Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * key management facility for FS encryption support. |
| 4 | * |
| 5 | * Copyright (C) 2015, Google, Inc. |
| 6 | * |
| 7 | * This contains encryption key functions. |
| 8 | * |
| 9 | * Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015. |
| 10 | */ |
| 11 | |
| 12 | #include <keys/user-type.h> |
| 13 | #include <linux/scatterlist.h> |
| 14 | #include <linux/ratelimit.h> |
| 15 | #include <crypto/aes.h> |
| 16 | #include <crypto/sha.h> |
| 17 | #include <crypto/skcipher.h> |
| 18 | #include "fscrypt_private.h" |
| 19 | |
| 20 | static struct crypto_shash *essiv_hash_tfm; |
| 21 | |
| 22 | /* |
| 23 | * Key derivation function. This generates the derived key by encrypting the |
| 24 | * master key with AES-128-ECB using the inode's nonce as the AES key. |
| 25 | * |
| 26 | * The master key must be at least as long as the derived key. If the master |
| 27 | * key is longer, then only the first 'derived_keysize' bytes are used. |
| 28 | */ |
| 29 | static int derive_key_aes(const u8 *master_key, |
| 30 | const struct fscrypt_context *ctx, |
| 31 | u8 *derived_key, unsigned int derived_keysize) |
| 32 | { |
| 33 | int res = 0; |
| 34 | struct skcipher_request *req = NULL; |
| 35 | DECLARE_CRYPTO_WAIT(wait); |
| 36 | struct scatterlist src_sg, dst_sg; |
| 37 | struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0); |
| 38 | |
| 39 | if (IS_ERR(tfm)) { |
| 40 | res = PTR_ERR(tfm); |
| 41 | tfm = NULL; |
| 42 | goto out; |
| 43 | } |
| 44 | crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); |
| 45 | req = skcipher_request_alloc(tfm, GFP_NOFS); |
| 46 | if (!req) { |
| 47 | res = -ENOMEM; |
| 48 | goto out; |
| 49 | } |
| 50 | skcipher_request_set_callback(req, |
| 51 | CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| 52 | crypto_req_done, &wait); |
| 53 | res = crypto_skcipher_setkey(tfm, ctx->nonce, sizeof(ctx->nonce)); |
| 54 | if (res < 0) |
| 55 | goto out; |
| 56 | |
| 57 | sg_init_one(&src_sg, master_key, derived_keysize); |
| 58 | sg_init_one(&dst_sg, derived_key, derived_keysize); |
| 59 | skcipher_request_set_crypt(req, &src_sg, &dst_sg, derived_keysize, |
| 60 | NULL); |
| 61 | res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); |
| 62 | out: |
| 63 | skcipher_request_free(req); |
| 64 | crypto_free_skcipher(tfm); |
| 65 | return res; |
| 66 | } |
| 67 | |
| 68 | /* |
| 69 | * Search the current task's subscribed keyrings for a "logon" key with |
| 70 | * description prefix:descriptor, and if found acquire a read lock on it and |
| 71 | * return a pointer to its validated payload in *payload_ret. |
| 72 | */ |
| 73 | static struct key * |
| 74 | find_and_lock_process_key(const char *prefix, |
| 75 | const u8 descriptor[FS_KEY_DESCRIPTOR_SIZE], |
| 76 | unsigned int min_keysize, |
| 77 | const struct fscrypt_key **payload_ret) |
| 78 | { |
| 79 | char *description; |
| 80 | struct key *key; |
| 81 | const struct user_key_payload *ukp; |
| 82 | const struct fscrypt_key *payload; |
| 83 | |
| 84 | description = kasprintf(GFP_NOFS, "%s%*phN", prefix, |
| 85 | FS_KEY_DESCRIPTOR_SIZE, descriptor); |
| 86 | if (!description) |
| 87 | return ERR_PTR(-ENOMEM); |
| 88 | |
| 89 | key = request_key(&key_type_logon, description, NULL); |
| 90 | kfree(description); |
| 91 | if (IS_ERR(key)) |
| 92 | return key; |
| 93 | |
| 94 | down_read(&key->sem); |
| 95 | ukp = user_key_payload_locked(key); |
| 96 | |
| 97 | if (!ukp) /* was the key revoked before we acquired its semaphore? */ |
| 98 | goto invalid; |
| 99 | |
| 100 | payload = (const struct fscrypt_key *)ukp->data; |
| 101 | |
| 102 | if (ukp->datalen != sizeof(struct fscrypt_key) || |
| 103 | payload->size < 1 || payload->size > FS_MAX_KEY_SIZE) { |
| 104 | fscrypt_warn(NULL, |
| 105 | "key with description '%s' has invalid payload", |
| 106 | key->description); |
| 107 | goto invalid; |
| 108 | } |
| 109 | |
| 110 | if (payload->size < min_keysize) { |
| 111 | fscrypt_warn(NULL, |
| 112 | "key with description '%s' is too short (got %u bytes, need %u+ bytes)", |
| 113 | key->description, payload->size, min_keysize); |
| 114 | goto invalid; |
| 115 | } |
| 116 | |
| 117 | *payload_ret = payload; |
| 118 | return key; |
| 119 | |
| 120 | invalid: |
| 121 | up_read(&key->sem); |
| 122 | key_put(key); |
| 123 | return ERR_PTR(-ENOKEY); |
| 124 | } |
| 125 | |
| 126 | /* Find the master key, then derive the inode's actual encryption key */ |
| 127 | static int find_and_derive_key(const struct inode *inode, |
| 128 | const struct fscrypt_context *ctx, |
| 129 | u8 *derived_key, unsigned int derived_keysize) |
| 130 | { |
| 131 | struct key *key; |
| 132 | const struct fscrypt_key *payload; |
| 133 | int err; |
| 134 | |
| 135 | key = find_and_lock_process_key(FS_KEY_DESC_PREFIX, |
| 136 | ctx->master_key_descriptor, |
| 137 | derived_keysize, &payload); |
| 138 | if (key == ERR_PTR(-ENOKEY) && inode->i_sb->s_cop->key_prefix) { |
| 139 | key = find_and_lock_process_key(inode->i_sb->s_cop->key_prefix, |
| 140 | ctx->master_key_descriptor, |
| 141 | derived_keysize, &payload); |
| 142 | } |
| 143 | if (IS_ERR(key)) |
| 144 | return PTR_ERR(key); |
| 145 | err = derive_key_aes(payload->raw, ctx, derived_key, derived_keysize); |
| 146 | up_read(&key->sem); |
| 147 | key_put(key); |
| 148 | return err; |
| 149 | } |
| 150 | |
| 151 | static struct fscrypt_mode { |
| 152 | const char *friendly_name; |
| 153 | const char *cipher_str; |
| 154 | int keysize; |
| 155 | bool logged_impl_name; |
| 156 | } available_modes[] = { |
| 157 | [FS_ENCRYPTION_MODE_AES_256_XTS] = { |
| 158 | .friendly_name = "AES-256-XTS", |
| 159 | .cipher_str = "xts(aes)", |
| 160 | .keysize = 64, |
| 161 | }, |
| 162 | [FS_ENCRYPTION_MODE_AES_256_CTS] = { |
| 163 | .friendly_name = "AES-256-CTS-CBC", |
| 164 | .cipher_str = "cts(cbc(aes))", |
| 165 | .keysize = 32, |
| 166 | }, |
| 167 | [FS_ENCRYPTION_MODE_AES_128_CBC] = { |
| 168 | .friendly_name = "AES-128-CBC", |
| 169 | .cipher_str = "cbc(aes)", |
| 170 | .keysize = 16, |
| 171 | }, |
| 172 | [FS_ENCRYPTION_MODE_AES_128_CTS] = { |
| 173 | .friendly_name = "AES-128-CTS-CBC", |
| 174 | .cipher_str = "cts(cbc(aes))", |
| 175 | .keysize = 16, |
| 176 | }, |
| 177 | }; |
| 178 | |
| 179 | static struct fscrypt_mode * |
| 180 | select_encryption_mode(const struct fscrypt_info *ci, const struct inode *inode) |
| 181 | { |
| 182 | if (!fscrypt_valid_enc_modes(ci->ci_data_mode, ci->ci_filename_mode)) { |
| 183 | fscrypt_warn(inode->i_sb, |
| 184 | "inode %lu uses unsupported encryption modes (contents mode %d, filenames mode %d)", |
| 185 | inode->i_ino, ci->ci_data_mode, |
| 186 | ci->ci_filename_mode); |
| 187 | return ERR_PTR(-EINVAL); |
| 188 | } |
| 189 | |
| 190 | if (S_ISREG(inode->i_mode)) |
| 191 | return &available_modes[ci->ci_data_mode]; |
| 192 | |
| 193 | if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) |
| 194 | return &available_modes[ci->ci_filename_mode]; |
| 195 | |
| 196 | WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", |
| 197 | inode->i_ino, (inode->i_mode & S_IFMT)); |
| 198 | return ERR_PTR(-EINVAL); |
| 199 | } |
| 200 | |
| 201 | static void put_crypt_info(struct fscrypt_info *ci) |
| 202 | { |
| 203 | if (!ci) |
| 204 | return; |
| 205 | |
| 206 | crypto_free_skcipher(ci->ci_ctfm); |
| 207 | crypto_free_cipher(ci->ci_essiv_tfm); |
| 208 | kmem_cache_free(fscrypt_info_cachep, ci); |
| 209 | } |
| 210 | |
| 211 | static int derive_essiv_salt(const u8 *key, int keysize, u8 *salt) |
| 212 | { |
| 213 | struct crypto_shash *tfm = READ_ONCE(essiv_hash_tfm); |
| 214 | |
| 215 | /* init hash transform on demand */ |
| 216 | if (unlikely(!tfm)) { |
| 217 | struct crypto_shash *prev_tfm; |
| 218 | |
| 219 | tfm = crypto_alloc_shash("sha256", 0, 0); |
| 220 | if (IS_ERR(tfm)) { |
| 221 | fscrypt_warn(NULL, |
| 222 | "error allocating SHA-256 transform: %ld", |
| 223 | PTR_ERR(tfm)); |
| 224 | return PTR_ERR(tfm); |
| 225 | } |
| 226 | prev_tfm = cmpxchg(&essiv_hash_tfm, NULL, tfm); |
| 227 | if (prev_tfm) { |
| 228 | crypto_free_shash(tfm); |
| 229 | tfm = prev_tfm; |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | { |
| 234 | SHASH_DESC_ON_STACK(desc, tfm); |
| 235 | desc->tfm = tfm; |
| 236 | desc->flags = 0; |
| 237 | |
| 238 | return crypto_shash_digest(desc, key, keysize, salt); |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | static int init_essiv_generator(struct fscrypt_info *ci, const u8 *raw_key, |
| 243 | int keysize) |
| 244 | { |
| 245 | int err; |
| 246 | struct crypto_cipher *essiv_tfm; |
| 247 | u8 salt[SHA256_DIGEST_SIZE]; |
| 248 | |
| 249 | essiv_tfm = crypto_alloc_cipher("aes", 0, 0); |
| 250 | if (IS_ERR(essiv_tfm)) |
| 251 | return PTR_ERR(essiv_tfm); |
| 252 | |
| 253 | ci->ci_essiv_tfm = essiv_tfm; |
| 254 | |
| 255 | err = derive_essiv_salt(raw_key, keysize, salt); |
| 256 | if (err) |
| 257 | goto out; |
| 258 | |
| 259 | /* |
| 260 | * Using SHA256 to derive the salt/key will result in AES-256 being |
| 261 | * used for IV generation. File contents encryption will still use the |
| 262 | * configured keysize (AES-128) nevertheless. |
| 263 | */ |
| 264 | err = crypto_cipher_setkey(essiv_tfm, salt, sizeof(salt)); |
| 265 | if (err) |
| 266 | goto out; |
| 267 | |
| 268 | out: |
| 269 | memzero_explicit(salt, sizeof(salt)); |
| 270 | return err; |
| 271 | } |
| 272 | |
| 273 | void __exit fscrypt_essiv_cleanup(void) |
| 274 | { |
| 275 | crypto_free_shash(essiv_hash_tfm); |
| 276 | } |
| 277 | |
| 278 | int fscrypt_get_encryption_info(struct inode *inode) |
| 279 | { |
| 280 | struct fscrypt_info *crypt_info; |
| 281 | struct fscrypt_context ctx; |
| 282 | struct crypto_skcipher *ctfm; |
| 283 | struct fscrypt_mode *mode; |
| 284 | u8 *raw_key = NULL; |
| 285 | int res; |
| 286 | |
| 287 | if (inode->i_crypt_info) |
| 288 | return 0; |
| 289 | |
| 290 | res = fscrypt_initialize(inode->i_sb->s_cop->flags); |
| 291 | if (res) |
| 292 | return res; |
| 293 | |
| 294 | res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); |
| 295 | if (res < 0) { |
| 296 | if (!fscrypt_dummy_context_enabled(inode) || |
| 297 | IS_ENCRYPTED(inode)) |
| 298 | return res; |
| 299 | /* Fake up a context for an unencrypted directory */ |
| 300 | memset(&ctx, 0, sizeof(ctx)); |
| 301 | ctx.format = FS_ENCRYPTION_CONTEXT_FORMAT_V1; |
| 302 | ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS; |
| 303 | ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS; |
| 304 | memset(ctx.master_key_descriptor, 0x42, FS_KEY_DESCRIPTOR_SIZE); |
| 305 | } else if (res != sizeof(ctx)) { |
| 306 | return -EINVAL; |
| 307 | } |
| 308 | |
| 309 | if (ctx.format != FS_ENCRYPTION_CONTEXT_FORMAT_V1) |
| 310 | return -EINVAL; |
| 311 | |
| 312 | if (ctx.flags & ~FS_POLICY_FLAGS_VALID) |
| 313 | return -EINVAL; |
| 314 | |
| 315 | crypt_info = kmem_cache_alloc(fscrypt_info_cachep, GFP_NOFS); |
| 316 | if (!crypt_info) |
| 317 | return -ENOMEM; |
| 318 | |
| 319 | crypt_info->ci_flags = ctx.flags; |
| 320 | crypt_info->ci_data_mode = ctx.contents_encryption_mode; |
| 321 | crypt_info->ci_filename_mode = ctx.filenames_encryption_mode; |
| 322 | crypt_info->ci_ctfm = NULL; |
| 323 | crypt_info->ci_essiv_tfm = NULL; |
| 324 | memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor, |
| 325 | sizeof(crypt_info->ci_master_key)); |
| 326 | |
| 327 | mode = select_encryption_mode(crypt_info, inode); |
| 328 | if (IS_ERR(mode)) { |
| 329 | res = PTR_ERR(mode); |
| 330 | goto out; |
| 331 | } |
| 332 | |
| 333 | /* |
| 334 | * This cannot be a stack buffer because it is passed to the scatterlist |
| 335 | * crypto API as part of key derivation. |
| 336 | */ |
| 337 | res = -ENOMEM; |
| 338 | raw_key = kmalloc(mode->keysize, GFP_NOFS); |
| 339 | if (!raw_key) |
| 340 | goto out; |
| 341 | |
| 342 | res = find_and_derive_key(inode, &ctx, raw_key, mode->keysize); |
| 343 | if (res) |
| 344 | goto out; |
| 345 | |
| 346 | ctfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0); |
| 347 | if (IS_ERR(ctfm)) { |
| 348 | res = PTR_ERR(ctfm); |
| 349 | fscrypt_warn(inode->i_sb, |
| 350 | "error allocating '%s' transform for inode %lu: %d", |
| 351 | mode->cipher_str, inode->i_ino, res); |
| 352 | goto out; |
| 353 | } |
| 354 | if (unlikely(!mode->logged_impl_name)) { |
| 355 | /* |
| 356 | * fscrypt performance can vary greatly depending on which |
| 357 | * crypto algorithm implementation is used. Help people debug |
| 358 | * performance problems by logging the ->cra_driver_name the |
| 359 | * first time a mode is used. Note that multiple threads can |
| 360 | * race here, but it doesn't really matter. |
| 361 | */ |
| 362 | mode->logged_impl_name = true; |
| 363 | pr_info("fscrypt: %s using implementation \"%s\"\n", |
| 364 | mode->friendly_name, |
| 365 | crypto_skcipher_alg(ctfm)->base.cra_driver_name); |
| 366 | } |
| 367 | crypt_info->ci_ctfm = ctfm; |
| 368 | crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_REQ_WEAK_KEY); |
| 369 | res = crypto_skcipher_setkey(ctfm, raw_key, mode->keysize); |
| 370 | if (res) |
| 371 | goto out; |
| 372 | |
| 373 | if (S_ISREG(inode->i_mode) && |
| 374 | crypt_info->ci_data_mode == FS_ENCRYPTION_MODE_AES_128_CBC) { |
| 375 | res = init_essiv_generator(crypt_info, raw_key, mode->keysize); |
| 376 | if (res) { |
| 377 | fscrypt_warn(inode->i_sb, |
| 378 | "error initializing ESSIV generator for inode %lu: %d", |
| 379 | inode->i_ino, res); |
| 380 | goto out; |
| 381 | } |
| 382 | } |
| 383 | if (cmpxchg(&inode->i_crypt_info, NULL, crypt_info) == NULL) |
| 384 | crypt_info = NULL; |
| 385 | out: |
| 386 | if (res == -ENOKEY) |
| 387 | res = 0; |
| 388 | put_crypt_info(crypt_info); |
| 389 | kzfree(raw_key); |
| 390 | return res; |
| 391 | } |
| 392 | EXPORT_SYMBOL(fscrypt_get_encryption_info); |
| 393 | |
| 394 | void fscrypt_put_encryption_info(struct inode *inode) |
| 395 | { |
| 396 | put_crypt_info(inode->i_crypt_info); |
| 397 | inode->i_crypt_info = NULL; |
| 398 | } |
| 399 | EXPORT_SYMBOL(fscrypt_put_encryption_info); |