(sb, i);
2484 return 0;
2485 }
2486 }
2487 ext4_unlock_group(sb, i);
2488 if (!flexbg_flag)
2489 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2490 }
2491 if (NULL != first_not_zeroed)
2492 *first_not_zeroed = grp;
2493 return 1;
2494}
2495
2496/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2497 * the superblock) which were deleted from all directories, but held open by
2498 * a process at the time of a crash. We walk the list and try to delete these
2499 * inodes at recovery time (only with a read-write filesystem).
2500 *
2501 * In order to keep the orphan inode chain consistent during traversal (in
2502 * case of crash during recovery), we link each inode into the superblock
2503 * orphan list_head and handle it the same way as an inode deletion during
2504 * normal operation (which journals the operations for us).
2505 *
2506 * We only do an iget() and an iput() on each inode, which is very safe if we
2507 * accidentally point at an in-use or already deleted inode. The worst that
2508 * can happen in this case is that we get a "bit already cleared" message from
2509 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2510 * e2fsck was run on this filesystem, and it must have already done the orphan
2511 * inode cleanup for us, so we can safely abort without any further action.
2512 */
2513static void ext4_orphan_cleanup(struct super_block *sb,
2514 struct ext4_super_block *es)
2515{
2516 unsigned int s_flags = sb->s_flags;
2517 int ret, nr_orphans = 0, nr_truncates = 0;
2518#ifdef CONFIG_QUOTA
2519 int quota_update = 0;
2520 int i;
2521#endif
2522 if (!es->s_last_orphan) {
2523 jbd_debug(4, "no orphan inodes to clean up\n");
2524 return;
2525 }
2526
2527 if (bdev_read_only(sb->s_bdev)) {
2528 ext4_msg(sb, KERN_ERR, "write access "
2529 "unavailable, skipping orphan cleanup");
2530 return;
2531 }
2532
2533 /* Check if feature set would not allow a r/w mount */
2534 if (!ext4_feature_set_ok(sb, 0)) {
2535 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2536 "unknown ROCOMPAT features");
2537 return;
2538 }
2539
2540 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2541 /* don't clear list on RO mount w/ errors */
2542 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2543 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2544 "clearing orphan list.\n");
2545 es->s_last_orphan = 0;
2546 }
2547 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2548 return;
2549 }
2550
2551 if (s_flags & SB_RDONLY) {
2552 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2553 sb->s_flags &= ~SB_RDONLY;
2554 }
2555#ifdef CONFIG_QUOTA
2556 /* Needed for iput() to work correctly and not trash data */
2557 sb->s_flags |= SB_ACTIVE;
2558
2559 /*
2560 * Turn on quotas which were not enabled for read-only mounts if
2561 * filesystem has quota feature, so that they are updated correctly.
2562 */
2563 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2564 int ret = ext4_enable_quotas(sb);
2565
2566 if (!ret)
2567 quota_update = 1;
2568 else
2569 ext4_msg(sb, KERN_ERR,
2570 "Cannot turn on quotas: error %d", ret);
2571 }
2572
2573 /* Turn on journaled quotas used for old sytle */
2574 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2575 if (EXT4_SB(sb)->s_qf_names[i]) {
2576 int ret = ext4_quota_on_mount(sb, i);
2577
2578 if (!ret)
2579 quota_update = 1;
2580 else
2581 ext4_msg(sb, KERN_ERR,
2582 "Cannot turn on journaled "
2583 "quota: type %d: error %d", i, ret);
2584 }
2585 }
2586#endif
2587
2588 while (es->s_last_orphan) {
2589 struct inode *inode;
2590
2591 /*
2592 * We may have encountered an error during cleanup; if
2593 * so, skip the rest.
2594 */
2595 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2596 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2597 es->s_last_orphan = 0;
2598 break;
2599 }
2600
2601 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2602 if (IS_ERR(inode)) {
2603 es->s_last_orphan = 0;
2604 break;
2605 }
2606
2607 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2608 dquot_initialize(inode);
2609 if (inode->i_nlink) {
2610 if (test_opt(sb, DEBUG))
2611 ext4_msg(sb, KERN_DEBUG,
2612 "%s: truncating inode %lu to %lld bytes",
2613 __func__, inode->i_ino, inode->i_size);
2614 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2615 inode->i_ino, inode->i_size);
2616 inode_lock(inode);
2617 truncate_inode_pages(inode->i_mapping, inode->i_size);
2618 ret = ext4_truncate(inode);
2619 if (ret)
2620 ext4_std_error(inode->i_sb, ret);
2621 inode_unlock(inode);
2622 nr_truncates++;
2623 } else {
2624 if (test_opt(sb, DEBUG))
2625 ext4_msg(sb, KERN_DEBUG,
2626 "%s: deleting unreferenced inode %lu",
2627 __func__, inode->i_ino);
2628 jbd_debug(2, "deleting unreferenced inode %lu\n",
2629 inode->i_ino);
2630 nr_orphans++;
2631 }
2632 iput(inode); /* The delete magic happens here! */
2633 }
2634
2635#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2636
2637 if (nr_orphans)
2638 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2639 PLURAL(nr_orphans));
2640 if (nr_truncates)
2641 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2642 PLURAL(nr_truncates));
2643#ifdef CONFIG_QUOTA
2644 /* Turn off quotas if they were enabled for orphan cleanup */
2645 if (quota_update) {
2646 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2647 if (sb_dqopt(sb)->files[i])
2648 dquot_quota_off(sb, i);
2649 }
2650 }
2651#endif
2652 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2653}
2654
2655/*
2656 * Maximal extent format file size.
2657 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2658 * extent format containers, within a sector_t, and within i_blocks
2659 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2660 * so that won't be a limiting factor.
2661 *
2662 * However there is other limiting factor. We do store extents in the form
2663 * of starting block and length, hence the resulting length of the extent
2664 * covering maximum file size must fit into on-disk format containers as
2665 * well. Given that length is always by 1 unit bigger than max unit (because
2666 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2667 *
2668 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2669 */
2670static loff_t ext4_max_size(int blkbits, int has_huge_files)
2671{
2672 loff_t res;
2673 loff_t upper_limit = MAX_LFS_FILESIZE;
2674
2675 /* small i_blocks in vfs inode? */
2676 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2677 /*
2678 * CONFIG_LBDAF is not enabled implies the inode
2679 * i_block represent total blocks in 512 bytes
2680 * 32 == size of vfs inode i_blocks * 8
2681 */
2682 upper_limit = (1LL << 32) - 1;
2683
2684 /* total blocks in file system block size */
2685 upper_limit >>= (blkbits - 9);
2686 upper_limit <<= blkbits;
2687 }
2688
2689 /*
2690 * 32-bit extent-start container, ee_block. We lower the maxbytes
2691 * by one fs block, so ee_len can cover the extent of maximum file
2692 * size
2693 */
2694 res = (1LL << 32) - 1;
2695 res <<= blkbits;
2696
2697 /* Sanity check against vm- & vfs- imposed limits */
2698 if (res > upper_limit)
2699 res = upper_limit;
2700
2701 return res;
2702}
2703
2704/*
2705 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2706 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2707 * We need to be 1 filesystem block less than the 2^48 sector limit.
2708 */
2709static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2710{
2711 loff_t res = EXT4_NDIR_BLOCKS;
2712 int meta_blocks;
2713 loff_t upper_limit;
2714 /* This is calculated to be the largest file size for a dense, block
2715 * mapped file such that the file's total number of 512-byte sectors,
2716 * including data and all indirect blocks, does not exceed (2^48 - 1).
2717 *
2718 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2719 * number of 512-byte sectors of the file.
2720 */
2721
2722 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2723 /*
2724 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2725 * the inode i_block field represents total file blocks in
2726 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2727 */
2728 upper_limit = (1LL << 32) - 1;
2729
2730 /* total blocks in file system block size */
2731 upper_limit >>= (bits - 9);
2732
2733 } else {
2734 /*
2735 * We use 48 bit ext4_inode i_blocks
2736 * With EXT4_HUGE_FILE_FL set the i_blocks
2737 * represent total number of blocks in
2738 * file system block size
2739 */
2740 upper_limit = (1LL << 48) - 1;
2741
2742 }
2743
2744 /* indirect blocks */
2745 meta_blocks = 1;
2746 /* double indirect blocks */
2747 meta_blocks += 1 + (1LL << (bits-2));
2748 /* tripple indirect blocks */
2749 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2750
2751 upper_limit -= meta_blocks;
2752 upper_limit <<= bits;
2753
2754 res += 1LL << (bits-2);
2755 res += 1LL << (2*(bits-2));
2756 res += 1LL << (3*(bits-2));
2757 res <<= bits;
2758 if (res > upper_limit)
2759 res = upper_limit;
2760
2761 if (res > MAX_LFS_FILESIZE)
2762 res = MAX_LFS_FILESIZE;
2763
2764 return res;
2765}
2766
2767static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2768 ext4_fsblk_t logical_sb_block, int nr)
2769{
2770 struct ext4_sb_info *sbi = EXT4_SB(sb);
2771 ext4_group_t bg, first_meta_bg;
2772 int has_super = 0;
2773
2774 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2775
2776 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2777 return logical_sb_block + nr + 1;
2778 bg = sbi->s_desc_per_block * nr;
2779 if (ext4_bg_has_super(sb, bg))
2780 has_super = 1;
2781
2782 /*
2783 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2784 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2785 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2786 * compensate.
2787 */
2788 if (sb->s_blocksize == 1024 && nr == 0 &&
2789 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2790 has_super++;
2791
2792 return (has_super + ext4_group_first_block_no(sb, bg));
2793}
2794
2795/**
2796 * ext4_get_stripe_size: Get the stripe size.
2797 * @sbi: In memory super block info
2798 *
2799 * If we have specified it via mount option, then
2800 * use the mount option value. If the value specified at mount time is
2801 * greater than the blocks per group use the super block value.
2802 * If the super block value is greater than blocks per group return 0.
2803 * Allocator needs it be less than blocks per group.
2804 *
2805 */
2806static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2807{
2808 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2809 unsigned long stripe_width =
2810 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2811 int ret;
2812
2813 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2814 ret = sbi->s_stripe;
2815 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2816 ret = stripe_width;
2817 else if (stride && stride <= sbi->s_blocks_per_group)
2818 ret = stride;
2819 else
2820 ret = 0;
2821
2822 /*
2823 * If the stripe width is 1, this makes no sense and
2824 * we set it to 0 to turn off stripe handling code.
2825 */
2826 if (ret <= 1)
2827 ret = 0;
2828
2829 return ret;
2830}
2831
2832/*
2833 * Check whether this filesystem can be mounted based on
2834 * the features present and the RDONLY/RDWR mount requested.
2835 * Returns 1 if this filesystem can be mounted as requested,
2836 * 0 if it cannot be.
2837 */
2838static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2839{
2840 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2841 ext4_msg(sb, KERN_ERR,
2842 "Couldn't mount because of "
2843 "unsupported optional features (%x)",
2844 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2845 ~EXT4_FEATURE_INCOMPAT_SUPP));
2846 return 0;
2847 }
2848
2849 if (readonly)
2850 return 1;
2851
2852 if (ext4_has_feature_readonly(sb)) {
2853 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2854 sb->s_flags |= SB_RDONLY;
2855 return 1;
2856 }
2857
2858 /* Check that feature set is OK for a read-write mount */
2859 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2860 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2861 "unsupported optional features (%x)",
2862 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2863 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2864 return 0;
2865 }
2866 /*
2867 * Large file size enabled file system can only be mounted
2868 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2869 */
2870 if (ext4_has_feature_huge_file(sb)) {
2871 if (sizeof(blkcnt_t) < sizeof(u64)) {
2872 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2873 "cannot be mounted RDWR without "
2874 "CONFIG_LBDAF");
2875 return 0;
2876 }
2877 }
2878 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2879 ext4_msg(sb, KERN_ERR,
2880 "Can't support bigalloc feature without "
2881 "extents feature\n");
2882 return 0;
2883 }
2884
2885#ifndef CONFIG_QUOTA
2886 if (ext4_has_feature_quota(sb) && !readonly) {
2887 ext4_msg(sb, KERN_ERR,
2888 "Filesystem with quota feature cannot be mounted RDWR "
2889 "without CONFIG_QUOTA");
2890 return 0;
2891 }
2892 if (ext4_has_feature_project(sb) && !readonly) {
2893 ext4_msg(sb, KERN_ERR,
2894 "Filesystem with project quota feature cannot be mounted RDWR "
2895 "without CONFIG_QUOTA");
2896 return 0;
2897 }
2898#endif /* CONFIG_QUOTA */
2899 return 1;
2900}
2901
2902/*
2903 * This function is called once a day if we have errors logged
2904 * on the file system
2905 */
2906static void print_daily_error_info(struct timer_list *t)
2907{
2908 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2909 struct super_block *sb = sbi->s_sb;
2910 struct ext4_super_block *es = sbi->s_es;
2911
2912 if (es->s_error_count)
2913 /* fsck newer than v1.41.13 is needed to clean this condition. */
2914 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2915 le32_to_cpu(es->s_error_count));
2916 if (es->s_first_error_time) {
2917 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2918 sb->s_id,
2919 ext4_get_tstamp(es, s_first_error_time),
2920 (int) sizeof(es->s_first_error_func),
2921 es->s_first_error_func,
2922 le32_to_cpu(es->s_first_error_line));
2923 if (es->s_first_error_ino)
2924 printk(KERN_CONT ": inode %u",
2925 le32_to_cpu(es->s_first_error_ino));
2926 if (es->s_first_error_block)
2927 printk(KERN_CONT ": block %llu", (unsigned long long)
2928 le64_to_cpu(es->s_first_error_block));
2929 printk(KERN_CONT "\n");
2930 }
2931 if (es->s_last_error_time) {
2932 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
2933 sb->s_id,
2934 ext4_get_tstamp(es, s_last_error_time),
2935 (int) sizeof(es->s_last_error_func),
2936 es->s_last_error_func,
2937 le32_to_cpu(es->s_last_error_line));
2938 if (es->s_last_error_ino)
2939 printk(KERN_CONT ": inode %u",
2940 le32_to_cpu(es->s_last_error_ino));
2941 if (es->s_last_error_block)
2942 printk(KERN_CONT ": block %llu", (unsigned long long)
2943 le64_to_cpu(es->s_last_error_block));
2944 printk(KERN_CONT "\n");
2945 }
2946 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2947}
2948
2949/* Find next suitable group and run ext4_init_inode_table */
2950static int ext4_run_li_request(struct ext4_li_request *elr)
2951{
2952 struct ext4_group_desc *gdp = NULL;
2953 ext4_group_t group, ngroups;
2954 struct super_block *sb;
2955 unsigned long timeout = 0;
2956 int ret = 0;
2957
2958 sb = elr->lr_super;
2959 ngroups = EXT4_SB(sb)->s_groups_count;
2960
2961 for (group = elr->lr_next_group; group < ngroups; group++) {
2962 gdp = ext4_get_group_desc(sb, group, NULL);
2963 if (!gdp) {
2964 ret = 1;
2965 break;
2966 }
2967
2968 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2969 break;
2970 }
2971
2972 if (group >= ngroups)
2973 ret = 1;
2974
2975 if (!ret) {
2976 timeout = jiffies;
2977 ret = ext4_init_inode_table(sb, group,
2978 elr->lr_timeout ? 0 : 1);
2979 if (elr->lr_timeout == 0) {
2980 timeout = (jiffies - timeout) *
2981 elr->lr_sbi->s_li_wait_mult;
2982 elr->lr_timeout = timeout;
2983 }
2984 elr->lr_next_sched = jiffies + elr->lr_timeout;
2985 elr->lr_next_group = group + 1;
2986 }
2987 return ret;
2988}
2989
2990/*
2991 * Remove lr_request from the list_request and free the
2992 * request structure. Should be called with li_list_mtx held
2993 */
2994static void ext4_remove_li_request(struct ext4_li_request *elr)
2995{
2996 struct ext4_sb_info *sbi;
2997
2998 if (!elr)
2999 return;
3000
3001 sbi = elr->lr_sbi;
3002
3003 list_del(&elr->lr_request);
3004 sbi->s_li_request = NULL;
3005 kfree(elr);
3006}
3007
3008static void ext4_unregister_li_request(struct super_block *sb)
3009{
3010 mutex_lock(&ext4_li_mtx);
3011 if (!ext4_li_info) {
3012 mutex_unlock(&ext4_li_mtx);
3013 return;
3014 }
3015
3016 mutex_lock(&ext4_li_info->li_list_mtx);
3017 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3018 mutex_unlock(&ext4_li_info->li_list_mtx);
3019 mutex_unlock(&ext4_li_mtx);
3020}
3021
3022static struct task_struct *ext4_lazyinit_task;
3023
3024/*
3025 * This is the function where ext4lazyinit thread lives. It walks
3026 * through the request list searching for next scheduled filesystem.
3027 * When such a fs is found, run the lazy initialization request
3028 * (ext4_rn_li_request) and keep track of the time spend in this
3029 * function. Based on that time we compute next schedule time of
3030 * the request. When walking through the list is complete, compute
3031 * next waking time and put itself into sleep.
3032 */
3033static int ext4_lazyinit_thread(void *arg)
3034{
3035 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3036 struct list_head *pos, *n;
3037 struct ext4_li_request *elr;
3038 unsigned long next_wakeup, cur;
3039
3040 BUG_ON(NULL == eli);
3041
3042cont_thread:
3043 while (true) {
3044 next_wakeup = MAX_JIFFY_OFFSET;
3045
3046 mutex_lock(&eli->li_list_mtx);
3047 if (list_empty(&eli->li_request_list)) {
3048 mutex_unlock(&eli->li_list_mtx);
3049 goto exit_thread;
3050 }
3051 list_for_each_safe(pos, n, &eli->li_request_list) {
3052 int err = 0;
3053 int progress = 0;
3054 elr = list_entry(pos, struct ext4_li_request,
3055 lr_request);
3056
3057 if (time_before(jiffies, elr->lr_next_sched)) {
3058 if (time_before(elr->lr_next_sched, next_wakeup))
3059 next_wakeup = elr->lr_next_sched;
3060 continue;
3061 }
3062 if (down_read_trylock(&elr->lr_super->s_umount)) {
3063 if (sb_start_write_trylock(elr->lr_super)) {
3064 progress = 1;
3065 /*
3066 * We hold sb->s_umount, sb can not
3067 * be removed from the list, it is
3068 * now safe to drop li_list_mtx
3069 */
3070 mutex_unlock(&eli->li_list_mtx);
3071 err = ext4_run_li_request(elr);
3072 sb_end_write(elr->lr_super);
3073 mutex_lock(&eli->li_list_mtx);
3074 n = pos->next;
3075 }
3076 up_read((&elr->lr_super->s_umount));
3077 }
3078 /* error, remove the lazy_init job */
3079 if (err) {
3080 ext4_remove_li_request(elr);
3081 continue;
3082 }
3083 if (!progress) {
3084 elr->lr_next_sched = jiffies +
3085 (prandom_u32()
3086 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3087 }
3088 if (time_before(elr->lr_next_sched, next_wakeup))
3089 next_wakeup = elr->lr_next_sched;
3090 }
3091 mutex_unlock(&eli->li_list_mtx);
3092
3093 try_to_freeze();
3094
3095 cur = jiffies;
3096 if ((time_after_eq(cur, next_wakeup)) ||
3097 (MAX_JIFFY_OFFSET == next_wakeup)) {
3098 cond_resched();
3099 continue;
3100 }
3101
3102 schedule_timeout_interruptible(next_wakeup - cur);
3103
3104 if (kthread_should_stop()) {
3105 ext4_clear_request_list();
3106 goto exit_thread;
3107 }
3108 }
3109
3110exit_thread:
3111 /*
3112 * It looks like the request list is empty, but we need
3113 * to check it under the li_list_mtx lock, to prevent any
3114 * additions into it, and of course we should lock ext4_li_mtx
3115 * to atomically free the list and ext4_li_info, because at
3116 * this point another ext4 filesystem could be registering
3117 * new one.
3118 */
3119 mutex_lock(&ext4_li_mtx);
3120 mutex_lock(&eli->li_list_mtx);
3121 if (!list_empty(&eli->li_request_list)) {
3122 mutex_unlock(&eli->li_list_mtx);
3123 mutex_unlock(&ext4_li_mtx);
3124 goto cont_thread;
3125 }
3126 mutex_unlock(&eli->li_list_mtx);
3127 kfree(ext4_li_info);
3128 ext4_li_info = NULL;
3129 mutex_unlock(&ext4_li_mtx);
3130
3131 return 0;
3132}
3133
3134static void ext4_clear_request_list(void)
3135{
3136 struct list_head *pos, *n;
3137 struct ext4_li_request *elr;
3138
3139 mutex_lock(&ext4_li_info->li_list_mtx);
3140 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3141 elr = list_entry(pos, struct ext4_li_request,
3142 lr_request);
3143 ext4_remove_li_request(elr);
3144 }
3145 mutex_unlock(&ext4_li_info->li_list_mtx);
3146}
3147
3148static int ext4_run_lazyinit_thread(void)
3149{
3150 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3151 ext4_li_info, "ext4lazyinit");
3152 if (IS_ERR(ext4_lazyinit_task)) {
3153 int err = PTR_ERR(ext4_lazyinit_task);
3154 ext4_clear_request_list();
3155 kfree(ext4_li_info);
3156 ext4_li_info = NULL;
3157 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3158 "initialization thread\n",
3159 err);
3160 return err;
3161 }
3162 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3163 return 0;
3164}
3165
3166/*
3167 * Check whether it make sense to run itable init. thread or not.
3168 * If there is at least one uninitialized inode table, return
3169 * corresponding group number, else the loop goes through all
3170 * groups and return total number of groups.
3171 */
3172static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3173{
3174 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3175 struct ext4_group_desc *gdp = NULL;
3176
3177 if (!ext4_has_group_desc_csum(sb))
3178 return ngroups;
3179
3180 for (group = 0; group < ngroups; group++) {
3181 gdp = ext4_get_group_desc(sb, group, NULL);
3182 if (!gdp)
3183 continue;
3184
3185 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3186 break;
3187 }
3188
3189 return group;
3190}
3191
3192static int ext4_li_info_new(void)
3193{
3194 struct ext4_lazy_init *eli = NULL;
3195
3196 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3197 if (!eli)
3198 return -ENOMEM;
3199
3200 INIT_LIST_HEAD(&eli->li_request_list);
3201 mutex_init(&eli->li_list_mtx);
3202
3203 eli->li_state |= EXT4_LAZYINIT_QUIT;
3204
3205 ext4_li_info = eli;
3206
3207 return 0;
3208}
3209
3210static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3211 ext4_group_t start)
3212{
3213 struct ext4_sb_info *sbi = EXT4_SB(sb);
3214 struct ext4_li_request *elr;
3215
3216 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3217 if (!elr)
3218 return NULL;
3219
3220 elr->lr_super = sb;
3221 elr->lr_sbi = sbi;
3222 elr->lr_next_group = start;
3223
3224 /*
3225 * Randomize first schedule time of the request to
3226 * spread the inode table initialization requests
3227 * better.
3228 */
3229 elr->lr_next_sched = jiffies + (prandom_u32() %
3230 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3231 return elr;
3232}
3233
3234int ext4_register_li_request(struct super_block *sb,
3235 ext4_group_t first_not_zeroed)
3236{
3237 struct ext4_sb_info *sbi = EXT4_SB(sb);
3238 struct ext4_li_request *elr = NULL;
3239 ext4_group_t ngroups = sbi->s_groups_count;
3240 int ret = 0;
3241
3242 mutex_lock(&ext4_li_mtx);
3243 if (sbi->s_li_request != NULL) {
3244 /*
3245 * Reset timeout so it can be computed again, because
3246 * s_li_wait_mult might have changed.
3247 */
3248 sbi->s_li_request->lr_timeout = 0;
3249 goto out;
3250 }
3251
3252 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3253 !test_opt(sb, INIT_INODE_TABLE))
3254 goto out;
3255
3256 elr = ext4_li_request_new(sb, first_not_zeroed);
3257 if (!elr) {
3258 ret = -ENOMEM;
3259 goto out;
3260 }
3261
3262 if (NULL == ext4_li_info) {
3263 ret = ext4_li_info_new();
3264 if (ret)
3265 goto out;
3266 }
3267
3268 mutex_lock(&ext4_li_info->li_list_mtx);
3269 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3270 mutex_unlock(&ext4_li_info->li_list_mtx);
3271
3272 sbi->s_li_request = elr;
3273 /*
3274 * set elr to NULL here since it has been inserted to
3275 * the request_list and the removal and free of it is
3276 * handled by ext4_clear_request_list from now on.
3277 */
3278 elr = NULL;
3279
3280 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3281 ret = ext4_run_lazyinit_thread();
3282 if (ret)
3283 goto out;
3284 }
3285out:
3286 mutex_unlock(&ext4_li_mtx);
3287 if (ret)
3288 kfree(elr);
3289 return ret;
3290}
3291
3292/*
3293 * We do not need to lock anything since this is called on
3294 * module unload.
3295 */
3296static void ext4_destroy_lazyinit_thread(void)
3297{
3298 /*
3299 * If thread exited earlier
3300 * there's nothing to be done.
3301 */
3302 if (!ext4_li_info || !ext4_lazyinit_task)
3303 return;
3304
3305 kthread_stop(ext4_lazyinit_task);
3306}
3307
3308static int set_journal_csum_feature_set(struct super_block *sb)
3309{
3310 int ret = 1;
3311 int compat, incompat;
3312 struct ext4_sb_info *sbi = EXT4_SB(sb);
3313
3314 if (ext4_has_metadata_csum(sb)) {
3315 /* journal checksum v3 */
3316 compat = 0;
3317 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3318 } else {
3319 /* journal checksum v1 */
3320 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3321 incompat = 0;
3322 }
3323
3324 jbd2_journal_clear_features(sbi->s_journal,
3325 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3326 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3327 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3328 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3329 ret = jbd2_journal_set_features(sbi->s_journal,
3330 compat, 0,
3331 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3332 incompat);
3333 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3334 ret = jbd2_journal_set_features(sbi->s_journal,
3335 compat, 0,
3336 incompat);
3337 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3338 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3339 } else {
3340 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3341 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3342 }
3343
3344 return ret;
3345}
3346
3347/*
3348 * Note: calculating the overhead so we can be compatible with
3349 * historical BSD practice is quite difficult in the face of
3350 * clusters/bigalloc. This is because multiple metadata blocks from
3351 * different block group can end up in the same allocation cluster.
3352 * Calculating the exact overhead in the face of clustered allocation
3353 * requires either O(all block bitmaps) in memory or O(number of block
3354 * groups**2) in time. We will still calculate the superblock for
3355 * older file systems --- and if we come across with a bigalloc file
3356 * system with zero in s_overhead_clusters the estimate will be close to
3357 * correct especially for very large cluster sizes --- but for newer
3358 * file systems, it's better to calculate this figure once at mkfs
3359 * time, and store it in the superblock. If the superblock value is
3360 * present (even for non-bigalloc file systems), we will use it.
3361 */
3362static int count_overhead(struct super_block *sb, ext4_group_t grp,
3363 char *buf)
3364{
3365 struct ext4_sb_info *sbi = EXT4_SB(sb);
3366 struct ext4_group_desc *gdp;
3367 ext4_fsblk_t first_block, last_block, b;
3368 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3369 int s, j, count = 0;
3370
3371 if (!ext4_has_feature_bigalloc(sb))
3372 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3373 sbi->s_itb_per_group + 2);
3374
3375 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3376 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3377 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3378 for (i = 0; i < ngroups; i++) {
3379 gdp = ext4_get_group_desc(sb, i, NULL);
3380 b = ext4_block_bitmap(sb, gdp);
3381 if (b >= first_block && b <= last_block) {
3382 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3383 count++;
3384 }
3385 b = ext4_inode_bitmap(sb, gdp);
3386 if (b >= first_block && b <= last_block) {
3387 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3388 count++;
3389 }
3390 b = ext4_inode_table(sb, gdp);
3391 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3392 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3393 int c = EXT4_B2C(sbi, b - first_block);
3394 ext4_set_bit(c, buf);
3395 count++;
3396 }
3397 if (i != grp)
3398 continue;
3399 s = 0;
3400 if (ext4_bg_has_super(sb, grp)) {
3401 ext4_set_bit(s++, buf);
3402 count++;
3403 }
3404 j = ext4_bg_num_gdb(sb, grp);
3405 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3406 ext4_error(sb, "Invalid number of block group "
3407 "descriptor blocks: %d", j);
3408 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3409 }
3410 count += j;
3411 for (; j > 0; j--)
3412 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3413 }
3414 if (!count)
3415 return 0;
3416 return EXT4_CLUSTERS_PER_GROUP(sb) -
3417 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3418}
3419
3420/*
3421 * Compute the overhead and stash it in sbi->s_overhead
3422 */
3423int ext4_calculate_overhead(struct super_block *sb)
3424{
3425 struct ext4_sb_info *sbi = EXT4_SB(sb);
3426 struct ext4_super_block *es = sbi->s_es;
3427 struct inode *j_inode;
3428 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3429 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3430 ext4_fsblk_t overhead = 0;
3431 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3432
3433 if (!buf)
3434 return -ENOMEM;
3435
3436 /*
3437 * Compute the overhead (FS structures). This is constant
3438 * for a given filesystem unless the number of block groups
3439 * changes so we cache the previous value until it does.
3440 */
3441
3442 /*
3443 * All of the blocks before first_data_block are overhead
3444 */
3445 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3446
3447 /*
3448 * Add the overhead found in each block group
3449 */
3450 for (i = 0; i < ngroups; i++) {
3451 int blks;
3452
3453 blks = count_overhead(sb, i, buf);
3454 overhead += blks;
3455 if (blks)
3456 memset(buf, 0, PAGE_SIZE);
3457 cond_resched();
3458 }
3459
3460 /*
3461 * Add the internal journal blocks whether the journal has been
3462 * loaded or not
3463 */
3464 if (sbi->s_journal && !sbi->journal_bdev)
3465 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3466 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3467 j_inode = ext4_get_journal_inode(sb, j_inum);
3468 if (j_inode) {
3469 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3470 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3471 iput(j_inode);
3472 } else {
3473 ext4_msg(sb, KERN_ERR, "can't get journal size");
3474 }
3475 }
3476 sbi->s_overhead = overhead;
3477 smp_wmb();
3478 free_page((unsigned long) buf);
3479 return 0;
3480}
3481
3482static void ext4_set_resv_clusters(struct super_block *sb)
3483{
3484 ext4_fsblk_t resv_clusters;
3485 struct ext4_sb_info *sbi = EXT4_SB(sb);
3486
3487 /*
3488 * There's no need to reserve anything when we aren't using extents.
3489 * The space estimates are exact, there are no unwritten extents,
3490 * hole punching doesn't need new metadata... This is needed especially
3491 * to keep ext2/3 backward compatibility.
3492 */
3493 if (!ext4_has_feature_extents(sb))
3494 return;
3495 /*
3496 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3497 * This should cover the situations where we can not afford to run
3498 * out of space like for example punch hole, or converting
3499 * unwritten extents in delalloc path. In most cases such
3500 * allocation would require 1, or 2 blocks, higher numbers are
3501 * very rare.
3502 */
3503 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3504 sbi->s_cluster_bits);
3505
3506 do_div(resv_clusters, 50);
3507 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3508
3509 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3510}
3511
3512static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3513{
3514 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3515 char *orig_data = kstrdup(data, GFP_KERNEL);
3516 struct buffer_head *bh;
3517 struct ext4_super_block *es = NULL;
3518 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3519 ext4_fsblk_t block;
3520 ext4_fsblk_t sb_block = get_sb_block(&data);
3521 ext4_fsblk_t logical_sb_block;
3522 unsigned long offset = 0;
3523 unsigned long journal_devnum = 0;
3524 unsigned long def_mount_opts;
3525 struct inode *root;
3526 const char *descr;
3527 int ret = -ENOMEM;
3528 int blocksize, clustersize;
3529 unsigned int db_count;
3530 unsigned int i;
3531 int needs_recovery, has_huge_files, has_bigalloc;
3532 __u64 blocks_count;
3533 int err = 0;
3534 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3535 ext4_group_t first_not_zeroed;
3536
3537 if ((data && !orig_data) || !sbi)
3538 goto out_free_base;
3539
3540 sbi->s_daxdev = dax_dev;
3541 sbi->s_blockgroup_lock =
3542 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3543 if (!sbi->s_blockgroup_lock)
3544 goto out_free_base;
3545
3546 sb->s_fs_info = sbi;
3547 sbi->s_sb = sb;
3548 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3549 sbi->s_sb_block = sb_block;
3550 if (sb->s_bdev->bd_part)
3551 sbi->s_sectors_written_start =
3552 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3553
3554 /* Cleanup superblock name */
3555 strreplace(sb->s_id, '/', '!');
3556
3557 /* -EINVAL is default */
3558 ret = -EINVAL;
3559 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3560 if (!blocksize) {
3561 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3562 goto out_fail;
3563 }
3564
3565 /*
3566 * The ext4 superblock will not be buffer aligned for other than 1kB
3567 * block sizes. We need to calculate the offset from buffer start.
3568 */
3569 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3570 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3571 offset = do_div(logical_sb_block, blocksize);
3572 } else {
3573 logical_sb_block = sb_block;
3574 }
3575
3576 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3577 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3578 goto out_fail;
3579 }
3580 /*
3581 * Note: s_es must be initialized as soon as possible because
3582 * some ext4 macro-instructions depend on its value
3583 */
3584 es = (struct ext4_super_block *) (bh->b_data + offset);
3585 sbi->s_es = es;
3586 sb->s_magic = le16_to_cpu(es->s_magic);
3587 if (sb->s_magic != EXT4_SUPER_MAGIC)
3588 goto cantfind_ext4;
3589 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3590
3591 /* Warn if metadata_csum and gdt_csum are both set. */
3592 if (ext4_has_feature_metadata_csum(sb) &&
3593 ext4_has_feature_gdt_csum(sb))
3594 ext4_warning(sb, "metadata_csum and uninit_bg are "
3595 "redundant flags; please run fsck.");
3596
3597 /* Check for a known checksum algorithm */
3598 if (!ext4_verify_csum_type(sb, es)) {
3599 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3600 "unknown checksum algorithm.");
3601 silent = 1;
3602 goto cantfind_ext4;
3603 }
3604
3605 /* Load the checksum driver */
3606 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3607 if (IS_ERR(sbi->s_chksum_driver)) {
3608 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3609 ret = PTR_ERR(sbi->s_chksum_driver);
3610 sbi->s_chksum_driver = NULL;
3611 goto failed_mount;
3612 }
3613
3614 /* Check superblock checksum */
3615 if (!ext4_superblock_csum_verify(sb, es)) {
3616 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3617 "invalid superblock checksum. Run e2fsck?");
3618 silent = 1;
3619 ret = -EFSBADCRC;
3620 goto cantfind_ext4;
3621 }
3622
3623 /* Precompute checksum seed for all metadata */
3624 if (ext4_has_feature_csum_seed(sb))
3625 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3626 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3627 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3628 sizeof(es->s_uuid));
3629
3630 /* Set defaults before we parse the mount options */
3631 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3632 set_opt(sb, INIT_INODE_TABLE);
3633 if (def_mount_opts & EXT4_DEFM_DEBUG)
3634 set_opt(sb, DEBUG);
3635 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3636 set_opt(sb, GRPID);
3637 if (def_mount_opts & EXT4_DEFM_UID16)
3638 set_opt(sb, NO_UID32);
3639 /* xattr user namespace & acls are now defaulted on */
3640 set_opt(sb, XATTR_USER);
3641#ifdef CONFIG_EXT4_FS_POSIX_ACL
3642 set_opt(sb, POSIX_ACL);
3643#endif
3644 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3645 if (ext4_has_metadata_csum(sb))
3646 set_opt(sb, JOURNAL_CHECKSUM);
3647
3648 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3649 set_opt(sb, JOURNAL_DATA);
3650 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3651 set_opt(sb, ORDERED_DATA);
3652 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3653 set_opt(sb, WRITEBACK_DATA);
3654
3655 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3656 set_opt(sb, ERRORS_PANIC);
3657 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3658 set_opt(sb, ERRORS_CONT);
3659 else
3660 set_opt(sb, ERRORS_RO);
3661 /* block_validity enabled by default; disable with noblock_validity */
3662 set_opt(sb, BLOCK_VALIDITY);
3663 if (def_mount_opts & EXT4_DEFM_DISCARD)
3664 set_opt(sb, DISCARD);
3665
3666 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3667 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3668 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3669 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3670 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3671
3672 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3673 set_opt(sb, BARRIER);
3674
3675 /*
3676 * enable delayed allocation by default
3677 * Use -o nodelalloc to turn it off
3678 */
3679 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3680 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3681 set_opt(sb, DELALLOC);
3682
3683 /*
3684 * set default s_li_wait_mult for lazyinit, for the case there is
3685 * no mount option specified.
3686 */
3687 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3688
3689 if (sbi->s_es->s_mount_opts[0]) {
3690 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3691 sizeof(sbi->s_es->s_mount_opts),
3692 GFP_KERNEL);
3693 if (!s_mount_opts)
3694 goto failed_mount;
3695 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3696 &journal_ioprio, 0)) {
3697 ext4_msg(sb, KERN_WARNING,
3698 "failed to parse options in superblock: %s",
3699 s_mount_opts);
3700 }
3701 kfree(s_mount_opts);
3702 }
3703 sbi->s_def_mount_opt = sbi->s_mount_opt;
3704 if (!parse_options((char *) data, sb, &journal_devnum,
3705 &journal_ioprio, 0))
3706 goto failed_mount;
3707
3708 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3709 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3710 "with data=journal disables delayed "
3711 "allocation and O_DIRECT support!\n");
3712 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3713 ext4_msg(sb, KERN_ERR, "can't mount with "
3714 "both data=journal and delalloc");
3715 goto failed_mount;
3716 }
3717 if (test_opt(sb, DIOREAD_NOLOCK)) {
3718 ext4_msg(sb, KERN_ERR, "can't mount with "
3719 "both data=journal and dioread_nolock");
3720 goto failed_mount;
3721 }
3722 if (test_opt(sb, DAX)) {
3723 ext4_msg(sb, KERN_ERR, "can't mount with "
3724 "both data=journal and dax");
3725 goto failed_mount;
3726 }
3727 if (ext4_has_feature_encrypt(sb)) {
3728 ext4_msg(sb, KERN_WARNING,
3729 "encrypted files will use data=ordered "
3730 "instead of data journaling mode");
3731 }
3732 if (test_opt(sb, DELALLOC))
3733 clear_opt(sb, DELALLOC);
3734 } else {
3735 sb->s_iflags |= SB_I_CGROUPWB;
3736 }
3737
3738 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3739 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3740
3741 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3742 (ext4_has_compat_features(sb) ||
3743 ext4_has_ro_compat_features(sb) ||
3744 ext4_has_incompat_features(sb)))
3745 ext4_msg(sb, KERN_WARNING,
3746 "feature flags set on rev 0 fs, "
3747 "running e2fsck is recommended");
3748
3749 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3750 set_opt2(sb, HURD_COMPAT);
3751 if (ext4_has_feature_64bit(sb)) {
3752 ext4_msg(sb, KERN_ERR,
3753 "The Hurd can't support 64-bit file systems");
3754 goto failed_mount;
3755 }
3756
3757 /*
3758 * ea_inode feature uses l_i_version field which is not
3759 * available in HURD_COMPAT mode.
3760 */
3761 if (ext4_has_feature_ea_inode(sb)) {
3762 ext4_msg(sb, KERN_ERR,
3763 "ea_inode feature is not supported for Hurd");
3764 goto failed_mount;
3765 }
3766 }
3767
3768 if (IS_EXT2_SB(sb)) {
3769 if (ext2_feature_set_ok(sb))
3770 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3771 "using the ext4 subsystem");
3772 else {
3773 /*
3774 * If we're probing be silent, if this looks like
3775 * it's actually an ext[34] filesystem.
3776 */
3777 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3778 goto failed_mount;
3779 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3780 "to feature incompatibilities");
3781 goto failed_mount;
3782 }
3783 }
3784
3785 if (IS_EXT3_SB(sb)) {
3786 if (ext3_feature_set_ok(sb))
3787 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3788 "using the ext4 subsystem");
3789 else {
3790 /*
3791 * If we're probing be silent, if this looks like
3792 * it's actually an ext4 filesystem.
3793 */
3794 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3795 goto failed_mount;
3796 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3797 "to feature incompatibilities");
3798 goto failed_mount;
3799 }
3800 }
3801
3802 /*
3803 * Check feature flags regardless of the revision level, since we
3804 * previously didn't change the revision level when setting the flags,
3805 * so there is a chance incompat flags are set on a rev 0 filesystem.
3806 */
3807 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3808 goto failed_mount;
3809
3810 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3811 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3812 blocksize > EXT4_MAX_BLOCK_SIZE) {
3813 ext4_msg(sb, KERN_ERR,
3814 "Unsupported filesystem blocksize %d (%d log_block_size)",
3815 blocksize, le32_to_cpu(es->s_log_block_size));
3816 goto failed_mount;
3817 }
3818 if (le32_to_cpu(es->s_log_block_size) >
3819 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3820 ext4_msg(sb, KERN_ERR,
3821 "Invalid log block size: %u",
3822 le32_to_cpu(es->s_log_block_size));
3823 goto failed_mount;
3824 }
3825 if (le32_to_cpu(es->s_log_cluster_size) >
3826 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3827 ext4_msg(sb, KERN_ERR,
3828 "Invalid log cluster size: %u",
3829 le32_to_cpu(es->s_log_cluster_size));
3830 goto failed_mount;
3831 }
3832
3833 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3834 ext4_msg(sb, KERN_ERR,
3835 "Number of reserved GDT blocks insanely large: %d",
3836 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3837 goto failed_mount;
3838 }
3839
3840 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3841 if (ext4_has_feature_inline_data(sb)) {
3842 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3843 " that may contain inline data");
3844 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3845 }
3846 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3847 ext4_msg(sb, KERN_ERR,
3848 "DAX unsupported by block device. Turning off DAX.");
3849 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3850 }
3851 }
3852
3853 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3854 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3855 es->s_encryption_level);
3856 goto failed_mount;
3857 }
3858
3859 if (sb->s_blocksize != blocksize) {
3860 /* Validate the filesystem blocksize */
3861 if (!sb_set_blocksize(sb, blocksize)) {
3862 ext4_msg(sb, KERN_ERR, "bad block size %d",
3863 blocksize);
3864 goto failed_mount;
3865 }
3866
3867 brelse(bh);
3868 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3869 offset = do_div(logical_sb_block, blocksize);
3870 bh = sb_bread_unmovable(sb, logical_sb_block);
3871 if (!bh) {
3872 ext4_msg(sb, KERN_ERR,
3873 "Can't read superblock on 2nd try");
3874 goto failed_mount;
3875 }
3876 es = (struct ext4_super_block *)(bh->b_data + offset);
3877 sbi->s_es = es;
3878 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3879 ext4_msg(sb, KERN_ERR,
3880 "Magic mismatch, very weird!");
3881 goto failed_mount;
3882 }
3883 }
3884
3885 has_huge_files = ext4_has_feature_huge_file(sb);
3886 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3887 has_huge_files);
3888 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3889
3890 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3891 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3892 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3893 } else {
3894 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3895 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3896 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3897 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3898 sbi->s_first_ino);
3899 goto failed_mount;
3900 }
3901 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3902 (!is_power_of_2(sbi->s_inode_size)) ||
3903 (sbi->s_inode_size > blocksize)) {
3904 ext4_msg(sb, KERN_ERR,
3905 "unsupported inode size: %d",
3906 sbi->s_inode_size);
3907 goto failed_mount;
3908 }
3909 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3910 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3911 }
3912
3913 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3914 if (ext4_has_feature_64bit(sb)) {
3915 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3916 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3917 !is_power_of_2(sbi->s_desc_size)) {
3918 ext4_msg(sb, KERN_ERR,
3919 "unsupported descriptor size %lu",
3920 sbi->s_desc_size);
3921 goto failed_mount;
3922 }
3923 } else
3924 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3925
3926 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3927 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3928
3929 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3930 if (sbi->s_inodes_per_block == 0)
3931 goto cantfind_ext4;
3932 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3933 sbi->s_inodes_per_group > blocksize * 8) {
3934 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3935 sbi->s_blocks_per_group);
3936 goto failed_mount;
3937 }
3938 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3939 sbi->s_inodes_per_block;
3940 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3941 sbi->s_sbh = bh;
3942 sbi->s_mount_state = le16_to_cpu(es->s_state);
3943 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3944 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3945
3946 for (i = 0; i < 4; i++)
3947 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3948 sbi->s_def_hash_version = es->s_def_hash_version;
3949 if (ext4_has_feature_dir_index(sb)) {
3950 i = le32_to_cpu(es->s_flags);
3951 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3952 sbi->s_hash_unsigned = 3;
3953 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3954#ifdef __CHAR_UNSIGNED__
3955 if (!sb_rdonly(sb))
3956 es->s_flags |=
3957 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3958 sbi->s_hash_unsigned = 3;
3959#else
3960 if (!sb_rdonly(sb))
3961 es->s_flags |=
3962 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3963#endif
3964 }
3965 }
3966
3967 /* Handle clustersize */
3968 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3969 has_bigalloc = ext4_has_feature_bigalloc(sb);
3970 if (has_bigalloc) {
3971 if (clustersize < blocksize) {
3972 ext4_msg(sb, KERN_ERR,
3973 "cluster size (%d) smaller than "
3974 "block size (%d)", clustersize, blocksize);
3975 goto failed_mount;
3976 }
3977 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3978 le32_to_cpu(es->s_log_block_size);
3979 sbi->s_clusters_per_group =
3980 le32_to_cpu(es->s_clusters_per_group);
3981 if (sbi->s_clusters_per_group > blocksize * 8) {
3982 ext4_msg(sb, KERN_ERR,
3983 "#clusters per group too big: %lu",
3984 sbi->s_clusters_per_group);
3985 goto failed_mount;
3986 }
3987 if (sbi->s_blocks_per_group !=
3988 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3989 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3990 "clusters per group (%lu) inconsistent",
3991 sbi->s_blocks_per_group,
3992 sbi->s_clusters_per_group);
3993 goto failed_mount;
3994 }
3995 } else {
3996 if (clustersize != blocksize) {
3997 ext4_msg(sb, KERN_ERR,
3998 "fragment/cluster size (%d) != "
3999 "block size (%d)", clustersize, blocksize);
4000 goto failed_mount;
4001 }
4002 if (sbi->s_blocks_per_group > blocksize * 8) {
4003 ext4_msg(sb, KERN_ERR,
4004 "#blocks per group too big: %lu",
4005 sbi->s_blocks_per_group);
4006 goto failed_mount;
4007 }
4008 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4009 sbi->s_cluster_bits = 0;
4010 }
4011 sbi->s_cluster_ratio = clustersize / blocksize;
4012
4013 /* Do we have standard group size of clustersize * 8 blocks ? */
4014 if (sbi->s_blocks_per_group == clustersize << 3)
4015 set_opt2(sb, STD_GROUP_SIZE);
4016
4017 /*
4018 * Test whether we have more sectors than will fit in sector_t,
4019 * and whether the max offset is addressable by the page cache.
4020 */
4021 err = generic_check_addressable(sb->s_blocksize_bits,
4022 ext4_blocks_count(es));
4023 if (err) {
4024 ext4_msg(sb, KERN_ERR, "filesystem"
4025 " too large to mount safely on this system");
4026 if (sizeof(sector_t) < 8)
4027 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
4028 goto failed_mount;
4029 }
4030
4031 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4032 goto cantfind_ext4;
4033
4034 /* check blocks count against device size */
4035 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4036 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4037 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4038 "exceeds size of device (%llu blocks)",
4039 ext4_blocks_count(es), blocks_count);
4040 goto failed_mount;
4041 }
4042
4043 /*
4044 * It makes no sense for the first data block to be beyond the end
4045 * of the filesystem.
4046 */
4047 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4048 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4049 "block %u is beyond end of filesystem (%llu)",
4050 le32_to_cpu(es->s_first_data_block),
4051 ext4_blocks_count(es));
4052 goto failed_mount;
4053 }
4054 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4055 (sbi->s_cluster_ratio == 1)) {
4056 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4057 "block is 0 with a 1k block and cluster size");
4058 goto failed_mount;
4059 }
4060
4061 blocks_count = (ext4_blocks_count(es) -
4062 le32_to_cpu(es->s_first_data_block) +
4063 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4064 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4065 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4066 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4067 "(block count %llu, first data block %u, "
4068 "blocks per group %lu)", sbi->s_groups_count,
4069 ext4_blocks_count(es),
4070 le32_to_cpu(es->s_first_data_block),
4071 EXT4_BLOCKS_PER_GROUP(sb));
4072 goto failed_mount;
4073 }
4074 sbi->s_groups_count = blocks_count;
4075 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4076 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4077 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4078 le32_to_cpu(es->s_inodes_count)) {
4079 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4080 le32_to_cpu(es->s_inodes_count),
4081 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4082 ret = -EINVAL;
4083 goto failed_mount;
4084 }
4085 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4086 EXT4_DESC_PER_BLOCK(sb);
4087 if (ext4_has_feature_meta_bg(sb)) {
4088 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4089 ext4_msg(sb, KERN_WARNING,
4090 "first meta block group too large: %u "
4091 "(group descriptor block count %u)",
4092 le32_to_cpu(es->s_first_meta_bg), db_count);
4093 goto failed_mount;
4094 }
4095 }
4096 sbi->s_group_desc = kvmalloc_array(db_count,
4097 sizeof(struct buffer_head *),
4098 GFP_KERNEL);
4099 if (sbi->s_group_desc == NULL) {
4100 ext4_msg(sb, KERN_ERR, "not enough memory");
4101 ret = -ENOMEM;
4102 goto failed_mount;
4103 }
4104
4105 bgl_lock_init(sbi->s_blockgroup_lock);
4106
4107 /* Pre-read the descriptors into the buffer cache */
4108 for (i = 0; i < db_count; i++) {
4109 block = descriptor_loc(sb, logical_sb_block, i);
4110 sb_breadahead(sb, block);
4111 }
4112
4113 for (i = 0; i < db_count; i++) {
4114 block = descriptor_loc(sb, logical_sb_block, i);
4115 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4116 if (!sbi->s_group_desc[i]) {
4117 ext4_msg(sb, KERN_ERR,
4118 "can't read group descriptor %d", i);
4119 db_count = i;
4120 goto failed_mount2;
4121 }
4122 }
4123 sbi->s_gdb_count = db_count;
4124 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4125 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4126 ret = -EFSCORRUPTED;
4127 goto failed_mount2;
4128 }
4129
4130 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4131
4132 /* Register extent status tree shrinker */
4133 if (ext4_es_register_shrinker(sbi))
4134 goto failed_mount3;
4135
4136 sbi->s_stripe = ext4_get_stripe_size(sbi);
4137 sbi->s_extent_max_zeroout_kb = 32;
4138
4139 /*
4140 * set up enough so that it can read an inode
4141 */
4142 sb->s_op = &ext4_sops;
4143 sb->s_export_op = &ext4_export_ops;
4144 sb->s_xattr = ext4_xattr_handlers;
4145#ifdef CONFIG_EXT4_FS_ENCRYPTION
4146 sb->s_cop = &ext4_cryptops;
4147#endif
4148#ifdef CONFIG_QUOTA
4149 sb->dq_op = &ext4_quota_operations;
4150 if (ext4_has_feature_quota(sb))
4151 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4152 else
4153 sb->s_qcop = &ext4_qctl_operations;
4154 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4155#endif
4156 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4157
4158 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4159 mutex_init(&sbi->s_orphan_lock);
4160
4161 sb->s_root = NULL;
4162
4163 needs_recovery = (es->s_last_orphan != 0 ||
4164 ext4_has_feature_journal_needs_recovery(sb));
4165
4166 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4167 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4168 goto failed_mount3a;
4169
4170 /*
4171 * The first inode we look at is the journal inode. Don't try
4172 * root first: it may be modified in the journal!
4173 */
4174 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4175 err = ext4_load_journal(sb, es, journal_devnum);
4176 if (err)
4177 goto failed_mount3a;
4178 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4179 ext4_has_feature_journal_needs_recovery(sb)) {
4180 ext4_msg(sb, KERN_ERR, "required journal recovery "
4181 "suppressed and not mounted read-only");
4182 goto failed_mount_wq;
4183 } else {
4184 /* Nojournal mode, all journal mount options are illegal */
4185 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4186 ext4_msg(sb, KERN_ERR, "can't mount with "
4187 "journal_checksum, fs mounted w/o journal");
4188 goto failed_mount_wq;
4189 }
4190 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4191 ext4_msg(sb, KERN_ERR, "can't mount with "
4192 "journal_async_commit, fs mounted w/o journal");
4193 goto failed_mount_wq;
4194 }
4195 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4196 ext4_msg(sb, KERN_ERR, "can't mount with "
4197 "commit=%lu, fs mounted w/o journal",
4198 sbi->s_commit_interval / HZ);
4199 goto failed_mount_wq;
4200 }
4201 if (EXT4_MOUNT_DATA_FLAGS &
4202 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4203 ext4_msg(sb, KERN_ERR, "can't mount with "
4204 "data=, fs mounted w/o journal");
4205 goto failed_mount_wq;
4206 }
4207 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4208 clear_opt(sb, JOURNAL_CHECKSUM);
4209 clear_opt(sb, DATA_FLAGS);
4210 sbi->s_journal = NULL;
4211 needs_recovery = 0;
4212 goto no_journal;
4213 }
4214
4215 if (ext4_has_feature_64bit(sb) &&
4216 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4217 JBD2_FEATURE_INCOMPAT_64BIT)) {
4218 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4219 goto failed_mount_wq;
4220 }
4221
4222 if (!set_journal_csum_feature_set(sb)) {
4223 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4224 "feature set");
4225 goto failed_mount_wq;
4226 }
4227
4228 /* We have now updated the journal if required, so we can
4229 * validate the data journaling mode. */
4230 switch (test_opt(sb, DATA_FLAGS)) {
4231 case 0:
4232 /* No mode set, assume a default based on the journal
4233 * capabilities: ORDERED_DATA if the journal can
4234 * cope, else JOURNAL_DATA
4235 */
4236 if (jbd2_journal_check_available_features
4237 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4238 set_opt(sb, ORDERED_DATA);
4239 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4240 } else {
4241 set_opt(sb, JOURNAL_DATA);
4242 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4243 }
4244 break;
4245
4246 case EXT4_MOUNT_ORDERED_DATA:
4247 case EXT4_MOUNT_WRITEBACK_DATA:
4248 if (!jbd2_journal_check_available_features
4249 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4250 ext4_msg(sb, KERN_ERR, "Journal does not support "
4251 "requested data journaling mode");
4252 goto failed_mount_wq;
4253 }
4254 default:
4255 break;
4256 }
4257
4258 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4259 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4260 ext4_msg(sb, KERN_ERR, "can't mount with "
4261 "journal_async_commit in data=ordered mode");
4262 goto failed_mount_wq;
4263 }
4264
4265 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4266
4267 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4268
4269no_journal:
4270 if (!test_opt(sb, NO_MBCACHE)) {
4271 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4272 if (!sbi->s_ea_block_cache) {
4273 ext4_msg(sb, KERN_ERR,
4274 "Failed to create ea_block_cache");
4275 goto failed_mount_wq;
4276 }
4277
4278 if (ext4_has_feature_ea_inode(sb)) {
4279 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4280 if (!sbi->s_ea_inode_cache) {
4281 ext4_msg(sb, KERN_ERR,
4282 "Failed to create ea_inode_cache");
4283 goto failed_mount_wq;
4284 }
4285 }
4286 }
4287
4288 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4289 (blocksize != PAGE_SIZE)) {
4290 ext4_msg(sb, KERN_ERR,
4291 "Unsupported blocksize for fs encryption");
4292 goto failed_mount_wq;
4293 }
4294
4295 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4296 !ext4_has_feature_encrypt(sb)) {
4297 ext4_set_feature_encrypt(sb);
4298 ext4_commit_super(sb, 1);
4299 }
4300
4301 /*
4302 * Get the # of file system overhead blocks from the
4303 * superblock if present.
4304 */
4305 if (es->s_overhead_clusters)
4306 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4307 else {
4308 err = ext4_calculate_overhead(sb);
4309 if (err)
4310 goto failed_mount_wq;
4311 }
4312
4313 /*
4314 * The maximum number of concurrent works can be high and
4315 * concurrency isn't really necessary. Limit it to 1.
4316 */
4317 EXT4_SB(sb)->rsv_conversion_wq =
4318 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4319 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4320 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4321 ret = -ENOMEM;
4322 goto failed_mount4;
4323 }
4324
4325 /*
4326 * The jbd2_journal_load will have done any necessary log recovery,
4327 * so we can safely mount the rest of the filesystem now.
4328 */
4329
4330 root = ext4_iget(sb, EXT4_ROOT_INO);
4331 if (IS_ERR(root)) {
4332 ext4_msg(sb, KERN_ERR, "get root inode failed");
4333 ret = PTR_ERR(root);
4334 root = NULL;
4335 goto failed_mount4;
4336 }
4337 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4338 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4339 iput(root);
4340 goto failed_mount4;
4341 }
4342 sb->s_root = d_make_root(root);
4343 if (!sb->s_root) {
4344 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4345 ret = -ENOMEM;
4346 goto failed_mount4;
4347 }
4348
4349 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4350 if (ret == -EROFS) {
4351 sb->s_flags |= SB_RDONLY;
4352 ret = 0;
4353 } else if (ret)
4354 goto failed_mount4a;
4355
4356 /* determine the minimum size of new large inodes, if present */
4357 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4358 sbi->s_want_extra_isize == 0) {
4359 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4360 EXT4_GOOD_OLD_INODE_SIZE;
4361 if (ext4_has_feature_extra_isize(sb)) {
4362 if (sbi->s_want_extra_isize <
4363 le16_to_cpu(es->s_want_extra_isize))
4364 sbi->s_want_extra_isize =
4365 le16_to_cpu(es->s_want_extra_isize);
4366 if (sbi->s_want_extra_isize <
4367 le16_to_cpu(es->s_min_extra_isize))
4368 sbi->s_want_extra_isize =
4369 le16_to_cpu(es->s_min_extra_isize);
4370 }
4371 }
4372 /* Check if enough inode space is available */
4373 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4374 sbi->s_inode_size) {
4375 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4376 EXT4_GOOD_OLD_INODE_SIZE;
4377 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4378 "available");
4379 }
4380
4381 ext4_set_resv_clusters(sb);
4382
4383 err = ext4_setup_system_zone(sb);
4384 if (err) {
4385 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4386 "zone (%d)", err);
4387 goto failed_mount4a;
4388 }
4389
4390 ext4_ext_init(sb);
4391 err = ext4_mb_init(sb);
4392 if (err) {
4393 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4394 err);
4395 goto failed_mount5;
4396 }
4397
4398 block = ext4_count_free_clusters(sb);
4399 ext4_free_blocks_count_set(sbi->s_es,
4400 EXT4_C2B(sbi, block));
4401 ext4_superblock_csum_set(sb);
4402 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4403 GFP_KERNEL);
4404 if (!err) {
4405 unsigned long freei = ext4_count_free_inodes(sb);
4406 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4407 ext4_superblock_csum_set(sb);
4408 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4409 GFP_KERNEL);
4410 }
4411 if (!err)
4412 err = percpu_counter_init(&sbi->s_dirs_counter,
4413 ext4_count_dirs(sb), GFP_KERNEL);
4414 if (!err)
4415 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4416 GFP_KERNEL);
4417 if (!err)
4418 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4419
4420 if (err) {
4421 ext4_msg(sb, KERN_ERR, "insufficient memory");
4422 goto failed_mount6;
4423 }
4424
4425 if (ext4_has_feature_flex_bg(sb))
4426 if (!ext4_fill_flex_info(sb)) {
4427 ext4_msg(sb, KERN_ERR,
4428 "unable to initialize "
4429 "flex_bg meta info!");
4430 goto failed_mount6;
4431 }
4432
4433 err = ext4_register_li_request(sb, first_not_zeroed);
4434 if (err)
4435 goto failed_mount6;
4436
4437 err = ext4_register_sysfs(sb);
4438 if (err)
4439 goto failed_mount7;
4440
4441#ifdef CONFIG_QUOTA
4442 /* Enable quota usage during mount. */
4443 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4444 err = ext4_enable_quotas(sb);
4445 if (err)
4446 goto failed_mount8;
4447 }
4448#endif /* CONFIG_QUOTA */
4449
4450 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4451 ext4_orphan_cleanup(sb, es);
4452 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4453 if (needs_recovery) {
4454 ext4_msg(sb, KERN_INFO, "recovery complete");
4455 ext4_mark_recovery_complete(sb, es);
4456 }
4457 if (EXT4_SB(sb)->s_journal) {
4458 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4459 descr = " journalled data mode";
4460 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4461 descr = " ordered data mode";
4462 else
4463 descr = " writeback data mode";
4464 } else
4465 descr = "out journal";
4466
4467 if (test_opt(sb, DISCARD)) {
4468 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4469 if (!blk_queue_discard(q))
4470 ext4_msg(sb, KERN_WARNING,
4471 "mounting with \"discard\" option, but "
4472 "the device does not support discard");
4473 }
4474
4475 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4476 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4477 "Opts: %.*s%s%s", descr,
4478 (int) sizeof(sbi->s_es->s_mount_opts),
4479 sbi->s_es->s_mount_opts,
4480 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4481
4482 if (es->s_error_count)
4483 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4484
4485 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4486 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4487 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4488 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4489
4490 kfree(orig_data);
4491 return 0;
4492
4493cantfind_ext4:
4494 if (!silent)
4495 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4496 goto failed_mount;
4497
4498#ifdef CONFIG_QUOTA
4499failed_mount8:
4500 ext4_unregister_sysfs(sb);
4501#endif
4502failed_mount7:
4503 ext4_unregister_li_request(sb);
4504failed_mount6:
4505 ext4_mb_release(sb);
4506 if (sbi->s_flex_groups)
4507 kvfree(sbi->s_flex_groups);
4508 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4509 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4510 percpu_counter_destroy(&sbi->s_dirs_counter);
4511 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4512 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4513failed_mount5:
4514 ext4_ext_release(sb);
4515 ext4_release_system_zone(sb);
4516failed_mount4a:
4517 dput(sb->s_root);
4518 sb->s_root = NULL;
4519failed_mount4:
4520 ext4_msg(sb, KERN_ERR, "mount failed");
4521 if (EXT4_SB(sb)->rsv_conversion_wq)
4522 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4523failed_mount_wq:
4524 if (sbi->s_ea_inode_cache) {
4525 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4526 sbi->s_ea_inode_cache = NULL;
4527 }
4528 if (sbi->s_ea_block_cache) {
4529 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4530 sbi->s_ea_block_cache = NULL;
4531 }
4532 if (sbi->s_journal) {
4533 jbd2_journal_destroy(sbi->s_journal);
4534 sbi->s_journal = NULL;
4535 }
4536failed_mount3a:
4537 ext4_es_unregister_shrinker(sbi);
4538failed_mount3:
4539 del_timer_sync(&sbi->s_err_report);
4540 if (sbi->s_mmp_tsk)
4541 kthread_stop(sbi->s_mmp_tsk);
4542failed_mount2:
4543 for (i = 0; i < db_count; i++)
4544 brelse(sbi->s_group_desc[i]);
4545 kvfree(sbi->s_group_desc);
4546failed_mount:
4547 if (sbi->s_chksum_driver)
4548 crypto_free_shash(sbi->s_chksum_driver);
4549#ifdef CONFIG_QUOTA
4550 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4551 kfree(sbi->s_qf_names[i]);
4552#endif
4553 ext4_blkdev_remove(sbi);
4554 brelse(bh);
4555out_fail:
4556 sb->s_fs_info = NULL;
4557 kfree(sbi->s_blockgroup_lock);
4558out_free_base:
4559 kfree(sbi);
4560 kfree(orig_data);
4561 fs_put_dax(dax_dev);
4562 return err ? err : ret;
4563}
4564
4565/*
4566 * Setup any per-fs journal parameters now. We'll do this both on
4567 * initial mount, once the journal has been initialised but before we've
4568 * done any recovery; and again on any subsequent remount.
4569 */
4570static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4571{
4572 struct ext4_sb_info *sbi = EXT4_SB(sb);
4573
4574 journal->j_commit_interval = sbi->s_commit_interval;
4575 journal->j_min_batch_time = sbi->s_min_batch_time;
4576 journal->j_max_batch_time = sbi->s_max_batch_time;
4577
4578 write_lock(&journal->j_state_lock);
4579 if (test_opt(sb, BARRIER))
4580 journal->j_flags |= JBD2_BARRIER;
4581 else
4582 journal->j_flags &= ~JBD2_BARRIER;
4583 if (test_opt(sb, DATA_ERR_ABORT))
4584 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4585 else
4586 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4587 write_unlock(&journal->j_state_lock);
4588}
4589
4590static struct inode *ext4_get_journal_inode(struct super_block *sb,
4591 unsigned int journal_inum)
4592{
4593 struct inode *journal_inode;
4594
4595 /*
4596 * Test for the existence of a valid inode on disk. Bad things
4597 * happen if we iget() an unused inode, as the subsequent iput()
4598 * will try to delete it.
4599 */
4600 journal_inode = ext4_iget(sb, journal_inum);
4601 if (IS_ERR(journal_inode)) {
4602 ext4_msg(sb, KERN_ERR, "no journal found");
4603 return NULL;
4604 }
4605 if (!journal_inode->i_nlink) {
4606 make_bad_inode(journal_inode);
4607 iput(journal_inode);
4608 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4609 return NULL;
4610 }
4611
4612 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4613 journal_inode, journal_inode->i_size);
4614 if (!S_ISREG(journal_inode->i_mode)) {
4615 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4616 iput(journal_inode);
4617 return NULL;
4618 }
4619 return journal_inode;
4620}
4621
4622static journal_t *ext4_get_journal(struct super_block *sb,
4623 unsigned int journal_inum)
4624{
4625 struct inode *journal_inode;
4626 journal_t *journal;
4627
4628 BUG_ON(!ext4_has_feature_journal(sb));
4629
4630 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4631 if (!journal_inode)
4632 return NULL;
4633
4634 journal = jbd2_journal_init_inode(journal_inode);
4635 if (!journal) {
4636 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4637 iput(journal_inode);
4638 return NULL;
4639 }
4640 journal->j_private = sb;
4641 ext4_init_journal_params(sb, journal);
4642 return journal;
4643}
4644
4645static journal_t *ext4_get_dev_journal(struct super_block *sb,
4646 dev_t j_dev)
4647{
4648 struct buffer_head *bh;
4649 journal_t *journal;
4650 ext4_fsblk_t start;
4651 ext4_fsblk_t len;
4652 int hblock, blocksize;
4653 ext4_fsblk_t sb_block;
4654 unsigned long offset;
4655 struct ext4_super_block *es;
4656 struct block_device *bdev;
4657
4658 BUG_ON(!ext4_has_feature_journal(sb));
4659
4660 bdev = ext4_blkdev_get(j_dev, sb);
4661 if (bdev == NULL)
4662 return NULL;
4663
4664 blocksize = sb->s_blocksize;
4665 hblock = bdev_logical_block_size(bdev);
4666 if (blocksize < hblock) {
4667 ext4_msg(sb, KERN_ERR,
4668 "blocksize too small for journal device");
4669 goto out_bdev;
4670 }
4671
4672 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4673 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4674 set_blocksize(bdev, blocksize);
4675 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4676 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4677 "external journal");
4678 goto out_bdev;
4679 }
4680
4681 es = (struct ext4_super_block *) (bh->b_data + offset);
4682 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4683 !(le32_to_cpu(es->s_feature_incompat) &
4684 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4685 ext4_msg(sb, KERN_ERR, "external journal has "
4686 "bad superblock");
4687 brelse(bh);
4688 goto out_bdev;
4689 }
4690
4691 if ((le32_to_cpu(es->s_feature_ro_compat) &
4692 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4693 es->s_checksum != ext4_superblock_csum(sb, es)) {
4694 ext4_msg(sb, KERN_ERR, "external journal has "
4695 "corrupt superblock");
4696 brelse(bh);
4697 goto out_bdev;
4698 }
4699
4700 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4701 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4702 brelse(bh);
4703 goto out_bdev;
4704 }
4705
4706 len = ext4_blocks_count(es);
4707 start = sb_block + 1;
4708 brelse(bh); /* we're done with the superblock */
4709
4710 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4711 start, len, blocksize);
4712 if (!journal) {
4713 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4714 goto out_bdev;
4715 }
4716 journal->j_private = sb;
4717 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4718 wait_on_buffer(journal->j_sb_buffer);
4719 if (!buffer_uptodate(journal->j_sb_buffer)) {
4720 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4721 goto out_journal;
4722 }
4723 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4724 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4725 "user (unsupported) - %d",
4726 be32_to_cpu(journal->j_superblock->s_nr_users));
4727 goto out_journal;
4728 }
4729 EXT4_SB(sb)->journal_bdev = bdev;
4730 ext4_init_journal_params(sb, journal);
4731 return journal;
4732
4733out_journal:
4734 jbd2_journal_destroy(journal);
4735out_bdev:
4736 ext4_blkdev_put(bdev);
4737 return NULL;
4738}
4739
4740static int ext4_load_journal(struct super_block *sb,
4741 struct ext4_super_block *es,
4742 unsigned long journal_devnum)
4743{
4744 journal_t *journal;
4745 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4746 dev_t journal_dev;
4747 int err = 0;
4748 int really_read_only;
4749
4750 BUG_ON(!ext4_has_feature_journal(sb));
4751
4752 if (journal_devnum &&
4753 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4754 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4755 "numbers have changed");
4756 journal_dev = new_decode_dev(journal_devnum);
4757 } else
4758 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4759
4760 really_read_only = bdev_read_only(sb->s_bdev);
4761
4762 /*
4763 * Are we loading a blank journal or performing recovery after a
4764 * crash? For recovery, we need to check in advance whether we
4765 * can get read-write access to the device.
4766 */
4767 if (ext4_has_feature_journal_needs_recovery(sb)) {
4768 if (sb_rdonly(sb)) {
4769 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4770 "required on readonly filesystem");
4771 if (really_read_only) {
4772 ext4_msg(sb, KERN_ERR, "write access "
4773 "unavailable, cannot proceed "
4774 "(try mounting with noload)");
4775 return -EROFS;
4776 }
4777 ext4_msg(sb, KERN_INFO, "write access will "
4778 "be enabled during recovery");
4779 }
4780 }
4781
4782 if (journal_inum && journal_dev) {
4783 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4784 "and inode journals!");
4785 return -EINVAL;
4786 }
4787
4788 if (journal_inum) {
4789 if (!(journal = ext4_get_journal(sb, journal_inum)))
4790 return -EINVAL;
4791 } else {
4792 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4793 return -EINVAL;
4794 }
4795
4796 if (!(journal->j_flags & JBD2_BARRIER))
4797 ext4_msg(sb, KERN_INFO, "barriers disabled");
4798
4799 if (!ext4_has_feature_journal_needs_recovery(sb))
4800 err = jbd2_journal_wipe(journal, !really_read_only);
4801 if (!err) {
4802 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4803 if (save)
4804 memcpy(save, ((char *) es) +
4805 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4806 err = jbd2_journal_load(journal);
4807 if (save)
4808 memcpy(((char *) es) + EXT4_S_ERR_START,
4809 save, EXT4_S_ERR_LEN);
4810 kfree(save);
4811 }
4812
4813 if (err) {
4814 ext4_msg(sb, KERN_ERR, "error loading journal");
4815 jbd2_journal_destroy(journal);
4816 return err;
4817 }
4818
4819 EXT4_SB(sb)->s_journal = journal;
4820 ext4_clear_journal_err(sb, es);
4821
4822 if (!really_read_only && journal_devnum &&
4823 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4824 es->s_journal_dev = cpu_to_le32(journal_devnum);
4825
4826 /* Make sure we flush the recovery flag to disk. */
4827 ext4_commit_super(sb, 1);
4828 }
4829
4830 return 0;
4831}
4832
4833static int ext4_commit_super(struct super_block *sb, int sync)
4834{
4835 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4836 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4837 int error = 0;
4838
4839 if (!sbh || block_device_ejected(sb))
4840 return error;
4841
4842 /*
4843 * The superblock bh should be mapped, but it might not be if the
4844 * device was hot-removed. Not much we can do but fail the I/O.
4845 */
4846 if (!buffer_mapped(sbh))
4847 return error;
4848
4849 /*
4850 * If the file system is mounted read-only, don't update the
4851 * superblock write time. This avoids updating the superblock
4852 * write time when we are mounting the root file system
4853 * read/only but we need to replay the journal; at that point,
4854 * for people who are east of GMT and who make their clock
4855 * tick in localtime for Windows bug-for-bug compatibility,
4856 * the clock is set in the future, and this will cause e2fsck
4857 * to complain and force a full file system check.
4858 */
4859 if (!(sb->s_flags & SB_RDONLY))
4860 ext4_update_tstamp(es, s_wtime);
4861 if (sb->s_bdev->bd_part)
4862 es->s_kbytes_written =
4863 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4864 ((part_stat_read(sb->s_bdev->bd_part,
4865 sectors[STAT_WRITE]) -
4866 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4867 else
4868 es->s_kbytes_written =
4869 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4870 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4871 ext4_free_blocks_count_set(es,
4872 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4873 &EXT4_SB(sb)->s_freeclusters_counter)));
4874 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4875 es->s_free_inodes_count =
4876 cpu_to_le32(percpu_counter_sum_positive(
4877 &EXT4_SB(sb)->s_freeinodes_counter));
4878 BUFFER_TRACE(sbh, "marking dirty");
4879 ext4_superblock_csum_set(sb);
4880 if (sync)
4881 lock_buffer(sbh);
4882 if (buffer_write_io_error(sbh)) {
4883 /*
4884 * Oh, dear. A previous attempt to write the
4885 * superblock failed. This could happen because the
4886 * USB device was yanked out. Or it could happen to
4887 * be a transient write error and maybe the block will
4888 * be remapped. Nothing we can do but to retry the
4889 * write and hope for the best.
4890 */
4891 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4892 "superblock detected");
4893 clear_buffer_write_io_error(sbh);
4894 set_buffer_uptodate(sbh);
4895 }
4896 mark_buffer_dirty(sbh);
4897 if (sync) {
4898 unlock_buffer(sbh);
4899 error = __sync_dirty_buffer(sbh,
4900 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4901 if (buffer_write_io_error(sbh)) {
4902 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4903 "superblock");
4904 clear_buffer_write_io_error(sbh);
4905 set_buffer_uptodate(sbh);
4906 }
4907 }
4908 return error;
4909}
4910
4911/*
4912 * Have we just finished recovery? If so, and if we are mounting (or
4913 * remounting) the filesystem readonly, then we will end up with a
4914 * consistent fs on disk. Record that fact.
4915 */
4916static void ext4_mark_recovery_complete(struct super_block *sb,
4917 struct ext4_super_block *es)
4918{
4919 journal_t *journal = EXT4_SB(sb)->s_journal;
4920
4921 if (!ext4_has_feature_journal(sb)) {
4922 BUG_ON(journal != NULL);
4923 return;
4924 }
4925 jbd2_journal_lock_updates(journal);
4926 if (jbd2_journal_flush(journal) < 0)
4927 goto out;
4928
4929 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4930 ext4_clear_feature_journal_needs_recovery(sb);
4931 ext4_commit_super(sb, 1);
4932 }
4933
4934out:
4935 jbd2_journal_unlock_updates(journal);
4936}
4937
4938/*
4939 * If we are mounting (or read-write remounting) a filesystem whose journal
4940 * has recorded an error from a previous lifetime, move that error to the
4941 * main filesystem now.
4942 */
4943static void ext4_clear_journal_err(struct super_block *sb,
4944 struct ext4_super_block *es)
4945{
4946 journal_t *journal;
4947 int j_errno;
4948 const char *errstr;
4949
4950 BUG_ON(!ext4_has_feature_journal(sb));
4951
4952 journal = EXT4_SB(sb)->s_journal;
4953
4954 /*
4955 * Now check for any error status which may have been recorded in the
4956 * journal by a prior ext4_error() or ext4_abort()
4957 */
4958
4959 j_errno = jbd2_journal_errno(journal);
4960 if (j_errno) {
4961 char nbuf[16];
4962
4963 errstr = ext4_decode_error(sb, j_errno, nbuf);
4964 ext4_warning(sb, "Filesystem error recorded "
4965 "from previous mount: %s", errstr);
4966 ext4_warning(sb, "Marking fs in need of filesystem check.");
4967
4968 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4969 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4970 ext4_commit_super(sb, 1);
4971
4972 jbd2_journal_clear_err(journal);
4973 jbd2_journal_update_sb_errno(journal);
4974 }
4975}
4976
4977/*
4978 * Force the running and committing transactions to commit,
4979 * and wait on the commit.
4980 */
4981int ext4_force_commit(struct super_block *sb)
4982{
4983 journal_t *journal;
4984
4985 if (sb_rdonly(sb))
4986 return 0;
4987
4988 journal = EXT4_SB(sb)->s_journal;
4989 return ext4_journal_force_commit(journal);
4990}
4991
4992static int ext4_sync_fs(struct super_block *sb, int wait)
4993{
4994 int ret = 0;
4995 tid_t target;
4996 bool needs_barrier = false;
4997 struct ext4_sb_info *sbi = EXT4_SB(sb);
4998
4999 if (unlikely(ext4_forced_shutdown(sbi)))
5000 return 0;
5001
5002 trace_ext4_sync_fs(sb, wait);
5003 flush_workqueue(sbi->rsv_conversion_wq);
5004 /*
5005 * Writeback quota in non-journalled quota case - journalled quota has
5006 * no dirty dquots
5007 */
5008 dquot_writeback_dquots(sb, -1);
5009 /*
5010 * Data writeback is possible w/o journal transaction, so barrier must
5011 * being sent at the end of the function. But we can skip it if
5012 * transaction_commit will do it for us.
5013 */
5014 if (sbi->s_journal) {
5015 target = jbd2_get_latest_transaction(sbi->s_journal);
5016 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5017 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5018 needs_barrier = true;
5019
5020 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5021 if (wait)
5022 ret = jbd2_log_wait_commit(sbi->s_journal,
5023 target);
5024 }
5025 } else if (wait && test_opt(sb, BARRIER))
5026 needs_barrier = true;
5027 if (needs_barrier) {
5028 int err;
5029 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5030 if (!ret)
5031 ret = err;
5032 }
5033
5034 return ret;
5035}
5036
5037/*
5038 * LVM calls this function before a (read-only) snapshot is created. This
5039 * gives us a chance to flush the journal completely and mark the fs clean.
5040 *
5041 * Note that only this function cannot bring a filesystem to be in a clean
5042 * state independently. It relies on upper layer to stop all data & metadata
5043 * modifications.
5044 */
5045static int ext4_freeze(struct super_block *sb)
5046{
5047 int error = 0;
5048 journal_t *journal;
5049
5050 if (sb_rdonly(sb))
5051 return 0;
5052
5053 journal = EXT4_SB(sb)->s_journal;
5054
5055 if (journal) {
5056 /* Now we set up the journal barrier. */
5057 jbd2_journal_lock_updates(journal);
5058
5059 /*
5060 * Don't clear the needs_recovery flag if we failed to
5061 * flush the journal.
5062 */
5063 error = jbd2_journal_flush(journal);
5064 if (error < 0)
5065 goto out;
5066
5067 /* Journal blocked and flushed, clear needs_recovery flag. */
5068 ext4_clear_feature_journal_needs_recovery(sb);
5069 }
5070
5071 error = ext4_commit_super(sb, 1);
5072out:
5073 if (journal)
5074 /* we rely on upper layer to stop further updates */
5075 jbd2_journal_unlock_updates(journal);
5076 return error;
5077}
5078
5079/*
5080 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5081 * flag here, even though the filesystem is not technically dirty yet.
5082 */
5083static int ext4_unfreeze(struct super_block *sb)
5084{
5085 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5086 return 0;
5087
5088 if (EXT4_SB(sb)->s_journal) {
5089 /* Reset the needs_recovery flag before the fs is unlocked. */
5090 ext4_set_feature_journal_needs_recovery(sb);
5091 }
5092
5093 ext4_commit_super(sb, 1);
5094 return 0;
5095}
5096
5097/*
5098 * Structure to save mount options for ext4_remount's benefit
5099 */
5100struct ext4_mount_options {
5101 unsigned long s_mount_opt;
5102 unsigned long s_mount_opt2;
5103 kuid_t s_resuid;
5104 kgid_t s_resgid;
5105 unsigned long s_commit_interval;
5106 u32 s_min_batch_time, s_max_batch_time;
5107#ifdef CONFIG_QUOTA
5108 int s_jquota_fmt;
5109 char *s_qf_names[EXT4_MAXQUOTAS];
5110#endif
5111};
5112
5113static int ext4_remount(struct super_block *sb, int *flags, char *data)
5114{
5115 struct ext4_super_block *es;
5116 struct ext4_sb_info *sbi = EXT4_SB(sb);
5117 unsigned long old_sb_flags;
5118 struct ext4_mount_options old_opts;
5119 int enable_quota = 0;
5120 ext4_group_t g;
5121 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5122 int err = 0;
5123#ifdef CONFIG_QUOTA
5124 int i, j;
5125 char *to_free[EXT4_MAXQUOTAS];
5126#endif
5127 char *orig_data = kstrdup(data, GFP_KERNEL);
5128
5129 if (data && !orig_data)
5130 return -ENOMEM;
5131
5132 /* Store the original options */
5133 old_sb_flags = sb->s_flags;
5134 old_opts.s_mount_opt = sbi->s_mount_opt;
5135 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5136 old_opts.s_resuid = sbi->s_resuid;
5137 old_opts.s_resgid = sbi->s_resgid;
5138 old_opts.s_commit_interval = sbi->s_commit_interval;
5139 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5140 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5141#ifdef CONFIG_QUOTA
5142 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5143 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5144 if (sbi->s_qf_names[i]) {
5145 char *qf_name = get_qf_name(sb, sbi, i);
5146
5147 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5148 if (!old_opts.s_qf_names[i]) {
5149 for (j = 0; j < i; j++)
5150 kfree(old_opts.s_qf_names[j]);
5151 kfree(orig_data);
5152 return -ENOMEM;
5153 }
5154 } else
5155 old_opts.s_qf_names[i] = NULL;
5156#endif
5157 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5158 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5159
5160 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5161 err = -EINVAL;
5162 goto restore_opts;
5163 }
5164
5165 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5166 test_opt(sb, JOURNAL_CHECKSUM)) {
5167 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5168 "during remount not supported; ignoring");
5169 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5170 }
5171
5172 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5173 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5174 ext4_msg(sb, KERN_ERR, "can't mount with "
5175 "both data=journal and delalloc");
5176 err = -EINVAL;
5177 goto restore_opts;
5178 }
5179 if (test_opt(sb, DIOREAD_NOLOCK)) {
5180 ext4_msg(sb, KERN_ERR, "can't mount with "
5181 "both data=journal and dioread_nolock");
5182 err = -EINVAL;
5183 goto restore_opts;
5184 }
5185 if (test_opt(sb, DAX)) {
5186 ext4_msg(sb, KERN_ERR, "can't mount with "
5187 "both data=journal and dax");
5188 err = -EINVAL;
5189 goto restore_opts;
5190 }
5191 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5192 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5193 ext4_msg(sb, KERN_ERR, "can't mount with "
5194 "journal_async_commit in data=ordered mode");
5195 err = -EINVAL;
5196 goto restore_opts;
5197 }
5198 }
5199
5200 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5201 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5202 err = -EINVAL;
5203 goto restore_opts;
5204 }
5205
5206 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5207 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5208 "dax flag with busy inodes while remounting");
5209 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5210 }
5211
5212 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5213 ext4_abort(sb, "Abort forced by user");
5214
5215 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5216 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5217
5218 es = sbi->s_es;
5219
5220 if (sbi->s_journal) {
5221 ext4_init_journal_params(sb, sbi->s_journal);
5222 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5223 }
5224
5225 if (*flags & SB_LAZYTIME)
5226 sb->s_flags |= SB_LAZYTIME;
5227
5228 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5229 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5230 err = -EROFS;
5231 goto restore_opts;
5232 }
5233
5234 if (*flags & SB_RDONLY) {
5235 err = sync_filesystem(sb);
5236 if (err < 0)
5237 goto restore_opts;
5238 err = dquot_suspend(sb, -1);
5239 if (err < 0)
5240 goto restore_opts;
5241
5242 /*
5243 * First of all, the unconditional stuff we have to do
5244 * to disable replay of the journal when we next remount
5245 */
5246 sb->s_flags |= SB_RDONLY;
5247
5248 /*
5249 * OK, test if we are remounting a valid rw partition
5250 * readonly, and if so set the rdonly flag and then
5251 * mark the partition as valid again.
5252 */
5253 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5254 (sbi->s_mount_state & EXT4_VALID_FS))
5255 es->s_state = cpu_to_le16(sbi->s_mount_state);
5256
5257 if (sbi->s_journal)
5258 ext4_mark_recovery_complete(sb, es);
5259 if (sbi->s_mmp_tsk)
5260 kthread_stop(sbi->s_mmp_tsk);
5261 } else {
5262 /* Make sure we can mount this feature set readwrite */
5263 if (ext4_has_feature_readonly(sb) ||
5264 !ext4_feature_set_ok(sb, 0)) {
5265 err = -EROFS;
5266 goto restore_opts;
5267 }
5268 /*
5269 * Make sure the group descriptor checksums
5270 * are sane. If they aren't, refuse to remount r/w.
5271 */
5272 for (g = 0; g < sbi->s_groups_count; g++) {
5273 struct ext4_group_desc *gdp =
5274 ext4_get_group_desc(sb, g, NULL);
5275
5276 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5277 ext4_msg(sb, KERN_ERR,
5278 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5279 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5280 le16_to_cpu(gdp->bg_checksum));
5281 err = -EFSBADCRC;
5282 goto restore_opts;
5283 }
5284 }
5285
5286 /*
5287 * If we have an unprocessed orphan list hanging
5288 * around from a previously readonly bdev mount,
5289 * require a full umount/remount for now.
5290 */
5291 if (es->s_last_orphan) {
5292 ext4_msg(sb, KERN_WARNING, "Couldn't "
5293 "remount RDWR because of unprocessed "
5294 "orphan inode list. Please "
5295 "umount/remount instead");
5296 err = -EINVAL;
5297 goto restore_opts;
5298 }
5299
5300 /*
5301 * Mounting a RDONLY partition read-write, so reread
5302 * and store the current valid flag. (It may have
5303 * been changed by e2fsck since we originally mounted
5304 * the partition.)
5305 */
5306 if (sbi->s_journal)
5307 ext4_clear_journal_err(sb, es);
5308 sbi->s_mount_state = le16_to_cpu(es->s_state);
5309
5310 err = ext4_setup_super(sb, es, 0);
5311 if (err)
5312 goto restore_opts;
5313
5314 sb->s_flags &= ~SB_RDONLY;
5315 if (ext4_has_feature_mmp(sb))
5316 if (ext4_multi_mount_protect(sb,
5317 le64_to_cpu(es->s_mmp_block))) {
5318 err = -EROFS;
5319 goto restore_opts;
5320 }
5321 enable_quota = 1;
5322 }
5323 }
5324
5325 /*
5326 * Reinitialize lazy itable initialization thread based on
5327 * current settings
5328 */
5329 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5330 ext4_unregister_li_request(sb);
5331 else {
5332 ext4_group_t first_not_zeroed;
5333 first_not_zeroed = ext4_has_uninit_itable(sb);
5334 ext4_register_li_request(sb, first_not_zeroed);
5335 }
5336
5337 ext4_setup_system_zone(sb);
5338 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5339 err = ext4_commit_super(sb, 1);
5340 if (err)
5341 goto restore_opts;
5342 }
5343
5344#ifdef CONFIG_QUOTA
5345 /* Release old quota file names */
5346 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5347 kfree(old_opts.s_qf_names[i]);
5348 if (enable_quota) {
5349 if (sb_any_quota_suspended(sb))
5350 dquot_resume(sb, -1);
5351 else if (ext4_has_feature_quota(sb)) {
5352 err = ext4_enable_quotas(sb);
5353 if (err)
5354 goto restore_opts;
5355 }
5356 }
5357#endif
5358
5359 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5360 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5361 kfree(orig_data);
5362 return 0;
5363
5364restore_opts:
5365 sb->s_flags = old_sb_flags;
5366 sbi->s_mount_opt = old_opts.s_mount_opt;
5367 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5368 sbi->s_resuid = old_opts.s_resuid;
5369 sbi->s_resgid = old_opts.s_resgid;
5370 sbi->s_commit_interval = old_opts.s_commit_interval;
5371 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5372 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5373#ifdef CONFIG_QUOTA
5374 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5375 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5376 to_free[i] = get_qf_name(sb, sbi, i);
5377 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5378 }
5379 synchronize_rcu();
5380 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5381 kfree(to_free[i]);
5382#endif
5383 kfree(orig_data);
5384 return err;
5385}
5386
5387#ifdef CONFIG_QUOTA
5388static int ext4_statfs_project(struct super_block *sb,
5389 kprojid_t projid, struct kstatfs *buf)
5390{
5391 struct kqid qid;
5392 struct dquot *dquot;
5393 u64 limit;
5394 u64 curblock;
5395
5396 qid = make_kqid_projid(projid);
5397 dquot = dqget(sb, qid);
5398 if (IS_ERR(dquot))
5399 return PTR_ERR(dquot);
5400 spin_lock(&dquot->dq_dqb_lock);
5401
5402 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5403 dquot->dq_dqb.dqb_bsoftlimit :
5404 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5405 if (limit && buf->f_blocks > limit) {
5406 curblock = (dquot->dq_dqb.dqb_curspace +
5407 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5408 buf->f_blocks = limit;
5409 buf->f_bfree = buf->f_bavail =
5410 (buf->f_blocks > curblock) ?
5411 (buf->f_blocks - curblock) : 0;
5412 }
5413
5414 limit = dquot->dq_dqb.dqb_isoftlimit ?
5415 dquot->dq_dqb.dqb_isoftlimit :
5416 dquot->dq_dqb.dqb_ihardlimit;
5417 if (limit && buf->f_files > limit) {
5418 buf->f_files = limit;
5419 buf->f_ffree =
5420 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5421 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5422 }
5423
5424 spin_unlock(&dquot->dq_dqb_lock);
5425 dqput(dquot);
5426 return 0;
5427}
5428#endif
5429
5430static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5431{
5432 struct super_block *sb = dentry->d_sb;
5433 struct ext4_sb_info *sbi = EXT4_SB(sb);
5434 struct ext4_super_block *es = sbi->s_es;
5435 ext4_fsblk_t overhead = 0, resv_blocks;
5436 u64 fsid;
5437 s64 bfree;
5438 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5439
5440 if (!test_opt(sb, MINIX_DF))
5441 overhead = sbi->s_overhead;
5442
5443 buf->f_type = EXT4_SUPER_MAGIC;
5444 buf->f_bsize = sb->s_blocksize;
5445 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5446 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5447 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5448 /* prevent underflow in case that few free space is available */
5449 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5450 buf->f_bavail = buf->f_bfree -
5451 (ext4_r_blocks_count(es) + resv_blocks);
5452 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5453 buf->f_bavail = 0;
5454 buf->f_files = le32_to_cpu(es->s_inodes_count);
5455 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5456 buf->f_namelen = EXT4_NAME_LEN;
5457 fsid = le64_to_cpup((void *)es->s_uuid) ^
5458 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5459 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5460 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5461
5462#ifdef CONFIG_QUOTA
5463 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5464 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5465 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5466#endif
5467 return 0;
5468}
5469
5470
5471#ifdef CONFIG_QUOTA
5472
5473/*
5474 * Helper functions so that transaction is started before we acquire dqio_sem
5475 * to keep correct lock ordering of transaction > dqio_sem
5476 */
5477static inline struct inode *dquot_to_inode(struct dquot *dquot)
5478{
5479 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5480}
5481
5482static int ext4_write_dquot(struct dquot *dquot)
5483{
5484 int ret, err;
5485 handle_t *handle;
5486 struct inode *inode;
5487
5488 inode = dquot_to_inode(dquot);
5489 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5490 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5491 if (IS_ERR(handle))
5492 return PTR_ERR(handle);
5493 ret = dquot_commit(dquot);
5494 err = ext4_journal_stop(handle);
5495 if (!ret)
5496 ret = err;
5497 return ret;
5498}
5499
5500static int ext4_acquire_dquot(struct dquot *dquot)
5501{
5502 int ret, err;
5503 handle_t *handle;
5504
5505 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5506 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5507 if (IS_ERR(handle))
5508 return PTR_ERR(handle);
5509 ret = dquot_acquire(dquot);
5510 err = ext4_journal_stop(handle);
5511 if (!ret)
5512 ret = err;
5513 return ret;
5514}
5515
5516static int ext4_release_dquot(struct dquot *dquot)
5517{
5518 int ret, err;
5519 handle_t *handle;
5520
5521 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5522 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5523 if (IS_ERR(handle)) {
5524 /* Release dquot anyway to avoid endless cycle in dqput() */
5525 dquot_release(dquot);
5526 return PTR_ERR(handle);
5527 }
5528 ret = dquot_release(dquot);
5529 err = ext4_journal_stop(handle);
5530 if (!ret)
5531 ret = err;
5532 return ret;
5533}
5534
5535static int ext4_mark_dquot_dirty(struct dquot *dquot)
5536{
5537 struct super_block *sb = dquot->dq_sb;
5538 struct ext4_sb_info *sbi = EXT4_SB(sb);
5539
5540 /* Are we journaling quotas? */
5541 if (ext4_has_feature_quota(sb) ||
5542 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5543 dquot_mark_dquot_dirty(dquot);
5544 return ext4_write_dquot(dquot);
5545 } else {
5546 return dquot_mark_dquot_dirty(dquot);
5547 }
5548}
5549
5550static int ext4_write_info(struct super_block *sb, int type)
5551{
5552 int ret, err;
5553 handle_t *handle;
5554
5555 /* Data block + inode block */
5556 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5557 if (IS_ERR(handle))
5558 return PTR_ERR(handle);
5559 ret = dquot_commit_info(sb, type);
5560 err = ext4_journal_stop(handle);
5561 if (!ret)
5562 ret = err;
5563 return ret;
5564}
5565
5566/*
5567 * Turn on quotas during mount time - we need to find
5568 * the quota file and such...
5569 */
5570static int ext4_quota_on_mount(struct super_block *sb, int type)
5571{
5572 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5573 EXT4_SB(sb)->s_jquota_fmt, type);
5574}
5575
5576static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5577{
5578 struct ext4_inode_info *ei = EXT4_I(inode);
5579
5580 /* The first argument of lockdep_set_subclass has to be
5581 * *exactly* the same as the argument to init_rwsem() --- in
5582 * this case, in init_once() --- or lockdep gets unhappy
5583 * because the name of the lock is set using the
5584 * stringification of the argument to init_rwsem().
5585 */
5586 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5587 lockdep_set_subclass(&ei->i_data_sem, subclass);
5588}
5589
5590/*
5591 * Standard function to be called on quota_on
5592 */
5593static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5594 const struct path *path)
5595{
5596 int err;
5597
5598 if (!test_opt(sb, QUOTA))
5599 return -EINVAL;
5600
5601 /* Quotafile not on the same filesystem? */
5602 if (path->dentry->d_sb != sb)
5603 return -EXDEV;
5604 /* Journaling quota? */
5605 if (EXT4_SB(sb)->s_qf_names[type]) {
5606 /* Quotafile not in fs root? */
5607 if (path->dentry->d_parent != sb->s_root)
5608 ext4_msg(sb, KERN_WARNING,
5609 "Quota file not on filesystem root. "
5610 "Journaled quota will not work");
5611 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5612 } else {
5613 /*
5614 * Clear the flag just in case mount options changed since
5615 * last time.
5616 */
5617 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5618 }
5619
5620 /*
5621 * When we journal data on quota file, we have to flush journal to see
5622 * all updates to the file when we bypass pagecache...
5623 */
5624 if (EXT4_SB(sb)->s_journal &&
5625 ext4_should_journal_data(d_inode(path->dentry))) {
5626 /*
5627 * We don't need to lock updates but journal_flush() could
5628 * otherwise be livelocked...
5629 */
5630 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5631 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5632 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5633 if (err)
5634 return err;
5635 }
5636
5637 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5638 err = dquot_quota_on(sb, type, format_id, path);
5639 if (err) {
5640 lockdep_set_quota_inode(path->dentry->d_inode,
5641 I_DATA_SEM_NORMAL);
5642 } else {
5643 struct inode *inode = d_inode(path->dentry);
5644 handle_t *handle;
5645
5646 /*
5647 * Set inode flags to prevent userspace from messing with quota
5648 * files. If this fails, we return success anyway since quotas
5649 * are already enabled and this is not a hard failure.
5650 */
5651 inode_lock(inode);
5652 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5653 if (IS_ERR(handle))
5654 goto unlock_inode;
5655 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5656 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5657 S_NOATIME | S_IMMUTABLE);
5658 ext4_mark_inode_dirty(handle, inode);
5659 ext4_journal_stop(handle);
5660 unlock_inode:
5661 inode_unlock(inode);
5662 }
5663 return err;
5664}
5665
5666static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5667 unsigned int flags)
5668{
5669 int err;
5670 struct inode *qf_inode;
5671 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5672 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5673 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5674 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5675 };
5676
5677 BUG_ON(!ext4_has_feature_quota(sb));
5678
5679 if (!qf_inums[type])
5680 return -EPERM;
5681
5682 qf_inode = ext4_iget(sb, qf_inums[type]);
5683 if (IS_ERR(qf_inode)) {
5684 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5685 return PTR_ERR(qf_inode);
5686 }
5687
5688 /* Don't account quota for quota files to avoid recursion */
5689 qf_inode->i_flags |= S_NOQUOTA;
5690 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5691 err = dquot_enable(qf_inode, type, format_id, flags);
5692 iput(qf_inode);
5693 if (err)
5694 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5695
5696 return err;
5697}
5698
5699/* Enable usage tracking for all quota types. */
5700static int ext4_enable_quotas(struct super_block *sb)
5701{
5702 int type, err = 0;
5703 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5704 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5705 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5706 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5707 };
5708 bool quota_mopt[EXT4_MAXQUOTAS] = {
5709 test_opt(sb, USRQUOTA),
5710 test_opt(sb, GRPQUOTA),
5711 test_opt(sb, PRJQUOTA),
5712 };
5713
5714 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5715 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5716 if (qf_inums[type]) {
5717 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5718 DQUOT_USAGE_ENABLED |
5719 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5720 if (err) {
5721 ext4_warning(sb,
5722 "Failed to enable quota tracking "
5723 "(type=%d, err=%d). Please run "
5724 "e2fsck to fix.", type, err);
5725 for (type--; type >= 0; type--)
5726 dquot_quota_off(sb, type);
5727
5728 return err;
5729 }
5730 }
5731 }
5732 return 0;
5733}
5734
5735static int ext4_quota_off(struct super_block *sb, int type)
5736{
5737 struct inode *inode = sb_dqopt(sb)->files[type];
5738 handle_t *handle;
5739 int err;
5740
5741 /* Force all delayed allocation blocks to be allocated.
5742 * Caller already holds s_umount sem */
5743 if (test_opt(sb, DELALLOC))
5744 sync_filesystem(sb);
5745
5746 if (!inode || !igrab(inode))
5747 goto out;
5748
5749 err = dquot_quota_off(sb, type);
5750 if (err || ext4_has_feature_quota(sb))
5751 goto out_put;
5752
5753 inode_lock(inode);
5754 /*
5755 * Update modification times of quota files when userspace can
5756 * start looking at them. If we fail, we return success anyway since
5757 * this is not a hard failure and quotas are already disabled.
5758 */
5759 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5760 if (IS_ERR(handle))
5761 goto out_unlock;
5762 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5763 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5764 inode->i_mtime = inode->i_ctime = current_time(inode);
5765 ext4_mark_inode_dirty(handle, inode);
5766 ext4_journal_stop(handle);
5767out_unlock:
5768 inode_unlock(inode);
5769out_put:
5770 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5771 iput(inode);
5772 return err;
5773out:
5774 return dquot_quota_off(sb, type);
5775}
5776
5777/* Read data from quotafile - avoid pagecache and such because we cannot afford
5778 * acquiring the locks... As quota files are never truncated and quota code
5779 * itself serializes the operations (and no one else should touch the files)
5780 * we don't have to be afraid of races */
5781static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5782 size_t len, loff_t off)
5783{
5784 struct inode *inode = sb_dqopt(sb)->files[type];
5785 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5786 int offset = off & (sb->s_blocksize - 1);
5787 int tocopy;
5788 size_t toread;
5789 struct buffer_head *bh;
5790 loff_t i_size = i_size_read(inode);
5791
5792 if (off > i_size)
5793 return 0;
5794 if (off+len > i_size)
5795 len = i_size-off;
5796 toread = len;
5797 while (toread > 0) {
5798 tocopy = sb->s_blocksize - offset < toread ?
5799 sb->s_blocksize - offset : toread;
5800 bh = ext4_bread(NULL, inode, blk, 0);
5801 if (IS_ERR(bh))
5802 return PTR_ERR(bh);
5803 if (!bh) /* A hole? */
5804 memset(data, 0, tocopy);
5805 else
5806 memcpy(data, bh->b_data+offset, tocopy);
5807 brelse(bh);
5808 offset = 0;
5809 toread -= tocopy;
5810 data += tocopy;
5811 blk++;
5812 }
5813 return len;
5814}
5815
5816/* Write to quotafile (we know the transaction is already started and has
5817 * enough credits) */
5818static ssize_t ext4_quota_write(struct super_block *sb, int type,
5819 const char *data, size_t len, loff_t off)
5820{
5821 struct inode *inode = sb_dqopt(sb)->files[type];
5822 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5823 int err, offset = off & (sb->s_blocksize - 1);
5824 int retries = 0;
5825 struct buffer_head *bh;
5826 handle_t *handle = journal_current_handle();
5827
5828 if (EXT4_SB(sb)->s_journal && !handle) {
5829 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5830 " cancelled because transaction is not started",
5831 (unsigned long long)off, (unsigned long long)len);
5832 return -EIO;
5833 }
5834 /*
5835 * Since we account only one data block in transaction credits,
5836 * then it is impossible to cross a block boundary.
5837 */
5838 if (sb->s_blocksize - offset < len) {
5839 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5840 " cancelled because not block aligned",
5841 (unsigned long long)off, (unsigned long long)len);
5842 return -EIO;
5843 }
5844
5845 do {
5846 bh = ext4_bread(handle, inode, blk,
5847 EXT4_GET_BLOCKS_CREATE |
5848 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5849 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5850 ext4_should_retry_alloc(inode->i_sb, &retries));
5851 if (IS_ERR(bh))
5852 return PTR_ERR(bh);
5853 if (!bh)
5854 goto out;
5855 BUFFER_TRACE(bh, "get write access");
5856 err = ext4_journal_get_write_access(handle, bh);
5857 if (err) {
5858 brelse(bh);
5859 return err;
5860 }
5861 lock_buffer(bh);
5862 memcpy(bh->b_data+offset, data, len);
5863 flush_dcache_page(bh->b_page);
5864 unlock_buffer(bh);
5865 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5866 brelse(bh);
5867out:
5868 if (inode->i_size < off + len) {
5869 i_size_write(inode, off + len);
5870 EXT4_I(inode)->i_disksize = inode->i_size;
5871 ext4_mark_inode_dirty(handle, inode);
5872 }
5873 return len;
5874}
5875
5876static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5877{
5878 const struct quota_format_ops *ops;
5879
5880 if (!sb_has_quota_loaded(sb, qid->type))
5881 return -ESRCH;
5882 ops = sb_dqopt(sb)->ops[qid->type];
5883 if (!ops || !ops->get_next_id)
5884 return -ENOSYS;
5885 return dquot_get_next_id(sb, qid);
5886}
5887#endif
5888
5889static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5890 const char *dev_name, void *data)
5891{
5892 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5893}
5894
5895#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5896static inline void register_as_ext2(void)
5897{
5898 int err = register_filesystem(&ext2_fs_type);
5899 if (err)
5900 printk(KERN_WARNING
5901 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5902}
5903
5904static inline void unregister_as_ext2(void)
5905{
5906 unregister_filesystem(&ext2_fs_type);
5907}
5908
5909static inline int ext2_feature_set_ok(struct super_block *sb)
5910{
5911 if (ext4_has_unknown_ext2_incompat_features(sb))
5912 return 0;
5913 if (sb_rdonly(sb))
5914 return 1;
5915 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5916 return 0;
5917 return 1;
5918}
5919#else
5920static inline void register_as_ext2(void) { }
5921static inline void unregister_as_ext2(void) { }
5922static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5923#endif
5924
5925static inline void register_as_ext3(void)
5926{
5927 int err = register_filesystem(&ext3_fs_type);
5928 if (err)
5929 printk(KERN_WARNING
5930 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5931}
5932
5933static inline void unregister_as_ext3(void)
5934{
5935 unregister_filesystem(&ext3_fs_type);
5936}
5937
5938static inline int ext3_feature_set_ok(struct super_block *sb)
5939{
5940 if (ext4_has_unknown_ext3_incompat_features(sb))
5941 return 0;
5942 if (!ext4_has_feature_journal(sb))
5943 return 0;
5944 if (sb_rdonly(sb))
5945 return 1;
5946 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5947 return 0;
5948 return 1;
5949}
5950
5951static struct file_system_type ext4_fs_type = {
5952 .owner = THIS_MODULE,
5953 .name = "ext4",
5954 .mount = ext4_mount,
5955 .kill_sb = kill_block_super,
5956 .fs_flags = FS_REQUIRES_DEV,
5957};
5958MODULE_ALIAS_FS("ext4");
5959
5960/* Shared across all ext4 file systems */
5961wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5962
5963static int __init ext4_init_fs(void)
5964{
5965 int i, err;
5966
5967 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5968 ext4_li_info = NULL;
5969 mutex_init(&ext4_li_mtx);
5970
5971 /* Build-time check for flags consistency */
5972 ext4_check_flag_values();
5973
5974 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5975 init_waitqueue_head(&ext4__ioend_wq[i]);
5976
5977 err = ext4_init_es();
5978 if (err)
5979 return err;
5980
5981 err = ext4_init_pageio();
5982 if (err)
5983 goto out5;
5984
5985 err = ext4_init_system_zone();
5986 if (err)
5987 goto out4;
5988
5989 err = ext4_init_sysfs();
5990 if (err)
5991 goto out3;
5992
5993 err = ext4_init_mballoc();
5994 if (err)
5995 goto out2;
5996 err = init_inodecache();
5997 if (err)
5998 goto out1;
5999 register_as_ext3();
6000 register_as_ext2();
6001 err = register_filesystem(&ext4_fs_type);
6002 if (err)
6003 goto out;
6004
6005 return 0;
6006out:
6007 unregister_as_ext2();
6008 unregister_as_ext3();
6009 destroy_inodecache();
6010out1:
6011 ext4_exit_mballoc();
6012out2:
6013 ext4_exit_sysfs();
6014out3:
6015 ext4_exit_system_zone();
6016out4:
6017 ext4_exit_pageio();
6018out5:
6019 ext4_exit_es();
6020
6021 return err;
6022}
6023
6024static void __exit ext4_exit_fs(void)
6025{
6026 ext4_destroy_lazyinit_thread();
6027 unregister_as_ext2();
6028 unregister_as_ext3();
6029 unregister_filesystem(&ext4_fs_type);
6030 destroy_inodecache();
6031 ext4_exit_mballoc();
6032 ext4_exit_sysfs();
6033 ext4_exit_system_zone();
6034 ext4_exit_pageio();
6035 ext4_exit_es();
6036}
6037
6038MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6039MODULE_DESCRIPTION("Fourth Extended Filesystem");
6040MODULE_LICENSE("GPL");
6041MODULE_SOFTDEP("pre: crc32c");
6042module_init(ext4_init_fs)
6043module_exit(ext4_exit_fs)