Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Persistent Memory Driver |
| 3 | * |
| 4 | * Copyright (c) 2014-2015, Intel Corporation. |
| 5 | * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>. |
| 6 | * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>. |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify it |
| 9 | * under the terms and conditions of the GNU General Public License, |
| 10 | * version 2, as published by the Free Software Foundation. |
| 11 | * |
| 12 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 13 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 14 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 15 | * more details. |
| 16 | */ |
| 17 | |
| 18 | #include <asm/cacheflush.h> |
| 19 | #include <linux/blkdev.h> |
| 20 | #include <linux/hdreg.h> |
| 21 | #include <linux/init.h> |
| 22 | #include <linux/platform_device.h> |
| 23 | #include <linux/set_memory.h> |
| 24 | #include <linux/module.h> |
| 25 | #include <linux/moduleparam.h> |
| 26 | #include <linux/badblocks.h> |
| 27 | #include <linux/memremap.h> |
| 28 | #include <linux/vmalloc.h> |
| 29 | #include <linux/blk-mq.h> |
| 30 | #include <linux/pfn_t.h> |
| 31 | #include <linux/slab.h> |
| 32 | #include <linux/uio.h> |
| 33 | #include <linux/dax.h> |
| 34 | #include <linux/nd.h> |
| 35 | #include <linux/backing-dev.h> |
| 36 | #include "pmem.h" |
| 37 | #include "pfn.h" |
| 38 | #include "nd.h" |
| 39 | #include "nd-core.h" |
| 40 | |
| 41 | static struct device *to_dev(struct pmem_device *pmem) |
| 42 | { |
| 43 | /* |
| 44 | * nvdimm bus services need a 'dev' parameter, and we record the device |
| 45 | * at init in bb.dev. |
| 46 | */ |
| 47 | return pmem->bb.dev; |
| 48 | } |
| 49 | |
| 50 | static struct nd_region *to_region(struct pmem_device *pmem) |
| 51 | { |
| 52 | return to_nd_region(to_dev(pmem)->parent); |
| 53 | } |
| 54 | |
| 55 | static void hwpoison_clear(struct pmem_device *pmem, |
| 56 | phys_addr_t phys, unsigned int len) |
| 57 | { |
| 58 | unsigned long pfn_start, pfn_end, pfn; |
| 59 | |
| 60 | /* only pmem in the linear map supports HWPoison */ |
| 61 | if (is_vmalloc_addr(pmem->virt_addr)) |
| 62 | return; |
| 63 | |
| 64 | pfn_start = PHYS_PFN(phys); |
| 65 | pfn_end = pfn_start + PHYS_PFN(len); |
| 66 | for (pfn = pfn_start; pfn < pfn_end; pfn++) { |
| 67 | struct page *page = pfn_to_page(pfn); |
| 68 | |
| 69 | /* |
| 70 | * Note, no need to hold a get_dev_pagemap() reference |
| 71 | * here since we're in the driver I/O path and |
| 72 | * outstanding I/O requests pin the dev_pagemap. |
| 73 | */ |
| 74 | if (test_and_clear_pmem_poison(page)) |
| 75 | clear_mce_nospec(pfn); |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | static blk_status_t pmem_clear_poison(struct pmem_device *pmem, |
| 80 | phys_addr_t offset, unsigned int len) |
| 81 | { |
| 82 | struct device *dev = to_dev(pmem); |
| 83 | sector_t sector; |
| 84 | long cleared; |
| 85 | blk_status_t rc = BLK_STS_OK; |
| 86 | |
| 87 | sector = (offset - pmem->data_offset) / 512; |
| 88 | |
| 89 | cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len); |
| 90 | if (cleared < len) |
| 91 | rc = BLK_STS_IOERR; |
| 92 | if (cleared > 0 && cleared / 512) { |
| 93 | hwpoison_clear(pmem, pmem->phys_addr + offset, cleared); |
| 94 | cleared /= 512; |
| 95 | dev_dbg(dev, "%#llx clear %ld sector%s\n", |
| 96 | (unsigned long long) sector, cleared, |
| 97 | cleared > 1 ? "s" : ""); |
| 98 | badblocks_clear(&pmem->bb, sector, cleared); |
| 99 | if (pmem->bb_state) |
| 100 | sysfs_notify_dirent(pmem->bb_state); |
| 101 | } |
| 102 | |
| 103 | arch_invalidate_pmem(pmem->virt_addr + offset, len); |
| 104 | |
| 105 | return rc; |
| 106 | } |
| 107 | |
| 108 | static void write_pmem(void *pmem_addr, struct page *page, |
| 109 | unsigned int off, unsigned int len) |
| 110 | { |
| 111 | unsigned int chunk; |
| 112 | void *mem; |
| 113 | |
| 114 | while (len) { |
| 115 | mem = kmap_atomic(page); |
| 116 | chunk = min_t(unsigned int, len, PAGE_SIZE); |
| 117 | memcpy_flushcache(pmem_addr, mem + off, chunk); |
| 118 | kunmap_atomic(mem); |
| 119 | len -= chunk; |
| 120 | off = 0; |
| 121 | page++; |
| 122 | pmem_addr += PAGE_SIZE; |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | static blk_status_t read_pmem(struct page *page, unsigned int off, |
| 127 | void *pmem_addr, unsigned int len) |
| 128 | { |
| 129 | unsigned int chunk; |
| 130 | unsigned long rem; |
| 131 | void *mem; |
| 132 | |
| 133 | while (len) { |
| 134 | mem = kmap_atomic(page); |
| 135 | chunk = min_t(unsigned int, len, PAGE_SIZE); |
| 136 | rem = memcpy_mcsafe(mem + off, pmem_addr, chunk); |
| 137 | kunmap_atomic(mem); |
| 138 | if (rem) |
| 139 | return BLK_STS_IOERR; |
| 140 | len -= chunk; |
| 141 | off = 0; |
| 142 | page++; |
| 143 | pmem_addr += PAGE_SIZE; |
| 144 | } |
| 145 | return BLK_STS_OK; |
| 146 | } |
| 147 | |
| 148 | static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page, |
| 149 | unsigned int len, unsigned int off, unsigned int op, |
| 150 | sector_t sector) |
| 151 | { |
| 152 | blk_status_t rc = BLK_STS_OK; |
| 153 | bool bad_pmem = false; |
| 154 | phys_addr_t pmem_off = sector * 512 + pmem->data_offset; |
| 155 | void *pmem_addr = pmem->virt_addr + pmem_off; |
| 156 | |
| 157 | if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) |
| 158 | bad_pmem = true; |
| 159 | |
| 160 | if (!op_is_write(op)) { |
| 161 | if (unlikely(bad_pmem)) |
| 162 | rc = BLK_STS_IOERR; |
| 163 | else { |
| 164 | rc = read_pmem(page, off, pmem_addr, len); |
| 165 | flush_dcache_page(page); |
| 166 | } |
| 167 | } else { |
| 168 | /* |
| 169 | * Note that we write the data both before and after |
| 170 | * clearing poison. The write before clear poison |
| 171 | * handles situations where the latest written data is |
| 172 | * preserved and the clear poison operation simply marks |
| 173 | * the address range as valid without changing the data. |
| 174 | * In this case application software can assume that an |
| 175 | * interrupted write will either return the new good |
| 176 | * data or an error. |
| 177 | * |
| 178 | * However, if pmem_clear_poison() leaves the data in an |
| 179 | * indeterminate state we need to perform the write |
| 180 | * after clear poison. |
| 181 | */ |
| 182 | flush_dcache_page(page); |
| 183 | write_pmem(pmem_addr, page, off, len); |
| 184 | if (unlikely(bad_pmem)) { |
| 185 | rc = pmem_clear_poison(pmem, pmem_off, len); |
| 186 | write_pmem(pmem_addr, page, off, len); |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | return rc; |
| 191 | } |
| 192 | |
| 193 | static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio) |
| 194 | { |
| 195 | blk_status_t rc = 0; |
| 196 | bool do_acct; |
| 197 | unsigned long start; |
| 198 | struct bio_vec bvec; |
| 199 | struct bvec_iter iter; |
| 200 | struct pmem_device *pmem = q->queuedata; |
| 201 | struct nd_region *nd_region = to_region(pmem); |
| 202 | |
| 203 | if (bio->bi_opf & REQ_PREFLUSH) |
| 204 | nvdimm_flush(nd_region); |
| 205 | |
| 206 | do_acct = nd_iostat_start(bio, &start); |
| 207 | bio_for_each_segment(bvec, bio, iter) { |
| 208 | rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len, |
| 209 | bvec.bv_offset, bio_op(bio), iter.bi_sector); |
| 210 | if (rc) { |
| 211 | bio->bi_status = rc; |
| 212 | break; |
| 213 | } |
| 214 | } |
| 215 | if (do_acct) |
| 216 | nd_iostat_end(bio, start); |
| 217 | |
| 218 | if (bio->bi_opf & REQ_FUA) |
| 219 | nvdimm_flush(nd_region); |
| 220 | |
| 221 | bio_endio(bio); |
| 222 | return BLK_QC_T_NONE; |
| 223 | } |
| 224 | |
| 225 | static int pmem_rw_page(struct block_device *bdev, sector_t sector, |
| 226 | struct page *page, unsigned int op) |
| 227 | { |
| 228 | struct pmem_device *pmem = bdev->bd_queue->queuedata; |
| 229 | blk_status_t rc; |
| 230 | |
| 231 | rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE, |
| 232 | 0, op, sector); |
| 233 | |
| 234 | /* |
| 235 | * The ->rw_page interface is subtle and tricky. The core |
| 236 | * retries on any error, so we can only invoke page_endio() in |
| 237 | * the successful completion case. Otherwise, we'll see crashes |
| 238 | * caused by double completion. |
| 239 | */ |
| 240 | if (rc == 0) |
| 241 | page_endio(page, op_is_write(op), 0); |
| 242 | |
| 243 | return blk_status_to_errno(rc); |
| 244 | } |
| 245 | |
| 246 | /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */ |
| 247 | __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff, |
| 248 | long nr_pages, void **kaddr, pfn_t *pfn) |
| 249 | { |
| 250 | resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset; |
| 251 | |
| 252 | if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512, |
| 253 | PFN_PHYS(nr_pages)))) |
| 254 | return -EIO; |
| 255 | |
| 256 | if (kaddr) |
| 257 | *kaddr = pmem->virt_addr + offset; |
| 258 | if (pfn) |
| 259 | *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags); |
| 260 | |
| 261 | /* |
| 262 | * If badblocks are present, limit known good range to the |
| 263 | * requested range. |
| 264 | */ |
| 265 | if (unlikely(pmem->bb.count)) |
| 266 | return nr_pages; |
| 267 | return PHYS_PFN(pmem->size - pmem->pfn_pad - offset); |
| 268 | } |
| 269 | |
| 270 | static const struct block_device_operations pmem_fops = { |
| 271 | .owner = THIS_MODULE, |
| 272 | .rw_page = pmem_rw_page, |
| 273 | .revalidate_disk = nvdimm_revalidate_disk, |
| 274 | }; |
| 275 | |
| 276 | static long pmem_dax_direct_access(struct dax_device *dax_dev, |
| 277 | pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn) |
| 278 | { |
| 279 | struct pmem_device *pmem = dax_get_private(dax_dev); |
| 280 | |
| 281 | return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn); |
| 282 | } |
| 283 | |
| 284 | static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, |
| 285 | void *addr, size_t bytes, struct iov_iter *i) |
| 286 | { |
| 287 | return copy_from_iter_flushcache(addr, bytes, i); |
| 288 | } |
| 289 | |
| 290 | static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, |
| 291 | void *addr, size_t bytes, struct iov_iter *i) |
| 292 | { |
| 293 | return copy_to_iter_mcsafe(addr, bytes, i); |
| 294 | } |
| 295 | |
| 296 | static const struct dax_operations pmem_dax_ops = { |
| 297 | .direct_access = pmem_dax_direct_access, |
| 298 | .copy_from_iter = pmem_copy_from_iter, |
| 299 | .copy_to_iter = pmem_copy_to_iter, |
| 300 | }; |
| 301 | |
| 302 | static const struct attribute_group *pmem_attribute_groups[] = { |
| 303 | &dax_attribute_group, |
| 304 | NULL, |
| 305 | }; |
| 306 | |
| 307 | static void pmem_release_queue(void *q) |
| 308 | { |
| 309 | blk_cleanup_queue(q); |
| 310 | } |
| 311 | |
| 312 | static void pmem_freeze_queue(void *q) |
| 313 | { |
| 314 | blk_freeze_queue_start(q); |
| 315 | } |
| 316 | |
| 317 | static void pmem_release_disk(void *__pmem) |
| 318 | { |
| 319 | struct pmem_device *pmem = __pmem; |
| 320 | |
| 321 | kill_dax(pmem->dax_dev); |
| 322 | put_dax(pmem->dax_dev); |
| 323 | del_gendisk(pmem->disk); |
| 324 | put_disk(pmem->disk); |
| 325 | } |
| 326 | |
| 327 | static void pmem_release_pgmap_ops(void *__pgmap) |
| 328 | { |
| 329 | dev_pagemap_put_ops(); |
| 330 | } |
| 331 | |
| 332 | static void fsdax_pagefree(struct page *page, void *data) |
| 333 | { |
| 334 | wake_up_var(&page->_refcount); |
| 335 | } |
| 336 | |
| 337 | static int setup_pagemap_fsdax(struct device *dev, struct dev_pagemap *pgmap) |
| 338 | { |
| 339 | dev_pagemap_get_ops(); |
| 340 | if (devm_add_action_or_reset(dev, pmem_release_pgmap_ops, pgmap)) |
| 341 | return -ENOMEM; |
| 342 | pgmap->type = MEMORY_DEVICE_FS_DAX; |
| 343 | pgmap->page_free = fsdax_pagefree; |
| 344 | |
| 345 | return 0; |
| 346 | } |
| 347 | |
| 348 | static int pmem_attach_disk(struct device *dev, |
| 349 | struct nd_namespace_common *ndns) |
| 350 | { |
| 351 | struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev); |
| 352 | struct nd_region *nd_region = to_nd_region(dev->parent); |
| 353 | int nid = dev_to_node(dev), fua; |
| 354 | struct resource *res = &nsio->res; |
| 355 | struct resource bb_res; |
| 356 | struct nd_pfn *nd_pfn = NULL; |
| 357 | struct dax_device *dax_dev; |
| 358 | struct nd_pfn_sb *pfn_sb; |
| 359 | struct pmem_device *pmem; |
| 360 | struct request_queue *q; |
| 361 | struct device *gendev; |
| 362 | struct gendisk *disk; |
| 363 | void *addr; |
| 364 | int rc; |
| 365 | |
| 366 | pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL); |
| 367 | if (!pmem) |
| 368 | return -ENOMEM; |
| 369 | |
| 370 | /* while nsio_rw_bytes is active, parse a pfn info block if present */ |
| 371 | if (is_nd_pfn(dev)) { |
| 372 | nd_pfn = to_nd_pfn(dev); |
| 373 | rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap); |
| 374 | if (rc) |
| 375 | return rc; |
| 376 | } |
| 377 | |
| 378 | /* we're attaching a block device, disable raw namespace access */ |
| 379 | devm_nsio_disable(dev, nsio); |
| 380 | |
| 381 | dev_set_drvdata(dev, pmem); |
| 382 | pmem->phys_addr = res->start; |
| 383 | pmem->size = resource_size(res); |
| 384 | fua = nvdimm_has_flush(nd_region); |
| 385 | if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) { |
| 386 | dev_warn(dev, "unable to guarantee persistence of writes\n"); |
| 387 | fua = 0; |
| 388 | } |
| 389 | |
| 390 | if (!devm_request_mem_region(dev, res->start, resource_size(res), |
| 391 | dev_name(&ndns->dev))) { |
| 392 | dev_warn(dev, "could not reserve region %pR\n", res); |
| 393 | return -EBUSY; |
| 394 | } |
| 395 | |
| 396 | q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev), NULL); |
| 397 | if (!q) |
| 398 | return -ENOMEM; |
| 399 | |
| 400 | if (devm_add_action_or_reset(dev, pmem_release_queue, q)) |
| 401 | return -ENOMEM; |
| 402 | |
| 403 | pmem->pfn_flags = PFN_DEV; |
| 404 | pmem->pgmap.ref = &q->q_usage_counter; |
| 405 | if (is_nd_pfn(dev)) { |
| 406 | if (setup_pagemap_fsdax(dev, &pmem->pgmap)) |
| 407 | return -ENOMEM; |
| 408 | addr = devm_memremap_pages(dev, &pmem->pgmap); |
| 409 | pfn_sb = nd_pfn->pfn_sb; |
| 410 | pmem->data_offset = le64_to_cpu(pfn_sb->dataoff); |
| 411 | pmem->pfn_pad = resource_size(res) - |
| 412 | resource_size(&pmem->pgmap.res); |
| 413 | pmem->pfn_flags |= PFN_MAP; |
| 414 | memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res)); |
| 415 | bb_res.start += pmem->data_offset; |
| 416 | } else if (pmem_should_map_pages(dev)) { |
| 417 | memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res)); |
| 418 | pmem->pgmap.altmap_valid = false; |
| 419 | if (setup_pagemap_fsdax(dev, &pmem->pgmap)) |
| 420 | return -ENOMEM; |
| 421 | addr = devm_memremap_pages(dev, &pmem->pgmap); |
| 422 | pmem->pfn_flags |= PFN_MAP; |
| 423 | memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res)); |
| 424 | } else { |
| 425 | addr = devm_memremap(dev, pmem->phys_addr, |
| 426 | pmem->size, ARCH_MEMREMAP_PMEM); |
| 427 | memcpy(&bb_res, &nsio->res, sizeof(bb_res)); |
| 428 | } |
| 429 | |
| 430 | /* |
| 431 | * At release time the queue must be frozen before |
| 432 | * devm_memremap_pages is unwound |
| 433 | */ |
| 434 | if (devm_add_action_or_reset(dev, pmem_freeze_queue, q)) |
| 435 | return -ENOMEM; |
| 436 | |
| 437 | if (IS_ERR(addr)) |
| 438 | return PTR_ERR(addr); |
| 439 | pmem->virt_addr = addr; |
| 440 | |
| 441 | blk_queue_write_cache(q, true, fua); |
| 442 | blk_queue_make_request(q, pmem_make_request); |
| 443 | blk_queue_physical_block_size(q, PAGE_SIZE); |
| 444 | blk_queue_logical_block_size(q, pmem_sector_size(ndns)); |
| 445 | blk_queue_max_hw_sectors(q, UINT_MAX); |
| 446 | blk_queue_flag_set(QUEUE_FLAG_NONROT, q); |
| 447 | if (pmem->pfn_flags & PFN_MAP) |
| 448 | blk_queue_flag_set(QUEUE_FLAG_DAX, q); |
| 449 | q->queuedata = pmem; |
| 450 | |
| 451 | disk = alloc_disk_node(0, nid); |
| 452 | if (!disk) |
| 453 | return -ENOMEM; |
| 454 | pmem->disk = disk; |
| 455 | |
| 456 | disk->fops = &pmem_fops; |
| 457 | disk->queue = q; |
| 458 | disk->flags = GENHD_FL_EXT_DEVT; |
| 459 | disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO; |
| 460 | nvdimm_namespace_disk_name(ndns, disk->disk_name); |
| 461 | set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset) |
| 462 | / 512); |
| 463 | if (devm_init_badblocks(dev, &pmem->bb)) |
| 464 | return -ENOMEM; |
| 465 | nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res); |
| 466 | disk->bb = &pmem->bb; |
| 467 | |
| 468 | dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops); |
| 469 | if (!dax_dev) { |
| 470 | put_disk(disk); |
| 471 | return -ENOMEM; |
| 472 | } |
| 473 | dax_write_cache(dax_dev, nvdimm_has_cache(nd_region)); |
| 474 | pmem->dax_dev = dax_dev; |
| 475 | |
| 476 | gendev = disk_to_dev(disk); |
| 477 | gendev->groups = pmem_attribute_groups; |
| 478 | |
| 479 | device_add_disk(dev, disk); |
| 480 | if (devm_add_action_or_reset(dev, pmem_release_disk, pmem)) |
| 481 | return -ENOMEM; |
| 482 | |
| 483 | revalidate_disk(disk); |
| 484 | |
| 485 | pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd, |
| 486 | "badblocks"); |
| 487 | if (!pmem->bb_state) |
| 488 | dev_warn(dev, "'badblocks' notification disabled\n"); |
| 489 | |
| 490 | return 0; |
| 491 | } |
| 492 | |
| 493 | static int nd_pmem_probe(struct device *dev) |
| 494 | { |
| 495 | struct nd_namespace_common *ndns; |
| 496 | |
| 497 | ndns = nvdimm_namespace_common_probe(dev); |
| 498 | if (IS_ERR(ndns)) |
| 499 | return PTR_ERR(ndns); |
| 500 | |
| 501 | if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev))) |
| 502 | return -ENXIO; |
| 503 | |
| 504 | if (is_nd_btt(dev)) |
| 505 | return nvdimm_namespace_attach_btt(ndns); |
| 506 | |
| 507 | if (is_nd_pfn(dev)) |
| 508 | return pmem_attach_disk(dev, ndns); |
| 509 | |
| 510 | /* if we find a valid info-block we'll come back as that personality */ |
| 511 | if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0 |
| 512 | || nd_dax_probe(dev, ndns) == 0) |
| 513 | return -ENXIO; |
| 514 | |
| 515 | /* ...otherwise we're just a raw pmem device */ |
| 516 | return pmem_attach_disk(dev, ndns); |
| 517 | } |
| 518 | |
| 519 | static int nd_pmem_remove(struct device *dev) |
| 520 | { |
| 521 | struct pmem_device *pmem = dev_get_drvdata(dev); |
| 522 | |
| 523 | if (is_nd_btt(dev)) |
| 524 | nvdimm_namespace_detach_btt(to_nd_btt(dev)); |
| 525 | else { |
| 526 | /* |
| 527 | * Note, this assumes device_lock() context to not race |
| 528 | * nd_pmem_notify() |
| 529 | */ |
| 530 | sysfs_put(pmem->bb_state); |
| 531 | pmem->bb_state = NULL; |
| 532 | } |
| 533 | nvdimm_flush(to_nd_region(dev->parent)); |
| 534 | |
| 535 | return 0; |
| 536 | } |
| 537 | |
| 538 | static void nd_pmem_shutdown(struct device *dev) |
| 539 | { |
| 540 | nvdimm_flush(to_nd_region(dev->parent)); |
| 541 | } |
| 542 | |
| 543 | static void nd_pmem_notify(struct device *dev, enum nvdimm_event event) |
| 544 | { |
| 545 | struct nd_region *nd_region; |
| 546 | resource_size_t offset = 0, end_trunc = 0; |
| 547 | struct nd_namespace_common *ndns; |
| 548 | struct nd_namespace_io *nsio; |
| 549 | struct resource res; |
| 550 | struct badblocks *bb; |
| 551 | struct kernfs_node *bb_state; |
| 552 | |
| 553 | if (event != NVDIMM_REVALIDATE_POISON) |
| 554 | return; |
| 555 | |
| 556 | if (is_nd_btt(dev)) { |
| 557 | struct nd_btt *nd_btt = to_nd_btt(dev); |
| 558 | |
| 559 | ndns = nd_btt->ndns; |
| 560 | nd_region = to_nd_region(ndns->dev.parent); |
| 561 | nsio = to_nd_namespace_io(&ndns->dev); |
| 562 | bb = &nsio->bb; |
| 563 | bb_state = NULL; |
| 564 | } else { |
| 565 | struct pmem_device *pmem = dev_get_drvdata(dev); |
| 566 | |
| 567 | nd_region = to_region(pmem); |
| 568 | bb = &pmem->bb; |
| 569 | bb_state = pmem->bb_state; |
| 570 | |
| 571 | if (is_nd_pfn(dev)) { |
| 572 | struct nd_pfn *nd_pfn = to_nd_pfn(dev); |
| 573 | struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb; |
| 574 | |
| 575 | ndns = nd_pfn->ndns; |
| 576 | offset = pmem->data_offset + |
| 577 | __le32_to_cpu(pfn_sb->start_pad); |
| 578 | end_trunc = __le32_to_cpu(pfn_sb->end_trunc); |
| 579 | } else { |
| 580 | ndns = to_ndns(dev); |
| 581 | } |
| 582 | |
| 583 | nsio = to_nd_namespace_io(&ndns->dev); |
| 584 | } |
| 585 | |
| 586 | res.start = nsio->res.start + offset; |
| 587 | res.end = nsio->res.end - end_trunc; |
| 588 | nvdimm_badblocks_populate(nd_region, bb, &res); |
| 589 | if (bb_state) |
| 590 | sysfs_notify_dirent(bb_state); |
| 591 | } |
| 592 | |
| 593 | MODULE_ALIAS("pmem"); |
| 594 | MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO); |
| 595 | MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM); |
| 596 | static struct nd_device_driver nd_pmem_driver = { |
| 597 | .probe = nd_pmem_probe, |
| 598 | .remove = nd_pmem_remove, |
| 599 | .notify = nd_pmem_notify, |
| 600 | .shutdown = nd_pmem_shutdown, |
| 601 | .drv = { |
| 602 | .name = "nd_pmem", |
| 603 | }, |
| 604 | .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM, |
| 605 | }; |
| 606 | |
| 607 | module_nd_driver(nd_pmem_driver); |
| 608 | |
| 609 | MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>"); |
| 610 | MODULE_LICENSE("GPL v2"); |