blob: 8ecf8c0e5fe65063ce368ccf9eb5de8ba1ebc463 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
4 */
5
6#include <linux/pagemap.h>
7#include <linux/sched.h>
8#include <linux/sched/signal.h>
9#include <linux/slab.h>
10#include <linux/math64.h>
11#include <linux/ratelimit.h>
12#include <linux/error-injection.h>
13#include <linux/sched/mm.h>
14#include "ctree.h"
15#include "free-space-cache.h"
16#include "transaction.h"
17#include "disk-io.h"
18#include "extent_io.h"
19#include "inode-map.h"
20#include "volumes.h"
21
22#define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
23#define MAX_CACHE_BYTES_PER_GIG SZ_32K
24
25struct btrfs_trim_range {
26 u64 start;
27 u64 bytes;
28 struct list_head list;
29};
30
31static int link_free_space(struct btrfs_free_space_ctl *ctl,
32 struct btrfs_free_space *info);
33static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
34 struct btrfs_free_space *info);
35static int btrfs_wait_cache_io_root(struct btrfs_root *root,
36 struct btrfs_trans_handle *trans,
37 struct btrfs_io_ctl *io_ctl,
38 struct btrfs_path *path);
39
40static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
41 struct btrfs_path *path,
42 u64 offset)
43{
44 struct btrfs_fs_info *fs_info = root->fs_info;
45 struct btrfs_key key;
46 struct btrfs_key location;
47 struct btrfs_disk_key disk_key;
48 struct btrfs_free_space_header *header;
49 struct extent_buffer *leaf;
50 struct inode *inode = NULL;
51 unsigned nofs_flag;
52 int ret;
53
54 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
55 key.offset = offset;
56 key.type = 0;
57
58 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
59 if (ret < 0)
60 return ERR_PTR(ret);
61 if (ret > 0) {
62 btrfs_release_path(path);
63 return ERR_PTR(-ENOENT);
64 }
65
66 leaf = path->nodes[0];
67 header = btrfs_item_ptr(leaf, path->slots[0],
68 struct btrfs_free_space_header);
69 btrfs_free_space_key(leaf, header, &disk_key);
70 btrfs_disk_key_to_cpu(&location, &disk_key);
71 btrfs_release_path(path);
72
73 /*
74 * We are often under a trans handle at this point, so we need to make
75 * sure NOFS is set to keep us from deadlocking.
76 */
77 nofs_flag = memalloc_nofs_save();
78 inode = btrfs_iget(fs_info->sb, &location, root, NULL);
79 memalloc_nofs_restore(nofs_flag);
80 if (IS_ERR(inode))
81 return inode;
82
83 mapping_set_gfp_mask(inode->i_mapping,
84 mapping_gfp_constraint(inode->i_mapping,
85 ~(__GFP_FS | __GFP_HIGHMEM)));
86
87 return inode;
88}
89
90struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
91 struct btrfs_block_group_cache
92 *block_group, struct btrfs_path *path)
93{
94 struct inode *inode = NULL;
95 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
96
97 spin_lock(&block_group->lock);
98 if (block_group->inode)
99 inode = igrab(block_group->inode);
100 spin_unlock(&block_group->lock);
101 if (inode)
102 return inode;
103
104 inode = __lookup_free_space_inode(fs_info->tree_root, path,
105 block_group->key.objectid);
106 if (IS_ERR(inode))
107 return inode;
108
109 spin_lock(&block_group->lock);
110 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
111 btrfs_info(fs_info, "Old style space inode found, converting.");
112 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
113 BTRFS_INODE_NODATACOW;
114 block_group->disk_cache_state = BTRFS_DC_CLEAR;
115 }
116
117 if (!block_group->iref) {
118 block_group->inode = igrab(inode);
119 block_group->iref = 1;
120 }
121 spin_unlock(&block_group->lock);
122
123 return inode;
124}
125
126static int __create_free_space_inode(struct btrfs_root *root,
127 struct btrfs_trans_handle *trans,
128 struct btrfs_path *path,
129 u64 ino, u64 offset)
130{
131 struct btrfs_key key;
132 struct btrfs_disk_key disk_key;
133 struct btrfs_free_space_header *header;
134 struct btrfs_inode_item *inode_item;
135 struct extent_buffer *leaf;
136 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
137 int ret;
138
139 ret = btrfs_insert_empty_inode(trans, root, path, ino);
140 if (ret)
141 return ret;
142
143 /* We inline crc's for the free disk space cache */
144 if (ino != BTRFS_FREE_INO_OBJECTID)
145 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
146
147 leaf = path->nodes[0];
148 inode_item = btrfs_item_ptr(leaf, path->slots[0],
149 struct btrfs_inode_item);
150 btrfs_item_key(leaf, &disk_key, path->slots[0]);
151 memzero_extent_buffer(leaf, (unsigned long)inode_item,
152 sizeof(*inode_item));
153 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
154 btrfs_set_inode_size(leaf, inode_item, 0);
155 btrfs_set_inode_nbytes(leaf, inode_item, 0);
156 btrfs_set_inode_uid(leaf, inode_item, 0);
157 btrfs_set_inode_gid(leaf, inode_item, 0);
158 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
159 btrfs_set_inode_flags(leaf, inode_item, flags);
160 btrfs_set_inode_nlink(leaf, inode_item, 1);
161 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
162 btrfs_set_inode_block_group(leaf, inode_item, offset);
163 btrfs_mark_buffer_dirty(leaf);
164 btrfs_release_path(path);
165
166 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
167 key.offset = offset;
168 key.type = 0;
169 ret = btrfs_insert_empty_item(trans, root, path, &key,
170 sizeof(struct btrfs_free_space_header));
171 if (ret < 0) {
172 btrfs_release_path(path);
173 return ret;
174 }
175
176 leaf = path->nodes[0];
177 header = btrfs_item_ptr(leaf, path->slots[0],
178 struct btrfs_free_space_header);
179 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
180 btrfs_set_free_space_key(leaf, header, &disk_key);
181 btrfs_mark_buffer_dirty(leaf);
182 btrfs_release_path(path);
183
184 return 0;
185}
186
187int create_free_space_inode(struct btrfs_fs_info *fs_info,
188 struct btrfs_trans_handle *trans,
189 struct btrfs_block_group_cache *block_group,
190 struct btrfs_path *path)
191{
192 int ret;
193 u64 ino;
194
195 ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
196 if (ret < 0)
197 return ret;
198
199 return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
200 block_group->key.objectid);
201}
202
203int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
204 struct btrfs_block_rsv *rsv)
205{
206 u64 needed_bytes;
207 int ret;
208
209 /* 1 for slack space, 1 for updating the inode */
210 needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
211 btrfs_calc_trans_metadata_size(fs_info, 1);
212
213 spin_lock(&rsv->lock);
214 if (rsv->reserved < needed_bytes)
215 ret = -ENOSPC;
216 else
217 ret = 0;
218 spin_unlock(&rsv->lock);
219 return ret;
220}
221
222int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
223 struct btrfs_block_group_cache *block_group,
224 struct inode *inode)
225{
226 struct btrfs_root *root = BTRFS_I(inode)->root;
227 int ret = 0;
228 bool locked = false;
229
230 if (block_group) {
231 struct btrfs_path *path = btrfs_alloc_path();
232
233 if (!path) {
234 ret = -ENOMEM;
235 goto fail;
236 }
237 locked = true;
238 mutex_lock(&trans->transaction->cache_write_mutex);
239 if (!list_empty(&block_group->io_list)) {
240 list_del_init(&block_group->io_list);
241
242 btrfs_wait_cache_io(trans, block_group, path);
243 btrfs_put_block_group(block_group);
244 }
245
246 /*
247 * now that we've truncated the cache away, its no longer
248 * setup or written
249 */
250 spin_lock(&block_group->lock);
251 block_group->disk_cache_state = BTRFS_DC_CLEAR;
252 spin_unlock(&block_group->lock);
253 btrfs_free_path(path);
254 }
255
256 btrfs_i_size_write(BTRFS_I(inode), 0);
257 truncate_pagecache(inode, 0);
258
259 /*
260 * We skip the throttling logic for free space cache inodes, so we don't
261 * need to check for -EAGAIN.
262 */
263 ret = btrfs_truncate_inode_items(trans, root, inode,
264 0, BTRFS_EXTENT_DATA_KEY);
265 if (ret)
266 goto fail;
267
268 ret = btrfs_update_inode(trans, root, inode);
269
270fail:
271 if (locked)
272 mutex_unlock(&trans->transaction->cache_write_mutex);
273 if (ret)
274 btrfs_abort_transaction(trans, ret);
275
276 return ret;
277}
278
279static void readahead_cache(struct inode *inode)
280{
281 struct file_ra_state *ra;
282 unsigned long last_index;
283
284 ra = kzalloc(sizeof(*ra), GFP_NOFS);
285 if (!ra)
286 return;
287
288 file_ra_state_init(ra, inode->i_mapping);
289 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
290
291 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
292
293 kfree(ra);
294}
295
296static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
297 int write)
298{
299 int num_pages;
300 int check_crcs = 0;
301
302 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
303
304 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
305 check_crcs = 1;
306
307 /* Make sure we can fit our crcs and generation into the first page */
308 if (write && check_crcs &&
309 (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
310 return -ENOSPC;
311
312 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
313
314 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
315 if (!io_ctl->pages)
316 return -ENOMEM;
317
318 io_ctl->num_pages = num_pages;
319 io_ctl->fs_info = btrfs_sb(inode->i_sb);
320 io_ctl->check_crcs = check_crcs;
321 io_ctl->inode = inode;
322
323 return 0;
324}
325ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
326
327static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
328{
329 kfree(io_ctl->pages);
330 io_ctl->pages = NULL;
331}
332
333static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
334{
335 if (io_ctl->cur) {
336 io_ctl->cur = NULL;
337 io_ctl->orig = NULL;
338 }
339}
340
341static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
342{
343 ASSERT(io_ctl->index < io_ctl->num_pages);
344 io_ctl->page = io_ctl->pages[io_ctl->index++];
345 io_ctl->cur = page_address(io_ctl->page);
346 io_ctl->orig = io_ctl->cur;
347 io_ctl->size = PAGE_SIZE;
348 if (clear)
349 clear_page(io_ctl->cur);
350}
351
352static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
353{
354 int i;
355
356 io_ctl_unmap_page(io_ctl);
357
358 for (i = 0; i < io_ctl->num_pages; i++) {
359 if (io_ctl->pages[i]) {
360 ClearPageChecked(io_ctl->pages[i]);
361 unlock_page(io_ctl->pages[i]);
362 put_page(io_ctl->pages[i]);
363 }
364 }
365}
366
367static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
368 int uptodate)
369{
370 struct page *page;
371 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
372 int i;
373
374 for (i = 0; i < io_ctl->num_pages; i++) {
375 page = find_or_create_page(inode->i_mapping, i, mask);
376 if (!page) {
377 io_ctl_drop_pages(io_ctl);
378 return -ENOMEM;
379 }
380 io_ctl->pages[i] = page;
381 if (uptodate && !PageUptodate(page)) {
382 btrfs_readpage(NULL, page);
383 lock_page(page);
384 if (!PageUptodate(page)) {
385 btrfs_err(BTRFS_I(inode)->root->fs_info,
386 "error reading free space cache");
387 io_ctl_drop_pages(io_ctl);
388 return -EIO;
389 }
390 }
391 }
392
393 for (i = 0; i < io_ctl->num_pages; i++) {
394 clear_page_dirty_for_io(io_ctl->pages[i]);
395 set_page_extent_mapped(io_ctl->pages[i]);
396 }
397
398 return 0;
399}
400
401static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
402{
403 __le64 *val;
404
405 io_ctl_map_page(io_ctl, 1);
406
407 /*
408 * Skip the csum areas. If we don't check crcs then we just have a
409 * 64bit chunk at the front of the first page.
410 */
411 if (io_ctl->check_crcs) {
412 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
413 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
414 } else {
415 io_ctl->cur += sizeof(u64);
416 io_ctl->size -= sizeof(u64) * 2;
417 }
418
419 val = io_ctl->cur;
420 *val = cpu_to_le64(generation);
421 io_ctl->cur += sizeof(u64);
422}
423
424static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
425{
426 __le64 *gen;
427
428 /*
429 * Skip the crc area. If we don't check crcs then we just have a 64bit
430 * chunk at the front of the first page.
431 */
432 if (io_ctl->check_crcs) {
433 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
434 io_ctl->size -= sizeof(u64) +
435 (sizeof(u32) * io_ctl->num_pages);
436 } else {
437 io_ctl->cur += sizeof(u64);
438 io_ctl->size -= sizeof(u64) * 2;
439 }
440
441 gen = io_ctl->cur;
442 if (le64_to_cpu(*gen) != generation) {
443 btrfs_err_rl(io_ctl->fs_info,
444 "space cache generation (%llu) does not match inode (%llu)",
445 *gen, generation);
446 io_ctl_unmap_page(io_ctl);
447 return -EIO;
448 }
449 io_ctl->cur += sizeof(u64);
450 return 0;
451}
452
453static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
454{
455 u32 *tmp;
456 u32 crc = ~(u32)0;
457 unsigned offset = 0;
458
459 if (!io_ctl->check_crcs) {
460 io_ctl_unmap_page(io_ctl);
461 return;
462 }
463
464 if (index == 0)
465 offset = sizeof(u32) * io_ctl->num_pages;
466
467 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
468 PAGE_SIZE - offset);
469 btrfs_csum_final(crc, (u8 *)&crc);
470 io_ctl_unmap_page(io_ctl);
471 tmp = page_address(io_ctl->pages[0]);
472 tmp += index;
473 *tmp = crc;
474}
475
476static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
477{
478 u32 *tmp, val;
479 u32 crc = ~(u32)0;
480 unsigned offset = 0;
481
482 if (!io_ctl->check_crcs) {
483 io_ctl_map_page(io_ctl, 0);
484 return 0;
485 }
486
487 if (index == 0)
488 offset = sizeof(u32) * io_ctl->num_pages;
489
490 tmp = page_address(io_ctl->pages[0]);
491 tmp += index;
492 val = *tmp;
493
494 io_ctl_map_page(io_ctl, 0);
495 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
496 PAGE_SIZE - offset);
497 btrfs_csum_final(crc, (u8 *)&crc);
498 if (val != crc) {
499 btrfs_err_rl(io_ctl->fs_info,
500 "csum mismatch on free space cache");
501 io_ctl_unmap_page(io_ctl);
502 return -EIO;
503 }
504
505 return 0;
506}
507
508static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
509 void *bitmap)
510{
511 struct btrfs_free_space_entry *entry;
512
513 if (!io_ctl->cur)
514 return -ENOSPC;
515
516 entry = io_ctl->cur;
517 entry->offset = cpu_to_le64(offset);
518 entry->bytes = cpu_to_le64(bytes);
519 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
520 BTRFS_FREE_SPACE_EXTENT;
521 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
522 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
523
524 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
525 return 0;
526
527 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
528
529 /* No more pages to map */
530 if (io_ctl->index >= io_ctl->num_pages)
531 return 0;
532
533 /* map the next page */
534 io_ctl_map_page(io_ctl, 1);
535 return 0;
536}
537
538static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
539{
540 if (!io_ctl->cur)
541 return -ENOSPC;
542
543 /*
544 * If we aren't at the start of the current page, unmap this one and
545 * map the next one if there is any left.
546 */
547 if (io_ctl->cur != io_ctl->orig) {
548 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
549 if (io_ctl->index >= io_ctl->num_pages)
550 return -ENOSPC;
551 io_ctl_map_page(io_ctl, 0);
552 }
553
554 copy_page(io_ctl->cur, bitmap);
555 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
556 if (io_ctl->index < io_ctl->num_pages)
557 io_ctl_map_page(io_ctl, 0);
558 return 0;
559}
560
561static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
562{
563 /*
564 * If we're not on the boundary we know we've modified the page and we
565 * need to crc the page.
566 */
567 if (io_ctl->cur != io_ctl->orig)
568 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
569 else
570 io_ctl_unmap_page(io_ctl);
571
572 while (io_ctl->index < io_ctl->num_pages) {
573 io_ctl_map_page(io_ctl, 1);
574 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
575 }
576}
577
578static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
579 struct btrfs_free_space *entry, u8 *type)
580{
581 struct btrfs_free_space_entry *e;
582 int ret;
583
584 if (!io_ctl->cur) {
585 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
586 if (ret)
587 return ret;
588 }
589
590 e = io_ctl->cur;
591 entry->offset = le64_to_cpu(e->offset);
592 entry->bytes = le64_to_cpu(e->bytes);
593 *type = e->type;
594 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
595 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
596
597 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
598 return 0;
599
600 io_ctl_unmap_page(io_ctl);
601
602 return 0;
603}
604
605static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
606 struct btrfs_free_space *entry)
607{
608 int ret;
609
610 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
611 if (ret)
612 return ret;
613
614 copy_page(entry->bitmap, io_ctl->cur);
615 io_ctl_unmap_page(io_ctl);
616
617 return 0;
618}
619
620/*
621 * Since we attach pinned extents after the fact we can have contiguous sections
622 * of free space that are split up in entries. This poses a problem with the
623 * tree logging stuff since it could have allocated across what appears to be 2
624 * entries since we would have merged the entries when adding the pinned extents
625 * back to the free space cache. So run through the space cache that we just
626 * loaded and merge contiguous entries. This will make the log replay stuff not
627 * blow up and it will make for nicer allocator behavior.
628 */
629static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
630{
631 struct btrfs_free_space *e, *prev = NULL;
632 struct rb_node *n;
633
634again:
635 spin_lock(&ctl->tree_lock);
636 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
637 e = rb_entry(n, struct btrfs_free_space, offset_index);
638 if (!prev)
639 goto next;
640 if (e->bitmap || prev->bitmap)
641 goto next;
642 if (prev->offset + prev->bytes == e->offset) {
643 unlink_free_space(ctl, prev);
644 unlink_free_space(ctl, e);
645 prev->bytes += e->bytes;
646 kmem_cache_free(btrfs_free_space_cachep, e);
647 link_free_space(ctl, prev);
648 prev = NULL;
649 spin_unlock(&ctl->tree_lock);
650 goto again;
651 }
652next:
653 prev = e;
654 }
655 spin_unlock(&ctl->tree_lock);
656}
657
658static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
659 struct btrfs_free_space_ctl *ctl,
660 struct btrfs_path *path, u64 offset)
661{
662 struct btrfs_fs_info *fs_info = root->fs_info;
663 struct btrfs_free_space_header *header;
664 struct extent_buffer *leaf;
665 struct btrfs_io_ctl io_ctl;
666 struct btrfs_key key;
667 struct btrfs_free_space *e, *n;
668 LIST_HEAD(bitmaps);
669 u64 num_entries;
670 u64 num_bitmaps;
671 u64 generation;
672 u8 type;
673 int ret = 0;
674
675 /* Nothing in the space cache, goodbye */
676 if (!i_size_read(inode))
677 return 0;
678
679 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
680 key.offset = offset;
681 key.type = 0;
682
683 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
684 if (ret < 0)
685 return 0;
686 else if (ret > 0) {
687 btrfs_release_path(path);
688 return 0;
689 }
690
691 ret = -1;
692
693 leaf = path->nodes[0];
694 header = btrfs_item_ptr(leaf, path->slots[0],
695 struct btrfs_free_space_header);
696 num_entries = btrfs_free_space_entries(leaf, header);
697 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
698 generation = btrfs_free_space_generation(leaf, header);
699 btrfs_release_path(path);
700
701 if (!BTRFS_I(inode)->generation) {
702 btrfs_info(fs_info,
703 "the free space cache file (%llu) is invalid, skip it",
704 offset);
705 return 0;
706 }
707
708 if (BTRFS_I(inode)->generation != generation) {
709 btrfs_err(fs_info,
710 "free space inode generation (%llu) did not match free space cache generation (%llu)",
711 BTRFS_I(inode)->generation, generation);
712 return 0;
713 }
714
715 if (!num_entries)
716 return 0;
717
718 ret = io_ctl_init(&io_ctl, inode, 0);
719 if (ret)
720 return ret;
721
722 readahead_cache(inode);
723
724 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
725 if (ret)
726 goto out;
727
728 ret = io_ctl_check_crc(&io_ctl, 0);
729 if (ret)
730 goto free_cache;
731
732 ret = io_ctl_check_generation(&io_ctl, generation);
733 if (ret)
734 goto free_cache;
735
736 while (num_entries) {
737 e = kmem_cache_zalloc(btrfs_free_space_cachep,
738 GFP_NOFS);
739 if (!e)
740 goto free_cache;
741
742 ret = io_ctl_read_entry(&io_ctl, e, &type);
743 if (ret) {
744 kmem_cache_free(btrfs_free_space_cachep, e);
745 goto free_cache;
746 }
747
748 if (!e->bytes) {
749 kmem_cache_free(btrfs_free_space_cachep, e);
750 goto free_cache;
751 }
752
753 if (type == BTRFS_FREE_SPACE_EXTENT) {
754 spin_lock(&ctl->tree_lock);
755 ret = link_free_space(ctl, e);
756 spin_unlock(&ctl->tree_lock);
757 if (ret) {
758 btrfs_err(fs_info,
759 "Duplicate entries in free space cache, dumping");
760 kmem_cache_free(btrfs_free_space_cachep, e);
761 goto free_cache;
762 }
763 } else {
764 ASSERT(num_bitmaps);
765 num_bitmaps--;
766 e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
767 if (!e->bitmap) {
768 kmem_cache_free(
769 btrfs_free_space_cachep, e);
770 goto free_cache;
771 }
772 spin_lock(&ctl->tree_lock);
773 ret = link_free_space(ctl, e);
774 ctl->total_bitmaps++;
775 ctl->op->recalc_thresholds(ctl);
776 spin_unlock(&ctl->tree_lock);
777 if (ret) {
778 btrfs_err(fs_info,
779 "Duplicate entries in free space cache, dumping");
780 kmem_cache_free(btrfs_free_space_cachep, e);
781 goto free_cache;
782 }
783 list_add_tail(&e->list, &bitmaps);
784 }
785
786 num_entries--;
787 }
788
789 io_ctl_unmap_page(&io_ctl);
790
791 /*
792 * We add the bitmaps at the end of the entries in order that
793 * the bitmap entries are added to the cache.
794 */
795 list_for_each_entry_safe(e, n, &bitmaps, list) {
796 list_del_init(&e->list);
797 ret = io_ctl_read_bitmap(&io_ctl, e);
798 if (ret)
799 goto free_cache;
800 }
801
802 io_ctl_drop_pages(&io_ctl);
803 merge_space_tree(ctl);
804 ret = 1;
805out:
806 io_ctl_free(&io_ctl);
807 return ret;
808free_cache:
809 io_ctl_drop_pages(&io_ctl);
810 __btrfs_remove_free_space_cache(ctl);
811 goto out;
812}
813
814int load_free_space_cache(struct btrfs_fs_info *fs_info,
815 struct btrfs_block_group_cache *block_group)
816{
817 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
818 struct inode *inode;
819 struct btrfs_path *path;
820 int ret = 0;
821 bool matched;
822 u64 used = btrfs_block_group_used(&block_group->item);
823
824 /*
825 * If this block group has been marked to be cleared for one reason or
826 * another then we can't trust the on disk cache, so just return.
827 */
828 spin_lock(&block_group->lock);
829 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
830 spin_unlock(&block_group->lock);
831 return 0;
832 }
833 spin_unlock(&block_group->lock);
834
835 path = btrfs_alloc_path();
836 if (!path)
837 return 0;
838 path->search_commit_root = 1;
839 path->skip_locking = 1;
840
841 inode = lookup_free_space_inode(fs_info, block_group, path);
842 if (IS_ERR(inode)) {
843 btrfs_free_path(path);
844 return 0;
845 }
846
847 /* We may have converted the inode and made the cache invalid. */
848 spin_lock(&block_group->lock);
849 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
850 spin_unlock(&block_group->lock);
851 btrfs_free_path(path);
852 goto out;
853 }
854 spin_unlock(&block_group->lock);
855
856 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
857 path, block_group->key.objectid);
858 btrfs_free_path(path);
859 if (ret <= 0)
860 goto out;
861
862 spin_lock(&ctl->tree_lock);
863 matched = (ctl->free_space == (block_group->key.offset - used -
864 block_group->bytes_super));
865 spin_unlock(&ctl->tree_lock);
866
867 if (!matched) {
868 __btrfs_remove_free_space_cache(ctl);
869 btrfs_warn(fs_info,
870 "block group %llu has wrong amount of free space",
871 block_group->key.objectid);
872 ret = -1;
873 }
874out:
875 if (ret < 0) {
876 /* This cache is bogus, make sure it gets cleared */
877 spin_lock(&block_group->lock);
878 block_group->disk_cache_state = BTRFS_DC_CLEAR;
879 spin_unlock(&block_group->lock);
880 ret = 0;
881
882 btrfs_warn(fs_info,
883 "failed to load free space cache for block group %llu, rebuilding it now",
884 block_group->key.objectid);
885 }
886
887 iput(inode);
888 return ret;
889}
890
891static noinline_for_stack
892int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
893 struct btrfs_free_space_ctl *ctl,
894 struct btrfs_block_group_cache *block_group,
895 int *entries, int *bitmaps,
896 struct list_head *bitmap_list)
897{
898 int ret;
899 struct btrfs_free_cluster *cluster = NULL;
900 struct btrfs_free_cluster *cluster_locked = NULL;
901 struct rb_node *node = rb_first(&ctl->free_space_offset);
902 struct btrfs_trim_range *trim_entry;
903
904 /* Get the cluster for this block_group if it exists */
905 if (block_group && !list_empty(&block_group->cluster_list)) {
906 cluster = list_entry(block_group->cluster_list.next,
907 struct btrfs_free_cluster,
908 block_group_list);
909 }
910
911 if (!node && cluster) {
912 cluster_locked = cluster;
913 spin_lock(&cluster_locked->lock);
914 node = rb_first(&cluster->root);
915 cluster = NULL;
916 }
917
918 /* Write out the extent entries */
919 while (node) {
920 struct btrfs_free_space *e;
921
922 e = rb_entry(node, struct btrfs_free_space, offset_index);
923 *entries += 1;
924
925 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
926 e->bitmap);
927 if (ret)
928 goto fail;
929
930 if (e->bitmap) {
931 list_add_tail(&e->list, bitmap_list);
932 *bitmaps += 1;
933 }
934 node = rb_next(node);
935 if (!node && cluster) {
936 node = rb_first(&cluster->root);
937 cluster_locked = cluster;
938 spin_lock(&cluster_locked->lock);
939 cluster = NULL;
940 }
941 }
942 if (cluster_locked) {
943 spin_unlock(&cluster_locked->lock);
944 cluster_locked = NULL;
945 }
946
947 /*
948 * Make sure we don't miss any range that was removed from our rbtree
949 * because trimming is running. Otherwise after a umount+mount (or crash
950 * after committing the transaction) we would leak free space and get
951 * an inconsistent free space cache report from fsck.
952 */
953 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
954 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
955 trim_entry->bytes, NULL);
956 if (ret)
957 goto fail;
958 *entries += 1;
959 }
960
961 return 0;
962fail:
963 if (cluster_locked)
964 spin_unlock(&cluster_locked->lock);
965 return -ENOSPC;
966}
967
968static noinline_for_stack int
969update_cache_item(struct btrfs_trans_handle *trans,
970 struct btrfs_root *root,
971 struct inode *inode,
972 struct btrfs_path *path, u64 offset,
973 int entries, int bitmaps)
974{
975 struct btrfs_key key;
976 struct btrfs_free_space_header *header;
977 struct extent_buffer *leaf;
978 int ret;
979
980 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
981 key.offset = offset;
982 key.type = 0;
983
984 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
985 if (ret < 0) {
986 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
987 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
988 goto fail;
989 }
990 leaf = path->nodes[0];
991 if (ret > 0) {
992 struct btrfs_key found_key;
993 ASSERT(path->slots[0]);
994 path->slots[0]--;
995 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
996 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
997 found_key.offset != offset) {
998 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
999 inode->i_size - 1,
1000 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1001 NULL);
1002 btrfs_release_path(path);
1003 goto fail;
1004 }
1005 }
1006
1007 BTRFS_I(inode)->generation = trans->transid;
1008 header = btrfs_item_ptr(leaf, path->slots[0],
1009 struct btrfs_free_space_header);
1010 btrfs_set_free_space_entries(leaf, header, entries);
1011 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1012 btrfs_set_free_space_generation(leaf, header, trans->transid);
1013 btrfs_mark_buffer_dirty(leaf);
1014 btrfs_release_path(path);
1015
1016 return 0;
1017
1018fail:
1019 return -1;
1020}
1021
1022static noinline_for_stack int
1023write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1024 struct btrfs_block_group_cache *block_group,
1025 struct btrfs_io_ctl *io_ctl,
1026 int *entries)
1027{
1028 u64 start, extent_start, extent_end, len;
1029 struct extent_io_tree *unpin = NULL;
1030 int ret;
1031
1032 if (!block_group)
1033 return 0;
1034
1035 /*
1036 * We want to add any pinned extents to our free space cache
1037 * so we don't leak the space
1038 *
1039 * We shouldn't have switched the pinned extents yet so this is the
1040 * right one
1041 */
1042 unpin = fs_info->pinned_extents;
1043
1044 start = block_group->key.objectid;
1045
1046 while (start < block_group->key.objectid + block_group->key.offset) {
1047 ret = find_first_extent_bit(unpin, start,
1048 &extent_start, &extent_end,
1049 EXTENT_DIRTY, NULL);
1050 if (ret)
1051 return 0;
1052
1053 /* This pinned extent is out of our range */
1054 if (extent_start >= block_group->key.objectid +
1055 block_group->key.offset)
1056 return 0;
1057
1058 extent_start = max(extent_start, start);
1059 extent_end = min(block_group->key.objectid +
1060 block_group->key.offset, extent_end + 1);
1061 len = extent_end - extent_start;
1062
1063 *entries += 1;
1064 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1065 if (ret)
1066 return -ENOSPC;
1067
1068 start = extent_end;
1069 }
1070
1071 return 0;
1072}
1073
1074static noinline_for_stack int
1075write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1076{
1077 struct btrfs_free_space *entry, *next;
1078 int ret;
1079
1080 /* Write out the bitmaps */
1081 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1082 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1083 if (ret)
1084 return -ENOSPC;
1085 list_del_init(&entry->list);
1086 }
1087
1088 return 0;
1089}
1090
1091static int flush_dirty_cache(struct inode *inode)
1092{
1093 int ret;
1094
1095 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1096 if (ret)
1097 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1098 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1099
1100 return ret;
1101}
1102
1103static void noinline_for_stack
1104cleanup_bitmap_list(struct list_head *bitmap_list)
1105{
1106 struct btrfs_free_space *entry, *next;
1107
1108 list_for_each_entry_safe(entry, next, bitmap_list, list)
1109 list_del_init(&entry->list);
1110}
1111
1112static void noinline_for_stack
1113cleanup_write_cache_enospc(struct inode *inode,
1114 struct btrfs_io_ctl *io_ctl,
1115 struct extent_state **cached_state)
1116{
1117 io_ctl_drop_pages(io_ctl);
1118 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1119 i_size_read(inode) - 1, cached_state);
1120}
1121
1122static int __btrfs_wait_cache_io(struct btrfs_root *root,
1123 struct btrfs_trans_handle *trans,
1124 struct btrfs_block_group_cache *block_group,
1125 struct btrfs_io_ctl *io_ctl,
1126 struct btrfs_path *path, u64 offset)
1127{
1128 int ret;
1129 struct inode *inode = io_ctl->inode;
1130
1131 if (!inode)
1132 return 0;
1133
1134 /* Flush the dirty pages in the cache file. */
1135 ret = flush_dirty_cache(inode);
1136 if (ret)
1137 goto out;
1138
1139 /* Update the cache item to tell everyone this cache file is valid. */
1140 ret = update_cache_item(trans, root, inode, path, offset,
1141 io_ctl->entries, io_ctl->bitmaps);
1142out:
1143 io_ctl_free(io_ctl);
1144 if (ret) {
1145 invalidate_inode_pages2(inode->i_mapping);
1146 BTRFS_I(inode)->generation = 0;
1147 if (block_group) {
1148#ifdef DEBUG
1149 btrfs_err(root->fs_info,
1150 "failed to write free space cache for block group %llu",
1151 block_group->key.objectid);
1152#endif
1153 }
1154 }
1155 btrfs_update_inode(trans, root, inode);
1156
1157 if (block_group) {
1158 /* the dirty list is protected by the dirty_bgs_lock */
1159 spin_lock(&trans->transaction->dirty_bgs_lock);
1160
1161 /* the disk_cache_state is protected by the block group lock */
1162 spin_lock(&block_group->lock);
1163
1164 /*
1165 * only mark this as written if we didn't get put back on
1166 * the dirty list while waiting for IO. Otherwise our
1167 * cache state won't be right, and we won't get written again
1168 */
1169 if (!ret && list_empty(&block_group->dirty_list))
1170 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1171 else if (ret)
1172 block_group->disk_cache_state = BTRFS_DC_ERROR;
1173
1174 spin_unlock(&block_group->lock);
1175 spin_unlock(&trans->transaction->dirty_bgs_lock);
1176 io_ctl->inode = NULL;
1177 iput(inode);
1178 }
1179
1180 return ret;
1181
1182}
1183
1184static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1185 struct btrfs_trans_handle *trans,
1186 struct btrfs_io_ctl *io_ctl,
1187 struct btrfs_path *path)
1188{
1189 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1190}
1191
1192int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1193 struct btrfs_block_group_cache *block_group,
1194 struct btrfs_path *path)
1195{
1196 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1197 block_group, &block_group->io_ctl,
1198 path, block_group->key.objectid);
1199}
1200
1201/**
1202 * __btrfs_write_out_cache - write out cached info to an inode
1203 * @root - the root the inode belongs to
1204 * @ctl - the free space cache we are going to write out
1205 * @block_group - the block_group for this cache if it belongs to a block_group
1206 * @trans - the trans handle
1207 *
1208 * This function writes out a free space cache struct to disk for quick recovery
1209 * on mount. This will return 0 if it was successful in writing the cache out,
1210 * or an errno if it was not.
1211 */
1212static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1213 struct btrfs_free_space_ctl *ctl,
1214 struct btrfs_block_group_cache *block_group,
1215 struct btrfs_io_ctl *io_ctl,
1216 struct btrfs_trans_handle *trans)
1217{
1218 struct btrfs_fs_info *fs_info = root->fs_info;
1219 struct extent_state *cached_state = NULL;
1220 LIST_HEAD(bitmap_list);
1221 int entries = 0;
1222 int bitmaps = 0;
1223 int ret;
1224 int must_iput = 0;
1225
1226 if (!i_size_read(inode))
1227 return -EIO;
1228
1229 WARN_ON(io_ctl->pages);
1230 ret = io_ctl_init(io_ctl, inode, 1);
1231 if (ret)
1232 return ret;
1233
1234 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1235 down_write(&block_group->data_rwsem);
1236 spin_lock(&block_group->lock);
1237 if (block_group->delalloc_bytes) {
1238 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1239 spin_unlock(&block_group->lock);
1240 up_write(&block_group->data_rwsem);
1241 BTRFS_I(inode)->generation = 0;
1242 ret = 0;
1243 must_iput = 1;
1244 goto out;
1245 }
1246 spin_unlock(&block_group->lock);
1247 }
1248
1249 /* Lock all pages first so we can lock the extent safely. */
1250 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1251 if (ret)
1252 goto out_unlock;
1253
1254 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1255 &cached_state);
1256
1257 io_ctl_set_generation(io_ctl, trans->transid);
1258
1259 mutex_lock(&ctl->cache_writeout_mutex);
1260 /* Write out the extent entries in the free space cache */
1261 spin_lock(&ctl->tree_lock);
1262 ret = write_cache_extent_entries(io_ctl, ctl,
1263 block_group, &entries, &bitmaps,
1264 &bitmap_list);
1265 if (ret)
1266 goto out_nospc_locked;
1267
1268 /*
1269 * Some spaces that are freed in the current transaction are pinned,
1270 * they will be added into free space cache after the transaction is
1271 * committed, we shouldn't lose them.
1272 *
1273 * If this changes while we are working we'll get added back to
1274 * the dirty list and redo it. No locking needed
1275 */
1276 ret = write_pinned_extent_entries(fs_info, block_group,
1277 io_ctl, &entries);
1278 if (ret)
1279 goto out_nospc_locked;
1280
1281 /*
1282 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1283 * locked while doing it because a concurrent trim can be manipulating
1284 * or freeing the bitmap.
1285 */
1286 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1287 spin_unlock(&ctl->tree_lock);
1288 mutex_unlock(&ctl->cache_writeout_mutex);
1289 if (ret)
1290 goto out_nospc;
1291
1292 /* Zero out the rest of the pages just to make sure */
1293 io_ctl_zero_remaining_pages(io_ctl);
1294
1295 /* Everything is written out, now we dirty the pages in the file. */
1296 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1297 i_size_read(inode), &cached_state);
1298 if (ret)
1299 goto out_nospc;
1300
1301 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1302 up_write(&block_group->data_rwsem);
1303 /*
1304 * Release the pages and unlock the extent, we will flush
1305 * them out later
1306 */
1307 io_ctl_drop_pages(io_ctl);
1308
1309 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1310 i_size_read(inode) - 1, &cached_state);
1311
1312 /*
1313 * at this point the pages are under IO and we're happy,
1314 * The caller is responsible for waiting on them and updating the
1315 * the cache and the inode
1316 */
1317 io_ctl->entries = entries;
1318 io_ctl->bitmaps = bitmaps;
1319
1320 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1321 if (ret)
1322 goto out;
1323
1324 return 0;
1325
1326out:
1327 io_ctl->inode = NULL;
1328 io_ctl_free(io_ctl);
1329 if (ret) {
1330 invalidate_inode_pages2(inode->i_mapping);
1331 BTRFS_I(inode)->generation = 0;
1332 }
1333 btrfs_update_inode(trans, root, inode);
1334 if (must_iput)
1335 iput(inode);
1336 return ret;
1337
1338out_nospc_locked:
1339 cleanup_bitmap_list(&bitmap_list);
1340 spin_unlock(&ctl->tree_lock);
1341 mutex_unlock(&ctl->cache_writeout_mutex);
1342
1343out_nospc:
1344 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1345
1346out_unlock:
1347 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1348 up_write(&block_group->data_rwsem);
1349
1350 goto out;
1351}
1352
1353int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1354 struct btrfs_trans_handle *trans,
1355 struct btrfs_block_group_cache *block_group,
1356 struct btrfs_path *path)
1357{
1358 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1359 struct inode *inode;
1360 int ret = 0;
1361
1362 spin_lock(&block_group->lock);
1363 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1364 spin_unlock(&block_group->lock);
1365 return 0;
1366 }
1367 spin_unlock(&block_group->lock);
1368
1369 inode = lookup_free_space_inode(fs_info, block_group, path);
1370 if (IS_ERR(inode))
1371 return 0;
1372
1373 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1374 block_group, &block_group->io_ctl, trans);
1375 if (ret) {
1376#ifdef DEBUG
1377 btrfs_err(fs_info,
1378 "failed to write free space cache for block group %llu",
1379 block_group->key.objectid);
1380#endif
1381 spin_lock(&block_group->lock);
1382 block_group->disk_cache_state = BTRFS_DC_ERROR;
1383 spin_unlock(&block_group->lock);
1384
1385 block_group->io_ctl.inode = NULL;
1386 iput(inode);
1387 }
1388
1389 /*
1390 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1391 * to wait for IO and put the inode
1392 */
1393
1394 return ret;
1395}
1396
1397static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1398 u64 offset)
1399{
1400 ASSERT(offset >= bitmap_start);
1401 offset -= bitmap_start;
1402 return (unsigned long)(div_u64(offset, unit));
1403}
1404
1405static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1406{
1407 return (unsigned long)(div_u64(bytes, unit));
1408}
1409
1410static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1411 u64 offset)
1412{
1413 u64 bitmap_start;
1414 u64 bytes_per_bitmap;
1415
1416 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1417 bitmap_start = offset - ctl->start;
1418 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1419 bitmap_start *= bytes_per_bitmap;
1420 bitmap_start += ctl->start;
1421
1422 return bitmap_start;
1423}
1424
1425static int tree_insert_offset(struct rb_root *root, u64 offset,
1426 struct rb_node *node, int bitmap)
1427{
1428 struct rb_node **p = &root->rb_node;
1429 struct rb_node *parent = NULL;
1430 struct btrfs_free_space *info;
1431
1432 while (*p) {
1433 parent = *p;
1434 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1435
1436 if (offset < info->offset) {
1437 p = &(*p)->rb_left;
1438 } else if (offset > info->offset) {
1439 p = &(*p)->rb_right;
1440 } else {
1441 /*
1442 * we could have a bitmap entry and an extent entry
1443 * share the same offset. If this is the case, we want
1444 * the extent entry to always be found first if we do a
1445 * linear search through the tree, since we want to have
1446 * the quickest allocation time, and allocating from an
1447 * extent is faster than allocating from a bitmap. So
1448 * if we're inserting a bitmap and we find an entry at
1449 * this offset, we want to go right, or after this entry
1450 * logically. If we are inserting an extent and we've
1451 * found a bitmap, we want to go left, or before
1452 * logically.
1453 */
1454 if (bitmap) {
1455 if (info->bitmap) {
1456 WARN_ON_ONCE(1);
1457 return -EEXIST;
1458 }
1459 p = &(*p)->rb_right;
1460 } else {
1461 if (!info->bitmap) {
1462 WARN_ON_ONCE(1);
1463 return -EEXIST;
1464 }
1465 p = &(*p)->rb_left;
1466 }
1467 }
1468 }
1469
1470 rb_link_node(node, parent, p);
1471 rb_insert_color(node, root);
1472
1473 return 0;
1474}
1475
1476/*
1477 * searches the tree for the given offset.
1478 *
1479 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1480 * want a section that has at least bytes size and comes at or after the given
1481 * offset.
1482 */
1483static struct btrfs_free_space *
1484tree_search_offset(struct btrfs_free_space_ctl *ctl,
1485 u64 offset, int bitmap_only, int fuzzy)
1486{
1487 struct rb_node *n = ctl->free_space_offset.rb_node;
1488 struct btrfs_free_space *entry, *prev = NULL;
1489
1490 /* find entry that is closest to the 'offset' */
1491 while (1) {
1492 if (!n) {
1493 entry = NULL;
1494 break;
1495 }
1496
1497 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1498 prev = entry;
1499
1500 if (offset < entry->offset)
1501 n = n->rb_left;
1502 else if (offset > entry->offset)
1503 n = n->rb_right;
1504 else
1505 break;
1506 }
1507
1508 if (bitmap_only) {
1509 if (!entry)
1510 return NULL;
1511 if (entry->bitmap)
1512 return entry;
1513
1514 /*
1515 * bitmap entry and extent entry may share same offset,
1516 * in that case, bitmap entry comes after extent entry.
1517 */
1518 n = rb_next(n);
1519 if (!n)
1520 return NULL;
1521 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1522 if (entry->offset != offset)
1523 return NULL;
1524
1525 WARN_ON(!entry->bitmap);
1526 return entry;
1527 } else if (entry) {
1528 if (entry->bitmap) {
1529 /*
1530 * if previous extent entry covers the offset,
1531 * we should return it instead of the bitmap entry
1532 */
1533 n = rb_prev(&entry->offset_index);
1534 if (n) {
1535 prev = rb_entry(n, struct btrfs_free_space,
1536 offset_index);
1537 if (!prev->bitmap &&
1538 prev->offset + prev->bytes > offset)
1539 entry = prev;
1540 }
1541 }
1542 return entry;
1543 }
1544
1545 if (!prev)
1546 return NULL;
1547
1548 /* find last entry before the 'offset' */
1549 entry = prev;
1550 if (entry->offset > offset) {
1551 n = rb_prev(&entry->offset_index);
1552 if (n) {
1553 entry = rb_entry(n, struct btrfs_free_space,
1554 offset_index);
1555 ASSERT(entry->offset <= offset);
1556 } else {
1557 if (fuzzy)
1558 return entry;
1559 else
1560 return NULL;
1561 }
1562 }
1563
1564 if (entry->bitmap) {
1565 n = rb_prev(&entry->offset_index);
1566 if (n) {
1567 prev = rb_entry(n, struct btrfs_free_space,
1568 offset_index);
1569 if (!prev->bitmap &&
1570 prev->offset + prev->bytes > offset)
1571 return prev;
1572 }
1573 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1574 return entry;
1575 } else if (entry->offset + entry->bytes > offset)
1576 return entry;
1577
1578 if (!fuzzy)
1579 return NULL;
1580
1581 while (1) {
1582 if (entry->bitmap) {
1583 if (entry->offset + BITS_PER_BITMAP *
1584 ctl->unit > offset)
1585 break;
1586 } else {
1587 if (entry->offset + entry->bytes > offset)
1588 break;
1589 }
1590
1591 n = rb_next(&entry->offset_index);
1592 if (!n)
1593 return NULL;
1594 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1595 }
1596 return entry;
1597}
1598
1599static inline void
1600__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1601 struct btrfs_free_space *info)
1602{
1603 rb_erase(&info->offset_index, &ctl->free_space_offset);
1604 ctl->free_extents--;
1605}
1606
1607static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1608 struct btrfs_free_space *info)
1609{
1610 __unlink_free_space(ctl, info);
1611 ctl->free_space -= info->bytes;
1612}
1613
1614static int link_free_space(struct btrfs_free_space_ctl *ctl,
1615 struct btrfs_free_space *info)
1616{
1617 int ret = 0;
1618
1619 ASSERT(info->bytes || info->bitmap);
1620 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1621 &info->offset_index, (info->bitmap != NULL));
1622 if (ret)
1623 return ret;
1624
1625 ctl->free_space += info->bytes;
1626 ctl->free_extents++;
1627 return ret;
1628}
1629
1630static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1631{
1632 struct btrfs_block_group_cache *block_group = ctl->private;
1633 u64 max_bytes;
1634 u64 bitmap_bytes;
1635 u64 extent_bytes;
1636 u64 size = block_group->key.offset;
1637 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1638 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1639
1640 max_bitmaps = max_t(u64, max_bitmaps, 1);
1641
1642 ASSERT(ctl->total_bitmaps <= max_bitmaps);
1643
1644 /*
1645 * The goal is to keep the total amount of memory used per 1gb of space
1646 * at or below 32k, so we need to adjust how much memory we allow to be
1647 * used by extent based free space tracking
1648 */
1649 if (size < SZ_1G)
1650 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1651 else
1652 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1653
1654 /*
1655 * we want to account for 1 more bitmap than what we have so we can make
1656 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1657 * we add more bitmaps.
1658 */
1659 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1660
1661 if (bitmap_bytes >= max_bytes) {
1662 ctl->extents_thresh = 0;
1663 return;
1664 }
1665
1666 /*
1667 * we want the extent entry threshold to always be at most 1/2 the max
1668 * bytes we can have, or whatever is less than that.
1669 */
1670 extent_bytes = max_bytes - bitmap_bytes;
1671 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1672
1673 ctl->extents_thresh =
1674 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1675}
1676
1677static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1678 struct btrfs_free_space *info,
1679 u64 offset, u64 bytes)
1680{
1681 unsigned long start, count;
1682
1683 start = offset_to_bit(info->offset, ctl->unit, offset);
1684 count = bytes_to_bits(bytes, ctl->unit);
1685 ASSERT(start + count <= BITS_PER_BITMAP);
1686
1687 bitmap_clear(info->bitmap, start, count);
1688
1689 info->bytes -= bytes;
1690 if (info->max_extent_size > ctl->unit)
1691 info->max_extent_size = 0;
1692}
1693
1694static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1695 struct btrfs_free_space *info, u64 offset,
1696 u64 bytes)
1697{
1698 __bitmap_clear_bits(ctl, info, offset, bytes);
1699 ctl->free_space -= bytes;
1700}
1701
1702static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1703 struct btrfs_free_space *info, u64 offset,
1704 u64 bytes)
1705{
1706 unsigned long start, count;
1707
1708 start = offset_to_bit(info->offset, ctl->unit, offset);
1709 count = bytes_to_bits(bytes, ctl->unit);
1710 ASSERT(start + count <= BITS_PER_BITMAP);
1711
1712 bitmap_set(info->bitmap, start, count);
1713
1714 info->bytes += bytes;
1715 ctl->free_space += bytes;
1716}
1717
1718/*
1719 * If we can not find suitable extent, we will use bytes to record
1720 * the size of the max extent.
1721 */
1722static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1723 struct btrfs_free_space *bitmap_info, u64 *offset,
1724 u64 *bytes, bool for_alloc)
1725{
1726 unsigned long found_bits = 0;
1727 unsigned long max_bits = 0;
1728 unsigned long bits, i;
1729 unsigned long next_zero;
1730 unsigned long extent_bits;
1731
1732 /*
1733 * Skip searching the bitmap if we don't have a contiguous section that
1734 * is large enough for this allocation.
1735 */
1736 if (for_alloc &&
1737 bitmap_info->max_extent_size &&
1738 bitmap_info->max_extent_size < *bytes) {
1739 *bytes = bitmap_info->max_extent_size;
1740 return -1;
1741 }
1742
1743 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1744 max_t(u64, *offset, bitmap_info->offset));
1745 bits = bytes_to_bits(*bytes, ctl->unit);
1746
1747 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1748 if (for_alloc && bits == 1) {
1749 found_bits = 1;
1750 break;
1751 }
1752 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1753 BITS_PER_BITMAP, i);
1754 extent_bits = next_zero - i;
1755 if (extent_bits >= bits) {
1756 found_bits = extent_bits;
1757 break;
1758 } else if (extent_bits > max_bits) {
1759 max_bits = extent_bits;
1760 }
1761 i = next_zero;
1762 }
1763
1764 if (found_bits) {
1765 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1766 *bytes = (u64)(found_bits) * ctl->unit;
1767 return 0;
1768 }
1769
1770 *bytes = (u64)(max_bits) * ctl->unit;
1771 bitmap_info->max_extent_size = *bytes;
1772 return -1;
1773}
1774
1775static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1776{
1777 if (entry->bitmap)
1778 return entry->max_extent_size;
1779 return entry->bytes;
1780}
1781
1782/* Cache the size of the max extent in bytes */
1783static struct btrfs_free_space *
1784find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1785 unsigned long align, u64 *max_extent_size)
1786{
1787 struct btrfs_free_space *entry;
1788 struct rb_node *node;
1789 u64 tmp;
1790 u64 align_off;
1791 int ret;
1792
1793 if (!ctl->free_space_offset.rb_node)
1794 goto out;
1795
1796 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1797 if (!entry)
1798 goto out;
1799
1800 for (node = &entry->offset_index; node; node = rb_next(node)) {
1801 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1802 if (entry->bytes < *bytes) {
1803 *max_extent_size = max(get_max_extent_size(entry),
1804 *max_extent_size);
1805 continue;
1806 }
1807
1808 /* make sure the space returned is big enough
1809 * to match our requested alignment
1810 */
1811 if (*bytes >= align) {
1812 tmp = entry->offset - ctl->start + align - 1;
1813 tmp = div64_u64(tmp, align);
1814 tmp = tmp * align + ctl->start;
1815 align_off = tmp - entry->offset;
1816 } else {
1817 align_off = 0;
1818 tmp = entry->offset;
1819 }
1820
1821 if (entry->bytes < *bytes + align_off) {
1822 *max_extent_size = max(get_max_extent_size(entry),
1823 *max_extent_size);
1824 continue;
1825 }
1826
1827 if (entry->bitmap) {
1828 u64 size = *bytes;
1829
1830 ret = search_bitmap(ctl, entry, &tmp, &size, true);
1831 if (!ret) {
1832 *offset = tmp;
1833 *bytes = size;
1834 return entry;
1835 } else {
1836 *max_extent_size =
1837 max(get_max_extent_size(entry),
1838 *max_extent_size);
1839 }
1840 continue;
1841 }
1842
1843 *offset = tmp;
1844 *bytes = entry->bytes - align_off;
1845 return entry;
1846 }
1847out:
1848 return NULL;
1849}
1850
1851static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1852 struct btrfs_free_space *info, u64 offset)
1853{
1854 info->offset = offset_to_bitmap(ctl, offset);
1855 info->bytes = 0;
1856 INIT_LIST_HEAD(&info->list);
1857 link_free_space(ctl, info);
1858 ctl->total_bitmaps++;
1859
1860 ctl->op->recalc_thresholds(ctl);
1861}
1862
1863static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1864 struct btrfs_free_space *bitmap_info)
1865{
1866 unlink_free_space(ctl, bitmap_info);
1867 kfree(bitmap_info->bitmap);
1868 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1869 ctl->total_bitmaps--;
1870 ctl->op->recalc_thresholds(ctl);
1871}
1872
1873static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1874 struct btrfs_free_space *bitmap_info,
1875 u64 *offset, u64 *bytes)
1876{
1877 u64 end;
1878 u64 search_start, search_bytes;
1879 int ret;
1880
1881again:
1882 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1883
1884 /*
1885 * We need to search for bits in this bitmap. We could only cover some
1886 * of the extent in this bitmap thanks to how we add space, so we need
1887 * to search for as much as it as we can and clear that amount, and then
1888 * go searching for the next bit.
1889 */
1890 search_start = *offset;
1891 search_bytes = ctl->unit;
1892 search_bytes = min(search_bytes, end - search_start + 1);
1893 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1894 false);
1895 if (ret < 0 || search_start != *offset)
1896 return -EINVAL;
1897
1898 /* We may have found more bits than what we need */
1899 search_bytes = min(search_bytes, *bytes);
1900
1901 /* Cannot clear past the end of the bitmap */
1902 search_bytes = min(search_bytes, end - search_start + 1);
1903
1904 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1905 *offset += search_bytes;
1906 *bytes -= search_bytes;
1907
1908 if (*bytes) {
1909 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1910 if (!bitmap_info->bytes)
1911 free_bitmap(ctl, bitmap_info);
1912
1913 /*
1914 * no entry after this bitmap, but we still have bytes to
1915 * remove, so something has gone wrong.
1916 */
1917 if (!next)
1918 return -EINVAL;
1919
1920 bitmap_info = rb_entry(next, struct btrfs_free_space,
1921 offset_index);
1922
1923 /*
1924 * if the next entry isn't a bitmap we need to return to let the
1925 * extent stuff do its work.
1926 */
1927 if (!bitmap_info->bitmap)
1928 return -EAGAIN;
1929
1930 /*
1931 * Ok the next item is a bitmap, but it may not actually hold
1932 * the information for the rest of this free space stuff, so
1933 * look for it, and if we don't find it return so we can try
1934 * everything over again.
1935 */
1936 search_start = *offset;
1937 search_bytes = ctl->unit;
1938 ret = search_bitmap(ctl, bitmap_info, &search_start,
1939 &search_bytes, false);
1940 if (ret < 0 || search_start != *offset)
1941 return -EAGAIN;
1942
1943 goto again;
1944 } else if (!bitmap_info->bytes)
1945 free_bitmap(ctl, bitmap_info);
1946
1947 return 0;
1948}
1949
1950static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1951 struct btrfs_free_space *info, u64 offset,
1952 u64 bytes)
1953{
1954 u64 bytes_to_set = 0;
1955 u64 end;
1956
1957 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1958
1959 bytes_to_set = min(end - offset, bytes);
1960
1961 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1962
1963 /*
1964 * We set some bytes, we have no idea what the max extent size is
1965 * anymore.
1966 */
1967 info->max_extent_size = 0;
1968
1969 return bytes_to_set;
1970
1971}
1972
1973static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1974 struct btrfs_free_space *info)
1975{
1976 struct btrfs_block_group_cache *block_group = ctl->private;
1977 struct btrfs_fs_info *fs_info = block_group->fs_info;
1978 bool forced = false;
1979
1980#ifdef CONFIG_BTRFS_DEBUG
1981 if (btrfs_should_fragment_free_space(block_group))
1982 forced = true;
1983#endif
1984
1985 /*
1986 * If we are below the extents threshold then we can add this as an
1987 * extent, and don't have to deal with the bitmap
1988 */
1989 if (!forced && ctl->free_extents < ctl->extents_thresh) {
1990 /*
1991 * If this block group has some small extents we don't want to
1992 * use up all of our free slots in the cache with them, we want
1993 * to reserve them to larger extents, however if we have plenty
1994 * of cache left then go ahead an dadd them, no sense in adding
1995 * the overhead of a bitmap if we don't have to.
1996 */
1997 if (info->bytes <= fs_info->sectorsize * 4) {
1998 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1999 return false;
2000 } else {
2001 return false;
2002 }
2003 }
2004
2005 /*
2006 * The original block groups from mkfs can be really small, like 8
2007 * megabytes, so don't bother with a bitmap for those entries. However
2008 * some block groups can be smaller than what a bitmap would cover but
2009 * are still large enough that they could overflow the 32k memory limit,
2010 * so allow those block groups to still be allowed to have a bitmap
2011 * entry.
2012 */
2013 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2014 return false;
2015
2016 return true;
2017}
2018
2019static const struct btrfs_free_space_op free_space_op = {
2020 .recalc_thresholds = recalculate_thresholds,
2021 .use_bitmap = use_bitmap,
2022};
2023
2024static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2025 struct btrfs_free_space *info)
2026{
2027 struct btrfs_free_space *bitmap_info;
2028 struct btrfs_block_group_cache *block_group = NULL;
2029 int added = 0;
2030 u64 bytes, offset, bytes_added;
2031 int ret;
2032
2033 bytes = info->bytes;
2034 offset = info->offset;
2035
2036 if (!ctl->op->use_bitmap(ctl, info))
2037 return 0;
2038
2039 if (ctl->op == &free_space_op)
2040 block_group = ctl->private;
2041again:
2042 /*
2043 * Since we link bitmaps right into the cluster we need to see if we
2044 * have a cluster here, and if so and it has our bitmap we need to add
2045 * the free space to that bitmap.
2046 */
2047 if (block_group && !list_empty(&block_group->cluster_list)) {
2048 struct btrfs_free_cluster *cluster;
2049 struct rb_node *node;
2050 struct btrfs_free_space *entry;
2051
2052 cluster = list_entry(block_group->cluster_list.next,
2053 struct btrfs_free_cluster,
2054 block_group_list);
2055 spin_lock(&cluster->lock);
2056 node = rb_first(&cluster->root);
2057 if (!node) {
2058 spin_unlock(&cluster->lock);
2059 goto no_cluster_bitmap;
2060 }
2061
2062 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2063 if (!entry->bitmap) {
2064 spin_unlock(&cluster->lock);
2065 goto no_cluster_bitmap;
2066 }
2067
2068 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2069 bytes_added = add_bytes_to_bitmap(ctl, entry,
2070 offset, bytes);
2071 bytes -= bytes_added;
2072 offset += bytes_added;
2073 }
2074 spin_unlock(&cluster->lock);
2075 if (!bytes) {
2076 ret = 1;
2077 goto out;
2078 }
2079 }
2080
2081no_cluster_bitmap:
2082 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2083 1, 0);
2084 if (!bitmap_info) {
2085 ASSERT(added == 0);
2086 goto new_bitmap;
2087 }
2088
2089 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2090 bytes -= bytes_added;
2091 offset += bytes_added;
2092 added = 0;
2093
2094 if (!bytes) {
2095 ret = 1;
2096 goto out;
2097 } else
2098 goto again;
2099
2100new_bitmap:
2101 if (info && info->bitmap) {
2102 add_new_bitmap(ctl, info, offset);
2103 added = 1;
2104 info = NULL;
2105 goto again;
2106 } else {
2107 spin_unlock(&ctl->tree_lock);
2108
2109 /* no pre-allocated info, allocate a new one */
2110 if (!info) {
2111 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2112 GFP_NOFS);
2113 if (!info) {
2114 spin_lock(&ctl->tree_lock);
2115 ret = -ENOMEM;
2116 goto out;
2117 }
2118 }
2119
2120 /* allocate the bitmap */
2121 info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2122 spin_lock(&ctl->tree_lock);
2123 if (!info->bitmap) {
2124 ret = -ENOMEM;
2125 goto out;
2126 }
2127 goto again;
2128 }
2129
2130out:
2131 if (info) {
2132 if (info->bitmap)
2133 kfree(info->bitmap);
2134 kmem_cache_free(btrfs_free_space_cachep, info);
2135 }
2136
2137 return ret;
2138}
2139
2140static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2141 struct btrfs_free_space *info, bool update_stat)
2142{
2143 struct btrfs_free_space *left_info;
2144 struct btrfs_free_space *right_info;
2145 bool merged = false;
2146 u64 offset = info->offset;
2147 u64 bytes = info->bytes;
2148
2149 /*
2150 * first we want to see if there is free space adjacent to the range we
2151 * are adding, if there is remove that struct and add a new one to
2152 * cover the entire range
2153 */
2154 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2155 if (right_info && rb_prev(&right_info->offset_index))
2156 left_info = rb_entry(rb_prev(&right_info->offset_index),
2157 struct btrfs_free_space, offset_index);
2158 else
2159 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2160
2161 if (right_info && !right_info->bitmap) {
2162 if (update_stat)
2163 unlink_free_space(ctl, right_info);
2164 else
2165 __unlink_free_space(ctl, right_info);
2166 info->bytes += right_info->bytes;
2167 kmem_cache_free(btrfs_free_space_cachep, right_info);
2168 merged = true;
2169 }
2170
2171 if (left_info && !left_info->bitmap &&
2172 left_info->offset + left_info->bytes == offset) {
2173 if (update_stat)
2174 unlink_free_space(ctl, left_info);
2175 else
2176 __unlink_free_space(ctl, left_info);
2177 info->offset = left_info->offset;
2178 info->bytes += left_info->bytes;
2179 kmem_cache_free(btrfs_free_space_cachep, left_info);
2180 merged = true;
2181 }
2182
2183 return merged;
2184}
2185
2186static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2187 struct btrfs_free_space *info,
2188 bool update_stat)
2189{
2190 struct btrfs_free_space *bitmap;
2191 unsigned long i;
2192 unsigned long j;
2193 const u64 end = info->offset + info->bytes;
2194 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2195 u64 bytes;
2196
2197 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2198 if (!bitmap)
2199 return false;
2200
2201 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2202 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2203 if (j == i)
2204 return false;
2205 bytes = (j - i) * ctl->unit;
2206 info->bytes += bytes;
2207
2208 if (update_stat)
2209 bitmap_clear_bits(ctl, bitmap, end, bytes);
2210 else
2211 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2212
2213 if (!bitmap->bytes)
2214 free_bitmap(ctl, bitmap);
2215
2216 return true;
2217}
2218
2219static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2220 struct btrfs_free_space *info,
2221 bool update_stat)
2222{
2223 struct btrfs_free_space *bitmap;
2224 u64 bitmap_offset;
2225 unsigned long i;
2226 unsigned long j;
2227 unsigned long prev_j;
2228 u64 bytes;
2229
2230 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2231 /* If we're on a boundary, try the previous logical bitmap. */
2232 if (bitmap_offset == info->offset) {
2233 if (info->offset == 0)
2234 return false;
2235 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2236 }
2237
2238 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2239 if (!bitmap)
2240 return false;
2241
2242 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2243 j = 0;
2244 prev_j = (unsigned long)-1;
2245 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2246 if (j > i)
2247 break;
2248 prev_j = j;
2249 }
2250 if (prev_j == i)
2251 return false;
2252
2253 if (prev_j == (unsigned long)-1)
2254 bytes = (i + 1) * ctl->unit;
2255 else
2256 bytes = (i - prev_j) * ctl->unit;
2257
2258 info->offset -= bytes;
2259 info->bytes += bytes;
2260
2261 if (update_stat)
2262 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2263 else
2264 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2265
2266 if (!bitmap->bytes)
2267 free_bitmap(ctl, bitmap);
2268
2269 return true;
2270}
2271
2272/*
2273 * We prefer always to allocate from extent entries, both for clustered and
2274 * non-clustered allocation requests. So when attempting to add a new extent
2275 * entry, try to see if there's adjacent free space in bitmap entries, and if
2276 * there is, migrate that space from the bitmaps to the extent.
2277 * Like this we get better chances of satisfying space allocation requests
2278 * because we attempt to satisfy them based on a single cache entry, and never
2279 * on 2 or more entries - even if the entries represent a contiguous free space
2280 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2281 * ends).
2282 */
2283static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2284 struct btrfs_free_space *info,
2285 bool update_stat)
2286{
2287 /*
2288 * Only work with disconnected entries, as we can change their offset,
2289 * and must be extent entries.
2290 */
2291 ASSERT(!info->bitmap);
2292 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2293
2294 if (ctl->total_bitmaps > 0) {
2295 bool stole_end;
2296 bool stole_front = false;
2297
2298 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2299 if (ctl->total_bitmaps > 0)
2300 stole_front = steal_from_bitmap_to_front(ctl, info,
2301 update_stat);
2302
2303 if (stole_end || stole_front)
2304 try_merge_free_space(ctl, info, update_stat);
2305 }
2306}
2307
2308int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2309 struct btrfs_free_space_ctl *ctl,
2310 u64 offset, u64 bytes)
2311{
2312 struct btrfs_free_space *info;
2313 int ret = 0;
2314
2315 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2316 if (!info)
2317 return -ENOMEM;
2318
2319 info->offset = offset;
2320 info->bytes = bytes;
2321 RB_CLEAR_NODE(&info->offset_index);
2322
2323 spin_lock(&ctl->tree_lock);
2324
2325 if (try_merge_free_space(ctl, info, true))
2326 goto link;
2327
2328 /*
2329 * There was no extent directly to the left or right of this new
2330 * extent then we know we're going to have to allocate a new extent, so
2331 * before we do that see if we need to drop this into a bitmap
2332 */
2333 ret = insert_into_bitmap(ctl, info);
2334 if (ret < 0) {
2335 goto out;
2336 } else if (ret) {
2337 ret = 0;
2338 goto out;
2339 }
2340link:
2341 /*
2342 * Only steal free space from adjacent bitmaps if we're sure we're not
2343 * going to add the new free space to existing bitmap entries - because
2344 * that would mean unnecessary work that would be reverted. Therefore
2345 * attempt to steal space from bitmaps if we're adding an extent entry.
2346 */
2347 steal_from_bitmap(ctl, info, true);
2348
2349 ret = link_free_space(ctl, info);
2350 if (ret)
2351 kmem_cache_free(btrfs_free_space_cachep, info);
2352out:
2353 spin_unlock(&ctl->tree_lock);
2354
2355 if (ret) {
2356 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2357 ASSERT(ret != -EEXIST);
2358 }
2359
2360 return ret;
2361}
2362
2363int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2364 u64 offset, u64 bytes)
2365{
2366 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2367 struct btrfs_free_space *info;
2368 int ret;
2369 bool re_search = false;
2370
2371 spin_lock(&ctl->tree_lock);
2372
2373again:
2374 ret = 0;
2375 if (!bytes)
2376 goto out_lock;
2377
2378 info = tree_search_offset(ctl, offset, 0, 0);
2379 if (!info) {
2380 /*
2381 * oops didn't find an extent that matched the space we wanted
2382 * to remove, look for a bitmap instead
2383 */
2384 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2385 1, 0);
2386 if (!info) {
2387 /*
2388 * If we found a partial bit of our free space in a
2389 * bitmap but then couldn't find the other part this may
2390 * be a problem, so WARN about it.
2391 */
2392 WARN_ON(re_search);
2393 goto out_lock;
2394 }
2395 }
2396
2397 re_search = false;
2398 if (!info->bitmap) {
2399 unlink_free_space(ctl, info);
2400 if (offset == info->offset) {
2401 u64 to_free = min(bytes, info->bytes);
2402
2403 info->bytes -= to_free;
2404 info->offset += to_free;
2405 if (info->bytes) {
2406 ret = link_free_space(ctl, info);
2407 WARN_ON(ret);
2408 } else {
2409 kmem_cache_free(btrfs_free_space_cachep, info);
2410 }
2411
2412 offset += to_free;
2413 bytes -= to_free;
2414 goto again;
2415 } else {
2416 u64 old_end = info->bytes + info->offset;
2417
2418 info->bytes = offset - info->offset;
2419 ret = link_free_space(ctl, info);
2420 WARN_ON(ret);
2421 if (ret)
2422 goto out_lock;
2423
2424 /* Not enough bytes in this entry to satisfy us */
2425 if (old_end < offset + bytes) {
2426 bytes -= old_end - offset;
2427 offset = old_end;
2428 goto again;
2429 } else if (old_end == offset + bytes) {
2430 /* all done */
2431 goto out_lock;
2432 }
2433 spin_unlock(&ctl->tree_lock);
2434
2435 ret = btrfs_add_free_space(block_group, offset + bytes,
2436 old_end - (offset + bytes));
2437 WARN_ON(ret);
2438 goto out;
2439 }
2440 }
2441
2442 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2443 if (ret == -EAGAIN) {
2444 re_search = true;
2445 goto again;
2446 }
2447out_lock:
2448 spin_unlock(&ctl->tree_lock);
2449out:
2450 return ret;
2451}
2452
2453void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2454 u64 bytes)
2455{
2456 struct btrfs_fs_info *fs_info = block_group->fs_info;
2457 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2458 struct btrfs_free_space *info;
2459 struct rb_node *n;
2460 int count = 0;
2461
2462 spin_lock(&ctl->tree_lock);
2463 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2464 info = rb_entry(n, struct btrfs_free_space, offset_index);
2465 if (info->bytes >= bytes && !block_group->ro)
2466 count++;
2467 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2468 info->offset, info->bytes,
2469 (info->bitmap) ? "yes" : "no");
2470 }
2471 spin_unlock(&ctl->tree_lock);
2472 btrfs_info(fs_info, "block group has cluster?: %s",
2473 list_empty(&block_group->cluster_list) ? "no" : "yes");
2474 btrfs_info(fs_info,
2475 "%d blocks of free space at or bigger than bytes is", count);
2476}
2477
2478void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2479{
2480 struct btrfs_fs_info *fs_info = block_group->fs_info;
2481 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2482
2483 spin_lock_init(&ctl->tree_lock);
2484 ctl->unit = fs_info->sectorsize;
2485 ctl->start = block_group->key.objectid;
2486 ctl->private = block_group;
2487 ctl->op = &free_space_op;
2488 INIT_LIST_HEAD(&ctl->trimming_ranges);
2489 mutex_init(&ctl->cache_writeout_mutex);
2490
2491 /*
2492 * we only want to have 32k of ram per block group for keeping
2493 * track of free space, and if we pass 1/2 of that we want to
2494 * start converting things over to using bitmaps
2495 */
2496 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2497}
2498
2499/*
2500 * for a given cluster, put all of its extents back into the free
2501 * space cache. If the block group passed doesn't match the block group
2502 * pointed to by the cluster, someone else raced in and freed the
2503 * cluster already. In that case, we just return without changing anything
2504 */
2505static int
2506__btrfs_return_cluster_to_free_space(
2507 struct btrfs_block_group_cache *block_group,
2508 struct btrfs_free_cluster *cluster)
2509{
2510 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2511 struct btrfs_free_space *entry;
2512 struct rb_node *node;
2513
2514 spin_lock(&cluster->lock);
2515 if (cluster->block_group != block_group)
2516 goto out;
2517
2518 cluster->block_group = NULL;
2519 cluster->window_start = 0;
2520 list_del_init(&cluster->block_group_list);
2521
2522 node = rb_first(&cluster->root);
2523 while (node) {
2524 bool bitmap;
2525
2526 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2527 node = rb_next(&entry->offset_index);
2528 rb_erase(&entry->offset_index, &cluster->root);
2529 RB_CLEAR_NODE(&entry->offset_index);
2530
2531 bitmap = (entry->bitmap != NULL);
2532 if (!bitmap) {
2533 try_merge_free_space(ctl, entry, false);
2534 steal_from_bitmap(ctl, entry, false);
2535 }
2536 tree_insert_offset(&ctl->free_space_offset,
2537 entry->offset, &entry->offset_index, bitmap);
2538 }
2539 cluster->root = RB_ROOT;
2540
2541out:
2542 spin_unlock(&cluster->lock);
2543 btrfs_put_block_group(block_group);
2544 return 0;
2545}
2546
2547static void __btrfs_remove_free_space_cache_locked(
2548 struct btrfs_free_space_ctl *ctl)
2549{
2550 struct btrfs_free_space *info;
2551 struct rb_node *node;
2552
2553 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2554 info = rb_entry(node, struct btrfs_free_space, offset_index);
2555 if (!info->bitmap) {
2556 unlink_free_space(ctl, info);
2557 kmem_cache_free(btrfs_free_space_cachep, info);
2558 } else {
2559 free_bitmap(ctl, info);
2560 }
2561
2562 cond_resched_lock(&ctl->tree_lock);
2563 }
2564}
2565
2566void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2567{
2568 spin_lock(&ctl->tree_lock);
2569 __btrfs_remove_free_space_cache_locked(ctl);
2570 spin_unlock(&ctl->tree_lock);
2571}
2572
2573void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2574{
2575 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2576 struct btrfs_free_cluster *cluster;
2577 struct list_head *head;
2578
2579 spin_lock(&ctl->tree_lock);
2580 while ((head = block_group->cluster_list.next) !=
2581 &block_group->cluster_list) {
2582 cluster = list_entry(head, struct btrfs_free_cluster,
2583 block_group_list);
2584
2585 WARN_ON(cluster->block_group != block_group);
2586 __btrfs_return_cluster_to_free_space(block_group, cluster);
2587
2588 cond_resched_lock(&ctl->tree_lock);
2589 }
2590 __btrfs_remove_free_space_cache_locked(ctl);
2591 spin_unlock(&ctl->tree_lock);
2592
2593}
2594
2595u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2596 u64 offset, u64 bytes, u64 empty_size,
2597 u64 *max_extent_size)
2598{
2599 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2600 struct btrfs_free_space *entry = NULL;
2601 u64 bytes_search = bytes + empty_size;
2602 u64 ret = 0;
2603 u64 align_gap = 0;
2604 u64 align_gap_len = 0;
2605
2606 spin_lock(&ctl->tree_lock);
2607 entry = find_free_space(ctl, &offset, &bytes_search,
2608 block_group->full_stripe_len, max_extent_size);
2609 if (!entry)
2610 goto out;
2611
2612 ret = offset;
2613 if (entry->bitmap) {
2614 bitmap_clear_bits(ctl, entry, offset, bytes);
2615 if (!entry->bytes)
2616 free_bitmap(ctl, entry);
2617 } else {
2618 unlink_free_space(ctl, entry);
2619 align_gap_len = offset - entry->offset;
2620 align_gap = entry->offset;
2621
2622 entry->offset = offset + bytes;
2623 WARN_ON(entry->bytes < bytes + align_gap_len);
2624
2625 entry->bytes -= bytes + align_gap_len;
2626 if (!entry->bytes)
2627 kmem_cache_free(btrfs_free_space_cachep, entry);
2628 else
2629 link_free_space(ctl, entry);
2630 }
2631out:
2632 spin_unlock(&ctl->tree_lock);
2633
2634 if (align_gap_len)
2635 __btrfs_add_free_space(block_group->fs_info, ctl,
2636 align_gap, align_gap_len);
2637 return ret;
2638}
2639
2640/*
2641 * given a cluster, put all of its extents back into the free space
2642 * cache. If a block group is passed, this function will only free
2643 * a cluster that belongs to the passed block group.
2644 *
2645 * Otherwise, it'll get a reference on the block group pointed to by the
2646 * cluster and remove the cluster from it.
2647 */
2648int btrfs_return_cluster_to_free_space(
2649 struct btrfs_block_group_cache *block_group,
2650 struct btrfs_free_cluster *cluster)
2651{
2652 struct btrfs_free_space_ctl *ctl;
2653 int ret;
2654
2655 /* first, get a safe pointer to the block group */
2656 spin_lock(&cluster->lock);
2657 if (!block_group) {
2658 block_group = cluster->block_group;
2659 if (!block_group) {
2660 spin_unlock(&cluster->lock);
2661 return 0;
2662 }
2663 } else if (cluster->block_group != block_group) {
2664 /* someone else has already freed it don't redo their work */
2665 spin_unlock(&cluster->lock);
2666 return 0;
2667 }
2668 atomic_inc(&block_group->count);
2669 spin_unlock(&cluster->lock);
2670
2671 ctl = block_group->free_space_ctl;
2672
2673 /* now return any extents the cluster had on it */
2674 spin_lock(&ctl->tree_lock);
2675 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2676 spin_unlock(&ctl->tree_lock);
2677
2678 /* finally drop our ref */
2679 btrfs_put_block_group(block_group);
2680 return ret;
2681}
2682
2683static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2684 struct btrfs_free_cluster *cluster,
2685 struct btrfs_free_space *entry,
2686 u64 bytes, u64 min_start,
2687 u64 *max_extent_size)
2688{
2689 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2690 int err;
2691 u64 search_start = cluster->window_start;
2692 u64 search_bytes = bytes;
2693 u64 ret = 0;
2694
2695 search_start = min_start;
2696 search_bytes = bytes;
2697
2698 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2699 if (err) {
2700 *max_extent_size = max(get_max_extent_size(entry),
2701 *max_extent_size);
2702 return 0;
2703 }
2704
2705 ret = search_start;
2706 __bitmap_clear_bits(ctl, entry, ret, bytes);
2707
2708 return ret;
2709}
2710
2711/*
2712 * given a cluster, try to allocate 'bytes' from it, returns 0
2713 * if it couldn't find anything suitably large, or a logical disk offset
2714 * if things worked out
2715 */
2716u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2717 struct btrfs_free_cluster *cluster, u64 bytes,
2718 u64 min_start, u64 *max_extent_size)
2719{
2720 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2721 struct btrfs_free_space *entry = NULL;
2722 struct rb_node *node;
2723 u64 ret = 0;
2724
2725 spin_lock(&cluster->lock);
2726 if (bytes > cluster->max_size)
2727 goto out;
2728
2729 if (cluster->block_group != block_group)
2730 goto out;
2731
2732 node = rb_first(&cluster->root);
2733 if (!node)
2734 goto out;
2735
2736 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2737 while (1) {
2738 if (entry->bytes < bytes)
2739 *max_extent_size = max(get_max_extent_size(entry),
2740 *max_extent_size);
2741
2742 if (entry->bytes < bytes ||
2743 (!entry->bitmap && entry->offset < min_start)) {
2744 node = rb_next(&entry->offset_index);
2745 if (!node)
2746 break;
2747 entry = rb_entry(node, struct btrfs_free_space,
2748 offset_index);
2749 continue;
2750 }
2751
2752 if (entry->bitmap) {
2753 ret = btrfs_alloc_from_bitmap(block_group,
2754 cluster, entry, bytes,
2755 cluster->window_start,
2756 max_extent_size);
2757 if (ret == 0) {
2758 node = rb_next(&entry->offset_index);
2759 if (!node)
2760 break;
2761 entry = rb_entry(node, struct btrfs_free_space,
2762 offset_index);
2763 continue;
2764 }
2765 cluster->window_start += bytes;
2766 } else {
2767 ret = entry->offset;
2768
2769 entry->offset += bytes;
2770 entry->bytes -= bytes;
2771 }
2772
2773 if (entry->bytes == 0)
2774 rb_erase(&entry->offset_index, &cluster->root);
2775 break;
2776 }
2777out:
2778 spin_unlock(&cluster->lock);
2779
2780 if (!ret)
2781 return 0;
2782
2783 spin_lock(&ctl->tree_lock);
2784
2785 ctl->free_space -= bytes;
2786 if (entry->bytes == 0) {
2787 ctl->free_extents--;
2788 if (entry->bitmap) {
2789 kfree(entry->bitmap);
2790 ctl->total_bitmaps--;
2791 ctl->op->recalc_thresholds(ctl);
2792 }
2793 kmem_cache_free(btrfs_free_space_cachep, entry);
2794 }
2795
2796 spin_unlock(&ctl->tree_lock);
2797
2798 return ret;
2799}
2800
2801static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2802 struct btrfs_free_space *entry,
2803 struct btrfs_free_cluster *cluster,
2804 u64 offset, u64 bytes,
2805 u64 cont1_bytes, u64 min_bytes)
2806{
2807 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2808 unsigned long next_zero;
2809 unsigned long i;
2810 unsigned long want_bits;
2811 unsigned long min_bits;
2812 unsigned long found_bits;
2813 unsigned long max_bits = 0;
2814 unsigned long start = 0;
2815 unsigned long total_found = 0;
2816 int ret;
2817
2818 i = offset_to_bit(entry->offset, ctl->unit,
2819 max_t(u64, offset, entry->offset));
2820 want_bits = bytes_to_bits(bytes, ctl->unit);
2821 min_bits = bytes_to_bits(min_bytes, ctl->unit);
2822
2823 /*
2824 * Don't bother looking for a cluster in this bitmap if it's heavily
2825 * fragmented.
2826 */
2827 if (entry->max_extent_size &&
2828 entry->max_extent_size < cont1_bytes)
2829 return -ENOSPC;
2830again:
2831 found_bits = 0;
2832 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2833 next_zero = find_next_zero_bit(entry->bitmap,
2834 BITS_PER_BITMAP, i);
2835 if (next_zero - i >= min_bits) {
2836 found_bits = next_zero - i;
2837 if (found_bits > max_bits)
2838 max_bits = found_bits;
2839 break;
2840 }
2841 if (next_zero - i > max_bits)
2842 max_bits = next_zero - i;
2843 i = next_zero;
2844 }
2845
2846 if (!found_bits) {
2847 entry->max_extent_size = (u64)max_bits * ctl->unit;
2848 return -ENOSPC;
2849 }
2850
2851 if (!total_found) {
2852 start = i;
2853 cluster->max_size = 0;
2854 }
2855
2856 total_found += found_bits;
2857
2858 if (cluster->max_size < found_bits * ctl->unit)
2859 cluster->max_size = found_bits * ctl->unit;
2860
2861 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2862 i = next_zero + 1;
2863 goto again;
2864 }
2865
2866 cluster->window_start = start * ctl->unit + entry->offset;
2867 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2868 ret = tree_insert_offset(&cluster->root, entry->offset,
2869 &entry->offset_index, 1);
2870 ASSERT(!ret); /* -EEXIST; Logic error */
2871
2872 trace_btrfs_setup_cluster(block_group, cluster,
2873 total_found * ctl->unit, 1);
2874 return 0;
2875}
2876
2877/*
2878 * This searches the block group for just extents to fill the cluster with.
2879 * Try to find a cluster with at least bytes total bytes, at least one
2880 * extent of cont1_bytes, and other clusters of at least min_bytes.
2881 */
2882static noinline int
2883setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2884 struct btrfs_free_cluster *cluster,
2885 struct list_head *bitmaps, u64 offset, u64 bytes,
2886 u64 cont1_bytes, u64 min_bytes)
2887{
2888 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2889 struct btrfs_free_space *first = NULL;
2890 struct btrfs_free_space *entry = NULL;
2891 struct btrfs_free_space *last;
2892 struct rb_node *node;
2893 u64 window_free;
2894 u64 max_extent;
2895 u64 total_size = 0;
2896
2897 entry = tree_search_offset(ctl, offset, 0, 1);
2898 if (!entry)
2899 return -ENOSPC;
2900
2901 /*
2902 * We don't want bitmaps, so just move along until we find a normal
2903 * extent entry.
2904 */
2905 while (entry->bitmap || entry->bytes < min_bytes) {
2906 if (entry->bitmap && list_empty(&entry->list))
2907 list_add_tail(&entry->list, bitmaps);
2908 node = rb_next(&entry->offset_index);
2909 if (!node)
2910 return -ENOSPC;
2911 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2912 }
2913
2914 window_free = entry->bytes;
2915 max_extent = entry->bytes;
2916 first = entry;
2917 last = entry;
2918
2919 for (node = rb_next(&entry->offset_index); node;
2920 node = rb_next(&entry->offset_index)) {
2921 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2922
2923 if (entry->bitmap) {
2924 if (list_empty(&entry->list))
2925 list_add_tail(&entry->list, bitmaps);
2926 continue;
2927 }
2928
2929 if (entry->bytes < min_bytes)
2930 continue;
2931
2932 last = entry;
2933 window_free += entry->bytes;
2934 if (entry->bytes > max_extent)
2935 max_extent = entry->bytes;
2936 }
2937
2938 if (window_free < bytes || max_extent < cont1_bytes)
2939 return -ENOSPC;
2940
2941 cluster->window_start = first->offset;
2942
2943 node = &first->offset_index;
2944
2945 /*
2946 * now we've found our entries, pull them out of the free space
2947 * cache and put them into the cluster rbtree
2948 */
2949 do {
2950 int ret;
2951
2952 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2953 node = rb_next(&entry->offset_index);
2954 if (entry->bitmap || entry->bytes < min_bytes)
2955 continue;
2956
2957 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2958 ret = tree_insert_offset(&cluster->root, entry->offset,
2959 &entry->offset_index, 0);
2960 total_size += entry->bytes;
2961 ASSERT(!ret); /* -EEXIST; Logic error */
2962 } while (node && entry != last);
2963
2964 cluster->max_size = max_extent;
2965 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2966 return 0;
2967}
2968
2969/*
2970 * This specifically looks for bitmaps that may work in the cluster, we assume
2971 * that we have already failed to find extents that will work.
2972 */
2973static noinline int
2974setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2975 struct btrfs_free_cluster *cluster,
2976 struct list_head *bitmaps, u64 offset, u64 bytes,
2977 u64 cont1_bytes, u64 min_bytes)
2978{
2979 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2980 struct btrfs_free_space *entry = NULL;
2981 int ret = -ENOSPC;
2982 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2983
2984 if (ctl->total_bitmaps == 0)
2985 return -ENOSPC;
2986
2987 /*
2988 * The bitmap that covers offset won't be in the list unless offset
2989 * is just its start offset.
2990 */
2991 if (!list_empty(bitmaps))
2992 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2993
2994 if (!entry || entry->offset != bitmap_offset) {
2995 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2996 if (entry && list_empty(&entry->list))
2997 list_add(&entry->list, bitmaps);
2998 }
2999
3000 list_for_each_entry(entry, bitmaps, list) {
3001 if (entry->bytes < bytes)
3002 continue;
3003 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3004 bytes, cont1_bytes, min_bytes);
3005 if (!ret)
3006 return 0;
3007 }
3008
3009 /*
3010 * The bitmaps list has all the bitmaps that record free space
3011 * starting after offset, so no more search is required.
3012 */
3013 return -ENOSPC;
3014}
3015
3016/*
3017 * here we try to find a cluster of blocks in a block group. The goal
3018 * is to find at least bytes+empty_size.
3019 * We might not find them all in one contiguous area.
3020 *
3021 * returns zero and sets up cluster if things worked out, otherwise
3022 * it returns -enospc
3023 */
3024int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3025 struct btrfs_block_group_cache *block_group,
3026 struct btrfs_free_cluster *cluster,
3027 u64 offset, u64 bytes, u64 empty_size)
3028{
3029 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3030 struct btrfs_free_space *entry, *tmp;
3031 LIST_HEAD(bitmaps);
3032 u64 min_bytes;
3033 u64 cont1_bytes;
3034 int ret;
3035
3036 /*
3037 * Choose the minimum extent size we'll require for this
3038 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3039 * For metadata, allow allocates with smaller extents. For
3040 * data, keep it dense.
3041 */
3042 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3043 cont1_bytes = min_bytes = bytes + empty_size;
3044 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3045 cont1_bytes = bytes;
3046 min_bytes = fs_info->sectorsize;
3047 } else {
3048 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3049 min_bytes = fs_info->sectorsize;
3050 }
3051
3052 spin_lock(&ctl->tree_lock);
3053
3054 /*
3055 * If we know we don't have enough space to make a cluster don't even
3056 * bother doing all the work to try and find one.
3057 */
3058 if (ctl->free_space < bytes) {
3059 spin_unlock(&ctl->tree_lock);
3060 return -ENOSPC;
3061 }
3062
3063 spin_lock(&cluster->lock);
3064
3065 /* someone already found a cluster, hooray */
3066 if (cluster->block_group) {
3067 ret = 0;
3068 goto out;
3069 }
3070
3071 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3072 min_bytes);
3073
3074 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3075 bytes + empty_size,
3076 cont1_bytes, min_bytes);
3077 if (ret)
3078 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3079 offset, bytes + empty_size,
3080 cont1_bytes, min_bytes);
3081
3082 /* Clear our temporary list */
3083 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3084 list_del_init(&entry->list);
3085
3086 if (!ret) {
3087 atomic_inc(&block_group->count);
3088 list_add_tail(&cluster->block_group_list,
3089 &block_group->cluster_list);
3090 cluster->block_group = block_group;
3091 } else {
3092 trace_btrfs_failed_cluster_setup(block_group);
3093 }
3094out:
3095 spin_unlock(&cluster->lock);
3096 spin_unlock(&ctl->tree_lock);
3097
3098 return ret;
3099}
3100
3101/*
3102 * simple code to zero out a cluster
3103 */
3104void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3105{
3106 spin_lock_init(&cluster->lock);
3107 spin_lock_init(&cluster->refill_lock);
3108 cluster->root = RB_ROOT;
3109 cluster->max_size = 0;
3110 cluster->fragmented = false;
3111 INIT_LIST_HEAD(&cluster->block_group_list);
3112 cluster->block_group = NULL;
3113}
3114
3115static int do_trimming(struct btrfs_block_group_cache *block_group,
3116 u64 *total_trimmed, u64 start, u64 bytes,
3117 u64 reserved_start, u64 reserved_bytes,
3118 struct btrfs_trim_range *trim_entry)
3119{
3120 struct btrfs_space_info *space_info = block_group->space_info;
3121 struct btrfs_fs_info *fs_info = block_group->fs_info;
3122 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3123 int ret;
3124 int update = 0;
3125 u64 trimmed = 0;
3126
3127 spin_lock(&space_info->lock);
3128 spin_lock(&block_group->lock);
3129 if (!block_group->ro) {
3130 block_group->reserved += reserved_bytes;
3131 space_info->bytes_reserved += reserved_bytes;
3132 update = 1;
3133 }
3134 spin_unlock(&block_group->lock);
3135 spin_unlock(&space_info->lock);
3136
3137 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3138 if (!ret)
3139 *total_trimmed += trimmed;
3140
3141 mutex_lock(&ctl->cache_writeout_mutex);
3142 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3143 list_del(&trim_entry->list);
3144 mutex_unlock(&ctl->cache_writeout_mutex);
3145
3146 if (update) {
3147 spin_lock(&space_info->lock);
3148 spin_lock(&block_group->lock);
3149 if (block_group->ro)
3150 space_info->bytes_readonly += reserved_bytes;
3151 block_group->reserved -= reserved_bytes;
3152 space_info->bytes_reserved -= reserved_bytes;
3153 spin_unlock(&space_info->lock);
3154 spin_unlock(&block_group->lock);
3155 }
3156
3157 return ret;
3158}
3159
3160static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3161 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3162{
3163 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3164 struct btrfs_free_space *entry;
3165 struct rb_node *node;
3166 int ret = 0;
3167 u64 extent_start;
3168 u64 extent_bytes;
3169 u64 bytes;
3170
3171 while (start < end) {
3172 struct btrfs_trim_range trim_entry;
3173
3174 mutex_lock(&ctl->cache_writeout_mutex);
3175 spin_lock(&ctl->tree_lock);
3176
3177 if (ctl->free_space < minlen) {
3178 spin_unlock(&ctl->tree_lock);
3179 mutex_unlock(&ctl->cache_writeout_mutex);
3180 break;
3181 }
3182
3183 entry = tree_search_offset(ctl, start, 0, 1);
3184 if (!entry) {
3185 spin_unlock(&ctl->tree_lock);
3186 mutex_unlock(&ctl->cache_writeout_mutex);
3187 break;
3188 }
3189
3190 /* skip bitmaps */
3191 while (entry->bitmap) {
3192 node = rb_next(&entry->offset_index);
3193 if (!node) {
3194 spin_unlock(&ctl->tree_lock);
3195 mutex_unlock(&ctl->cache_writeout_mutex);
3196 goto out;
3197 }
3198 entry = rb_entry(node, struct btrfs_free_space,
3199 offset_index);
3200 }
3201
3202 if (entry->offset >= end) {
3203 spin_unlock(&ctl->tree_lock);
3204 mutex_unlock(&ctl->cache_writeout_mutex);
3205 break;
3206 }
3207
3208 extent_start = entry->offset;
3209 extent_bytes = entry->bytes;
3210 start = max(start, extent_start);
3211 bytes = min(extent_start + extent_bytes, end) - start;
3212 if (bytes < minlen) {
3213 spin_unlock(&ctl->tree_lock);
3214 mutex_unlock(&ctl->cache_writeout_mutex);
3215 goto next;
3216 }
3217
3218 unlink_free_space(ctl, entry);
3219 kmem_cache_free(btrfs_free_space_cachep, entry);
3220
3221 spin_unlock(&ctl->tree_lock);
3222 trim_entry.start = extent_start;
3223 trim_entry.bytes = extent_bytes;
3224 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3225 mutex_unlock(&ctl->cache_writeout_mutex);
3226
3227 ret = do_trimming(block_group, total_trimmed, start, bytes,
3228 extent_start, extent_bytes, &trim_entry);
3229 if (ret)
3230 break;
3231next:
3232 start += bytes;
3233
3234 if (fatal_signal_pending(current)) {
3235 ret = -ERESTARTSYS;
3236 break;
3237 }
3238
3239 cond_resched();
3240 }
3241out:
3242 return ret;
3243}
3244
3245static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3246 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3247{
3248 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3249 struct btrfs_free_space *entry;
3250 int ret = 0;
3251 int ret2;
3252 u64 bytes;
3253 u64 offset = offset_to_bitmap(ctl, start);
3254
3255 while (offset < end) {
3256 bool next_bitmap = false;
3257 struct btrfs_trim_range trim_entry;
3258
3259 mutex_lock(&ctl->cache_writeout_mutex);
3260 spin_lock(&ctl->tree_lock);
3261
3262 if (ctl->free_space < minlen) {
3263 spin_unlock(&ctl->tree_lock);
3264 mutex_unlock(&ctl->cache_writeout_mutex);
3265 break;
3266 }
3267
3268 entry = tree_search_offset(ctl, offset, 1, 0);
3269 if (!entry) {
3270 spin_unlock(&ctl->tree_lock);
3271 mutex_unlock(&ctl->cache_writeout_mutex);
3272 next_bitmap = true;
3273 goto next;
3274 }
3275
3276 bytes = minlen;
3277 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3278 if (ret2 || start >= end) {
3279 spin_unlock(&ctl->tree_lock);
3280 mutex_unlock(&ctl->cache_writeout_mutex);
3281 next_bitmap = true;
3282 goto next;
3283 }
3284
3285 bytes = min(bytes, end - start);
3286 if (bytes < minlen) {
3287 spin_unlock(&ctl->tree_lock);
3288 mutex_unlock(&ctl->cache_writeout_mutex);
3289 goto next;
3290 }
3291
3292 bitmap_clear_bits(ctl, entry, start, bytes);
3293 if (entry->bytes == 0)
3294 free_bitmap(ctl, entry);
3295
3296 spin_unlock(&ctl->tree_lock);
3297 trim_entry.start = start;
3298 trim_entry.bytes = bytes;
3299 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3300 mutex_unlock(&ctl->cache_writeout_mutex);
3301
3302 ret = do_trimming(block_group, total_trimmed, start, bytes,
3303 start, bytes, &trim_entry);
3304 if (ret)
3305 break;
3306next:
3307 if (next_bitmap) {
3308 offset += BITS_PER_BITMAP * ctl->unit;
3309 } else {
3310 start += bytes;
3311 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3312 offset += BITS_PER_BITMAP * ctl->unit;
3313 }
3314
3315 if (fatal_signal_pending(current)) {
3316 ret = -ERESTARTSYS;
3317 break;
3318 }
3319
3320 cond_resched();
3321 }
3322
3323 return ret;
3324}
3325
3326void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3327{
3328 atomic_inc(&cache->trimming);
3329}
3330
3331void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3332{
3333 struct btrfs_fs_info *fs_info = block_group->fs_info;
3334 struct extent_map_tree *em_tree;
3335 struct extent_map *em;
3336 bool cleanup;
3337
3338 spin_lock(&block_group->lock);
3339 cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3340 block_group->removed);
3341 spin_unlock(&block_group->lock);
3342
3343 if (cleanup) {
3344 mutex_lock(&fs_info->chunk_mutex);
3345 em_tree = &fs_info->mapping_tree.map_tree;
3346 write_lock(&em_tree->lock);
3347 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3348 1);
3349 BUG_ON(!em); /* logic error, can't happen */
3350 /*
3351 * remove_extent_mapping() will delete us from the pinned_chunks
3352 * list, which is protected by the chunk mutex.
3353 */
3354 remove_extent_mapping(em_tree, em);
3355 write_unlock(&em_tree->lock);
3356 mutex_unlock(&fs_info->chunk_mutex);
3357
3358 /* once for us and once for the tree */
3359 free_extent_map(em);
3360 free_extent_map(em);
3361
3362 /*
3363 * We've left one free space entry and other tasks trimming
3364 * this block group have left 1 entry each one. Free them.
3365 */
3366 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3367 }
3368}
3369
3370int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3371 u64 *trimmed, u64 start, u64 end, u64 minlen)
3372{
3373 int ret;
3374
3375 *trimmed = 0;
3376
3377 spin_lock(&block_group->lock);
3378 if (block_group->removed) {
3379 spin_unlock(&block_group->lock);
3380 return 0;
3381 }
3382 btrfs_get_block_group_trimming(block_group);
3383 spin_unlock(&block_group->lock);
3384
3385 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3386 if (ret)
3387 goto out;
3388
3389 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3390out:
3391 btrfs_put_block_group_trimming(block_group);
3392 return ret;
3393}
3394
3395/*
3396 * Find the left-most item in the cache tree, and then return the
3397 * smallest inode number in the item.
3398 *
3399 * Note: the returned inode number may not be the smallest one in
3400 * the tree, if the left-most item is a bitmap.
3401 */
3402u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3403{
3404 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3405 struct btrfs_free_space *entry = NULL;
3406 u64 ino = 0;
3407
3408 spin_lock(&ctl->tree_lock);
3409
3410 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3411 goto out;
3412
3413 entry = rb_entry(rb_first(&ctl->free_space_offset),
3414 struct btrfs_free_space, offset_index);
3415
3416 if (!entry->bitmap) {
3417 ino = entry->offset;
3418
3419 unlink_free_space(ctl, entry);
3420 entry->offset++;
3421 entry->bytes--;
3422 if (!entry->bytes)
3423 kmem_cache_free(btrfs_free_space_cachep, entry);
3424 else
3425 link_free_space(ctl, entry);
3426 } else {
3427 u64 offset = 0;
3428 u64 count = 1;
3429 int ret;
3430
3431 ret = search_bitmap(ctl, entry, &offset, &count, true);
3432 /* Logic error; Should be empty if it can't find anything */
3433 ASSERT(!ret);
3434
3435 ino = offset;
3436 bitmap_clear_bits(ctl, entry, offset, 1);
3437 if (entry->bytes == 0)
3438 free_bitmap(ctl, entry);
3439 }
3440out:
3441 spin_unlock(&ctl->tree_lock);
3442
3443 return ino;
3444}
3445
3446struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3447 struct btrfs_path *path)
3448{
3449 struct inode *inode = NULL;
3450
3451 spin_lock(&root->ino_cache_lock);
3452 if (root->ino_cache_inode)
3453 inode = igrab(root->ino_cache_inode);
3454 spin_unlock(&root->ino_cache_lock);
3455 if (inode)
3456 return inode;
3457
3458 inode = __lookup_free_space_inode(root, path, 0);
3459 if (IS_ERR(inode))
3460 return inode;
3461
3462 spin_lock(&root->ino_cache_lock);
3463 if (!btrfs_fs_closing(root->fs_info))
3464 root->ino_cache_inode = igrab(inode);
3465 spin_unlock(&root->ino_cache_lock);
3466
3467 return inode;
3468}
3469
3470int create_free_ino_inode(struct btrfs_root *root,
3471 struct btrfs_trans_handle *trans,
3472 struct btrfs_path *path)
3473{
3474 return __create_free_space_inode(root, trans, path,
3475 BTRFS_FREE_INO_OBJECTID, 0);
3476}
3477
3478int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3479{
3480 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3481 struct btrfs_path *path;
3482 struct inode *inode;
3483 int ret = 0;
3484 u64 root_gen = btrfs_root_generation(&root->root_item);
3485
3486 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3487 return 0;
3488
3489 /*
3490 * If we're unmounting then just return, since this does a search on the
3491 * normal root and not the commit root and we could deadlock.
3492 */
3493 if (btrfs_fs_closing(fs_info))
3494 return 0;
3495
3496 path = btrfs_alloc_path();
3497 if (!path)
3498 return 0;
3499
3500 inode = lookup_free_ino_inode(root, path);
3501 if (IS_ERR(inode))
3502 goto out;
3503
3504 if (root_gen != BTRFS_I(inode)->generation)
3505 goto out_put;
3506
3507 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3508
3509 if (ret < 0)
3510 btrfs_err(fs_info,
3511 "failed to load free ino cache for root %llu",
3512 root->root_key.objectid);
3513out_put:
3514 iput(inode);
3515out:
3516 btrfs_free_path(path);
3517 return ret;
3518}
3519
3520int btrfs_write_out_ino_cache(struct btrfs_root *root,
3521 struct btrfs_trans_handle *trans,
3522 struct btrfs_path *path,
3523 struct inode *inode)
3524{
3525 struct btrfs_fs_info *fs_info = root->fs_info;
3526 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3527 int ret;
3528 struct btrfs_io_ctl io_ctl;
3529 bool release_metadata = true;
3530
3531 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3532 return 0;
3533
3534 memset(&io_ctl, 0, sizeof(io_ctl));
3535 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3536 if (!ret) {
3537 /*
3538 * At this point writepages() didn't error out, so our metadata
3539 * reservation is released when the writeback finishes, at
3540 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3541 * with or without an error.
3542 */
3543 release_metadata = false;
3544 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3545 }
3546
3547 if (ret) {
3548 if (release_metadata)
3549 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3550 inode->i_size, true);
3551#ifdef DEBUG
3552 btrfs_err(fs_info,
3553 "failed to write free ino cache for root %llu",
3554 root->root_key.objectid);
3555#endif
3556 }
3557
3558 return ret;
3559}
3560
3561#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3562/*
3563 * Use this if you need to make a bitmap or extent entry specifically, it
3564 * doesn't do any of the merging that add_free_space does, this acts a lot like
3565 * how the free space cache loading stuff works, so you can get really weird
3566 * configurations.
3567 */
3568int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3569 u64 offset, u64 bytes, bool bitmap)
3570{
3571 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3572 struct btrfs_free_space *info = NULL, *bitmap_info;
3573 void *map = NULL;
3574 u64 bytes_added;
3575 int ret;
3576
3577again:
3578 if (!info) {
3579 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3580 if (!info)
3581 return -ENOMEM;
3582 }
3583
3584 if (!bitmap) {
3585 spin_lock(&ctl->tree_lock);
3586 info->offset = offset;
3587 info->bytes = bytes;
3588 info->max_extent_size = 0;
3589 ret = link_free_space(ctl, info);
3590 spin_unlock(&ctl->tree_lock);
3591 if (ret)
3592 kmem_cache_free(btrfs_free_space_cachep, info);
3593 return ret;
3594 }
3595
3596 if (!map) {
3597 map = kzalloc(PAGE_SIZE, GFP_NOFS);
3598 if (!map) {
3599 kmem_cache_free(btrfs_free_space_cachep, info);
3600 return -ENOMEM;
3601 }
3602 }
3603
3604 spin_lock(&ctl->tree_lock);
3605 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3606 1, 0);
3607 if (!bitmap_info) {
3608 info->bitmap = map;
3609 map = NULL;
3610 add_new_bitmap(ctl, info, offset);
3611 bitmap_info = info;
3612 info = NULL;
3613 }
3614
3615 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3616
3617 bytes -= bytes_added;
3618 offset += bytes_added;
3619 spin_unlock(&ctl->tree_lock);
3620
3621 if (bytes)
3622 goto again;
3623
3624 if (info)
3625 kmem_cache_free(btrfs_free_space_cachep, info);
3626 if (map)
3627 kfree(map);
3628 return 0;
3629}
3630
3631/*
3632 * Checks to see if the given range is in the free space cache. This is really
3633 * just used to check the absence of space, so if there is free space in the
3634 * range at all we will return 1.
3635 */
3636int test_check_exists(struct btrfs_block_group_cache *cache,
3637 u64 offset, u64 bytes)
3638{
3639 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3640 struct btrfs_free_space *info;
3641 int ret = 0;
3642
3643 spin_lock(&ctl->tree_lock);
3644 info = tree_search_offset(ctl, offset, 0, 0);
3645 if (!info) {
3646 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3647 1, 0);
3648 if (!info)
3649 goto out;
3650 }
3651
3652have_info:
3653 if (info->bitmap) {
3654 u64 bit_off, bit_bytes;
3655 struct rb_node *n;
3656 struct btrfs_free_space *tmp;
3657
3658 bit_off = offset;
3659 bit_bytes = ctl->unit;
3660 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3661 if (!ret) {
3662 if (bit_off == offset) {
3663 ret = 1;
3664 goto out;
3665 } else if (bit_off > offset &&
3666 offset + bytes > bit_off) {
3667 ret = 1;
3668 goto out;
3669 }
3670 }
3671
3672 n = rb_prev(&info->offset_index);
3673 while (n) {
3674 tmp = rb_entry(n, struct btrfs_free_space,
3675 offset_index);
3676 if (tmp->offset + tmp->bytes < offset)
3677 break;
3678 if (offset + bytes < tmp->offset) {
3679 n = rb_prev(&tmp->offset_index);
3680 continue;
3681 }
3682 info = tmp;
3683 goto have_info;
3684 }
3685
3686 n = rb_next(&info->offset_index);
3687 while (n) {
3688 tmp = rb_entry(n, struct btrfs_free_space,
3689 offset_index);
3690 if (offset + bytes < tmp->offset)
3691 break;
3692 if (tmp->offset + tmp->bytes < offset) {
3693 n = rb_next(&tmp->offset_index);
3694 continue;
3695 }
3696 info = tmp;
3697 goto have_info;
3698 }
3699
3700 ret = 0;
3701 goto out;
3702 }
3703
3704 if (info->offset == offset) {
3705 ret = 1;
3706 goto out;
3707 }
3708
3709 if (offset > info->offset && offset < info->offset + info->bytes)
3710 ret = 1;
3711out:
3712 spin_unlock(&ctl->tree_lock);
3713 return ret;
3714}
3715#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */