blob: ebbdfb908745105470aa49950835da692bb7eba9 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/**
2 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
3 *
4 * Copyright (c) 2009-2010 Micrel, Inc.
5 * Tristram Ha <Tristram.Ha@micrel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/init.h>
20#include <linux/interrupt.h>
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/ioport.h>
24#include <linux/pci.h>
25#include <linux/proc_fs.h>
26#include <linux/mii.h>
27#include <linux/platform_device.h>
28#include <linux/ethtool.h>
29#include <linux/etherdevice.h>
30#include <linux/in.h>
31#include <linux/ip.h>
32#include <linux/if_vlan.h>
33#include <linux/crc32.h>
34#include <linux/sched.h>
35#include <linux/slab.h>
36
37
38/* DMA Registers */
39
40#define KS_DMA_TX_CTRL 0x0000
41#define DMA_TX_ENABLE 0x00000001
42#define DMA_TX_CRC_ENABLE 0x00000002
43#define DMA_TX_PAD_ENABLE 0x00000004
44#define DMA_TX_LOOPBACK 0x00000100
45#define DMA_TX_FLOW_ENABLE 0x00000200
46#define DMA_TX_CSUM_IP 0x00010000
47#define DMA_TX_CSUM_TCP 0x00020000
48#define DMA_TX_CSUM_UDP 0x00040000
49#define DMA_TX_BURST_SIZE 0x3F000000
50
51#define KS_DMA_RX_CTRL 0x0004
52#define DMA_RX_ENABLE 0x00000001
53#define KS884X_DMA_RX_MULTICAST 0x00000002
54#define DMA_RX_PROMISCUOUS 0x00000004
55#define DMA_RX_ERROR 0x00000008
56#define DMA_RX_UNICAST 0x00000010
57#define DMA_RX_ALL_MULTICAST 0x00000020
58#define DMA_RX_BROADCAST 0x00000040
59#define DMA_RX_FLOW_ENABLE 0x00000200
60#define DMA_RX_CSUM_IP 0x00010000
61#define DMA_RX_CSUM_TCP 0x00020000
62#define DMA_RX_CSUM_UDP 0x00040000
63#define DMA_RX_BURST_SIZE 0x3F000000
64
65#define DMA_BURST_SHIFT 24
66#define DMA_BURST_DEFAULT 8
67
68#define KS_DMA_TX_START 0x0008
69#define KS_DMA_RX_START 0x000C
70#define DMA_START 0x00000001
71
72#define KS_DMA_TX_ADDR 0x0010
73#define KS_DMA_RX_ADDR 0x0014
74
75#define DMA_ADDR_LIST_MASK 0xFFFFFFFC
76#define DMA_ADDR_LIST_SHIFT 2
77
78/* MTR0 */
79#define KS884X_MULTICAST_0_OFFSET 0x0020
80#define KS884X_MULTICAST_1_OFFSET 0x0021
81#define KS884X_MULTICAST_2_OFFSET 0x0022
82#define KS884x_MULTICAST_3_OFFSET 0x0023
83/* MTR1 */
84#define KS884X_MULTICAST_4_OFFSET 0x0024
85#define KS884X_MULTICAST_5_OFFSET 0x0025
86#define KS884X_MULTICAST_6_OFFSET 0x0026
87#define KS884X_MULTICAST_7_OFFSET 0x0027
88
89/* Interrupt Registers */
90
91/* INTEN */
92#define KS884X_INTERRUPTS_ENABLE 0x0028
93/* INTST */
94#define KS884X_INTERRUPTS_STATUS 0x002C
95
96#define KS884X_INT_RX_STOPPED 0x02000000
97#define KS884X_INT_TX_STOPPED 0x04000000
98#define KS884X_INT_RX_OVERRUN 0x08000000
99#define KS884X_INT_TX_EMPTY 0x10000000
100#define KS884X_INT_RX 0x20000000
101#define KS884X_INT_TX 0x40000000
102#define KS884X_INT_PHY 0x80000000
103
104#define KS884X_INT_RX_MASK \
105 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
106#define KS884X_INT_TX_MASK \
107 (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
108#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
109
110/* MAC Additional Station Address */
111
112/* MAAL0 */
113#define KS_ADD_ADDR_0_LO 0x0080
114/* MAAH0 */
115#define KS_ADD_ADDR_0_HI 0x0084
116/* MAAL1 */
117#define KS_ADD_ADDR_1_LO 0x0088
118/* MAAH1 */
119#define KS_ADD_ADDR_1_HI 0x008C
120/* MAAL2 */
121#define KS_ADD_ADDR_2_LO 0x0090
122/* MAAH2 */
123#define KS_ADD_ADDR_2_HI 0x0094
124/* MAAL3 */
125#define KS_ADD_ADDR_3_LO 0x0098
126/* MAAH3 */
127#define KS_ADD_ADDR_3_HI 0x009C
128/* MAAL4 */
129#define KS_ADD_ADDR_4_LO 0x00A0
130/* MAAH4 */
131#define KS_ADD_ADDR_4_HI 0x00A4
132/* MAAL5 */
133#define KS_ADD_ADDR_5_LO 0x00A8
134/* MAAH5 */
135#define KS_ADD_ADDR_5_HI 0x00AC
136/* MAAL6 */
137#define KS_ADD_ADDR_6_LO 0x00B0
138/* MAAH6 */
139#define KS_ADD_ADDR_6_HI 0x00B4
140/* MAAL7 */
141#define KS_ADD_ADDR_7_LO 0x00B8
142/* MAAH7 */
143#define KS_ADD_ADDR_7_HI 0x00BC
144/* MAAL8 */
145#define KS_ADD_ADDR_8_LO 0x00C0
146/* MAAH8 */
147#define KS_ADD_ADDR_8_HI 0x00C4
148/* MAAL9 */
149#define KS_ADD_ADDR_9_LO 0x00C8
150/* MAAH9 */
151#define KS_ADD_ADDR_9_HI 0x00CC
152/* MAAL10 */
153#define KS_ADD_ADDR_A_LO 0x00D0
154/* MAAH10 */
155#define KS_ADD_ADDR_A_HI 0x00D4
156/* MAAL11 */
157#define KS_ADD_ADDR_B_LO 0x00D8
158/* MAAH11 */
159#define KS_ADD_ADDR_B_HI 0x00DC
160/* MAAL12 */
161#define KS_ADD_ADDR_C_LO 0x00E0
162/* MAAH12 */
163#define KS_ADD_ADDR_C_HI 0x00E4
164/* MAAL13 */
165#define KS_ADD_ADDR_D_LO 0x00E8
166/* MAAH13 */
167#define KS_ADD_ADDR_D_HI 0x00EC
168/* MAAL14 */
169#define KS_ADD_ADDR_E_LO 0x00F0
170/* MAAH14 */
171#define KS_ADD_ADDR_E_HI 0x00F4
172/* MAAL15 */
173#define KS_ADD_ADDR_F_LO 0x00F8
174/* MAAH15 */
175#define KS_ADD_ADDR_F_HI 0x00FC
176
177#define ADD_ADDR_HI_MASK 0x0000FFFF
178#define ADD_ADDR_ENABLE 0x80000000
179#define ADD_ADDR_INCR 8
180
181/* Miscellaneous Registers */
182
183/* MARL */
184#define KS884X_ADDR_0_OFFSET 0x0200
185#define KS884X_ADDR_1_OFFSET 0x0201
186/* MARM */
187#define KS884X_ADDR_2_OFFSET 0x0202
188#define KS884X_ADDR_3_OFFSET 0x0203
189/* MARH */
190#define KS884X_ADDR_4_OFFSET 0x0204
191#define KS884X_ADDR_5_OFFSET 0x0205
192
193/* OBCR */
194#define KS884X_BUS_CTRL_OFFSET 0x0210
195
196#define BUS_SPEED_125_MHZ 0x0000
197#define BUS_SPEED_62_5_MHZ 0x0001
198#define BUS_SPEED_41_66_MHZ 0x0002
199#define BUS_SPEED_25_MHZ 0x0003
200
201/* EEPCR */
202#define KS884X_EEPROM_CTRL_OFFSET 0x0212
203
204#define EEPROM_CHIP_SELECT 0x0001
205#define EEPROM_SERIAL_CLOCK 0x0002
206#define EEPROM_DATA_OUT 0x0004
207#define EEPROM_DATA_IN 0x0008
208#define EEPROM_ACCESS_ENABLE 0x0010
209
210/* MBIR */
211#define KS884X_MEM_INFO_OFFSET 0x0214
212
213#define RX_MEM_TEST_FAILED 0x0008
214#define RX_MEM_TEST_FINISHED 0x0010
215#define TX_MEM_TEST_FAILED 0x0800
216#define TX_MEM_TEST_FINISHED 0x1000
217
218/* GCR */
219#define KS884X_GLOBAL_CTRL_OFFSET 0x0216
220#define GLOBAL_SOFTWARE_RESET 0x0001
221
222#define KS8841_POWER_MANAGE_OFFSET 0x0218
223
224/* WFCR */
225#define KS8841_WOL_CTRL_OFFSET 0x021A
226#define KS8841_WOL_MAGIC_ENABLE 0x0080
227#define KS8841_WOL_FRAME3_ENABLE 0x0008
228#define KS8841_WOL_FRAME2_ENABLE 0x0004
229#define KS8841_WOL_FRAME1_ENABLE 0x0002
230#define KS8841_WOL_FRAME0_ENABLE 0x0001
231
232/* WF0 */
233#define KS8841_WOL_FRAME_CRC_OFFSET 0x0220
234#define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224
235#define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228
236
237/* IACR */
238#define KS884X_IACR_P 0x04A0
239#define KS884X_IACR_OFFSET KS884X_IACR_P
240
241/* IADR1 */
242#define KS884X_IADR1_P 0x04A2
243#define KS884X_IADR2_P 0x04A4
244#define KS884X_IADR3_P 0x04A6
245#define KS884X_IADR4_P 0x04A8
246#define KS884X_IADR5_P 0x04AA
247
248#define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P
249#define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1)
250
251#define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P
252#define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1)
253#define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P
254#define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1)
255#define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P
256#define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1)
257#define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P
258#define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1)
259#define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P
260
261/* P1MBCR */
262#define KS884X_P1MBCR_P 0x04D0
263#define KS884X_P1MBSR_P 0x04D2
264#define KS884X_PHY1ILR_P 0x04D4
265#define KS884X_PHY1IHR_P 0x04D6
266#define KS884X_P1ANAR_P 0x04D8
267#define KS884X_P1ANLPR_P 0x04DA
268
269/* P2MBCR */
270#define KS884X_P2MBCR_P 0x04E0
271#define KS884X_P2MBSR_P 0x04E2
272#define KS884X_PHY2ILR_P 0x04E4
273#define KS884X_PHY2IHR_P 0x04E6
274#define KS884X_P2ANAR_P 0x04E8
275#define KS884X_P2ANLPR_P 0x04EA
276
277#define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P
278#define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
279
280#define KS884X_PHY_CTRL_OFFSET 0x00
281
282/* Mode Control Register */
283#define PHY_REG_CTRL 0
284
285#define PHY_RESET 0x8000
286#define PHY_LOOPBACK 0x4000
287#define PHY_SPEED_100MBIT 0x2000
288#define PHY_AUTO_NEG_ENABLE 0x1000
289#define PHY_POWER_DOWN 0x0800
290#define PHY_MII_DISABLE 0x0400
291#define PHY_AUTO_NEG_RESTART 0x0200
292#define PHY_FULL_DUPLEX 0x0100
293#define PHY_COLLISION_TEST 0x0080
294#define PHY_HP_MDIX 0x0020
295#define PHY_FORCE_MDIX 0x0010
296#define PHY_AUTO_MDIX_DISABLE 0x0008
297#define PHY_REMOTE_FAULT_DISABLE 0x0004
298#define PHY_TRANSMIT_DISABLE 0x0002
299#define PHY_LED_DISABLE 0x0001
300
301#define KS884X_PHY_STATUS_OFFSET 0x02
302
303/* Mode Status Register */
304#define PHY_REG_STATUS 1
305
306#define PHY_100BT4_CAPABLE 0x8000
307#define PHY_100BTX_FD_CAPABLE 0x4000
308#define PHY_100BTX_CAPABLE 0x2000
309#define PHY_10BT_FD_CAPABLE 0x1000
310#define PHY_10BT_CAPABLE 0x0800
311#define PHY_MII_SUPPRESS_CAPABLE 0x0040
312#define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020
313#define PHY_REMOTE_FAULT 0x0010
314#define PHY_AUTO_NEG_CAPABLE 0x0008
315#define PHY_LINK_STATUS 0x0004
316#define PHY_JABBER_DETECT 0x0002
317#define PHY_EXTENDED_CAPABILITY 0x0001
318
319#define KS884X_PHY_ID_1_OFFSET 0x04
320#define KS884X_PHY_ID_2_OFFSET 0x06
321
322/* PHY Identifier Registers */
323#define PHY_REG_ID_1 2
324#define PHY_REG_ID_2 3
325
326#define KS884X_PHY_AUTO_NEG_OFFSET 0x08
327
328/* Auto-Negotiation Advertisement Register */
329#define PHY_REG_AUTO_NEGOTIATION 4
330
331#define PHY_AUTO_NEG_NEXT_PAGE 0x8000
332#define PHY_AUTO_NEG_REMOTE_FAULT 0x2000
333/* Not supported. */
334#define PHY_AUTO_NEG_ASYM_PAUSE 0x0800
335#define PHY_AUTO_NEG_SYM_PAUSE 0x0400
336#define PHY_AUTO_NEG_100BT4 0x0200
337#define PHY_AUTO_NEG_100BTX_FD 0x0100
338#define PHY_AUTO_NEG_100BTX 0x0080
339#define PHY_AUTO_NEG_10BT_FD 0x0040
340#define PHY_AUTO_NEG_10BT 0x0020
341#define PHY_AUTO_NEG_SELECTOR 0x001F
342#define PHY_AUTO_NEG_802_3 0x0001
343
344#define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
345
346#define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A
347
348/* Auto-Negotiation Link Partner Ability Register */
349#define PHY_REG_REMOTE_CAPABILITY 5
350
351#define PHY_REMOTE_NEXT_PAGE 0x8000
352#define PHY_REMOTE_ACKNOWLEDGE 0x4000
353#define PHY_REMOTE_REMOTE_FAULT 0x2000
354#define PHY_REMOTE_SYM_PAUSE 0x0400
355#define PHY_REMOTE_100BTX_FD 0x0100
356#define PHY_REMOTE_100BTX 0x0080
357#define PHY_REMOTE_10BT_FD 0x0040
358#define PHY_REMOTE_10BT 0x0020
359
360/* P1VCT */
361#define KS884X_P1VCT_P 0x04F0
362#define KS884X_P1PHYCTRL_P 0x04F2
363
364/* P2VCT */
365#define KS884X_P2VCT_P 0x04F4
366#define KS884X_P2PHYCTRL_P 0x04F6
367
368#define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P
369#define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P)
370
371#define KS884X_PHY_LINK_MD_OFFSET 0x00
372
373#define PHY_START_CABLE_DIAG 0x8000
374#define PHY_CABLE_DIAG_RESULT 0x6000
375#define PHY_CABLE_STAT_NORMAL 0x0000
376#define PHY_CABLE_STAT_OPEN 0x2000
377#define PHY_CABLE_STAT_SHORT 0x4000
378#define PHY_CABLE_STAT_FAILED 0x6000
379#define PHY_CABLE_10M_SHORT 0x1000
380#define PHY_CABLE_FAULT_COUNTER 0x01FF
381
382#define KS884X_PHY_PHY_CTRL_OFFSET 0x02
383
384#define PHY_STAT_REVERSED_POLARITY 0x0020
385#define PHY_STAT_MDIX 0x0010
386#define PHY_FORCE_LINK 0x0008
387#define PHY_POWER_SAVING_DISABLE 0x0004
388#define PHY_REMOTE_LOOPBACK 0x0002
389
390/* SIDER */
391#define KS884X_SIDER_P 0x0400
392#define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P
393#define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1)
394
395#define REG_FAMILY_ID 0x88
396
397#define REG_CHIP_ID_41 0x8810
398#define REG_CHIP_ID_42 0x8800
399
400#define KS884X_CHIP_ID_MASK_41 0xFF10
401#define KS884X_CHIP_ID_MASK 0xFFF0
402#define KS884X_CHIP_ID_SHIFT 4
403#define KS884X_REVISION_MASK 0x000E
404#define KS884X_REVISION_SHIFT 1
405#define KS8842_START 0x0001
406
407#define CHIP_IP_41_M 0x8810
408#define CHIP_IP_42_M 0x8800
409#define CHIP_IP_61_M 0x8890
410#define CHIP_IP_62_M 0x8880
411
412#define CHIP_IP_41_P 0x8850
413#define CHIP_IP_42_P 0x8840
414#define CHIP_IP_61_P 0x88D0
415#define CHIP_IP_62_P 0x88C0
416
417/* SGCR1 */
418#define KS8842_SGCR1_P 0x0402
419#define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P
420
421#define SWITCH_PASS_ALL 0x8000
422#define SWITCH_TX_FLOW_CTRL 0x2000
423#define SWITCH_RX_FLOW_CTRL 0x1000
424#define SWITCH_CHECK_LENGTH 0x0800
425#define SWITCH_AGING_ENABLE 0x0400
426#define SWITCH_FAST_AGING 0x0200
427#define SWITCH_AGGR_BACKOFF 0x0100
428#define SWITCH_PASS_PAUSE 0x0008
429#define SWITCH_LINK_AUTO_AGING 0x0001
430
431/* SGCR2 */
432#define KS8842_SGCR2_P 0x0404
433#define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P
434
435#define SWITCH_VLAN_ENABLE 0x8000
436#define SWITCH_IGMP_SNOOP 0x4000
437#define IPV6_MLD_SNOOP_ENABLE 0x2000
438#define IPV6_MLD_SNOOP_OPTION 0x1000
439#define PRIORITY_SCHEME_SELECT 0x0800
440#define SWITCH_MIRROR_RX_TX 0x0100
441#define UNICAST_VLAN_BOUNDARY 0x0080
442#define MULTICAST_STORM_DISABLE 0x0040
443#define SWITCH_BACK_PRESSURE 0x0020
444#define FAIR_FLOW_CTRL 0x0010
445#define NO_EXC_COLLISION_DROP 0x0008
446#define SWITCH_HUGE_PACKET 0x0004
447#define SWITCH_LEGAL_PACKET 0x0002
448#define SWITCH_BUF_RESERVE 0x0001
449
450/* SGCR3 */
451#define KS8842_SGCR3_P 0x0406
452#define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P
453
454#define BROADCAST_STORM_RATE_LO 0xFF00
455#define SWITCH_REPEATER 0x0080
456#define SWITCH_HALF_DUPLEX 0x0040
457#define SWITCH_FLOW_CTRL 0x0020
458#define SWITCH_10_MBIT 0x0010
459#define SWITCH_REPLACE_NULL_VID 0x0008
460#define BROADCAST_STORM_RATE_HI 0x0007
461
462#define BROADCAST_STORM_RATE 0x07FF
463
464/* SGCR4 */
465#define KS8842_SGCR4_P 0x0408
466
467/* SGCR5 */
468#define KS8842_SGCR5_P 0x040A
469#define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P
470
471#define LED_MODE 0x8200
472#define LED_SPEED_DUPLEX_ACT 0x0000
473#define LED_SPEED_DUPLEX_LINK_ACT 0x8000
474#define LED_DUPLEX_10_100 0x0200
475
476/* SGCR6 */
477#define KS8842_SGCR6_P 0x0410
478#define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P
479
480#define KS8842_PRIORITY_MASK 3
481#define KS8842_PRIORITY_SHIFT 2
482
483/* SGCR7 */
484#define KS8842_SGCR7_P 0x0412
485#define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P
486
487#define SWITCH_UNK_DEF_PORT_ENABLE 0x0008
488#define SWITCH_UNK_DEF_PORT_3 0x0004
489#define SWITCH_UNK_DEF_PORT_2 0x0002
490#define SWITCH_UNK_DEF_PORT_1 0x0001
491
492/* MACAR1 */
493#define KS8842_MACAR1_P 0x0470
494#define KS8842_MACAR2_P 0x0472
495#define KS8842_MACAR3_P 0x0474
496#define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P
497#define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1)
498#define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P
499#define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1)
500#define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P
501#define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1)
502
503/* TOSR1 */
504#define KS8842_TOSR1_P 0x0480
505#define KS8842_TOSR2_P 0x0482
506#define KS8842_TOSR3_P 0x0484
507#define KS8842_TOSR4_P 0x0486
508#define KS8842_TOSR5_P 0x0488
509#define KS8842_TOSR6_P 0x048A
510#define KS8842_TOSR7_P 0x0490
511#define KS8842_TOSR8_P 0x0492
512#define KS8842_TOS_1_OFFSET KS8842_TOSR1_P
513#define KS8842_TOS_2_OFFSET KS8842_TOSR2_P
514#define KS8842_TOS_3_OFFSET KS8842_TOSR3_P
515#define KS8842_TOS_4_OFFSET KS8842_TOSR4_P
516#define KS8842_TOS_5_OFFSET KS8842_TOSR5_P
517#define KS8842_TOS_6_OFFSET KS8842_TOSR6_P
518
519#define KS8842_TOS_7_OFFSET KS8842_TOSR7_P
520#define KS8842_TOS_8_OFFSET KS8842_TOSR8_P
521
522/* P1CR1 */
523#define KS8842_P1CR1_P 0x0500
524#define KS8842_P1CR2_P 0x0502
525#define KS8842_P1VIDR_P 0x0504
526#define KS8842_P1CR3_P 0x0506
527#define KS8842_P1IRCR_P 0x0508
528#define KS8842_P1ERCR_P 0x050A
529#define KS884X_P1SCSLMD_P 0x0510
530#define KS884X_P1CR4_P 0x0512
531#define KS884X_P1SR_P 0x0514
532
533/* P2CR1 */
534#define KS8842_P2CR1_P 0x0520
535#define KS8842_P2CR2_P 0x0522
536#define KS8842_P2VIDR_P 0x0524
537#define KS8842_P2CR3_P 0x0526
538#define KS8842_P2IRCR_P 0x0528
539#define KS8842_P2ERCR_P 0x052A
540#define KS884X_P2SCSLMD_P 0x0530
541#define KS884X_P2CR4_P 0x0532
542#define KS884X_P2SR_P 0x0534
543
544/* P3CR1 */
545#define KS8842_P3CR1_P 0x0540
546#define KS8842_P3CR2_P 0x0542
547#define KS8842_P3VIDR_P 0x0544
548#define KS8842_P3CR3_P 0x0546
549#define KS8842_P3IRCR_P 0x0548
550#define KS8842_P3ERCR_P 0x054A
551
552#define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P
553#define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P
554#define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P
555
556#define PORT_CTRL_ADDR(port, addr) \
557 (addr = KS8842_PORT_1_CTRL_1 + (port) * \
558 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
559
560#define KS8842_PORT_CTRL_1_OFFSET 0x00
561
562#define PORT_BROADCAST_STORM 0x0080
563#define PORT_DIFFSERV_ENABLE 0x0040
564#define PORT_802_1P_ENABLE 0x0020
565#define PORT_BASED_PRIORITY_MASK 0x0018
566#define PORT_BASED_PRIORITY_BASE 0x0003
567#define PORT_BASED_PRIORITY_SHIFT 3
568#define PORT_BASED_PRIORITY_0 0x0000
569#define PORT_BASED_PRIORITY_1 0x0008
570#define PORT_BASED_PRIORITY_2 0x0010
571#define PORT_BASED_PRIORITY_3 0x0018
572#define PORT_INSERT_TAG 0x0004
573#define PORT_REMOVE_TAG 0x0002
574#define PORT_PRIO_QUEUE_ENABLE 0x0001
575
576#define KS8842_PORT_CTRL_2_OFFSET 0x02
577
578#define PORT_INGRESS_VLAN_FILTER 0x4000
579#define PORT_DISCARD_NON_VID 0x2000
580#define PORT_FORCE_FLOW_CTRL 0x1000
581#define PORT_BACK_PRESSURE 0x0800
582#define PORT_TX_ENABLE 0x0400
583#define PORT_RX_ENABLE 0x0200
584#define PORT_LEARN_DISABLE 0x0100
585#define PORT_MIRROR_SNIFFER 0x0080
586#define PORT_MIRROR_RX 0x0040
587#define PORT_MIRROR_TX 0x0020
588#define PORT_USER_PRIORITY_CEILING 0x0008
589#define PORT_VLAN_MEMBERSHIP 0x0007
590
591#define KS8842_PORT_CTRL_VID_OFFSET 0x04
592
593#define PORT_DEFAULT_VID 0x0001
594
595#define KS8842_PORT_CTRL_3_OFFSET 0x06
596
597#define PORT_INGRESS_LIMIT_MODE 0x000C
598#define PORT_INGRESS_ALL 0x0000
599#define PORT_INGRESS_UNICAST 0x0004
600#define PORT_INGRESS_MULTICAST 0x0008
601#define PORT_INGRESS_BROADCAST 0x000C
602#define PORT_COUNT_IFG 0x0002
603#define PORT_COUNT_PREAMBLE 0x0001
604
605#define KS8842_PORT_IN_RATE_OFFSET 0x08
606#define KS8842_PORT_OUT_RATE_OFFSET 0x0A
607
608#define PORT_PRIORITY_RATE 0x0F
609#define PORT_PRIORITY_RATE_SHIFT 4
610
611#define KS884X_PORT_LINK_MD 0x10
612
613#define PORT_CABLE_10M_SHORT 0x8000
614#define PORT_CABLE_DIAG_RESULT 0x6000
615#define PORT_CABLE_STAT_NORMAL 0x0000
616#define PORT_CABLE_STAT_OPEN 0x2000
617#define PORT_CABLE_STAT_SHORT 0x4000
618#define PORT_CABLE_STAT_FAILED 0x6000
619#define PORT_START_CABLE_DIAG 0x1000
620#define PORT_FORCE_LINK 0x0800
621#define PORT_POWER_SAVING_DISABLE 0x0400
622#define PORT_PHY_REMOTE_LOOPBACK 0x0200
623#define PORT_CABLE_FAULT_COUNTER 0x01FF
624
625#define KS884X_PORT_CTRL_4_OFFSET 0x12
626
627#define PORT_LED_OFF 0x8000
628#define PORT_TX_DISABLE 0x4000
629#define PORT_AUTO_NEG_RESTART 0x2000
630#define PORT_REMOTE_FAULT_DISABLE 0x1000
631#define PORT_POWER_DOWN 0x0800
632#define PORT_AUTO_MDIX_DISABLE 0x0400
633#define PORT_FORCE_MDIX 0x0200
634#define PORT_LOOPBACK 0x0100
635#define PORT_AUTO_NEG_ENABLE 0x0080
636#define PORT_FORCE_100_MBIT 0x0040
637#define PORT_FORCE_FULL_DUPLEX 0x0020
638#define PORT_AUTO_NEG_SYM_PAUSE 0x0010
639#define PORT_AUTO_NEG_100BTX_FD 0x0008
640#define PORT_AUTO_NEG_100BTX 0x0004
641#define PORT_AUTO_NEG_10BT_FD 0x0002
642#define PORT_AUTO_NEG_10BT 0x0001
643
644#define KS884X_PORT_STATUS_OFFSET 0x14
645
646#define PORT_HP_MDIX 0x8000
647#define PORT_REVERSED_POLARITY 0x2000
648#define PORT_RX_FLOW_CTRL 0x0800
649#define PORT_TX_FLOW_CTRL 0x1000
650#define PORT_STATUS_SPEED_100MBIT 0x0400
651#define PORT_STATUS_FULL_DUPLEX 0x0200
652#define PORT_REMOTE_FAULT 0x0100
653#define PORT_MDIX_STATUS 0x0080
654#define PORT_AUTO_NEG_COMPLETE 0x0040
655#define PORT_STATUS_LINK_GOOD 0x0020
656#define PORT_REMOTE_SYM_PAUSE 0x0010
657#define PORT_REMOTE_100BTX_FD 0x0008
658#define PORT_REMOTE_100BTX 0x0004
659#define PORT_REMOTE_10BT_FD 0x0002
660#define PORT_REMOTE_10BT 0x0001
661
662/*
663#define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
664#define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000
665#define STATIC_MAC_TABLE_VALID 00-00080000-00000000
666#define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000
667#define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000
668#define STATIC_MAC_TABLE_FID 00-03C00000-00000000
669*/
670
671#define STATIC_MAC_TABLE_ADDR 0x0000FFFF
672#define STATIC_MAC_TABLE_FWD_PORTS 0x00070000
673#define STATIC_MAC_TABLE_VALID 0x00080000
674#define STATIC_MAC_TABLE_OVERRIDE 0x00100000
675#define STATIC_MAC_TABLE_USE_FID 0x00200000
676#define STATIC_MAC_TABLE_FID 0x03C00000
677
678#define STATIC_MAC_FWD_PORTS_SHIFT 16
679#define STATIC_MAC_FID_SHIFT 22
680
681/*
682#define VLAN_TABLE_VID 00-00000000-00000FFF
683#define VLAN_TABLE_FID 00-00000000-0000F000
684#define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000
685#define VLAN_TABLE_VALID 00-00000000-00080000
686*/
687
688#define VLAN_TABLE_VID 0x00000FFF
689#define VLAN_TABLE_FID 0x0000F000
690#define VLAN_TABLE_MEMBERSHIP 0x00070000
691#define VLAN_TABLE_VALID 0x00080000
692
693#define VLAN_TABLE_FID_SHIFT 12
694#define VLAN_TABLE_MEMBERSHIP_SHIFT 16
695
696/*
697#define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
698#define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000
699#define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000
700#define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000
701#define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000
702#define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000
703#define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000
704#define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000
705*/
706
707#define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF
708#define DYNAMIC_MAC_TABLE_FID 0x000F0000
709#define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000
710#define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000
711#define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000
712
713#define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03
714#define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04
715#define DYNAMIC_MAC_TABLE_RESERVED 0x78
716#define DYNAMIC_MAC_TABLE_NOT_READY 0x80
717
718#define DYNAMIC_MAC_FID_SHIFT 16
719#define DYNAMIC_MAC_SRC_PORT_SHIFT 20
720#define DYNAMIC_MAC_TIMESTAMP_SHIFT 22
721#define DYNAMIC_MAC_ENTRIES_SHIFT 24
722#define DYNAMIC_MAC_ENTRIES_H_SHIFT 8
723
724/*
725#define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF
726#define MIB_COUNTER_VALID 00-00000000-40000000
727#define MIB_COUNTER_OVERFLOW 00-00000000-80000000
728*/
729
730#define MIB_COUNTER_VALUE 0x3FFFFFFF
731#define MIB_COUNTER_VALID 0x40000000
732#define MIB_COUNTER_OVERFLOW 0x80000000
733
734#define MIB_PACKET_DROPPED 0x0000FFFF
735
736#define KS_MIB_PACKET_DROPPED_TX_0 0x100
737#define KS_MIB_PACKET_DROPPED_TX_1 0x101
738#define KS_MIB_PACKET_DROPPED_TX 0x102
739#define KS_MIB_PACKET_DROPPED_RX_0 0x103
740#define KS_MIB_PACKET_DROPPED_RX_1 0x104
741#define KS_MIB_PACKET_DROPPED_RX 0x105
742
743/* Change default LED mode. */
744#define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT
745
746#define MAC_ADDR_ORDER(i) (ETH_ALEN - 1 - (i))
747
748#define MAX_ETHERNET_BODY_SIZE 1500
749#define ETHERNET_HEADER_SIZE (14 + VLAN_HLEN)
750
751#define MAX_ETHERNET_PACKET_SIZE \
752 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
753
754#define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4)
755#define MAX_RX_BUF_SIZE (1912 + 4)
756
757#define ADDITIONAL_ENTRIES 16
758#define MAX_MULTICAST_LIST 32
759
760#define HW_MULTICAST_SIZE 8
761
762#define HW_TO_DEV_PORT(port) (port - 1)
763
764enum {
765 media_connected,
766 media_disconnected
767};
768
769enum {
770 OID_COUNTER_UNKOWN,
771
772 OID_COUNTER_FIRST,
773
774 /* total transmit errors */
775 OID_COUNTER_XMIT_ERROR,
776
777 /* total receive errors */
778 OID_COUNTER_RCV_ERROR,
779
780 OID_COUNTER_LAST
781};
782
783/*
784 * Hardware descriptor definitions
785 */
786
787#define DESC_ALIGNMENT 16
788#define BUFFER_ALIGNMENT 8
789
790#define NUM_OF_RX_DESC 64
791#define NUM_OF_TX_DESC 64
792
793#define KS_DESC_RX_FRAME_LEN 0x000007FF
794#define KS_DESC_RX_FRAME_TYPE 0x00008000
795#define KS_DESC_RX_ERROR_CRC 0x00010000
796#define KS_DESC_RX_ERROR_RUNT 0x00020000
797#define KS_DESC_RX_ERROR_TOO_LONG 0x00040000
798#define KS_DESC_RX_ERROR_PHY 0x00080000
799#define KS884X_DESC_RX_PORT_MASK 0x00300000
800#define KS_DESC_RX_MULTICAST 0x01000000
801#define KS_DESC_RX_ERROR 0x02000000
802#define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000
803#define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000
804#define KS_DESC_RX_ERROR_CSUM_IP 0x10000000
805#define KS_DESC_RX_LAST 0x20000000
806#define KS_DESC_RX_FIRST 0x40000000
807#define KS_DESC_RX_ERROR_COND \
808 (KS_DESC_RX_ERROR_CRC | \
809 KS_DESC_RX_ERROR_RUNT | \
810 KS_DESC_RX_ERROR_PHY | \
811 KS_DESC_RX_ERROR_TOO_LONG)
812
813#define KS_DESC_HW_OWNED 0x80000000
814
815#define KS_DESC_BUF_SIZE 0x000007FF
816#define KS884X_DESC_TX_PORT_MASK 0x00300000
817#define KS_DESC_END_OF_RING 0x02000000
818#define KS_DESC_TX_CSUM_GEN_UDP 0x04000000
819#define KS_DESC_TX_CSUM_GEN_TCP 0x08000000
820#define KS_DESC_TX_CSUM_GEN_IP 0x10000000
821#define KS_DESC_TX_LAST 0x20000000
822#define KS_DESC_TX_FIRST 0x40000000
823#define KS_DESC_TX_INTERRUPT 0x80000000
824
825#define KS_DESC_PORT_SHIFT 20
826
827#define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE)
828
829#define KS_DESC_TX_MASK \
830 (KS_DESC_TX_INTERRUPT | \
831 KS_DESC_TX_FIRST | \
832 KS_DESC_TX_LAST | \
833 KS_DESC_TX_CSUM_GEN_IP | \
834 KS_DESC_TX_CSUM_GEN_TCP | \
835 KS_DESC_TX_CSUM_GEN_UDP | \
836 KS_DESC_BUF_SIZE)
837
838struct ksz_desc_rx_stat {
839#ifdef __BIG_ENDIAN_BITFIELD
840 u32 hw_owned:1;
841 u32 first_desc:1;
842 u32 last_desc:1;
843 u32 csum_err_ip:1;
844 u32 csum_err_tcp:1;
845 u32 csum_err_udp:1;
846 u32 error:1;
847 u32 multicast:1;
848 u32 src_port:4;
849 u32 err_phy:1;
850 u32 err_too_long:1;
851 u32 err_runt:1;
852 u32 err_crc:1;
853 u32 frame_type:1;
854 u32 reserved1:4;
855 u32 frame_len:11;
856#else
857 u32 frame_len:11;
858 u32 reserved1:4;
859 u32 frame_type:1;
860 u32 err_crc:1;
861 u32 err_runt:1;
862 u32 err_too_long:1;
863 u32 err_phy:1;
864 u32 src_port:4;
865 u32 multicast:1;
866 u32 error:1;
867 u32 csum_err_udp:1;
868 u32 csum_err_tcp:1;
869 u32 csum_err_ip:1;
870 u32 last_desc:1;
871 u32 first_desc:1;
872 u32 hw_owned:1;
873#endif
874};
875
876struct ksz_desc_tx_stat {
877#ifdef __BIG_ENDIAN_BITFIELD
878 u32 hw_owned:1;
879 u32 reserved1:31;
880#else
881 u32 reserved1:31;
882 u32 hw_owned:1;
883#endif
884};
885
886struct ksz_desc_rx_buf {
887#ifdef __BIG_ENDIAN_BITFIELD
888 u32 reserved4:6;
889 u32 end_of_ring:1;
890 u32 reserved3:14;
891 u32 buf_size:11;
892#else
893 u32 buf_size:11;
894 u32 reserved3:14;
895 u32 end_of_ring:1;
896 u32 reserved4:6;
897#endif
898};
899
900struct ksz_desc_tx_buf {
901#ifdef __BIG_ENDIAN_BITFIELD
902 u32 intr:1;
903 u32 first_seg:1;
904 u32 last_seg:1;
905 u32 csum_gen_ip:1;
906 u32 csum_gen_tcp:1;
907 u32 csum_gen_udp:1;
908 u32 end_of_ring:1;
909 u32 reserved4:1;
910 u32 dest_port:4;
911 u32 reserved3:9;
912 u32 buf_size:11;
913#else
914 u32 buf_size:11;
915 u32 reserved3:9;
916 u32 dest_port:4;
917 u32 reserved4:1;
918 u32 end_of_ring:1;
919 u32 csum_gen_udp:1;
920 u32 csum_gen_tcp:1;
921 u32 csum_gen_ip:1;
922 u32 last_seg:1;
923 u32 first_seg:1;
924 u32 intr:1;
925#endif
926};
927
928union desc_stat {
929 struct ksz_desc_rx_stat rx;
930 struct ksz_desc_tx_stat tx;
931 u32 data;
932};
933
934union desc_buf {
935 struct ksz_desc_rx_buf rx;
936 struct ksz_desc_tx_buf tx;
937 u32 data;
938};
939
940/**
941 * struct ksz_hw_desc - Hardware descriptor data structure
942 * @ctrl: Descriptor control value.
943 * @buf: Descriptor buffer value.
944 * @addr: Physical address of memory buffer.
945 * @next: Pointer to next hardware descriptor.
946 */
947struct ksz_hw_desc {
948 union desc_stat ctrl;
949 union desc_buf buf;
950 u32 addr;
951 u32 next;
952};
953
954/**
955 * struct ksz_sw_desc - Software descriptor data structure
956 * @ctrl: Descriptor control value.
957 * @buf: Descriptor buffer value.
958 * @buf_size: Current buffers size value in hardware descriptor.
959 */
960struct ksz_sw_desc {
961 union desc_stat ctrl;
962 union desc_buf buf;
963 u32 buf_size;
964};
965
966/**
967 * struct ksz_dma_buf - OS dependent DMA buffer data structure
968 * @skb: Associated socket buffer.
969 * @dma: Associated physical DMA address.
970 * len: Actual len used.
971 */
972struct ksz_dma_buf {
973 struct sk_buff *skb;
974 dma_addr_t dma;
975 int len;
976};
977
978/**
979 * struct ksz_desc - Descriptor structure
980 * @phw: Hardware descriptor pointer to uncached physical memory.
981 * @sw: Cached memory to hold hardware descriptor values for
982 * manipulation.
983 * @dma_buf: Operating system dependent data structure to hold physical
984 * memory buffer allocation information.
985 */
986struct ksz_desc {
987 struct ksz_hw_desc *phw;
988 struct ksz_sw_desc sw;
989 struct ksz_dma_buf dma_buf;
990};
991
992#define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf))
993
994/**
995 * struct ksz_desc_info - Descriptor information data structure
996 * @ring: First descriptor in the ring.
997 * @cur: Current descriptor being manipulated.
998 * @ring_virt: First hardware descriptor in the ring.
999 * @ring_phys: The physical address of the first descriptor of the ring.
1000 * @size: Size of hardware descriptor.
1001 * @alloc: Number of descriptors allocated.
1002 * @avail: Number of descriptors available for use.
1003 * @last: Index for last descriptor released to hardware.
1004 * @next: Index for next descriptor available for use.
1005 * @mask: Mask for index wrapping.
1006 */
1007struct ksz_desc_info {
1008 struct ksz_desc *ring;
1009 struct ksz_desc *cur;
1010 struct ksz_hw_desc *ring_virt;
1011 u32 ring_phys;
1012 int size;
1013 int alloc;
1014 int avail;
1015 int last;
1016 int next;
1017 int mask;
1018};
1019
1020/*
1021 * KSZ8842 switch definitions
1022 */
1023
1024enum {
1025 TABLE_STATIC_MAC = 0,
1026 TABLE_VLAN,
1027 TABLE_DYNAMIC_MAC,
1028 TABLE_MIB
1029};
1030
1031#define LEARNED_MAC_TABLE_ENTRIES 1024
1032#define STATIC_MAC_TABLE_ENTRIES 8
1033
1034/**
1035 * struct ksz_mac_table - Static MAC table data structure
1036 * @mac_addr: MAC address to filter.
1037 * @vid: VID value.
1038 * @fid: FID value.
1039 * @ports: Port membership.
1040 * @override: Override setting.
1041 * @use_fid: FID use setting.
1042 * @valid: Valid setting indicating the entry is being used.
1043 */
1044struct ksz_mac_table {
1045 u8 mac_addr[ETH_ALEN];
1046 u16 vid;
1047 u8 fid;
1048 u8 ports;
1049 u8 override:1;
1050 u8 use_fid:1;
1051 u8 valid:1;
1052};
1053
1054#define VLAN_TABLE_ENTRIES 16
1055
1056/**
1057 * struct ksz_vlan_table - VLAN table data structure
1058 * @vid: VID value.
1059 * @fid: FID value.
1060 * @member: Port membership.
1061 */
1062struct ksz_vlan_table {
1063 u16 vid;
1064 u8 fid;
1065 u8 member;
1066};
1067
1068#define DIFFSERV_ENTRIES 64
1069#define PRIO_802_1P_ENTRIES 8
1070#define PRIO_QUEUES 4
1071
1072#define SWITCH_PORT_NUM 2
1073#define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1)
1074#define HOST_MASK (1 << SWITCH_PORT_NUM)
1075#define PORT_MASK 7
1076
1077#define MAIN_PORT 0
1078#define OTHER_PORT 1
1079#define HOST_PORT SWITCH_PORT_NUM
1080
1081#define PORT_COUNTER_NUM 0x20
1082#define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2)
1083
1084#define MIB_COUNTER_RX_LO_PRIORITY 0x00
1085#define MIB_COUNTER_RX_HI_PRIORITY 0x01
1086#define MIB_COUNTER_RX_UNDERSIZE 0x02
1087#define MIB_COUNTER_RX_FRAGMENT 0x03
1088#define MIB_COUNTER_RX_OVERSIZE 0x04
1089#define MIB_COUNTER_RX_JABBER 0x05
1090#define MIB_COUNTER_RX_SYMBOL_ERR 0x06
1091#define MIB_COUNTER_RX_CRC_ERR 0x07
1092#define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08
1093#define MIB_COUNTER_RX_CTRL_8808 0x09
1094#define MIB_COUNTER_RX_PAUSE 0x0A
1095#define MIB_COUNTER_RX_BROADCAST 0x0B
1096#define MIB_COUNTER_RX_MULTICAST 0x0C
1097#define MIB_COUNTER_RX_UNICAST 0x0D
1098#define MIB_COUNTER_RX_OCTET_64 0x0E
1099#define MIB_COUNTER_RX_OCTET_65_127 0x0F
1100#define MIB_COUNTER_RX_OCTET_128_255 0x10
1101#define MIB_COUNTER_RX_OCTET_256_511 0x11
1102#define MIB_COUNTER_RX_OCTET_512_1023 0x12
1103#define MIB_COUNTER_RX_OCTET_1024_1522 0x13
1104#define MIB_COUNTER_TX_LO_PRIORITY 0x14
1105#define MIB_COUNTER_TX_HI_PRIORITY 0x15
1106#define MIB_COUNTER_TX_LATE_COLLISION 0x16
1107#define MIB_COUNTER_TX_PAUSE 0x17
1108#define MIB_COUNTER_TX_BROADCAST 0x18
1109#define MIB_COUNTER_TX_MULTICAST 0x19
1110#define MIB_COUNTER_TX_UNICAST 0x1A
1111#define MIB_COUNTER_TX_DEFERRED 0x1B
1112#define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C
1113#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1114#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1115#define MIB_COUNTER_TX_MULTI_COLLISION 0x1F
1116
1117#define MIB_COUNTER_RX_DROPPED_PACKET 0x20
1118#define MIB_COUNTER_TX_DROPPED_PACKET 0x21
1119
1120/**
1121 * struct ksz_port_mib - Port MIB data structure
1122 * @cnt_ptr: Current pointer to MIB counter index.
1123 * @link_down: Indication the link has just gone down.
1124 * @state: Connection status of the port.
1125 * @mib_start: The starting counter index. Some ports do not start at 0.
1126 * @counter: 64-bit MIB counter value.
1127 * @dropped: Temporary buffer to remember last read packet dropped values.
1128 *
1129 * MIB counters needs to be read periodically so that counters do not get
1130 * overflowed and give incorrect values. A right balance is needed to
1131 * satisfy this condition and not waste too much CPU time.
1132 *
1133 * It is pointless to read MIB counters when the port is disconnected. The
1134 * @state provides the connection status so that MIB counters are read only
1135 * when the port is connected. The @link_down indicates the port is just
1136 * disconnected so that all MIB counters are read one last time to update the
1137 * information.
1138 */
1139struct ksz_port_mib {
1140 u8 cnt_ptr;
1141 u8 link_down;
1142 u8 state;
1143 u8 mib_start;
1144
1145 u64 counter[TOTAL_PORT_COUNTER_NUM];
1146 u32 dropped[2];
1147};
1148
1149/**
1150 * struct ksz_port_cfg - Port configuration data structure
1151 * @vid: VID value.
1152 * @member: Port membership.
1153 * @port_prio: Port priority.
1154 * @rx_rate: Receive priority rate.
1155 * @tx_rate: Transmit priority rate.
1156 * @stp_state: Current Spanning Tree Protocol state.
1157 */
1158struct ksz_port_cfg {
1159 u16 vid;
1160 u8 member;
1161 u8 port_prio;
1162 u32 rx_rate[PRIO_QUEUES];
1163 u32 tx_rate[PRIO_QUEUES];
1164 int stp_state;
1165};
1166
1167/**
1168 * struct ksz_switch - KSZ8842 switch data structure
1169 * @mac_table: MAC table entries information.
1170 * @vlan_table: VLAN table entries information.
1171 * @port_cfg: Port configuration information.
1172 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS
1173 * (bit7 ~ bit2) field.
1174 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p
1175 * Tag priority field.
1176 * @br_addr: Bridge address. Used for STP.
1177 * @other_addr: Other MAC address. Used for multiple network device mode.
1178 * @broad_per: Broadcast storm percentage.
1179 * @member: Current port membership. Used for STP.
1180 */
1181struct ksz_switch {
1182 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186 u8 diffserv[DIFFSERV_ENTRIES];
1187 u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
1189 u8 br_addr[ETH_ALEN];
1190 u8 other_addr[ETH_ALEN];
1191
1192 u8 broad_per;
1193 u8 member;
1194};
1195
1196#define TX_RATE_UNIT 10000
1197
1198/**
1199 * struct ksz_port_info - Port information data structure
1200 * @state: Connection status of the port.
1201 * @tx_rate: Transmit rate divided by 10000 to get Mbit.
1202 * @duplex: Duplex mode.
1203 * @advertised: Advertised auto-negotiation setting. Used to determine link.
1204 * @partner: Auto-negotiation partner setting. Used to determine link.
1205 * @port_id: Port index to access actual hardware register.
1206 * @pdev: Pointer to OS dependent network device.
1207 */
1208struct ksz_port_info {
1209 uint state;
1210 uint tx_rate;
1211 u8 duplex;
1212 u8 advertised;
1213 u8 partner;
1214 u8 port_id;
1215 void *pdev;
1216};
1217
1218#define MAX_TX_HELD_SIZE 52000
1219
1220/* Hardware features and bug fixes. */
1221#define LINK_INT_WORKING (1 << 0)
1222#define SMALL_PACKET_TX_BUG (1 << 1)
1223#define HALF_DUPLEX_SIGNAL_BUG (1 << 2)
1224#define RX_HUGE_FRAME (1 << 4)
1225#define STP_SUPPORT (1 << 8)
1226
1227/* Software overrides. */
1228#define PAUSE_FLOW_CTRL (1 << 0)
1229#define FAST_AGING (1 << 1)
1230
1231/**
1232 * struct ksz_hw - KSZ884X hardware data structure
1233 * @io: Virtual address assigned.
1234 * @ksz_switch: Pointer to KSZ8842 switch.
1235 * @port_info: Port information.
1236 * @port_mib: Port MIB information.
1237 * @dev_count: Number of network devices this hardware supports.
1238 * @dst_ports: Destination ports in switch for transmission.
1239 * @id: Hardware ID. Used for display only.
1240 * @mib_cnt: Number of MIB counters this hardware has.
1241 * @mib_port_cnt: Number of ports with MIB counters.
1242 * @tx_cfg: Cached transmit control settings.
1243 * @rx_cfg: Cached receive control settings.
1244 * @intr_mask: Current interrupt mask.
1245 * @intr_set: Current interrup set.
1246 * @intr_blocked: Interrupt blocked.
1247 * @rx_desc_info: Receive descriptor information.
1248 * @tx_desc_info: Transmit descriptor information.
1249 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization.
1250 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization.
1251 * @tx_size: Transmit data size. Used for TX optimization.
1252 * The maximum is defined by MAX_TX_HELD_SIZE.
1253 * @perm_addr: Permanent MAC address.
1254 * @override_addr: Overridden MAC address.
1255 * @address: Additional MAC address entries.
1256 * @addr_list_size: Additional MAC address list size.
1257 * @mac_override: Indication of MAC address overridden.
1258 * @promiscuous: Counter to keep track of promiscuous mode set.
1259 * @all_multi: Counter to keep track of all multicast mode set.
1260 * @multi_list: Multicast address entries.
1261 * @multi_bits: Cached multicast hash table settings.
1262 * @multi_list_size: Multicast address list size.
1263 * @enabled: Indication of hardware enabled.
1264 * @rx_stop: Indication of receive process stop.
1265 * @features: Hardware features to enable.
1266 * @overrides: Hardware features to override.
1267 * @parent: Pointer to parent, network device private structure.
1268 */
1269struct ksz_hw {
1270 void __iomem *io;
1271
1272 struct ksz_switch *ksz_switch;
1273 struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274 struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275 int dev_count;
1276 int dst_ports;
1277 int id;
1278 int mib_cnt;
1279 int mib_port_cnt;
1280
1281 u32 tx_cfg;
1282 u32 rx_cfg;
1283 u32 intr_mask;
1284 u32 intr_set;
1285 uint intr_blocked;
1286
1287 struct ksz_desc_info rx_desc_info;
1288 struct ksz_desc_info tx_desc_info;
1289
1290 int tx_int_cnt;
1291 int tx_int_mask;
1292 int tx_size;
1293
1294 u8 perm_addr[ETH_ALEN];
1295 u8 override_addr[ETH_ALEN];
1296 u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297 u8 addr_list_size;
1298 u8 mac_override;
1299 u8 promiscuous;
1300 u8 all_multi;
1301 u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302 u8 multi_bits[HW_MULTICAST_SIZE];
1303 u8 multi_list_size;
1304
1305 u8 enabled;
1306 u8 rx_stop;
1307 u8 reserved2[1];
1308
1309 uint features;
1310 uint overrides;
1311
1312 void *parent;
1313};
1314
1315enum {
1316 PHY_NO_FLOW_CTRL,
1317 PHY_FLOW_CTRL,
1318 PHY_TX_ONLY,
1319 PHY_RX_ONLY
1320};
1321
1322/**
1323 * struct ksz_port - Virtual port data structure
1324 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full
1325 * duplex, and 0 for auto, which normally results in full
1326 * duplex.
1327 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and
1328 * 0 for auto, which normally results in 100 Mbit.
1329 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for
1330 * force.
1331 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow
1332 * control, and PHY_FLOW_CTRL for flow control.
1333 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334 * Mbit PHY.
1335 * @first_port: Index of first port this port supports.
1336 * @mib_port_cnt: Number of ports with MIB counters.
1337 * @port_cnt: Number of ports this port supports.
1338 * @counter: Port statistics counter.
1339 * @hw: Pointer to hardware structure.
1340 * @linked: Pointer to port information linked to this port.
1341 */
1342struct ksz_port {
1343 u8 duplex;
1344 u8 speed;
1345 u8 force_link;
1346 u8 flow_ctrl;
1347
1348 int first_port;
1349 int mib_port_cnt;
1350 int port_cnt;
1351 u64 counter[OID_COUNTER_LAST];
1352
1353 struct ksz_hw *hw;
1354 struct ksz_port_info *linked;
1355};
1356
1357/**
1358 * struct ksz_timer_info - Timer information data structure
1359 * @timer: Kernel timer.
1360 * @cnt: Running timer counter.
1361 * @max: Number of times to run timer; -1 for infinity.
1362 * @period: Timer period in jiffies.
1363 */
1364struct ksz_timer_info {
1365 struct timer_list timer;
1366 int cnt;
1367 int max;
1368 int period;
1369};
1370
1371/**
1372 * struct ksz_shared_mem - OS dependent shared memory data structure
1373 * @dma_addr: Physical DMA address allocated.
1374 * @alloc_size: Allocation size.
1375 * @phys: Actual physical address used.
1376 * @alloc_virt: Virtual address allocated.
1377 * @virt: Actual virtual address used.
1378 */
1379struct ksz_shared_mem {
1380 dma_addr_t dma_addr;
1381 uint alloc_size;
1382 uint phys;
1383 u8 *alloc_virt;
1384 u8 *virt;
1385};
1386
1387/**
1388 * struct ksz_counter_info - OS dependent counter information data structure
1389 * @counter: Wait queue to wakeup after counters are read.
1390 * @time: Next time in jiffies to read counter.
1391 * @read: Indication of counters read in full or not.
1392 */
1393struct ksz_counter_info {
1394 wait_queue_head_t counter;
1395 unsigned long time;
1396 int read;
1397};
1398
1399/**
1400 * struct dev_info - Network device information data structure
1401 * @dev: Pointer to network device.
1402 * @pdev: Pointer to PCI device.
1403 * @hw: Hardware structure.
1404 * @desc_pool: Physical memory used for descriptor pool.
1405 * @hwlock: Spinlock to prevent hardware from accessing.
1406 * @lock: Mutex lock to prevent device from accessing.
1407 * @dev_rcv: Receive process function used.
1408 * @last_skb: Socket buffer allocated for descriptor rx fragments.
1409 * @skb_index: Buffer index for receiving fragments.
1410 * @skb_len: Buffer length for receiving fragments.
1411 * @mib_read: Workqueue to read MIB counters.
1412 * @mib_timer_info: Timer to read MIB counters.
1413 * @counter: Used for MIB reading.
1414 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE;
1415 * the maximum is MAX_RX_BUF_SIZE.
1416 * @opened: Counter to keep track of device open.
1417 * @rx_tasklet: Receive processing tasklet.
1418 * @tx_tasklet: Transmit processing tasklet.
1419 * @wol_enable: Wake-on-LAN enable set by ethtool.
1420 * @wol_support: Wake-on-LAN support used by ethtool.
1421 * @pme_wait: Used for KSZ8841 power management.
1422 */
1423struct dev_info {
1424 struct net_device *dev;
1425 struct pci_dev *pdev;
1426
1427 struct ksz_hw hw;
1428 struct ksz_shared_mem desc_pool;
1429
1430 spinlock_t hwlock;
1431 struct mutex lock;
1432
1433 int (*dev_rcv)(struct dev_info *);
1434
1435 struct sk_buff *last_skb;
1436 int skb_index;
1437 int skb_len;
1438
1439 struct work_struct mib_read;
1440 struct ksz_timer_info mib_timer_info;
1441 struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442
1443 int mtu;
1444 int opened;
1445
1446 struct tasklet_struct rx_tasklet;
1447 struct tasklet_struct tx_tasklet;
1448
1449 int wol_enable;
1450 int wol_support;
1451 unsigned long pme_wait;
1452};
1453
1454/**
1455 * struct dev_priv - Network device private data structure
1456 * @adapter: Adapter device information.
1457 * @port: Port information.
1458 * @monitor_time_info: Timer to monitor ports.
1459 * @proc_sem: Semaphore for proc accessing.
1460 * @id: Device ID.
1461 * @mii_if: MII interface information.
1462 * @advertising: Temporary variable to store advertised settings.
1463 * @msg_enable: The message flags controlling driver output.
1464 * @media_state: The connection status of the device.
1465 * @multicast: The all multicast state of the device.
1466 * @promiscuous: The promiscuous state of the device.
1467 */
1468struct dev_priv {
1469 struct dev_info *adapter;
1470 struct ksz_port port;
1471 struct ksz_timer_info monitor_timer_info;
1472
1473 struct semaphore proc_sem;
1474 int id;
1475
1476 struct mii_if_info mii_if;
1477 u32 advertising;
1478
1479 u32 msg_enable;
1480 int media_state;
1481 int multicast;
1482 int promiscuous;
1483};
1484
1485#define DRV_NAME "KSZ884X PCI"
1486#define DEVICE_NAME "KSZ884x PCI"
1487#define DRV_VERSION "1.0.0"
1488#define DRV_RELDATE "Feb 8, 2010"
1489
1490static char version[] =
1491 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492
1493static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494
1495/*
1496 * Interrupt processing primary routines
1497 */
1498
1499static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500{
1501 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502}
1503
1504static inline void hw_dis_intr(struct ksz_hw *hw)
1505{
1506 hw->intr_blocked = hw->intr_mask;
1507 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509}
1510
1511static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512{
1513 hw->intr_set = interrupt;
1514 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515}
1516
1517static inline void hw_ena_intr(struct ksz_hw *hw)
1518{
1519 hw->intr_blocked = 0;
1520 hw_set_intr(hw, hw->intr_mask);
1521}
1522
1523static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524{
1525 hw->intr_mask &= ~(bit);
1526}
1527
1528static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529{
1530 u32 read_intr;
1531
1532 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533 hw->intr_set = read_intr & ~interrupt;
1534 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535 hw_dis_intr_bit(hw, interrupt);
1536}
1537
1538/**
1539 * hw_turn_on_intr - turn on specified interrupts
1540 * @hw: The hardware instance.
1541 * @bit: The interrupt bits to be on.
1542 *
1543 * This routine turns on the specified interrupts in the interrupt mask so that
1544 * those interrupts will be enabled.
1545 */
1546static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547{
1548 hw->intr_mask |= bit;
1549
1550 if (!hw->intr_blocked)
1551 hw_set_intr(hw, hw->intr_mask);
1552}
1553
1554static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555{
1556 u32 read_intr;
1557
1558 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559 hw->intr_set = read_intr | interrupt;
1560 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561}
1562
1563static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564{
1565 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566 *status = *status & hw->intr_set;
1567}
1568
1569static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570{
1571 if (interrupt)
1572 hw_ena_intr(hw);
1573}
1574
1575/**
1576 * hw_block_intr - block hardware interrupts
1577 *
1578 * This function blocks all interrupts of the hardware and returns the current
1579 * interrupt enable mask so that interrupts can be restored later.
1580 *
1581 * Return the current interrupt enable mask.
1582 */
1583static uint hw_block_intr(struct ksz_hw *hw)
1584{
1585 uint interrupt = 0;
1586
1587 if (!hw->intr_blocked) {
1588 hw_dis_intr(hw);
1589 interrupt = hw->intr_blocked;
1590 }
1591 return interrupt;
1592}
1593
1594/*
1595 * Hardware descriptor routines
1596 */
1597
1598static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599{
1600 status.rx.hw_owned = 0;
1601 desc->phw->ctrl.data = cpu_to_le32(status.data);
1602}
1603
1604static inline void release_desc(struct ksz_desc *desc)
1605{
1606 desc->sw.ctrl.tx.hw_owned = 1;
1607 if (desc->sw.buf_size != desc->sw.buf.data) {
1608 desc->sw.buf_size = desc->sw.buf.data;
1609 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610 }
1611 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612}
1613
1614static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615{
1616 *desc = &info->ring[info->last];
1617 info->last++;
1618 info->last &= info->mask;
1619 info->avail--;
1620 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621}
1622
1623static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624{
1625 desc->phw->addr = cpu_to_le32(addr);
1626}
1627
1628static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629{
1630 desc->sw.buf.rx.buf_size = len;
1631}
1632
1633static inline void get_tx_pkt(struct ksz_desc_info *info,
1634 struct ksz_desc **desc)
1635{
1636 *desc = &info->ring[info->next];
1637 info->next++;
1638 info->next &= info->mask;
1639 info->avail--;
1640 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641}
1642
1643static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644{
1645 desc->phw->addr = cpu_to_le32(addr);
1646}
1647
1648static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649{
1650 desc->sw.buf.tx.buf_size = len;
1651}
1652
1653/* Switch functions */
1654
1655#define TABLE_READ 0x10
1656#define TABLE_SEL_SHIFT 2
1657
1658#define HW_DELAY(hw, reg) \
1659 do { \
1660 u16 dummy; \
1661 dummy = readw(hw->io + reg); \
1662 } while (0)
1663
1664/**
1665 * sw_r_table - read 4 bytes of data from switch table
1666 * @hw: The hardware instance.
1667 * @table: The table selector.
1668 * @addr: The address of the table entry.
1669 * @data: Buffer to store the read data.
1670 *
1671 * This routine reads 4 bytes of data from the table of the switch.
1672 * Hardware interrupts are disabled to minimize corruption of read data.
1673 */
1674static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675{
1676 u16 ctrl_addr;
1677 uint interrupt;
1678
1679 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680
1681 interrupt = hw_block_intr(hw);
1682
1683 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684 HW_DELAY(hw, KS884X_IACR_OFFSET);
1685 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686
1687 hw_restore_intr(hw, interrupt);
1688}
1689
1690/**
1691 * sw_w_table_64 - write 8 bytes of data to the switch table
1692 * @hw: The hardware instance.
1693 * @table: The table selector.
1694 * @addr: The address of the table entry.
1695 * @data_hi: The high part of data to be written (bit63 ~ bit32).
1696 * @data_lo: The low part of data to be written (bit31 ~ bit0).
1697 *
1698 * This routine writes 8 bytes of data to the table of the switch.
1699 * Hardware interrupts are disabled to minimize corruption of written data.
1700 */
1701static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702 u32 data_lo)
1703{
1704 u16 ctrl_addr;
1705 uint interrupt;
1706
1707 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708
1709 interrupt = hw_block_intr(hw);
1710
1711 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713
1714 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715 HW_DELAY(hw, KS884X_IACR_OFFSET);
1716
1717 hw_restore_intr(hw, interrupt);
1718}
1719
1720/**
1721 * sw_w_sta_mac_table - write to the static MAC table
1722 * @hw: The hardware instance.
1723 * @addr: The address of the table entry.
1724 * @mac_addr: The MAC address.
1725 * @ports: The port members.
1726 * @override: The flag to override the port receive/transmit settings.
1727 * @valid: The flag to indicate entry is valid.
1728 * @use_fid: The flag to indicate the FID is valid.
1729 * @fid: The FID value.
1730 *
1731 * This routine writes an entry of the static MAC table of the switch. It
1732 * calls sw_w_table_64() to write the data.
1733 */
1734static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735 u8 ports, int override, int valid, int use_fid, u8 fid)
1736{
1737 u32 data_hi;
1738 u32 data_lo;
1739
1740 data_lo = ((u32) mac_addr[2] << 24) |
1741 ((u32) mac_addr[3] << 16) |
1742 ((u32) mac_addr[4] << 8) | mac_addr[5];
1743 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745
1746 if (override)
1747 data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748 if (use_fid) {
1749 data_hi |= STATIC_MAC_TABLE_USE_FID;
1750 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751 }
1752 if (valid)
1753 data_hi |= STATIC_MAC_TABLE_VALID;
1754
1755 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756}
1757
1758/**
1759 * sw_r_vlan_table - read from the VLAN table
1760 * @hw: The hardware instance.
1761 * @addr: The address of the table entry.
1762 * @vid: Buffer to store the VID.
1763 * @fid: Buffer to store the VID.
1764 * @member: Buffer to store the port membership.
1765 *
1766 * This function reads an entry of the VLAN table of the switch. It calls
1767 * sw_r_table() to get the data.
1768 *
1769 * Return 0 if the entry is valid; otherwise -1.
1770 */
1771static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772 u8 *member)
1773{
1774 u32 data;
1775
1776 sw_r_table(hw, TABLE_VLAN, addr, &data);
1777 if (data & VLAN_TABLE_VALID) {
1778 *vid = (u16)(data & VLAN_TABLE_VID);
1779 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781 VLAN_TABLE_MEMBERSHIP_SHIFT);
1782 return 0;
1783 }
1784 return -1;
1785}
1786
1787/**
1788 * port_r_mib_cnt - read MIB counter
1789 * @hw: The hardware instance.
1790 * @port: The port index.
1791 * @addr: The address of the counter.
1792 * @cnt: Buffer to store the counter.
1793 *
1794 * This routine reads a MIB counter of the port.
1795 * Hardware interrupts are disabled to minimize corruption of read data.
1796 */
1797static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798{
1799 u32 data;
1800 u16 ctrl_addr;
1801 uint interrupt;
1802 int timeout;
1803
1804 ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805
1806 interrupt = hw_block_intr(hw);
1807
1808 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810 HW_DELAY(hw, KS884X_IACR_OFFSET);
1811
1812 for (timeout = 100; timeout > 0; timeout--) {
1813 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814
1815 if (data & MIB_COUNTER_VALID) {
1816 if (data & MIB_COUNTER_OVERFLOW)
1817 *cnt += MIB_COUNTER_VALUE + 1;
1818 *cnt += data & MIB_COUNTER_VALUE;
1819 break;
1820 }
1821 }
1822
1823 hw_restore_intr(hw, interrupt);
1824}
1825
1826/**
1827 * port_r_mib_pkt - read dropped packet counts
1828 * @hw: The hardware instance.
1829 * @port: The port index.
1830 * @cnt: Buffer to store the receive and transmit dropped packet counts.
1831 *
1832 * This routine reads the dropped packet counts of the port.
1833 * Hardware interrupts are disabled to minimize corruption of read data.
1834 */
1835static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836{
1837 u32 cur;
1838 u32 data;
1839 u16 ctrl_addr;
1840 uint interrupt;
1841 int index;
1842
1843 index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844 do {
1845 interrupt = hw_block_intr(hw);
1846
1847 ctrl_addr = (u16) index;
1848 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849 << 8);
1850 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851 HW_DELAY(hw, KS884X_IACR_OFFSET);
1852 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853
1854 hw_restore_intr(hw, interrupt);
1855
1856 data &= MIB_PACKET_DROPPED;
1857 cur = *last;
1858 if (data != cur) {
1859 *last = data;
1860 if (data < cur)
1861 data += MIB_PACKET_DROPPED + 1;
1862 data -= cur;
1863 *cnt += data;
1864 }
1865 ++last;
1866 ++cnt;
1867 index -= KS_MIB_PACKET_DROPPED_TX -
1868 KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870}
1871
1872/**
1873 * port_r_cnt - read MIB counters periodically
1874 * @hw: The hardware instance.
1875 * @port: The port index.
1876 *
1877 * This routine is used to read the counters of the port periodically to avoid
1878 * counter overflow. The hardware should be acquired first before calling this
1879 * routine.
1880 *
1881 * Return non-zero when not all counters not read.
1882 */
1883static int port_r_cnt(struct ksz_hw *hw, int port)
1884{
1885 struct ksz_port_mib *mib = &hw->port_mib[port];
1886
1887 if (mib->mib_start < PORT_COUNTER_NUM)
1888 while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890 &mib->counter[mib->cnt_ptr]);
1891 ++mib->cnt_ptr;
1892 }
1893 if (hw->mib_cnt > PORT_COUNTER_NUM)
1894 port_r_mib_pkt(hw, port, mib->dropped,
1895 &mib->counter[PORT_COUNTER_NUM]);
1896 mib->cnt_ptr = 0;
1897 return 0;
1898}
1899
1900/**
1901 * port_init_cnt - initialize MIB counter values
1902 * @hw: The hardware instance.
1903 * @port: The port index.
1904 *
1905 * This routine is used to initialize all counters to zero if the hardware
1906 * cannot do it after reset.
1907 */
1908static void port_init_cnt(struct ksz_hw *hw, int port)
1909{
1910 struct ksz_port_mib *mib = &hw->port_mib[port];
1911
1912 mib->cnt_ptr = 0;
1913 if (mib->mib_start < PORT_COUNTER_NUM)
1914 do {
1915 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916 &mib->counter[mib->cnt_ptr]);
1917 ++mib->cnt_ptr;
1918 } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919 if (hw->mib_cnt > PORT_COUNTER_NUM)
1920 port_r_mib_pkt(hw, port, mib->dropped,
1921 &mib->counter[PORT_COUNTER_NUM]);
1922 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923 mib->cnt_ptr = 0;
1924}
1925
1926/*
1927 * Port functions
1928 */
1929
1930/**
1931 * port_chk - check port register bits
1932 * @hw: The hardware instance.
1933 * @port: The port index.
1934 * @offset: The offset of the port register.
1935 * @bits: The data bits to check.
1936 *
1937 * This function checks whether the specified bits of the port register are set
1938 * or not.
1939 *
1940 * Return 0 if the bits are not set.
1941 */
1942static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943{
1944 u32 addr;
1945 u16 data;
1946
1947 PORT_CTRL_ADDR(port, addr);
1948 addr += offset;
1949 data = readw(hw->io + addr);
1950 return (data & bits) == bits;
1951}
1952
1953/**
1954 * port_cfg - set port register bits
1955 * @hw: The hardware instance.
1956 * @port: The port index.
1957 * @offset: The offset of the port register.
1958 * @bits: The data bits to set.
1959 * @set: The flag indicating whether the bits are to be set or not.
1960 *
1961 * This routine sets or resets the specified bits of the port register.
1962 */
1963static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964 int set)
1965{
1966 u32 addr;
1967 u16 data;
1968
1969 PORT_CTRL_ADDR(port, addr);
1970 addr += offset;
1971 data = readw(hw->io + addr);
1972 if (set)
1973 data |= bits;
1974 else
1975 data &= ~bits;
1976 writew(data, hw->io + addr);
1977}
1978
1979/**
1980 * port_chk_shift - check port bit
1981 * @hw: The hardware instance.
1982 * @port: The port index.
1983 * @offset: The offset of the register.
1984 * @shift: Number of bits to shift.
1985 *
1986 * This function checks whether the specified port is set in the register or
1987 * not.
1988 *
1989 * Return 0 if the port is not set.
1990 */
1991static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992{
1993 u16 data;
1994 u16 bit = 1 << port;
1995
1996 data = readw(hw->io + addr);
1997 data >>= shift;
1998 return (data & bit) == bit;
1999}
2000
2001/**
2002 * port_cfg_shift - set port bit
2003 * @hw: The hardware instance.
2004 * @port: The port index.
2005 * @offset: The offset of the register.
2006 * @shift: Number of bits to shift.
2007 * @set: The flag indicating whether the port is to be set or not.
2008 *
2009 * This routine sets or resets the specified port in the register.
2010 */
2011static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012 int set)
2013{
2014 u16 data;
2015 u16 bits = 1 << port;
2016
2017 data = readw(hw->io + addr);
2018 bits <<= shift;
2019 if (set)
2020 data |= bits;
2021 else
2022 data &= ~bits;
2023 writew(data, hw->io + addr);
2024}
2025
2026/**
2027 * port_r8 - read byte from port register
2028 * @hw: The hardware instance.
2029 * @port: The port index.
2030 * @offset: The offset of the port register.
2031 * @data: Buffer to store the data.
2032 *
2033 * This routine reads a byte from the port register.
2034 */
2035static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036{
2037 u32 addr;
2038
2039 PORT_CTRL_ADDR(port, addr);
2040 addr += offset;
2041 *data = readb(hw->io + addr);
2042}
2043
2044/**
2045 * port_r16 - read word from port register.
2046 * @hw: The hardware instance.
2047 * @port: The port index.
2048 * @offset: The offset of the port register.
2049 * @data: Buffer to store the data.
2050 *
2051 * This routine reads a word from the port register.
2052 */
2053static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054{
2055 u32 addr;
2056
2057 PORT_CTRL_ADDR(port, addr);
2058 addr += offset;
2059 *data = readw(hw->io + addr);
2060}
2061
2062/**
2063 * port_w16 - write word to port register.
2064 * @hw: The hardware instance.
2065 * @port: The port index.
2066 * @offset: The offset of the port register.
2067 * @data: Data to write.
2068 *
2069 * This routine writes a word to the port register.
2070 */
2071static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072{
2073 u32 addr;
2074
2075 PORT_CTRL_ADDR(port, addr);
2076 addr += offset;
2077 writew(data, hw->io + addr);
2078}
2079
2080/**
2081 * sw_chk - check switch register bits
2082 * @hw: The hardware instance.
2083 * @addr: The address of the switch register.
2084 * @bits: The data bits to check.
2085 *
2086 * This function checks whether the specified bits of the switch register are
2087 * set or not.
2088 *
2089 * Return 0 if the bits are not set.
2090 */
2091static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092{
2093 u16 data;
2094
2095 data = readw(hw->io + addr);
2096 return (data & bits) == bits;
2097}
2098
2099/**
2100 * sw_cfg - set switch register bits
2101 * @hw: The hardware instance.
2102 * @addr: The address of the switch register.
2103 * @bits: The data bits to set.
2104 * @set: The flag indicating whether the bits are to be set or not.
2105 *
2106 * This function sets or resets the specified bits of the switch register.
2107 */
2108static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109{
2110 u16 data;
2111
2112 data = readw(hw->io + addr);
2113 if (set)
2114 data |= bits;
2115 else
2116 data &= ~bits;
2117 writew(data, hw->io + addr);
2118}
2119
2120/* Bandwidth */
2121
2122static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123{
2124 port_cfg(hw, p,
2125 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126}
2127
2128static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129{
2130 return port_chk(hw, p,
2131 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132}
2133
2134/* Driver set switch broadcast storm protection at 10% rate. */
2135#define BROADCAST_STORM_PROTECTION_RATE 10
2136
2137/* 148,800 frames * 67 ms / 100 */
2138#define BROADCAST_STORM_VALUE 9969
2139
2140/**
2141 * sw_cfg_broad_storm - configure broadcast storm threshold
2142 * @hw: The hardware instance.
2143 * @percent: Broadcast storm threshold in percent of transmit rate.
2144 *
2145 * This routine configures the broadcast storm threshold of the switch.
2146 */
2147static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148{
2149 u16 data;
2150 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151
2152 if (value > BROADCAST_STORM_RATE)
2153 value = BROADCAST_STORM_RATE;
2154
2155 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159}
2160
2161/**
2162 * sw_get_board_storm - get broadcast storm threshold
2163 * @hw: The hardware instance.
2164 * @percent: Buffer to store the broadcast storm threshold percentage.
2165 *
2166 * This routine retrieves the broadcast storm threshold of the switch.
2167 */
2168static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169{
2170 int num;
2171 u16 data;
2172
2173 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174 num = (data & BROADCAST_STORM_RATE_HI);
2175 num <<= 8;
2176 num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177 num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178 *percent = (u8) num;
2179}
2180
2181/**
2182 * sw_dis_broad_storm - disable broadstorm
2183 * @hw: The hardware instance.
2184 * @port: The port index.
2185 *
2186 * This routine disables the broadcast storm limit function of the switch.
2187 */
2188static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189{
2190 port_cfg_broad_storm(hw, port, 0);
2191}
2192
2193/**
2194 * sw_ena_broad_storm - enable broadcast storm
2195 * @hw: The hardware instance.
2196 * @port: The port index.
2197 *
2198 * This routine enables the broadcast storm limit function of the switch.
2199 */
2200static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201{
2202 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203 port_cfg_broad_storm(hw, port, 1);
2204}
2205
2206/**
2207 * sw_init_broad_storm - initialize broadcast storm
2208 * @hw: The hardware instance.
2209 *
2210 * This routine initializes the broadcast storm limit function of the switch.
2211 */
2212static void sw_init_broad_storm(struct ksz_hw *hw)
2213{
2214 int port;
2215
2216 hw->ksz_switch->broad_per = 1;
2217 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218 for (port = 0; port < TOTAL_PORT_NUM; port++)
2219 sw_dis_broad_storm(hw, port);
2220 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221}
2222
2223/**
2224 * hw_cfg_broad_storm - configure broadcast storm
2225 * @hw: The hardware instance.
2226 * @percent: Broadcast storm threshold in percent of transmit rate.
2227 *
2228 * This routine configures the broadcast storm threshold of the switch.
2229 * It is called by user functions. The hardware should be acquired first.
2230 */
2231static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232{
2233 if (percent > 100)
2234 percent = 100;
2235
2236 sw_cfg_broad_storm(hw, percent);
2237 sw_get_broad_storm(hw, &percent);
2238 hw->ksz_switch->broad_per = percent;
2239}
2240
2241/**
2242 * sw_dis_prio_rate - disable switch priority rate
2243 * @hw: The hardware instance.
2244 * @port: The port index.
2245 *
2246 * This routine disables the priority rate function of the switch.
2247 */
2248static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249{
2250 u32 addr;
2251
2252 PORT_CTRL_ADDR(port, addr);
2253 addr += KS8842_PORT_IN_RATE_OFFSET;
2254 writel(0, hw->io + addr);
2255}
2256
2257/**
2258 * sw_init_prio_rate - initialize switch prioirty rate
2259 * @hw: The hardware instance.
2260 *
2261 * This routine initializes the priority rate function of the switch.
2262 */
2263static void sw_init_prio_rate(struct ksz_hw *hw)
2264{
2265 int port;
2266 int prio;
2267 struct ksz_switch *sw = hw->ksz_switch;
2268
2269 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270 for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271 sw->port_cfg[port].rx_rate[prio] =
2272 sw->port_cfg[port].tx_rate[prio] = 0;
2273 }
2274 sw_dis_prio_rate(hw, port);
2275 }
2276}
2277
2278/* Communication */
2279
2280static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281{
2282 port_cfg(hw, p,
2283 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284}
2285
2286static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287{
2288 port_cfg(hw, p,
2289 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290}
2291
2292static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293{
2294 return port_chk(hw, p,
2295 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296}
2297
2298static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299{
2300 return port_chk(hw, p,
2301 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302}
2303
2304/* Spanning Tree */
2305
2306static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2307{
2308 port_cfg(hw, p,
2309 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2310}
2311
2312static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2313{
2314 port_cfg(hw, p,
2315 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2316}
2317
2318static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2319{
2320 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2321}
2322
2323static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2324{
2325 if (!(hw->overrides & FAST_AGING)) {
2326 sw_cfg_fast_aging(hw, 1);
2327 mdelay(1);
2328 sw_cfg_fast_aging(hw, 0);
2329 }
2330}
2331
2332/* VLAN */
2333
2334static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2335{
2336 port_cfg(hw, p,
2337 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2338}
2339
2340static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2341{
2342 port_cfg(hw, p,
2343 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2344}
2345
2346static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2347{
2348 return port_chk(hw, p,
2349 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2350}
2351
2352static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2353{
2354 return port_chk(hw, p,
2355 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2356}
2357
2358static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2359{
2360 port_cfg(hw, p,
2361 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2362}
2363
2364static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2365{
2366 port_cfg(hw, p,
2367 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2368}
2369
2370static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2371{
2372 return port_chk(hw, p,
2373 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2374}
2375
2376static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2377{
2378 return port_chk(hw, p,
2379 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2380}
2381
2382/* Mirroring */
2383
2384static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2385{
2386 port_cfg(hw, p,
2387 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2388}
2389
2390static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2391{
2392 port_cfg(hw, p,
2393 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2394}
2395
2396static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2397{
2398 port_cfg(hw, p,
2399 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2400}
2401
2402static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2403{
2404 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2405}
2406
2407static void sw_init_mirror(struct ksz_hw *hw)
2408{
2409 int port;
2410
2411 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2412 port_cfg_mirror_sniffer(hw, port, 0);
2413 port_cfg_mirror_rx(hw, port, 0);
2414 port_cfg_mirror_tx(hw, port, 0);
2415 }
2416 sw_cfg_mirror_rx_tx(hw, 0);
2417}
2418
2419static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2420{
2421 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2422 SWITCH_UNK_DEF_PORT_ENABLE, set);
2423}
2424
2425static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2426{
2427 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428 SWITCH_UNK_DEF_PORT_ENABLE);
2429}
2430
2431static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2432{
2433 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2434}
2435
2436static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2437{
2438 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2439}
2440
2441/* Priority */
2442
2443static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2444{
2445 port_cfg(hw, p,
2446 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2447}
2448
2449static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2450{
2451 port_cfg(hw, p,
2452 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2453}
2454
2455static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2456{
2457 port_cfg(hw, p,
2458 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2459}
2460
2461static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2462{
2463 port_cfg(hw, p,
2464 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2465}
2466
2467static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2468{
2469 return port_chk(hw, p,
2470 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2471}
2472
2473static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2474{
2475 return port_chk(hw, p,
2476 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2477}
2478
2479static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2480{
2481 return port_chk(hw, p,
2482 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2483}
2484
2485static inline int port_chk_prio(struct ksz_hw *hw, int p)
2486{
2487 return port_chk(hw, p,
2488 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2489}
2490
2491/**
2492 * sw_dis_diffserv - disable switch DiffServ priority
2493 * @hw: The hardware instance.
2494 * @port: The port index.
2495 *
2496 * This routine disables the DiffServ priority function of the switch.
2497 */
2498static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2499{
2500 port_cfg_diffserv(hw, port, 0);
2501}
2502
2503/**
2504 * sw_dis_802_1p - disable switch 802.1p priority
2505 * @hw: The hardware instance.
2506 * @port: The port index.
2507 *
2508 * This routine disables the 802.1p priority function of the switch.
2509 */
2510static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2511{
2512 port_cfg_802_1p(hw, port, 0);
2513}
2514
2515/**
2516 * sw_cfg_replace_null_vid -
2517 * @hw: The hardware instance.
2518 * @set: The flag to disable or enable.
2519 *
2520 */
2521static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2522{
2523 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2524}
2525
2526/**
2527 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2528 * @hw: The hardware instance.
2529 * @port: The port index.
2530 * @set: The flag to disable or enable.
2531 *
2532 * This routine enables the 802.1p priority re-mapping function of the switch.
2533 * That allows 802.1p priority field to be replaced with the port's default
2534 * tag's priority value if the ingress packet's 802.1p priority has a higher
2535 * priority than port's default tag's priority.
2536 */
2537static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2538{
2539 port_cfg_replace_vid(hw, port, set);
2540}
2541
2542/**
2543 * sw_cfg_port_based - configure switch port based priority
2544 * @hw: The hardware instance.
2545 * @port: The port index.
2546 * @prio: The priority to set.
2547 *
2548 * This routine configures the port based priority of the switch.
2549 */
2550static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2551{
2552 u16 data;
2553
2554 if (prio > PORT_BASED_PRIORITY_BASE)
2555 prio = PORT_BASED_PRIORITY_BASE;
2556
2557 hw->ksz_switch->port_cfg[port].port_prio = prio;
2558
2559 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2560 data &= ~PORT_BASED_PRIORITY_MASK;
2561 data |= prio << PORT_BASED_PRIORITY_SHIFT;
2562 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2563}
2564
2565/**
2566 * sw_dis_multi_queue - disable transmit multiple queues
2567 * @hw: The hardware instance.
2568 * @port: The port index.
2569 *
2570 * This routine disables the transmit multiple queues selection of the switch
2571 * port. Only single transmit queue on the port.
2572 */
2573static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2574{
2575 port_cfg_prio(hw, port, 0);
2576}
2577
2578/**
2579 * sw_init_prio - initialize switch priority
2580 * @hw: The hardware instance.
2581 *
2582 * This routine initializes the switch QoS priority functions.
2583 */
2584static void sw_init_prio(struct ksz_hw *hw)
2585{
2586 int port;
2587 int tos;
2588 struct ksz_switch *sw = hw->ksz_switch;
2589
2590 /*
2591 * Init all the 802.1p tag priority value to be assigned to different
2592 * priority queue.
2593 */
2594 sw->p_802_1p[0] = 0;
2595 sw->p_802_1p[1] = 0;
2596 sw->p_802_1p[2] = 1;
2597 sw->p_802_1p[3] = 1;
2598 sw->p_802_1p[4] = 2;
2599 sw->p_802_1p[5] = 2;
2600 sw->p_802_1p[6] = 3;
2601 sw->p_802_1p[7] = 3;
2602
2603 /*
2604 * Init all the DiffServ priority value to be assigned to priority
2605 * queue 0.
2606 */
2607 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2608 sw->diffserv[tos] = 0;
2609
2610 /* All QoS functions disabled. */
2611 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2612 sw_dis_multi_queue(hw, port);
2613 sw_dis_diffserv(hw, port);
2614 sw_dis_802_1p(hw, port);
2615 sw_cfg_replace_vid(hw, port, 0);
2616
2617 sw->port_cfg[port].port_prio = 0;
2618 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2619 }
2620 sw_cfg_replace_null_vid(hw, 0);
2621}
2622
2623/**
2624 * port_get_def_vid - get port default VID.
2625 * @hw: The hardware instance.
2626 * @port: The port index.
2627 * @vid: Buffer to store the VID.
2628 *
2629 * This routine retrieves the default VID of the port.
2630 */
2631static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2632{
2633 u32 addr;
2634
2635 PORT_CTRL_ADDR(port, addr);
2636 addr += KS8842_PORT_CTRL_VID_OFFSET;
2637 *vid = readw(hw->io + addr);
2638}
2639
2640/**
2641 * sw_init_vlan - initialize switch VLAN
2642 * @hw: The hardware instance.
2643 *
2644 * This routine initializes the VLAN function of the switch.
2645 */
2646static void sw_init_vlan(struct ksz_hw *hw)
2647{
2648 int port;
2649 int entry;
2650 struct ksz_switch *sw = hw->ksz_switch;
2651
2652 /* Read 16 VLAN entries from device's VLAN table. */
2653 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2654 sw_r_vlan_table(hw, entry,
2655 &sw->vlan_table[entry].vid,
2656 &sw->vlan_table[entry].fid,
2657 &sw->vlan_table[entry].member);
2658 }
2659
2660 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2661 port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2662 sw->port_cfg[port].member = PORT_MASK;
2663 }
2664}
2665
2666/**
2667 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2668 * @hw: The hardware instance.
2669 * @port: The port index.
2670 * @member: The port-based VLAN membership.
2671 *
2672 * This routine configures the port-based VLAN membership of the port.
2673 */
2674static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2675{
2676 u32 addr;
2677 u8 data;
2678
2679 PORT_CTRL_ADDR(port, addr);
2680 addr += KS8842_PORT_CTRL_2_OFFSET;
2681
2682 data = readb(hw->io + addr);
2683 data &= ~PORT_VLAN_MEMBERSHIP;
2684 data |= (member & PORT_MASK);
2685 writeb(data, hw->io + addr);
2686
2687 hw->ksz_switch->port_cfg[port].member = member;
2688}
2689
2690/**
2691 * sw_get_addr - get the switch MAC address.
2692 * @hw: The hardware instance.
2693 * @mac_addr: Buffer to store the MAC address.
2694 *
2695 * This function retrieves the MAC address of the switch.
2696 */
2697static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2698{
2699 int i;
2700
2701 for (i = 0; i < 6; i += 2) {
2702 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2703 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2704 }
2705}
2706
2707/**
2708 * sw_set_addr - configure switch MAC address
2709 * @hw: The hardware instance.
2710 * @mac_addr: The MAC address.
2711 *
2712 * This function configures the MAC address of the switch.
2713 */
2714static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2715{
2716 int i;
2717
2718 for (i = 0; i < 6; i += 2) {
2719 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2720 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2721 }
2722}
2723
2724/**
2725 * sw_set_global_ctrl - set switch global control
2726 * @hw: The hardware instance.
2727 *
2728 * This routine sets the global control of the switch function.
2729 */
2730static void sw_set_global_ctrl(struct ksz_hw *hw)
2731{
2732 u16 data;
2733
2734 /* Enable switch MII flow control. */
2735 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2736 data |= SWITCH_FLOW_CTRL;
2737 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2738
2739 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2740
2741 /* Enable aggressive back off algorithm in half duplex mode. */
2742 data |= SWITCH_AGGR_BACKOFF;
2743
2744 /* Enable automatic fast aging when link changed detected. */
2745 data |= SWITCH_AGING_ENABLE;
2746 data |= SWITCH_LINK_AUTO_AGING;
2747
2748 if (hw->overrides & FAST_AGING)
2749 data |= SWITCH_FAST_AGING;
2750 else
2751 data &= ~SWITCH_FAST_AGING;
2752 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2753
2754 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2755
2756 /* Enable no excessive collision drop. */
2757 data |= NO_EXC_COLLISION_DROP;
2758 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2759}
2760
2761enum {
2762 STP_STATE_DISABLED = 0,
2763 STP_STATE_LISTENING,
2764 STP_STATE_LEARNING,
2765 STP_STATE_FORWARDING,
2766 STP_STATE_BLOCKED,
2767 STP_STATE_SIMPLE
2768};
2769
2770/**
2771 * port_set_stp_state - configure port spanning tree state
2772 * @hw: The hardware instance.
2773 * @port: The port index.
2774 * @state: The spanning tree state.
2775 *
2776 * This routine configures the spanning tree state of the port.
2777 */
2778static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2779{
2780 u16 data;
2781
2782 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2783 switch (state) {
2784 case STP_STATE_DISABLED:
2785 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2786 data |= PORT_LEARN_DISABLE;
2787 break;
2788 case STP_STATE_LISTENING:
2789/*
2790 * No need to turn on transmit because of port direct mode.
2791 * Turning on receive is required if static MAC table is not setup.
2792 */
2793 data &= ~PORT_TX_ENABLE;
2794 data |= PORT_RX_ENABLE;
2795 data |= PORT_LEARN_DISABLE;
2796 break;
2797 case STP_STATE_LEARNING:
2798 data &= ~PORT_TX_ENABLE;
2799 data |= PORT_RX_ENABLE;
2800 data &= ~PORT_LEARN_DISABLE;
2801 break;
2802 case STP_STATE_FORWARDING:
2803 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2804 data &= ~PORT_LEARN_DISABLE;
2805 break;
2806 case STP_STATE_BLOCKED:
2807/*
2808 * Need to setup static MAC table with override to keep receiving BPDU
2809 * messages. See sw_init_stp routine.
2810 */
2811 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2812 data |= PORT_LEARN_DISABLE;
2813 break;
2814 case STP_STATE_SIMPLE:
2815 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2816 data |= PORT_LEARN_DISABLE;
2817 break;
2818 }
2819 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2820 hw->ksz_switch->port_cfg[port].stp_state = state;
2821}
2822
2823#define STP_ENTRY 0
2824#define BROADCAST_ENTRY 1
2825#define BRIDGE_ADDR_ENTRY 2
2826#define IPV6_ADDR_ENTRY 3
2827
2828/**
2829 * sw_clr_sta_mac_table - clear static MAC table
2830 * @hw: The hardware instance.
2831 *
2832 * This routine clears the static MAC table.
2833 */
2834static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2835{
2836 struct ksz_mac_table *entry;
2837 int i;
2838
2839 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2840 entry = &hw->ksz_switch->mac_table[i];
2841 sw_w_sta_mac_table(hw, i,
2842 entry->mac_addr, entry->ports,
2843 entry->override, 0,
2844 entry->use_fid, entry->fid);
2845 }
2846}
2847
2848/**
2849 * sw_init_stp - initialize switch spanning tree support
2850 * @hw: The hardware instance.
2851 *
2852 * This routine initializes the spanning tree support of the switch.
2853 */
2854static void sw_init_stp(struct ksz_hw *hw)
2855{
2856 struct ksz_mac_table *entry;
2857
2858 entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2859 entry->mac_addr[0] = 0x01;
2860 entry->mac_addr[1] = 0x80;
2861 entry->mac_addr[2] = 0xC2;
2862 entry->mac_addr[3] = 0x00;
2863 entry->mac_addr[4] = 0x00;
2864 entry->mac_addr[5] = 0x00;
2865 entry->ports = HOST_MASK;
2866 entry->override = 1;
2867 entry->valid = 1;
2868 sw_w_sta_mac_table(hw, STP_ENTRY,
2869 entry->mac_addr, entry->ports,
2870 entry->override, entry->valid,
2871 entry->use_fid, entry->fid);
2872}
2873
2874/**
2875 * sw_block_addr - block certain packets from the host port
2876 * @hw: The hardware instance.
2877 *
2878 * This routine blocks certain packets from reaching to the host port.
2879 */
2880static void sw_block_addr(struct ksz_hw *hw)
2881{
2882 struct ksz_mac_table *entry;
2883 int i;
2884
2885 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2886 entry = &hw->ksz_switch->mac_table[i];
2887 entry->valid = 0;
2888 sw_w_sta_mac_table(hw, i,
2889 entry->mac_addr, entry->ports,
2890 entry->override, entry->valid,
2891 entry->use_fid, entry->fid);
2892 }
2893}
2894
2895#define PHY_LINK_SUPPORT \
2896 (PHY_AUTO_NEG_ASYM_PAUSE | \
2897 PHY_AUTO_NEG_SYM_PAUSE | \
2898 PHY_AUTO_NEG_100BT4 | \
2899 PHY_AUTO_NEG_100BTX_FD | \
2900 PHY_AUTO_NEG_100BTX | \
2901 PHY_AUTO_NEG_10BT_FD | \
2902 PHY_AUTO_NEG_10BT)
2903
2904static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2905{
2906 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2907}
2908
2909static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2910{
2911 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2912}
2913
2914static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2915{
2916 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2917}
2918
2919static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2920{
2921 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2922}
2923
2924static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2925{
2926 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2927}
2928
2929static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2930{
2931 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2932}
2933
2934static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2935{
2936 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2937}
2938
2939static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2940{
2941 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2942}
2943
2944static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2945{
2946 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2947}
2948
2949static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2950{
2951 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2952}
2953
2954static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2955{
2956 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2957}
2958
2959static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2960{
2961 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2962}
2963
2964/**
2965 * hw_r_phy - read data from PHY register
2966 * @hw: The hardware instance.
2967 * @port: Port to read.
2968 * @reg: PHY register to read.
2969 * @val: Buffer to store the read data.
2970 *
2971 * This routine reads data from the PHY register.
2972 */
2973static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2974{
2975 int phy;
2976
2977 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2978 *val = readw(hw->io + phy);
2979}
2980
2981/**
2982 * port_w_phy - write data to PHY register
2983 * @hw: The hardware instance.
2984 * @port: Port to write.
2985 * @reg: PHY register to write.
2986 * @val: Word data to write.
2987 *
2988 * This routine writes data to the PHY register.
2989 */
2990static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2991{
2992 int phy;
2993
2994 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2995 writew(val, hw->io + phy);
2996}
2997
2998/*
2999 * EEPROM access functions
3000 */
3001
3002#define AT93C_CODE 0
3003#define AT93C_WR_OFF 0x00
3004#define AT93C_WR_ALL 0x10
3005#define AT93C_ER_ALL 0x20
3006#define AT93C_WR_ON 0x30
3007
3008#define AT93C_WRITE 1
3009#define AT93C_READ 2
3010#define AT93C_ERASE 3
3011
3012#define EEPROM_DELAY 4
3013
3014static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3015{
3016 u16 data;
3017
3018 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3019 data &= ~gpio;
3020 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3021}
3022
3023static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3024{
3025 u16 data;
3026
3027 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028 data |= gpio;
3029 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3030}
3031
3032static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3033{
3034 u16 data;
3035
3036 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037 return (u8)(data & gpio);
3038}
3039
3040static void eeprom_clk(struct ksz_hw *hw)
3041{
3042 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3043 udelay(EEPROM_DELAY);
3044 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3045 udelay(EEPROM_DELAY);
3046}
3047
3048static u16 spi_r(struct ksz_hw *hw)
3049{
3050 int i;
3051 u16 temp = 0;
3052
3053 for (i = 15; i >= 0; i--) {
3054 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3055 udelay(EEPROM_DELAY);
3056
3057 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3058
3059 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3060 udelay(EEPROM_DELAY);
3061 }
3062 return temp;
3063}
3064
3065static void spi_w(struct ksz_hw *hw, u16 data)
3066{
3067 int i;
3068
3069 for (i = 15; i >= 0; i--) {
3070 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3071 drop_gpio(hw, EEPROM_DATA_OUT);
3072 eeprom_clk(hw);
3073 }
3074}
3075
3076static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3077{
3078 int i;
3079
3080 /* Initial start bit */
3081 raise_gpio(hw, EEPROM_DATA_OUT);
3082 eeprom_clk(hw);
3083
3084 /* AT93C operation */
3085 for (i = 1; i >= 0; i--) {
3086 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3087 drop_gpio(hw, EEPROM_DATA_OUT);
3088 eeprom_clk(hw);
3089 }
3090
3091 /* Address location */
3092 for (i = 5; i >= 0; i--) {
3093 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094 drop_gpio(hw, EEPROM_DATA_OUT);
3095 eeprom_clk(hw);
3096 }
3097}
3098
3099#define EEPROM_DATA_RESERVED 0
3100#define EEPROM_DATA_MAC_ADDR_0 1
3101#define EEPROM_DATA_MAC_ADDR_1 2
3102#define EEPROM_DATA_MAC_ADDR_2 3
3103#define EEPROM_DATA_SUBSYS_ID 4
3104#define EEPROM_DATA_SUBSYS_VEN_ID 5
3105#define EEPROM_DATA_PM_CAP 6
3106
3107/* User defined EEPROM data */
3108#define EEPROM_DATA_OTHER_MAC_ADDR 9
3109
3110/**
3111 * eeprom_read - read from AT93C46 EEPROM
3112 * @hw: The hardware instance.
3113 * @reg: The register offset.
3114 *
3115 * This function reads a word from the AT93C46 EEPROM.
3116 *
3117 * Return the data value.
3118 */
3119static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3120{
3121 u16 data;
3122
3123 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3124
3125 spi_reg(hw, AT93C_READ, reg);
3126 data = spi_r(hw);
3127
3128 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3129
3130 return data;
3131}
3132
3133/**
3134 * eeprom_write - write to AT93C46 EEPROM
3135 * @hw: The hardware instance.
3136 * @reg: The register offset.
3137 * @data: The data value.
3138 *
3139 * This procedure writes a word to the AT93C46 EEPROM.
3140 */
3141static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3142{
3143 int timeout;
3144
3145 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3146
3147 /* Enable write. */
3148 spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3149 drop_gpio(hw, EEPROM_CHIP_SELECT);
3150 udelay(1);
3151
3152 /* Erase the register. */
3153 raise_gpio(hw, EEPROM_CHIP_SELECT);
3154 spi_reg(hw, AT93C_ERASE, reg);
3155 drop_gpio(hw, EEPROM_CHIP_SELECT);
3156 udelay(1);
3157
3158 /* Check operation complete. */
3159 raise_gpio(hw, EEPROM_CHIP_SELECT);
3160 timeout = 8;
3161 mdelay(2);
3162 do {
3163 mdelay(1);
3164 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3165 drop_gpio(hw, EEPROM_CHIP_SELECT);
3166 udelay(1);
3167
3168 /* Write the register. */
3169 raise_gpio(hw, EEPROM_CHIP_SELECT);
3170 spi_reg(hw, AT93C_WRITE, reg);
3171 spi_w(hw, data);
3172 drop_gpio(hw, EEPROM_CHIP_SELECT);
3173 udelay(1);
3174
3175 /* Check operation complete. */
3176 raise_gpio(hw, EEPROM_CHIP_SELECT);
3177 timeout = 8;
3178 mdelay(2);
3179 do {
3180 mdelay(1);
3181 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3182 drop_gpio(hw, EEPROM_CHIP_SELECT);
3183 udelay(1);
3184
3185 /* Disable write. */
3186 raise_gpio(hw, EEPROM_CHIP_SELECT);
3187 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3188
3189 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3190}
3191
3192/*
3193 * Link detection routines
3194 */
3195
3196static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3197{
3198 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3199 switch (port->flow_ctrl) {
3200 case PHY_FLOW_CTRL:
3201 ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3202 break;
3203 /* Not supported. */
3204 case PHY_TX_ONLY:
3205 case PHY_RX_ONLY:
3206 default:
3207 break;
3208 }
3209 return ctrl;
3210}
3211
3212static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3213{
3214 u32 rx_cfg;
3215 u32 tx_cfg;
3216
3217 rx_cfg = hw->rx_cfg;
3218 tx_cfg = hw->tx_cfg;
3219 if (rx)
3220 hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3221 else
3222 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3223 if (tx)
3224 hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3225 else
3226 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3227 if (hw->enabled) {
3228 if (rx_cfg != hw->rx_cfg)
3229 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3230 if (tx_cfg != hw->tx_cfg)
3231 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3232 }
3233}
3234
3235static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3236 u16 local, u16 remote)
3237{
3238 int rx;
3239 int tx;
3240
3241 if (hw->overrides & PAUSE_FLOW_CTRL)
3242 return;
3243
3244 rx = tx = 0;
3245 if (port->force_link)
3246 rx = tx = 1;
3247 if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3248 if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3249 rx = tx = 1;
3250 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3251 (local & PHY_AUTO_NEG_PAUSE) ==
3252 PHY_AUTO_NEG_ASYM_PAUSE) {
3253 tx = 1;
3254 }
3255 } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3256 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3257 rx = 1;
3258 }
3259 if (!hw->ksz_switch)
3260 set_flow_ctrl(hw, rx, tx);
3261}
3262
3263static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3264 struct ksz_port_info *info, u16 link_status)
3265{
3266 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3267 !(hw->overrides & PAUSE_FLOW_CTRL)) {
3268 u32 cfg = hw->tx_cfg;
3269
3270 /* Disable flow control in the half duplex mode. */
3271 if (1 == info->duplex)
3272 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3273 if (hw->enabled && cfg != hw->tx_cfg)
3274 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3275 }
3276}
3277
3278/**
3279 * port_get_link_speed - get current link status
3280 * @port: The port instance.
3281 *
3282 * This routine reads PHY registers to determine the current link status of the
3283 * switch ports.
3284 */
3285static void port_get_link_speed(struct ksz_port *port)
3286{
3287 uint interrupt;
3288 struct ksz_port_info *info;
3289 struct ksz_port_info *linked = NULL;
3290 struct ksz_hw *hw = port->hw;
3291 u16 data;
3292 u16 status;
3293 u8 local;
3294 u8 remote;
3295 int i;
3296 int p;
3297 int change = 0;
3298
3299 interrupt = hw_block_intr(hw);
3300
3301 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3302 info = &hw->port_info[p];
3303 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3304 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3305
3306 /*
3307 * Link status is changing all the time even when there is no
3308 * cable connection!
3309 */
3310 remote = status & (PORT_AUTO_NEG_COMPLETE |
3311 PORT_STATUS_LINK_GOOD);
3312 local = (u8) data;
3313
3314 /* No change to status. */
3315 if (local == info->advertised && remote == info->partner)
3316 continue;
3317
3318 info->advertised = local;
3319 info->partner = remote;
3320 if (status & PORT_STATUS_LINK_GOOD) {
3321
3322 /* Remember the first linked port. */
3323 if (!linked)
3324 linked = info;
3325
3326 info->tx_rate = 10 * TX_RATE_UNIT;
3327 if (status & PORT_STATUS_SPEED_100MBIT)
3328 info->tx_rate = 100 * TX_RATE_UNIT;
3329
3330 info->duplex = 1;
3331 if (status & PORT_STATUS_FULL_DUPLEX)
3332 info->duplex = 2;
3333
3334 if (media_connected != info->state) {
3335 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3336 &data);
3337 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3338 &status);
3339 determine_flow_ctrl(hw, port, data, status);
3340 if (hw->ksz_switch) {
3341 port_cfg_back_pressure(hw, p,
3342 (1 == info->duplex));
3343 }
3344 change |= 1 << i;
3345 port_cfg_change(hw, port, info, status);
3346 }
3347 info->state = media_connected;
3348 } else {
3349 if (media_disconnected != info->state) {
3350 change |= 1 << i;
3351
3352 /* Indicate the link just goes down. */
3353 hw->port_mib[p].link_down = 1;
3354 }
3355 info->state = media_disconnected;
3356 }
3357 hw->port_mib[p].state = (u8) info->state;
3358 }
3359
3360 if (linked && media_disconnected == port->linked->state)
3361 port->linked = linked;
3362
3363 hw_restore_intr(hw, interrupt);
3364}
3365
3366#define PHY_RESET_TIMEOUT 10
3367
3368/**
3369 * port_set_link_speed - set port speed
3370 * @port: The port instance.
3371 *
3372 * This routine sets the link speed of the switch ports.
3373 */
3374static void port_set_link_speed(struct ksz_port *port)
3375{
3376 struct ksz_hw *hw = port->hw;
3377 u16 data;
3378 u16 cfg;
3379 u8 status;
3380 int i;
3381 int p;
3382
3383 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3384 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3385 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3386
3387 cfg = 0;
3388 if (status & PORT_STATUS_LINK_GOOD)
3389 cfg = data;
3390
3391 data |= PORT_AUTO_NEG_ENABLE;
3392 data = advertised_flow_ctrl(port, data);
3393
3394 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3395 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3396
3397 /* Check if manual configuration is specified by the user. */
3398 if (port->speed || port->duplex) {
3399 if (10 == port->speed)
3400 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3401 PORT_AUTO_NEG_100BTX);
3402 else if (100 == port->speed)
3403 data &= ~(PORT_AUTO_NEG_10BT_FD |
3404 PORT_AUTO_NEG_10BT);
3405 if (1 == port->duplex)
3406 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3407 PORT_AUTO_NEG_10BT_FD);
3408 else if (2 == port->duplex)
3409 data &= ~(PORT_AUTO_NEG_100BTX |
3410 PORT_AUTO_NEG_10BT);
3411 }
3412 if (data != cfg) {
3413 data |= PORT_AUTO_NEG_RESTART;
3414 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3415 }
3416 }
3417}
3418
3419/**
3420 * port_force_link_speed - force port speed
3421 * @port: The port instance.
3422 *
3423 * This routine forces the link speed of the switch ports.
3424 */
3425static void port_force_link_speed(struct ksz_port *port)
3426{
3427 struct ksz_hw *hw = port->hw;
3428 u16 data;
3429 int i;
3430 int phy;
3431 int p;
3432
3433 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3434 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3435 hw_r_phy_ctrl(hw, phy, &data);
3436
3437 data &= ~PHY_AUTO_NEG_ENABLE;
3438
3439 if (10 == port->speed)
3440 data &= ~PHY_SPEED_100MBIT;
3441 else if (100 == port->speed)
3442 data |= PHY_SPEED_100MBIT;
3443 if (1 == port->duplex)
3444 data &= ~PHY_FULL_DUPLEX;
3445 else if (2 == port->duplex)
3446 data |= PHY_FULL_DUPLEX;
3447 hw_w_phy_ctrl(hw, phy, data);
3448 }
3449}
3450
3451static void port_set_power_saving(struct ksz_port *port, int enable)
3452{
3453 struct ksz_hw *hw = port->hw;
3454 int i;
3455 int p;
3456
3457 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3458 port_cfg(hw, p,
3459 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3460}
3461
3462/*
3463 * KSZ8841 power management functions
3464 */
3465
3466/**
3467 * hw_chk_wol_pme_status - check PMEN pin
3468 * @hw: The hardware instance.
3469 *
3470 * This function is used to check PMEN pin is asserted.
3471 *
3472 * Return 1 if PMEN pin is asserted; otherwise, 0.
3473 */
3474static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3475{
3476 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3477 struct pci_dev *pdev = hw_priv->pdev;
3478 u16 data;
3479
3480 if (!pdev->pm_cap)
3481 return 0;
3482 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3483 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3484}
3485
3486/**
3487 * hw_clr_wol_pme_status - clear PMEN pin
3488 * @hw: The hardware instance.
3489 *
3490 * This routine is used to clear PME_Status to deassert PMEN pin.
3491 */
3492static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3493{
3494 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3495 struct pci_dev *pdev = hw_priv->pdev;
3496 u16 data;
3497
3498 if (!pdev->pm_cap)
3499 return;
3500
3501 /* Clear PME_Status to deassert PMEN pin. */
3502 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3503 data |= PCI_PM_CTRL_PME_STATUS;
3504 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3505}
3506
3507/**
3508 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3509 * @hw: The hardware instance.
3510 * @set: The flag indicating whether to enable or disable.
3511 *
3512 * This routine is used to enable or disable Wake-on-LAN.
3513 */
3514static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3515{
3516 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3517 struct pci_dev *pdev = hw_priv->pdev;
3518 u16 data;
3519
3520 if (!pdev->pm_cap)
3521 return;
3522 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3523 data &= ~PCI_PM_CTRL_STATE_MASK;
3524 if (set)
3525 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3526 else
3527 data &= ~PCI_PM_CTRL_PME_ENABLE;
3528 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3529}
3530
3531/**
3532 * hw_cfg_wol - configure Wake-on-LAN features
3533 * @hw: The hardware instance.
3534 * @frame: The pattern frame bit.
3535 * @set: The flag indicating whether to enable or disable.
3536 *
3537 * This routine is used to enable or disable certain Wake-on-LAN features.
3538 */
3539static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3540{
3541 u16 data;
3542
3543 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3544 if (set)
3545 data |= frame;
3546 else
3547 data &= ~frame;
3548 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3549}
3550
3551/**
3552 * hw_set_wol_frame - program Wake-on-LAN pattern
3553 * @hw: The hardware instance.
3554 * @i: The frame index.
3555 * @mask_size: The size of the mask.
3556 * @mask: Mask to ignore certain bytes in the pattern.
3557 * @frame_size: The size of the frame.
3558 * @pattern: The frame data.
3559 *
3560 * This routine is used to program Wake-on-LAN pattern.
3561 */
3562static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3563 const u8 *mask, uint frame_size, const u8 *pattern)
3564{
3565 int bits;
3566 int from;
3567 int len;
3568 int to;
3569 u32 crc;
3570 u8 data[64];
3571 u8 val = 0;
3572
3573 if (frame_size > mask_size * 8)
3574 frame_size = mask_size * 8;
3575 if (frame_size > 64)
3576 frame_size = 64;
3577
3578 i *= 0x10;
3579 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3580 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3581
3582 bits = len = from = to = 0;
3583 do {
3584 if (bits) {
3585 if ((val & 1))
3586 data[to++] = pattern[from];
3587 val >>= 1;
3588 ++from;
3589 --bits;
3590 } else {
3591 val = mask[len];
3592 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3593 + len);
3594 ++len;
3595 if (val)
3596 bits = 8;
3597 else
3598 from += 8;
3599 }
3600 } while (from < (int) frame_size);
3601 if (val) {
3602 bits = mask[len - 1];
3603 val <<= (from % 8);
3604 bits &= ~val;
3605 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3606 1);
3607 }
3608 crc = ether_crc(to, data);
3609 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3610}
3611
3612/**
3613 * hw_add_wol_arp - add ARP pattern
3614 * @hw: The hardware instance.
3615 * @ip_addr: The IPv4 address assigned to the device.
3616 *
3617 * This routine is used to add ARP pattern for waking up the host.
3618 */
3619static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3620{
3621 static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3622 u8 pattern[42] = {
3623 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3624 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3625 0x08, 0x06,
3626 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3627 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3628 0x00, 0x00, 0x00, 0x00,
3629 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3630 0x00, 0x00, 0x00, 0x00 };
3631
3632 memcpy(&pattern[38], ip_addr, 4);
3633 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3634}
3635
3636/**
3637 * hw_add_wol_bcast - add broadcast pattern
3638 * @hw: The hardware instance.
3639 *
3640 * This routine is used to add broadcast pattern for waking up the host.
3641 */
3642static void hw_add_wol_bcast(struct ksz_hw *hw)
3643{
3644 static const u8 mask[] = { 0x3F };
3645 static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3646
3647 hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3648}
3649
3650/**
3651 * hw_add_wol_mcast - add multicast pattern
3652 * @hw: The hardware instance.
3653 *
3654 * This routine is used to add multicast pattern for waking up the host.
3655 *
3656 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3657 * by IPv6 ping command. Note that multicast packets are filtred through the
3658 * multicast hash table, so not all multicast packets can wake up the host.
3659 */
3660static void hw_add_wol_mcast(struct ksz_hw *hw)
3661{
3662 static const u8 mask[] = { 0x3F };
3663 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3664
3665 memcpy(&pattern[3], &hw->override_addr[3], 3);
3666 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3667}
3668
3669/**
3670 * hw_add_wol_ucast - add unicast pattern
3671 * @hw: The hardware instance.
3672 *
3673 * This routine is used to add unicast pattern to wakeup the host.
3674 *
3675 * It is assumed the unicast packet is directed to the device, as the hardware
3676 * can only receive them in normal case.
3677 */
3678static void hw_add_wol_ucast(struct ksz_hw *hw)
3679{
3680 static const u8 mask[] = { 0x3F };
3681
3682 hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3683}
3684
3685/**
3686 * hw_enable_wol - enable Wake-on-LAN
3687 * @hw: The hardware instance.
3688 * @wol_enable: The Wake-on-LAN settings.
3689 * @net_addr: The IPv4 address assigned to the device.
3690 *
3691 * This routine is used to enable Wake-on-LAN depending on driver settings.
3692 */
3693static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3694{
3695 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3696 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3697 hw_add_wol_ucast(hw);
3698 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3699 hw_add_wol_mcast(hw);
3700 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3701 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3702 hw_add_wol_arp(hw, net_addr);
3703}
3704
3705/**
3706 * hw_init - check driver is correct for the hardware
3707 * @hw: The hardware instance.
3708 *
3709 * This function checks the hardware is correct for this driver and sets the
3710 * hardware up for proper initialization.
3711 *
3712 * Return number of ports or 0 if not right.
3713 */
3714static int hw_init(struct ksz_hw *hw)
3715{
3716 int rc = 0;
3717 u16 data;
3718 u16 revision;
3719
3720 /* Set bus speed to 125MHz. */
3721 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3722
3723 /* Check KSZ884x chip ID. */
3724 data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3725
3726 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3727 data &= KS884X_CHIP_ID_MASK_41;
3728 if (REG_CHIP_ID_41 == data)
3729 rc = 1;
3730 else if (REG_CHIP_ID_42 == data)
3731 rc = 2;
3732 else
3733 return 0;
3734
3735 /* Setup hardware features or bug workarounds. */
3736 if (revision <= 1) {
3737 hw->features |= SMALL_PACKET_TX_BUG;
3738 if (1 == rc)
3739 hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3740 }
3741 return rc;
3742}
3743
3744/**
3745 * hw_reset - reset the hardware
3746 * @hw: The hardware instance.
3747 *
3748 * This routine resets the hardware.
3749 */
3750static void hw_reset(struct ksz_hw *hw)
3751{
3752 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3753
3754 /* Wait for device to reset. */
3755 mdelay(10);
3756
3757 /* Write 0 to clear device reset. */
3758 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3759}
3760
3761/**
3762 * hw_setup - setup the hardware
3763 * @hw: The hardware instance.
3764 *
3765 * This routine setup the hardware for proper operation.
3766 */
3767static void hw_setup(struct ksz_hw *hw)
3768{
3769#if SET_DEFAULT_LED
3770 u16 data;
3771
3772 /* Change default LED mode. */
3773 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3774 data &= ~LED_MODE;
3775 data |= SET_DEFAULT_LED;
3776 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3777#endif
3778
3779 /* Setup transmit control. */
3780 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3781 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3782
3783 /* Setup receive control. */
3784 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3785 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3786 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3787
3788 /* Hardware cannot handle UDP packet in IP fragments. */
3789 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3790
3791 if (hw->all_multi)
3792 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3793 if (hw->promiscuous)
3794 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3795}
3796
3797/**
3798 * hw_setup_intr - setup interrupt mask
3799 * @hw: The hardware instance.
3800 *
3801 * This routine setup the interrupt mask for proper operation.
3802 */
3803static void hw_setup_intr(struct ksz_hw *hw)
3804{
3805 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3806}
3807
3808static void ksz_check_desc_num(struct ksz_desc_info *info)
3809{
3810#define MIN_DESC_SHIFT 2
3811
3812 int alloc = info->alloc;
3813 int shift;
3814
3815 shift = 0;
3816 while (!(alloc & 1)) {
3817 shift++;
3818 alloc >>= 1;
3819 }
3820 if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3821 pr_alert("Hardware descriptor numbers not right!\n");
3822 while (alloc) {
3823 shift++;
3824 alloc >>= 1;
3825 }
3826 if (shift < MIN_DESC_SHIFT)
3827 shift = MIN_DESC_SHIFT;
3828 alloc = 1 << shift;
3829 info->alloc = alloc;
3830 }
3831 info->mask = info->alloc - 1;
3832}
3833
3834static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3835{
3836 int i;
3837 u32 phys = desc_info->ring_phys;
3838 struct ksz_hw_desc *desc = desc_info->ring_virt;
3839 struct ksz_desc *cur = desc_info->ring;
3840 struct ksz_desc *previous = NULL;
3841
3842 for (i = 0; i < desc_info->alloc; i++) {
3843 cur->phw = desc++;
3844 phys += desc_info->size;
3845 previous = cur++;
3846 previous->phw->next = cpu_to_le32(phys);
3847 }
3848 previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3849 previous->sw.buf.rx.end_of_ring = 1;
3850 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3851
3852 desc_info->avail = desc_info->alloc;
3853 desc_info->last = desc_info->next = 0;
3854
3855 desc_info->cur = desc_info->ring;
3856}
3857
3858/**
3859 * hw_set_desc_base - set descriptor base addresses
3860 * @hw: The hardware instance.
3861 * @tx_addr: The transmit descriptor base.
3862 * @rx_addr: The receive descriptor base.
3863 *
3864 * This routine programs the descriptor base addresses after reset.
3865 */
3866static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3867{
3868 /* Set base address of Tx/Rx descriptors. */
3869 writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3870 writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3871}
3872
3873static void hw_reset_pkts(struct ksz_desc_info *info)
3874{
3875 info->cur = info->ring;
3876 info->avail = info->alloc;
3877 info->last = info->next = 0;
3878}
3879
3880static inline void hw_resume_rx(struct ksz_hw *hw)
3881{
3882 writel(DMA_START, hw->io + KS_DMA_RX_START);
3883}
3884
3885/**
3886 * hw_start_rx - start receiving
3887 * @hw: The hardware instance.
3888 *
3889 * This routine starts the receive function of the hardware.
3890 */
3891static void hw_start_rx(struct ksz_hw *hw)
3892{
3893 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3894
3895 /* Notify when the receive stops. */
3896 hw->intr_mask |= KS884X_INT_RX_STOPPED;
3897
3898 writel(DMA_START, hw->io + KS_DMA_RX_START);
3899 hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3900 hw->rx_stop++;
3901
3902 /* Variable overflows. */
3903 if (0 == hw->rx_stop)
3904 hw->rx_stop = 2;
3905}
3906
3907/**
3908 * hw_stop_rx - stop receiving
3909 * @hw: The hardware instance.
3910 *
3911 * This routine stops the receive function of the hardware.
3912 */
3913static void hw_stop_rx(struct ksz_hw *hw)
3914{
3915 hw->rx_stop = 0;
3916 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3917 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3918}
3919
3920/**
3921 * hw_start_tx - start transmitting
3922 * @hw: The hardware instance.
3923 *
3924 * This routine starts the transmit function of the hardware.
3925 */
3926static void hw_start_tx(struct ksz_hw *hw)
3927{
3928 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3929}
3930
3931/**
3932 * hw_stop_tx - stop transmitting
3933 * @hw: The hardware instance.
3934 *
3935 * This routine stops the transmit function of the hardware.
3936 */
3937static void hw_stop_tx(struct ksz_hw *hw)
3938{
3939 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3940}
3941
3942/**
3943 * hw_disable - disable hardware
3944 * @hw: The hardware instance.
3945 *
3946 * This routine disables the hardware.
3947 */
3948static void hw_disable(struct ksz_hw *hw)
3949{
3950 hw_stop_rx(hw);
3951 hw_stop_tx(hw);
3952 hw->enabled = 0;
3953}
3954
3955/**
3956 * hw_enable - enable hardware
3957 * @hw: The hardware instance.
3958 *
3959 * This routine enables the hardware.
3960 */
3961static void hw_enable(struct ksz_hw *hw)
3962{
3963 hw_start_tx(hw);
3964 hw_start_rx(hw);
3965 hw->enabled = 1;
3966}
3967
3968/**
3969 * hw_alloc_pkt - allocate enough descriptors for transmission
3970 * @hw: The hardware instance.
3971 * @length: The length of the packet.
3972 * @physical: Number of descriptors required.
3973 *
3974 * This function allocates descriptors for transmission.
3975 *
3976 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3977 */
3978static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3979{
3980 /* Always leave one descriptor free. */
3981 if (hw->tx_desc_info.avail <= 1)
3982 return 0;
3983
3984 /* Allocate a descriptor for transmission and mark it current. */
3985 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3986 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3987
3988 /* Keep track of number of transmit descriptors used so far. */
3989 ++hw->tx_int_cnt;
3990 hw->tx_size += length;
3991
3992 /* Cannot hold on too much data. */
3993 if (hw->tx_size >= MAX_TX_HELD_SIZE)
3994 hw->tx_int_cnt = hw->tx_int_mask + 1;
3995
3996 if (physical > hw->tx_desc_info.avail)
3997 return 1;
3998
3999 return hw->tx_desc_info.avail;
4000}
4001
4002/**
4003 * hw_send_pkt - mark packet for transmission
4004 * @hw: The hardware instance.
4005 *
4006 * This routine marks the packet for transmission in PCI version.
4007 */
4008static void hw_send_pkt(struct ksz_hw *hw)
4009{
4010 struct ksz_desc *cur = hw->tx_desc_info.cur;
4011
4012 cur->sw.buf.tx.last_seg = 1;
4013
4014 /* Interrupt only after specified number of descriptors used. */
4015 if (hw->tx_int_cnt > hw->tx_int_mask) {
4016 cur->sw.buf.tx.intr = 1;
4017 hw->tx_int_cnt = 0;
4018 hw->tx_size = 0;
4019 }
4020
4021 /* KSZ8842 supports port directed transmission. */
4022 cur->sw.buf.tx.dest_port = hw->dst_ports;
4023
4024 release_desc(cur);
4025
4026 writel(0, hw->io + KS_DMA_TX_START);
4027}
4028
4029static int empty_addr(u8 *addr)
4030{
4031 u32 *addr1 = (u32 *) addr;
4032 u16 *addr2 = (u16 *) &addr[4];
4033
4034 return 0 == *addr1 && 0 == *addr2;
4035}
4036
4037/**
4038 * hw_set_addr - set MAC address
4039 * @hw: The hardware instance.
4040 *
4041 * This routine programs the MAC address of the hardware when the address is
4042 * overridden.
4043 */
4044static void hw_set_addr(struct ksz_hw *hw)
4045{
4046 int i;
4047
4048 for (i = 0; i < ETH_ALEN; i++)
4049 writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4050 hw->io + KS884X_ADDR_0_OFFSET + i);
4051
4052 sw_set_addr(hw, hw->override_addr);
4053}
4054
4055/**
4056 * hw_read_addr - read MAC address
4057 * @hw: The hardware instance.
4058 *
4059 * This routine retrieves the MAC address of the hardware.
4060 */
4061static void hw_read_addr(struct ksz_hw *hw)
4062{
4063 int i;
4064
4065 for (i = 0; i < ETH_ALEN; i++)
4066 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4067 KS884X_ADDR_0_OFFSET + i);
4068
4069 if (!hw->mac_override) {
4070 memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4071 if (empty_addr(hw->override_addr)) {
4072 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4073 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4074 ETH_ALEN);
4075 hw->override_addr[5] += hw->id;
4076 hw_set_addr(hw);
4077 }
4078 }
4079}
4080
4081static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4082{
4083 int i;
4084 u32 mac_addr_lo;
4085 u32 mac_addr_hi;
4086
4087 mac_addr_hi = 0;
4088 for (i = 0; i < 2; i++) {
4089 mac_addr_hi <<= 8;
4090 mac_addr_hi |= mac_addr[i];
4091 }
4092 mac_addr_hi |= ADD_ADDR_ENABLE;
4093 mac_addr_lo = 0;
4094 for (i = 2; i < 6; i++) {
4095 mac_addr_lo <<= 8;
4096 mac_addr_lo |= mac_addr[i];
4097 }
4098 index *= ADD_ADDR_INCR;
4099
4100 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4101 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4102}
4103
4104static void hw_set_add_addr(struct ksz_hw *hw)
4105{
4106 int i;
4107
4108 for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4109 if (empty_addr(hw->address[i]))
4110 writel(0, hw->io + ADD_ADDR_INCR * i +
4111 KS_ADD_ADDR_0_HI);
4112 else
4113 hw_ena_add_addr(hw, i, hw->address[i]);
4114 }
4115}
4116
4117static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4118{
4119 int i;
4120 int j = ADDITIONAL_ENTRIES;
4121
4122 if (ether_addr_equal(hw->override_addr, mac_addr))
4123 return 0;
4124 for (i = 0; i < hw->addr_list_size; i++) {
4125 if (ether_addr_equal(hw->address[i], mac_addr))
4126 return 0;
4127 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4128 j = i;
4129 }
4130 if (j < ADDITIONAL_ENTRIES) {
4131 memcpy(hw->address[j], mac_addr, ETH_ALEN);
4132 hw_ena_add_addr(hw, j, hw->address[j]);
4133 return 0;
4134 }
4135 return -1;
4136}
4137
4138static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4139{
4140 int i;
4141
4142 for (i = 0; i < hw->addr_list_size; i++) {
4143 if (ether_addr_equal(hw->address[i], mac_addr)) {
4144 eth_zero_addr(hw->address[i]);
4145 writel(0, hw->io + ADD_ADDR_INCR * i +
4146 KS_ADD_ADDR_0_HI);
4147 return 0;
4148 }
4149 }
4150 return -1;
4151}
4152
4153/**
4154 * hw_clr_multicast - clear multicast addresses
4155 * @hw: The hardware instance.
4156 *
4157 * This routine removes all multicast addresses set in the hardware.
4158 */
4159static void hw_clr_multicast(struct ksz_hw *hw)
4160{
4161 int i;
4162
4163 for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4164 hw->multi_bits[i] = 0;
4165
4166 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4167 }
4168}
4169
4170/**
4171 * hw_set_grp_addr - set multicast addresses
4172 * @hw: The hardware instance.
4173 *
4174 * This routine programs multicast addresses for the hardware to accept those
4175 * addresses.
4176 */
4177static void hw_set_grp_addr(struct ksz_hw *hw)
4178{
4179 int i;
4180 int index;
4181 int position;
4182 int value;
4183
4184 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4185
4186 for (i = 0; i < hw->multi_list_size; i++) {
4187 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4188 index = position >> 3;
4189 value = 1 << (position & 7);
4190 hw->multi_bits[index] |= (u8) value;
4191 }
4192
4193 for (i = 0; i < HW_MULTICAST_SIZE; i++)
4194 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4195 i);
4196}
4197
4198/**
4199 * hw_set_multicast - enable or disable all multicast receiving
4200 * @hw: The hardware instance.
4201 * @multicast: To turn on or off the all multicast feature.
4202 *
4203 * This routine enables/disables the hardware to accept all multicast packets.
4204 */
4205static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4206{
4207 /* Stop receiving for reconfiguration. */
4208 hw_stop_rx(hw);
4209
4210 if (multicast)
4211 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4212 else
4213 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4214
4215 if (hw->enabled)
4216 hw_start_rx(hw);
4217}
4218
4219/**
4220 * hw_set_promiscuous - enable or disable promiscuous receiving
4221 * @hw: The hardware instance.
4222 * @prom: To turn on or off the promiscuous feature.
4223 *
4224 * This routine enables/disables the hardware to accept all packets.
4225 */
4226static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4227{
4228 /* Stop receiving for reconfiguration. */
4229 hw_stop_rx(hw);
4230
4231 if (prom)
4232 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4233 else
4234 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4235
4236 if (hw->enabled)
4237 hw_start_rx(hw);
4238}
4239
4240/**
4241 * sw_enable - enable the switch
4242 * @hw: The hardware instance.
4243 * @enable: The flag to enable or disable the switch
4244 *
4245 * This routine is used to enable/disable the switch in KSZ8842.
4246 */
4247static void sw_enable(struct ksz_hw *hw, int enable)
4248{
4249 int port;
4250
4251 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4252 if (hw->dev_count > 1) {
4253 /* Set port-base vlan membership with host port. */
4254 sw_cfg_port_base_vlan(hw, port,
4255 HOST_MASK | (1 << port));
4256 port_set_stp_state(hw, port, STP_STATE_DISABLED);
4257 } else {
4258 sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4259 port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4260 }
4261 }
4262 if (hw->dev_count > 1)
4263 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4264 else
4265 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4266
4267 if (enable)
4268 enable = KS8842_START;
4269 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4270}
4271
4272/**
4273 * sw_setup - setup the switch
4274 * @hw: The hardware instance.
4275 *
4276 * This routine setup the hardware switch engine for default operation.
4277 */
4278static void sw_setup(struct ksz_hw *hw)
4279{
4280 int port;
4281
4282 sw_set_global_ctrl(hw);
4283
4284 /* Enable switch broadcast storm protection at 10% percent rate. */
4285 sw_init_broad_storm(hw);
4286 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4287 for (port = 0; port < SWITCH_PORT_NUM; port++)
4288 sw_ena_broad_storm(hw, port);
4289
4290 sw_init_prio(hw);
4291
4292 sw_init_mirror(hw);
4293
4294 sw_init_prio_rate(hw);
4295
4296 sw_init_vlan(hw);
4297
4298 if (hw->features & STP_SUPPORT)
4299 sw_init_stp(hw);
4300 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4301 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4302 hw->overrides |= PAUSE_FLOW_CTRL;
4303 sw_enable(hw, 1);
4304}
4305
4306/**
4307 * ksz_start_timer - start kernel timer
4308 * @info: Kernel timer information.
4309 * @time: The time tick.
4310 *
4311 * This routine starts the kernel timer after the specified time tick.
4312 */
4313static void ksz_start_timer(struct ksz_timer_info *info, int time)
4314{
4315 info->cnt = 0;
4316 info->timer.expires = jiffies + time;
4317 add_timer(&info->timer);
4318
4319 /* infinity */
4320 info->max = -1;
4321}
4322
4323/**
4324 * ksz_stop_timer - stop kernel timer
4325 * @info: Kernel timer information.
4326 *
4327 * This routine stops the kernel timer.
4328 */
4329static void ksz_stop_timer(struct ksz_timer_info *info)
4330{
4331 if (info->max) {
4332 info->max = 0;
4333 del_timer_sync(&info->timer);
4334 }
4335}
4336
4337static void ksz_init_timer(struct ksz_timer_info *info, int period,
4338 void (*function)(struct timer_list *))
4339{
4340 info->max = 0;
4341 info->period = period;
4342 timer_setup(&info->timer, function, 0);
4343}
4344
4345static void ksz_update_timer(struct ksz_timer_info *info)
4346{
4347 ++info->cnt;
4348 if (info->max > 0) {
4349 if (info->cnt < info->max) {
4350 info->timer.expires = jiffies + info->period;
4351 add_timer(&info->timer);
4352 } else
4353 info->max = 0;
4354 } else if (info->max < 0) {
4355 info->timer.expires = jiffies + info->period;
4356 add_timer(&info->timer);
4357 }
4358}
4359
4360/**
4361 * ksz_alloc_soft_desc - allocate software descriptors
4362 * @desc_info: Descriptor information structure.
4363 * @transmit: Indication that descriptors are for transmit.
4364 *
4365 * This local function allocates software descriptors for manipulation in
4366 * memory.
4367 *
4368 * Return 0 if successful.
4369 */
4370static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4371{
4372 desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4373 GFP_KERNEL);
4374 if (!desc_info->ring)
4375 return 1;
4376 hw_init_desc(desc_info, transmit);
4377 return 0;
4378}
4379
4380/**
4381 * ksz_alloc_desc - allocate hardware descriptors
4382 * @adapter: Adapter information structure.
4383 *
4384 * This local function allocates hardware descriptors for receiving and
4385 * transmitting.
4386 *
4387 * Return 0 if successful.
4388 */
4389static int ksz_alloc_desc(struct dev_info *adapter)
4390{
4391 struct ksz_hw *hw = &adapter->hw;
4392 int offset;
4393
4394 /* Allocate memory for RX & TX descriptors. */
4395 adapter->desc_pool.alloc_size =
4396 hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4397 hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4398 DESC_ALIGNMENT;
4399
4400 adapter->desc_pool.alloc_virt =
4401 pci_zalloc_consistent(adapter->pdev,
4402 adapter->desc_pool.alloc_size,
4403 &adapter->desc_pool.dma_addr);
4404 if (adapter->desc_pool.alloc_virt == NULL) {
4405 adapter->desc_pool.alloc_size = 0;
4406 return 1;
4407 }
4408
4409 /* Align to the next cache line boundary. */
4410 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4411 (DESC_ALIGNMENT -
4412 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4413 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4414 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4415
4416 /* Allocate receive/transmit descriptors. */
4417 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4418 adapter->desc_pool.virt;
4419 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4420 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4421 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4422 (adapter->desc_pool.virt + offset);
4423 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4424
4425 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4426 return 1;
4427 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4428 return 1;
4429
4430 return 0;
4431}
4432
4433/**
4434 * free_dma_buf - release DMA buffer resources
4435 * @adapter: Adapter information structure.
4436 *
4437 * This routine is just a helper function to release the DMA buffer resources.
4438 */
4439static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4440 int direction)
4441{
4442 pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4443 dev_kfree_skb(dma_buf->skb);
4444 dma_buf->skb = NULL;
4445 dma_buf->dma = 0;
4446}
4447
4448/**
4449 * ksz_init_rx_buffers - initialize receive descriptors
4450 * @adapter: Adapter information structure.
4451 *
4452 * This routine initializes DMA buffers for receiving.
4453 */
4454static void ksz_init_rx_buffers(struct dev_info *adapter)
4455{
4456 int i;
4457 struct ksz_desc *desc;
4458 struct ksz_dma_buf *dma_buf;
4459 struct ksz_hw *hw = &adapter->hw;
4460 struct ksz_desc_info *info = &hw->rx_desc_info;
4461
4462 for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4463 get_rx_pkt(info, &desc);
4464
4465 dma_buf = DMA_BUFFER(desc);
4466 if (dma_buf->skb && dma_buf->len != adapter->mtu)
4467 free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4468 dma_buf->len = adapter->mtu;
4469 if (!dma_buf->skb)
4470 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4471 if (dma_buf->skb && !dma_buf->dma)
4472 dma_buf->dma = pci_map_single(
4473 adapter->pdev,
4474 skb_tail_pointer(dma_buf->skb),
4475 dma_buf->len,
4476 PCI_DMA_FROMDEVICE);
4477
4478 /* Set descriptor. */
4479 set_rx_buf(desc, dma_buf->dma);
4480 set_rx_len(desc, dma_buf->len);
4481 release_desc(desc);
4482 }
4483}
4484
4485/**
4486 * ksz_alloc_mem - allocate memory for hardware descriptors
4487 * @adapter: Adapter information structure.
4488 *
4489 * This function allocates memory for use by hardware descriptors for receiving
4490 * and transmitting.
4491 *
4492 * Return 0 if successful.
4493 */
4494static int ksz_alloc_mem(struct dev_info *adapter)
4495{
4496 struct ksz_hw *hw = &adapter->hw;
4497
4498 /* Determine the number of receive and transmit descriptors. */
4499 hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4500 hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4501
4502 /* Determine how many descriptors to skip transmit interrupt. */
4503 hw->tx_int_cnt = 0;
4504 hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4505 if (hw->tx_int_mask > 8)
4506 hw->tx_int_mask = 8;
4507 while (hw->tx_int_mask) {
4508 hw->tx_int_cnt++;
4509 hw->tx_int_mask >>= 1;
4510 }
4511 if (hw->tx_int_cnt) {
4512 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4513 hw->tx_int_cnt = 0;
4514 }
4515
4516 /* Determine the descriptor size. */
4517 hw->rx_desc_info.size =
4518 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4519 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4520 hw->tx_desc_info.size =
4521 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4522 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4523 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4524 pr_alert("Hardware descriptor size not right!\n");
4525 ksz_check_desc_num(&hw->rx_desc_info);
4526 ksz_check_desc_num(&hw->tx_desc_info);
4527
4528 /* Allocate descriptors. */
4529 if (ksz_alloc_desc(adapter))
4530 return 1;
4531
4532 return 0;
4533}
4534
4535/**
4536 * ksz_free_desc - free software and hardware descriptors
4537 * @adapter: Adapter information structure.
4538 *
4539 * This local routine frees the software and hardware descriptors allocated by
4540 * ksz_alloc_desc().
4541 */
4542static void ksz_free_desc(struct dev_info *adapter)
4543{
4544 struct ksz_hw *hw = &adapter->hw;
4545
4546 /* Reset descriptor. */
4547 hw->rx_desc_info.ring_virt = NULL;
4548 hw->tx_desc_info.ring_virt = NULL;
4549 hw->rx_desc_info.ring_phys = 0;
4550 hw->tx_desc_info.ring_phys = 0;
4551
4552 /* Free memory. */
4553 if (adapter->desc_pool.alloc_virt)
4554 pci_free_consistent(
4555 adapter->pdev,
4556 adapter->desc_pool.alloc_size,
4557 adapter->desc_pool.alloc_virt,
4558 adapter->desc_pool.dma_addr);
4559
4560 /* Reset resource pool. */
4561 adapter->desc_pool.alloc_size = 0;
4562 adapter->desc_pool.alloc_virt = NULL;
4563
4564 kfree(hw->rx_desc_info.ring);
4565 hw->rx_desc_info.ring = NULL;
4566 kfree(hw->tx_desc_info.ring);
4567 hw->tx_desc_info.ring = NULL;
4568}
4569
4570/**
4571 * ksz_free_buffers - free buffers used in the descriptors
4572 * @adapter: Adapter information structure.
4573 * @desc_info: Descriptor information structure.
4574 *
4575 * This local routine frees buffers used in the DMA buffers.
4576 */
4577static void ksz_free_buffers(struct dev_info *adapter,
4578 struct ksz_desc_info *desc_info, int direction)
4579{
4580 int i;
4581 struct ksz_dma_buf *dma_buf;
4582 struct ksz_desc *desc = desc_info->ring;
4583
4584 for (i = 0; i < desc_info->alloc; i++) {
4585 dma_buf = DMA_BUFFER(desc);
4586 if (dma_buf->skb)
4587 free_dma_buf(adapter, dma_buf, direction);
4588 desc++;
4589 }
4590}
4591
4592/**
4593 * ksz_free_mem - free all resources used by descriptors
4594 * @adapter: Adapter information structure.
4595 *
4596 * This local routine frees all the resources allocated by ksz_alloc_mem().
4597 */
4598static void ksz_free_mem(struct dev_info *adapter)
4599{
4600 /* Free transmit buffers. */
4601 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4602 PCI_DMA_TODEVICE);
4603
4604 /* Free receive buffers. */
4605 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4606 PCI_DMA_FROMDEVICE);
4607
4608 /* Free descriptors. */
4609 ksz_free_desc(adapter);
4610}
4611
4612static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4613 u64 *counter)
4614{
4615 int i;
4616 int mib;
4617 int port;
4618 struct ksz_port_mib *port_mib;
4619
4620 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4621 for (i = 0, port = first; i < cnt; i++, port++) {
4622 port_mib = &hw->port_mib[port];
4623 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4624 counter[mib] += port_mib->counter[mib];
4625 }
4626}
4627
4628/**
4629 * send_packet - send packet
4630 * @skb: Socket buffer.
4631 * @dev: Network device.
4632 *
4633 * This routine is used to send a packet out to the network.
4634 */
4635static void send_packet(struct sk_buff *skb, struct net_device *dev)
4636{
4637 struct ksz_desc *desc;
4638 struct ksz_desc *first;
4639 struct dev_priv *priv = netdev_priv(dev);
4640 struct dev_info *hw_priv = priv->adapter;
4641 struct ksz_hw *hw = &hw_priv->hw;
4642 struct ksz_desc_info *info = &hw->tx_desc_info;
4643 struct ksz_dma_buf *dma_buf;
4644 int len;
4645 int last_frag = skb_shinfo(skb)->nr_frags;
4646
4647 /*
4648 * KSZ8842 with multiple device interfaces needs to be told which port
4649 * to send.
4650 */
4651 if (hw->dev_count > 1)
4652 hw->dst_ports = 1 << priv->port.first_port;
4653
4654 /* Hardware will pad the length to 60. */
4655 len = skb->len;
4656
4657 /* Remember the very first descriptor. */
4658 first = info->cur;
4659 desc = first;
4660
4661 dma_buf = DMA_BUFFER(desc);
4662 if (last_frag) {
4663 int frag;
4664 skb_frag_t *this_frag;
4665
4666 dma_buf->len = skb_headlen(skb);
4667
4668 dma_buf->dma = pci_map_single(
4669 hw_priv->pdev, skb->data, dma_buf->len,
4670 PCI_DMA_TODEVICE);
4671 set_tx_buf(desc, dma_buf->dma);
4672 set_tx_len(desc, dma_buf->len);
4673
4674 frag = 0;
4675 do {
4676 this_frag = &skb_shinfo(skb)->frags[frag];
4677
4678 /* Get a new descriptor. */
4679 get_tx_pkt(info, &desc);
4680
4681 /* Keep track of descriptors used so far. */
4682 ++hw->tx_int_cnt;
4683
4684 dma_buf = DMA_BUFFER(desc);
4685 dma_buf->len = skb_frag_size(this_frag);
4686
4687 dma_buf->dma = pci_map_single(
4688 hw_priv->pdev,
4689 skb_frag_address(this_frag),
4690 dma_buf->len,
4691 PCI_DMA_TODEVICE);
4692 set_tx_buf(desc, dma_buf->dma);
4693 set_tx_len(desc, dma_buf->len);
4694
4695 frag++;
4696 if (frag == last_frag)
4697 break;
4698
4699 /* Do not release the last descriptor here. */
4700 release_desc(desc);
4701 } while (1);
4702
4703 /* current points to the last descriptor. */
4704 info->cur = desc;
4705
4706 /* Release the first descriptor. */
4707 release_desc(first);
4708 } else {
4709 dma_buf->len = len;
4710
4711 dma_buf->dma = pci_map_single(
4712 hw_priv->pdev, skb->data, dma_buf->len,
4713 PCI_DMA_TODEVICE);
4714 set_tx_buf(desc, dma_buf->dma);
4715 set_tx_len(desc, dma_buf->len);
4716 }
4717
4718 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4719 (desc)->sw.buf.tx.csum_gen_tcp = 1;
4720 (desc)->sw.buf.tx.csum_gen_udp = 1;
4721 }
4722
4723 /*
4724 * The last descriptor holds the packet so that it can be returned to
4725 * network subsystem after all descriptors are transmitted.
4726 */
4727 dma_buf->skb = skb;
4728
4729 hw_send_pkt(hw);
4730
4731 /* Update transmit statistics. */
4732 dev->stats.tx_packets++;
4733 dev->stats.tx_bytes += len;
4734}
4735
4736/**
4737 * transmit_cleanup - clean up transmit descriptors
4738 * @dev: Network device.
4739 *
4740 * This routine is called to clean up the transmitted buffers.
4741 */
4742static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4743{
4744 int last;
4745 union desc_stat status;
4746 struct ksz_hw *hw = &hw_priv->hw;
4747 struct ksz_desc_info *info = &hw->tx_desc_info;
4748 struct ksz_desc *desc;
4749 struct ksz_dma_buf *dma_buf;
4750 struct net_device *dev = NULL;
4751
4752 spin_lock_irq(&hw_priv->hwlock);
4753 last = info->last;
4754
4755 while (info->avail < info->alloc) {
4756 /* Get next descriptor which is not hardware owned. */
4757 desc = &info->ring[last];
4758 status.data = le32_to_cpu(desc->phw->ctrl.data);
4759 if (status.tx.hw_owned) {
4760 if (normal)
4761 break;
4762 else
4763 reset_desc(desc, status);
4764 }
4765
4766 dma_buf = DMA_BUFFER(desc);
4767 pci_unmap_single(
4768 hw_priv->pdev, dma_buf->dma, dma_buf->len,
4769 PCI_DMA_TODEVICE);
4770
4771 /* This descriptor contains the last buffer in the packet. */
4772 if (dma_buf->skb) {
4773 dev = dma_buf->skb->dev;
4774
4775 /* Release the packet back to network subsystem. */
4776 dev_kfree_skb_irq(dma_buf->skb);
4777 dma_buf->skb = NULL;
4778 }
4779
4780 /* Free the transmitted descriptor. */
4781 last++;
4782 last &= info->mask;
4783 info->avail++;
4784 }
4785 info->last = last;
4786 spin_unlock_irq(&hw_priv->hwlock);
4787
4788 /* Notify the network subsystem that the packet has been sent. */
4789 if (dev)
4790 netif_trans_update(dev);
4791}
4792
4793/**
4794 * transmit_done - transmit done processing
4795 * @dev: Network device.
4796 *
4797 * This routine is called when the transmit interrupt is triggered, indicating
4798 * either a packet is sent successfully or there are transmit errors.
4799 */
4800static void tx_done(struct dev_info *hw_priv)
4801{
4802 struct ksz_hw *hw = &hw_priv->hw;
4803 int port;
4804
4805 transmit_cleanup(hw_priv, 1);
4806
4807 for (port = 0; port < hw->dev_count; port++) {
4808 struct net_device *dev = hw->port_info[port].pdev;
4809
4810 if (netif_running(dev) && netif_queue_stopped(dev))
4811 netif_wake_queue(dev);
4812 }
4813}
4814
4815static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4816{
4817 skb->dev = old->dev;
4818 skb->protocol = old->protocol;
4819 skb->ip_summed = old->ip_summed;
4820 skb->csum = old->csum;
4821 skb_set_network_header(skb, ETH_HLEN);
4822
4823 dev_consume_skb_any(old);
4824}
4825
4826/**
4827 * netdev_tx - send out packet
4828 * @skb: Socket buffer.
4829 * @dev: Network device.
4830 *
4831 * This function is used by the upper network layer to send out a packet.
4832 *
4833 * Return 0 if successful; otherwise an error code indicating failure.
4834 */
4835static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4836{
4837 struct dev_priv *priv = netdev_priv(dev);
4838 struct dev_info *hw_priv = priv->adapter;
4839 struct ksz_hw *hw = &hw_priv->hw;
4840 int left;
4841 int num = 1;
4842 int rc = 0;
4843
4844 if (hw->features & SMALL_PACKET_TX_BUG) {
4845 struct sk_buff *org_skb = skb;
4846
4847 if (skb->len <= 48) {
4848 if (skb_end_pointer(skb) - skb->data >= 50) {
4849 memset(&skb->data[skb->len], 0, 50 - skb->len);
4850 skb->len = 50;
4851 } else {
4852 skb = netdev_alloc_skb(dev, 50);
4853 if (!skb)
4854 return NETDEV_TX_BUSY;
4855 memcpy(skb->data, org_skb->data, org_skb->len);
4856 memset(&skb->data[org_skb->len], 0,
4857 50 - org_skb->len);
4858 skb->len = 50;
4859 copy_old_skb(org_skb, skb);
4860 }
4861 }
4862 }
4863
4864 spin_lock_irq(&hw_priv->hwlock);
4865
4866 num = skb_shinfo(skb)->nr_frags + 1;
4867 left = hw_alloc_pkt(hw, skb->len, num);
4868 if (left) {
4869 if (left < num ||
4870 (CHECKSUM_PARTIAL == skb->ip_summed &&
4871 skb->protocol == htons(ETH_P_IPV6))) {
4872 struct sk_buff *org_skb = skb;
4873
4874 skb = netdev_alloc_skb(dev, org_skb->len);
4875 if (!skb) {
4876 rc = NETDEV_TX_BUSY;
4877 goto unlock;
4878 }
4879 skb_copy_and_csum_dev(org_skb, skb->data);
4880 org_skb->ip_summed = CHECKSUM_NONE;
4881 skb->len = org_skb->len;
4882 copy_old_skb(org_skb, skb);
4883 }
4884 send_packet(skb, dev);
4885 if (left <= num)
4886 netif_stop_queue(dev);
4887 } else {
4888 /* Stop the transmit queue until packet is allocated. */
4889 netif_stop_queue(dev);
4890 rc = NETDEV_TX_BUSY;
4891 }
4892unlock:
4893 spin_unlock_irq(&hw_priv->hwlock);
4894
4895 return rc;
4896}
4897
4898/**
4899 * netdev_tx_timeout - transmit timeout processing
4900 * @dev: Network device.
4901 *
4902 * This routine is called when the transmit timer expires. That indicates the
4903 * hardware is not running correctly because transmit interrupts are not
4904 * triggered to free up resources so that the transmit routine can continue
4905 * sending out packets. The hardware is reset to correct the problem.
4906 */
4907static void netdev_tx_timeout(struct net_device *dev)
4908{
4909 static unsigned long last_reset;
4910
4911 struct dev_priv *priv = netdev_priv(dev);
4912 struct dev_info *hw_priv = priv->adapter;
4913 struct ksz_hw *hw = &hw_priv->hw;
4914 int port;
4915
4916 if (hw->dev_count > 1) {
4917 /*
4918 * Only reset the hardware if time between calls is long
4919 * enough.
4920 */
4921 if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4922 hw_priv = NULL;
4923 }
4924
4925 last_reset = jiffies;
4926 if (hw_priv) {
4927 hw_dis_intr(hw);
4928 hw_disable(hw);
4929
4930 transmit_cleanup(hw_priv, 0);
4931 hw_reset_pkts(&hw->rx_desc_info);
4932 hw_reset_pkts(&hw->tx_desc_info);
4933 ksz_init_rx_buffers(hw_priv);
4934
4935 hw_reset(hw);
4936
4937 hw_set_desc_base(hw,
4938 hw->tx_desc_info.ring_phys,
4939 hw->rx_desc_info.ring_phys);
4940 hw_set_addr(hw);
4941 if (hw->all_multi)
4942 hw_set_multicast(hw, hw->all_multi);
4943 else if (hw->multi_list_size)
4944 hw_set_grp_addr(hw);
4945
4946 if (hw->dev_count > 1) {
4947 hw_set_add_addr(hw);
4948 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4949 struct net_device *port_dev;
4950
4951 port_set_stp_state(hw, port,
4952 STP_STATE_DISABLED);
4953
4954 port_dev = hw->port_info[port].pdev;
4955 if (netif_running(port_dev))
4956 port_set_stp_state(hw, port,
4957 STP_STATE_SIMPLE);
4958 }
4959 }
4960
4961 hw_enable(hw);
4962 hw_ena_intr(hw);
4963 }
4964
4965 netif_trans_update(dev);
4966 netif_wake_queue(dev);
4967}
4968
4969static inline void csum_verified(struct sk_buff *skb)
4970{
4971 unsigned short protocol;
4972 struct iphdr *iph;
4973
4974 protocol = skb->protocol;
4975 skb_reset_network_header(skb);
4976 iph = (struct iphdr *) skb_network_header(skb);
4977 if (protocol == htons(ETH_P_8021Q)) {
4978 protocol = iph->tot_len;
4979 skb_set_network_header(skb, VLAN_HLEN);
4980 iph = (struct iphdr *) skb_network_header(skb);
4981 }
4982 if (protocol == htons(ETH_P_IP)) {
4983 if (iph->protocol == IPPROTO_TCP)
4984 skb->ip_summed = CHECKSUM_UNNECESSARY;
4985 }
4986}
4987
4988static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4989 struct ksz_desc *desc, union desc_stat status)
4990{
4991 int packet_len;
4992 struct dev_priv *priv = netdev_priv(dev);
4993 struct dev_info *hw_priv = priv->adapter;
4994 struct ksz_dma_buf *dma_buf;
4995 struct sk_buff *skb;
4996 int rx_status;
4997
4998 /* Received length includes 4-byte CRC. */
4999 packet_len = status.rx.frame_len - 4;
5000
5001 dma_buf = DMA_BUFFER(desc);
5002 pci_dma_sync_single_for_cpu(
5003 hw_priv->pdev, dma_buf->dma, packet_len + 4,
5004 PCI_DMA_FROMDEVICE);
5005
5006 do {
5007 /* skb->data != skb->head */
5008 skb = netdev_alloc_skb(dev, packet_len + 2);
5009 if (!skb) {
5010 dev->stats.rx_dropped++;
5011 return -ENOMEM;
5012 }
5013
5014 /*
5015 * Align socket buffer in 4-byte boundary for better
5016 * performance.
5017 */
5018 skb_reserve(skb, 2);
5019
5020 skb_put_data(skb, dma_buf->skb->data, packet_len);
5021 } while (0);
5022
5023 skb->protocol = eth_type_trans(skb, dev);
5024
5025 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5026 csum_verified(skb);
5027
5028 /* Update receive statistics. */
5029 dev->stats.rx_packets++;
5030 dev->stats.rx_bytes += packet_len;
5031
5032 /* Notify upper layer for received packet. */
5033 rx_status = netif_rx(skb);
5034
5035 return 0;
5036}
5037
5038static int dev_rcv_packets(struct dev_info *hw_priv)
5039{
5040 int next;
5041 union desc_stat status;
5042 struct ksz_hw *hw = &hw_priv->hw;
5043 struct net_device *dev = hw->port_info[0].pdev;
5044 struct ksz_desc_info *info = &hw->rx_desc_info;
5045 int left = info->alloc;
5046 struct ksz_desc *desc;
5047 int received = 0;
5048
5049 next = info->next;
5050 while (left--) {
5051 /* Get next descriptor which is not hardware owned. */
5052 desc = &info->ring[next];
5053 status.data = le32_to_cpu(desc->phw->ctrl.data);
5054 if (status.rx.hw_owned)
5055 break;
5056
5057 /* Status valid only when last descriptor bit is set. */
5058 if (status.rx.last_desc && status.rx.first_desc) {
5059 if (rx_proc(dev, hw, desc, status))
5060 goto release_packet;
5061 received++;
5062 }
5063
5064release_packet:
5065 release_desc(desc);
5066 next++;
5067 next &= info->mask;
5068 }
5069 info->next = next;
5070
5071 return received;
5072}
5073
5074static int port_rcv_packets(struct dev_info *hw_priv)
5075{
5076 int next;
5077 union desc_stat status;
5078 struct ksz_hw *hw = &hw_priv->hw;
5079 struct net_device *dev = hw->port_info[0].pdev;
5080 struct ksz_desc_info *info = &hw->rx_desc_info;
5081 int left = info->alloc;
5082 struct ksz_desc *desc;
5083 int received = 0;
5084
5085 next = info->next;
5086 while (left--) {
5087 /* Get next descriptor which is not hardware owned. */
5088 desc = &info->ring[next];
5089 status.data = le32_to_cpu(desc->phw->ctrl.data);
5090 if (status.rx.hw_owned)
5091 break;
5092
5093 if (hw->dev_count > 1) {
5094 /* Get received port number. */
5095 int p = HW_TO_DEV_PORT(status.rx.src_port);
5096
5097 dev = hw->port_info[p].pdev;
5098 if (!netif_running(dev))
5099 goto release_packet;
5100 }
5101
5102 /* Status valid only when last descriptor bit is set. */
5103 if (status.rx.last_desc && status.rx.first_desc) {
5104 if (rx_proc(dev, hw, desc, status))
5105 goto release_packet;
5106 received++;
5107 }
5108
5109release_packet:
5110 release_desc(desc);
5111 next++;
5112 next &= info->mask;
5113 }
5114 info->next = next;
5115
5116 return received;
5117}
5118
5119static int dev_rcv_special(struct dev_info *hw_priv)
5120{
5121 int next;
5122 union desc_stat status;
5123 struct ksz_hw *hw = &hw_priv->hw;
5124 struct net_device *dev = hw->port_info[0].pdev;
5125 struct ksz_desc_info *info = &hw->rx_desc_info;
5126 int left = info->alloc;
5127 struct ksz_desc *desc;
5128 int received = 0;
5129
5130 next = info->next;
5131 while (left--) {
5132 /* Get next descriptor which is not hardware owned. */
5133 desc = &info->ring[next];
5134 status.data = le32_to_cpu(desc->phw->ctrl.data);
5135 if (status.rx.hw_owned)
5136 break;
5137
5138 if (hw->dev_count > 1) {
5139 /* Get received port number. */
5140 int p = HW_TO_DEV_PORT(status.rx.src_port);
5141
5142 dev = hw->port_info[p].pdev;
5143 if (!netif_running(dev))
5144 goto release_packet;
5145 }
5146
5147 /* Status valid only when last descriptor bit is set. */
5148 if (status.rx.last_desc && status.rx.first_desc) {
5149 /*
5150 * Receive without error. With receive errors
5151 * disabled, packets with receive errors will be
5152 * dropped, so no need to check the error bit.
5153 */
5154 if (!status.rx.error || (status.data &
5155 KS_DESC_RX_ERROR_COND) ==
5156 KS_DESC_RX_ERROR_TOO_LONG) {
5157 if (rx_proc(dev, hw, desc, status))
5158 goto release_packet;
5159 received++;
5160 } else {
5161 struct dev_priv *priv = netdev_priv(dev);
5162
5163 /* Update receive error statistics. */
5164 priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5165 }
5166 }
5167
5168release_packet:
5169 release_desc(desc);
5170 next++;
5171 next &= info->mask;
5172 }
5173 info->next = next;
5174
5175 return received;
5176}
5177
5178static void rx_proc_task(unsigned long data)
5179{
5180 struct dev_info *hw_priv = (struct dev_info *) data;
5181 struct ksz_hw *hw = &hw_priv->hw;
5182
5183 if (!hw->enabled)
5184 return;
5185 if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5186
5187 /* In case receive process is suspended because of overrun. */
5188 hw_resume_rx(hw);
5189
5190 /* tasklets are interruptible. */
5191 spin_lock_irq(&hw_priv->hwlock);
5192 hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5193 spin_unlock_irq(&hw_priv->hwlock);
5194 } else {
5195 hw_ack_intr(hw, KS884X_INT_RX);
5196 tasklet_schedule(&hw_priv->rx_tasklet);
5197 }
5198}
5199
5200static void tx_proc_task(unsigned long data)
5201{
5202 struct dev_info *hw_priv = (struct dev_info *) data;
5203 struct ksz_hw *hw = &hw_priv->hw;
5204
5205 hw_ack_intr(hw, KS884X_INT_TX_MASK);
5206
5207 tx_done(hw_priv);
5208
5209 /* tasklets are interruptible. */
5210 spin_lock_irq(&hw_priv->hwlock);
5211 hw_turn_on_intr(hw, KS884X_INT_TX);
5212 spin_unlock_irq(&hw_priv->hwlock);
5213}
5214
5215static inline void handle_rx_stop(struct ksz_hw *hw)
5216{
5217 /* Receive just has been stopped. */
5218 if (0 == hw->rx_stop)
5219 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5220 else if (hw->rx_stop > 1) {
5221 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5222 hw_start_rx(hw);
5223 } else {
5224 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5225 hw->rx_stop = 0;
5226 }
5227 } else
5228 /* Receive just has been started. */
5229 hw->rx_stop++;
5230}
5231
5232/**
5233 * netdev_intr - interrupt handling
5234 * @irq: Interrupt number.
5235 * @dev_id: Network device.
5236 *
5237 * This function is called by upper network layer to signal interrupt.
5238 *
5239 * Return IRQ_HANDLED if interrupt is handled.
5240 */
5241static irqreturn_t netdev_intr(int irq, void *dev_id)
5242{
5243 uint int_enable = 0;
5244 struct net_device *dev = (struct net_device *) dev_id;
5245 struct dev_priv *priv = netdev_priv(dev);
5246 struct dev_info *hw_priv = priv->adapter;
5247 struct ksz_hw *hw = &hw_priv->hw;
5248
5249 spin_lock(&hw_priv->hwlock);
5250
5251 hw_read_intr(hw, &int_enable);
5252
5253 /* Not our interrupt! */
5254 if (!int_enable) {
5255 spin_unlock(&hw_priv->hwlock);
5256 return IRQ_NONE;
5257 }
5258
5259 do {
5260 hw_ack_intr(hw, int_enable);
5261 int_enable &= hw->intr_mask;
5262
5263 if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5264 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5265 tasklet_schedule(&hw_priv->tx_tasklet);
5266 }
5267
5268 if (likely(int_enable & KS884X_INT_RX)) {
5269 hw_dis_intr_bit(hw, KS884X_INT_RX);
5270 tasklet_schedule(&hw_priv->rx_tasklet);
5271 }
5272
5273 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5274 dev->stats.rx_fifo_errors++;
5275 hw_resume_rx(hw);
5276 }
5277
5278 if (unlikely(int_enable & KS884X_INT_PHY)) {
5279 struct ksz_port *port = &priv->port;
5280
5281 hw->features |= LINK_INT_WORKING;
5282 port_get_link_speed(port);
5283 }
5284
5285 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5286 handle_rx_stop(hw);
5287 break;
5288 }
5289
5290 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5291 u32 data;
5292
5293 hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5294 pr_info("Tx stopped\n");
5295 data = readl(hw->io + KS_DMA_TX_CTRL);
5296 if (!(data & DMA_TX_ENABLE))
5297 pr_info("Tx disabled\n");
5298 break;
5299 }
5300 } while (0);
5301
5302 hw_ena_intr(hw);
5303
5304 spin_unlock(&hw_priv->hwlock);
5305
5306 return IRQ_HANDLED;
5307}
5308
5309/*
5310 * Linux network device functions
5311 */
5312
5313static unsigned long next_jiffies;
5314
5315#ifdef CONFIG_NET_POLL_CONTROLLER
5316static void netdev_netpoll(struct net_device *dev)
5317{
5318 struct dev_priv *priv = netdev_priv(dev);
5319 struct dev_info *hw_priv = priv->adapter;
5320
5321 hw_dis_intr(&hw_priv->hw);
5322 netdev_intr(dev->irq, dev);
5323}
5324#endif
5325
5326static void bridge_change(struct ksz_hw *hw)
5327{
5328 int port;
5329 u8 member;
5330 struct ksz_switch *sw = hw->ksz_switch;
5331
5332 /* No ports in forwarding state. */
5333 if (!sw->member) {
5334 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5335 sw_block_addr(hw);
5336 }
5337 for (port = 0; port < SWITCH_PORT_NUM; port++) {
5338 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5339 member = HOST_MASK | sw->member;
5340 else
5341 member = HOST_MASK | (1 << port);
5342 if (member != sw->port_cfg[port].member)
5343 sw_cfg_port_base_vlan(hw, port, member);
5344 }
5345}
5346
5347/**
5348 * netdev_close - close network device
5349 * @dev: Network device.
5350 *
5351 * This function process the close operation of network device. This is caused
5352 * by the user command "ifconfig ethX down."
5353 *
5354 * Return 0 if successful; otherwise an error code indicating failure.
5355 */
5356static int netdev_close(struct net_device *dev)
5357{
5358 struct dev_priv *priv = netdev_priv(dev);
5359 struct dev_info *hw_priv = priv->adapter;
5360 struct ksz_port *port = &priv->port;
5361 struct ksz_hw *hw = &hw_priv->hw;
5362 int pi;
5363
5364 netif_stop_queue(dev);
5365
5366 ksz_stop_timer(&priv->monitor_timer_info);
5367
5368 /* Need to shut the port manually in multiple device interfaces mode. */
5369 if (hw->dev_count > 1) {
5370 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5371
5372 /* Port is closed. Need to change bridge setting. */
5373 if (hw->features & STP_SUPPORT) {
5374 pi = 1 << port->first_port;
5375 if (hw->ksz_switch->member & pi) {
5376 hw->ksz_switch->member &= ~pi;
5377 bridge_change(hw);
5378 }
5379 }
5380 }
5381 if (port->first_port > 0)
5382 hw_del_addr(hw, dev->dev_addr);
5383 if (!hw_priv->wol_enable)
5384 port_set_power_saving(port, true);
5385
5386 if (priv->multicast)
5387 --hw->all_multi;
5388 if (priv->promiscuous)
5389 --hw->promiscuous;
5390
5391 hw_priv->opened--;
5392 if (!(hw_priv->opened)) {
5393 ksz_stop_timer(&hw_priv->mib_timer_info);
5394 flush_work(&hw_priv->mib_read);
5395
5396 hw_dis_intr(hw);
5397 hw_disable(hw);
5398 hw_clr_multicast(hw);
5399
5400 /* Delay for receive task to stop scheduling itself. */
5401 msleep(2000 / HZ);
5402
5403 tasklet_kill(&hw_priv->rx_tasklet);
5404 tasklet_kill(&hw_priv->tx_tasklet);
5405 free_irq(dev->irq, hw_priv->dev);
5406
5407 transmit_cleanup(hw_priv, 0);
5408 hw_reset_pkts(&hw->rx_desc_info);
5409 hw_reset_pkts(&hw->tx_desc_info);
5410
5411 /* Clean out static MAC table when the switch is shutdown. */
5412 if (hw->features & STP_SUPPORT)
5413 sw_clr_sta_mac_table(hw);
5414 }
5415
5416 return 0;
5417}
5418
5419static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5420{
5421 if (hw->ksz_switch) {
5422 u32 data;
5423
5424 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5425 if (hw->features & RX_HUGE_FRAME)
5426 data |= SWITCH_HUGE_PACKET;
5427 else
5428 data &= ~SWITCH_HUGE_PACKET;
5429 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5430 }
5431 if (hw->features & RX_HUGE_FRAME) {
5432 hw->rx_cfg |= DMA_RX_ERROR;
5433 hw_priv->dev_rcv = dev_rcv_special;
5434 } else {
5435 hw->rx_cfg &= ~DMA_RX_ERROR;
5436 if (hw->dev_count > 1)
5437 hw_priv->dev_rcv = port_rcv_packets;
5438 else
5439 hw_priv->dev_rcv = dev_rcv_packets;
5440 }
5441}
5442
5443static int prepare_hardware(struct net_device *dev)
5444{
5445 struct dev_priv *priv = netdev_priv(dev);
5446 struct dev_info *hw_priv = priv->adapter;
5447 struct ksz_hw *hw = &hw_priv->hw;
5448 int rc = 0;
5449
5450 /* Remember the network device that requests interrupts. */
5451 hw_priv->dev = dev;
5452 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5453 if (rc)
5454 return rc;
5455 tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5456 (unsigned long) hw_priv);
5457 tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5458 (unsigned long) hw_priv);
5459
5460 hw->promiscuous = 0;
5461 hw->all_multi = 0;
5462 hw->multi_list_size = 0;
5463
5464 hw_reset(hw);
5465
5466 hw_set_desc_base(hw,
5467 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5468 hw_set_addr(hw);
5469 hw_cfg_huge_frame(hw_priv, hw);
5470 ksz_init_rx_buffers(hw_priv);
5471 return 0;
5472}
5473
5474static void set_media_state(struct net_device *dev, int media_state)
5475{
5476 struct dev_priv *priv = netdev_priv(dev);
5477
5478 if (media_state == priv->media_state)
5479 netif_carrier_on(dev);
5480 else
5481 netif_carrier_off(dev);
5482 netif_info(priv, link, dev, "link %s\n",
5483 media_state == priv->media_state ? "on" : "off");
5484}
5485
5486/**
5487 * netdev_open - open network device
5488 * @dev: Network device.
5489 *
5490 * This function process the open operation of network device. This is caused
5491 * by the user command "ifconfig ethX up."
5492 *
5493 * Return 0 if successful; otherwise an error code indicating failure.
5494 */
5495static int netdev_open(struct net_device *dev)
5496{
5497 struct dev_priv *priv = netdev_priv(dev);
5498 struct dev_info *hw_priv = priv->adapter;
5499 struct ksz_hw *hw = &hw_priv->hw;
5500 struct ksz_port *port = &priv->port;
5501 int i;
5502 int p;
5503 int rc = 0;
5504
5505 priv->multicast = 0;
5506 priv->promiscuous = 0;
5507
5508 /* Reset device statistics. */
5509 memset(&dev->stats, 0, sizeof(struct net_device_stats));
5510 memset((void *) port->counter, 0,
5511 (sizeof(u64) * OID_COUNTER_LAST));
5512
5513 if (!(hw_priv->opened)) {
5514 rc = prepare_hardware(dev);
5515 if (rc)
5516 return rc;
5517 for (i = 0; i < hw->mib_port_cnt; i++) {
5518 if (next_jiffies < jiffies)
5519 next_jiffies = jiffies + HZ * 2;
5520 else
5521 next_jiffies += HZ * 1;
5522 hw_priv->counter[i].time = next_jiffies;
5523 hw->port_mib[i].state = media_disconnected;
5524 port_init_cnt(hw, i);
5525 }
5526 if (hw->ksz_switch)
5527 hw->port_mib[HOST_PORT].state = media_connected;
5528 else {
5529 hw_add_wol_bcast(hw);
5530 hw_cfg_wol_pme(hw, 0);
5531 hw_clr_wol_pme_status(&hw_priv->hw);
5532 }
5533 }
5534 port_set_power_saving(port, false);
5535
5536 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5537 /*
5538 * Initialize to invalid value so that link detection
5539 * is done.
5540 */
5541 hw->port_info[p].partner = 0xFF;
5542 hw->port_info[p].state = media_disconnected;
5543 }
5544
5545 /* Need to open the port in multiple device interfaces mode. */
5546 if (hw->dev_count > 1) {
5547 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5548 if (port->first_port > 0)
5549 hw_add_addr(hw, dev->dev_addr);
5550 }
5551
5552 port_get_link_speed(port);
5553 if (port->force_link)
5554 port_force_link_speed(port);
5555 else
5556 port_set_link_speed(port);
5557
5558 if (!(hw_priv->opened)) {
5559 hw_setup_intr(hw);
5560 hw_enable(hw);
5561 hw_ena_intr(hw);
5562
5563 if (hw->mib_port_cnt)
5564 ksz_start_timer(&hw_priv->mib_timer_info,
5565 hw_priv->mib_timer_info.period);
5566 }
5567
5568 hw_priv->opened++;
5569
5570 ksz_start_timer(&priv->monitor_timer_info,
5571 priv->monitor_timer_info.period);
5572
5573 priv->media_state = port->linked->state;
5574
5575 set_media_state(dev, media_connected);
5576 netif_start_queue(dev);
5577
5578 return 0;
5579}
5580
5581/* RX errors = rx_errors */
5582/* RX dropped = rx_dropped */
5583/* RX overruns = rx_fifo_errors */
5584/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5585/* TX errors = tx_errors */
5586/* TX dropped = tx_dropped */
5587/* TX overruns = tx_fifo_errors */
5588/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5589/* collisions = collisions */
5590
5591/**
5592 * netdev_query_statistics - query network device statistics
5593 * @dev: Network device.
5594 *
5595 * This function returns the statistics of the network device. The device
5596 * needs not be opened.
5597 *
5598 * Return network device statistics.
5599 */
5600static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5601{
5602 struct dev_priv *priv = netdev_priv(dev);
5603 struct ksz_port *port = &priv->port;
5604 struct ksz_hw *hw = &priv->adapter->hw;
5605 struct ksz_port_mib *mib;
5606 int i;
5607 int p;
5608
5609 dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5610 dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5611
5612 /* Reset to zero to add count later. */
5613 dev->stats.multicast = 0;
5614 dev->stats.collisions = 0;
5615 dev->stats.rx_length_errors = 0;
5616 dev->stats.rx_crc_errors = 0;
5617 dev->stats.rx_frame_errors = 0;
5618 dev->stats.tx_window_errors = 0;
5619
5620 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5621 mib = &hw->port_mib[p];
5622
5623 dev->stats.multicast += (unsigned long)
5624 mib->counter[MIB_COUNTER_RX_MULTICAST];
5625
5626 dev->stats.collisions += (unsigned long)
5627 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5628
5629 dev->stats.rx_length_errors += (unsigned long)(
5630 mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5631 mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5632 mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5633 mib->counter[MIB_COUNTER_RX_JABBER]);
5634 dev->stats.rx_crc_errors += (unsigned long)
5635 mib->counter[MIB_COUNTER_RX_CRC_ERR];
5636 dev->stats.rx_frame_errors += (unsigned long)(
5637 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5638 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5639
5640 dev->stats.tx_window_errors += (unsigned long)
5641 mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5642 }
5643
5644 return &dev->stats;
5645}
5646
5647/**
5648 * netdev_set_mac_address - set network device MAC address
5649 * @dev: Network device.
5650 * @addr: Buffer of MAC address.
5651 *
5652 * This function is used to set the MAC address of the network device.
5653 *
5654 * Return 0 to indicate success.
5655 */
5656static int netdev_set_mac_address(struct net_device *dev, void *addr)
5657{
5658 struct dev_priv *priv = netdev_priv(dev);
5659 struct dev_info *hw_priv = priv->adapter;
5660 struct ksz_hw *hw = &hw_priv->hw;
5661 struct sockaddr *mac = addr;
5662 uint interrupt;
5663
5664 if (priv->port.first_port > 0)
5665 hw_del_addr(hw, dev->dev_addr);
5666 else {
5667 hw->mac_override = 1;
5668 memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5669 }
5670
5671 memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5672
5673 interrupt = hw_block_intr(hw);
5674
5675 if (priv->port.first_port > 0)
5676 hw_add_addr(hw, dev->dev_addr);
5677 else
5678 hw_set_addr(hw);
5679 hw_restore_intr(hw, interrupt);
5680
5681 return 0;
5682}
5683
5684static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5685 struct ksz_hw *hw, int promiscuous)
5686{
5687 if (promiscuous != priv->promiscuous) {
5688 u8 prev_state = hw->promiscuous;
5689
5690 if (promiscuous)
5691 ++hw->promiscuous;
5692 else
5693 --hw->promiscuous;
5694 priv->promiscuous = promiscuous;
5695
5696 /* Turn on/off promiscuous mode. */
5697 if (hw->promiscuous <= 1 && prev_state <= 1)
5698 hw_set_promiscuous(hw, hw->promiscuous);
5699
5700 /*
5701 * Port is not in promiscuous mode, meaning it is released
5702 * from the bridge.
5703 */
5704 if ((hw->features & STP_SUPPORT) && !promiscuous &&
5705 (dev->priv_flags & IFF_BRIDGE_PORT)) {
5706 struct ksz_switch *sw = hw->ksz_switch;
5707 int port = priv->port.first_port;
5708
5709 port_set_stp_state(hw, port, STP_STATE_DISABLED);
5710 port = 1 << port;
5711 if (sw->member & port) {
5712 sw->member &= ~port;
5713 bridge_change(hw);
5714 }
5715 }
5716 }
5717}
5718
5719static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5720 int multicast)
5721{
5722 if (multicast != priv->multicast) {
5723 u8 all_multi = hw->all_multi;
5724
5725 if (multicast)
5726 ++hw->all_multi;
5727 else
5728 --hw->all_multi;
5729 priv->multicast = multicast;
5730
5731 /* Turn on/off all multicast mode. */
5732 if (hw->all_multi <= 1 && all_multi <= 1)
5733 hw_set_multicast(hw, hw->all_multi);
5734 }
5735}
5736
5737/**
5738 * netdev_set_rx_mode
5739 * @dev: Network device.
5740 *
5741 * This routine is used to set multicast addresses or put the network device
5742 * into promiscuous mode.
5743 */
5744static void netdev_set_rx_mode(struct net_device *dev)
5745{
5746 struct dev_priv *priv = netdev_priv(dev);
5747 struct dev_info *hw_priv = priv->adapter;
5748 struct ksz_hw *hw = &hw_priv->hw;
5749 struct netdev_hw_addr *ha;
5750 int multicast = (dev->flags & IFF_ALLMULTI);
5751
5752 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5753
5754 if (hw_priv->hw.dev_count > 1)
5755 multicast |= (dev->flags & IFF_MULTICAST);
5756 dev_set_multicast(priv, hw, multicast);
5757
5758 /* Cannot use different hashes in multiple device interfaces mode. */
5759 if (hw_priv->hw.dev_count > 1)
5760 return;
5761
5762 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5763 int i = 0;
5764
5765 /* List too big to support so turn on all multicast mode. */
5766 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5767 if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5768 hw->multi_list_size = MAX_MULTICAST_LIST;
5769 ++hw->all_multi;
5770 hw_set_multicast(hw, hw->all_multi);
5771 }
5772 return;
5773 }
5774
5775 netdev_for_each_mc_addr(ha, dev) {
5776 if (i >= MAX_MULTICAST_LIST)
5777 break;
5778 memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5779 }
5780 hw->multi_list_size = (u8) i;
5781 hw_set_grp_addr(hw);
5782 } else {
5783 if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5784 --hw->all_multi;
5785 hw_set_multicast(hw, hw->all_multi);
5786 }
5787 hw->multi_list_size = 0;
5788 hw_clr_multicast(hw);
5789 }
5790}
5791
5792static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5793{
5794 struct dev_priv *priv = netdev_priv(dev);
5795 struct dev_info *hw_priv = priv->adapter;
5796 struct ksz_hw *hw = &hw_priv->hw;
5797 int hw_mtu;
5798
5799 if (netif_running(dev))
5800 return -EBUSY;
5801
5802 /* Cannot use different MTU in multiple device interfaces mode. */
5803 if (hw->dev_count > 1)
5804 if (dev != hw_priv->dev)
5805 return 0;
5806
5807 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5808 if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5809 hw->features |= RX_HUGE_FRAME;
5810 hw_mtu = MAX_RX_BUF_SIZE;
5811 } else {
5812 hw->features &= ~RX_HUGE_FRAME;
5813 hw_mtu = REGULAR_RX_BUF_SIZE;
5814 }
5815 hw_mtu = (hw_mtu + 3) & ~3;
5816 hw_priv->mtu = hw_mtu;
5817 dev->mtu = new_mtu;
5818
5819 return 0;
5820}
5821
5822/**
5823 * netdev_ioctl - I/O control processing
5824 * @dev: Network device.
5825 * @ifr: Interface request structure.
5826 * @cmd: I/O control code.
5827 *
5828 * This function is used to process I/O control calls.
5829 *
5830 * Return 0 to indicate success.
5831 */
5832static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5833{
5834 struct dev_priv *priv = netdev_priv(dev);
5835 struct dev_info *hw_priv = priv->adapter;
5836 struct ksz_hw *hw = &hw_priv->hw;
5837 struct ksz_port *port = &priv->port;
5838 int result = 0;
5839 struct mii_ioctl_data *data = if_mii(ifr);
5840
5841 if (down_interruptible(&priv->proc_sem))
5842 return -ERESTARTSYS;
5843
5844 switch (cmd) {
5845 /* Get address of MII PHY in use. */
5846 case SIOCGMIIPHY:
5847 data->phy_id = priv->id;
5848
5849 /* Fallthrough... */
5850
5851 /* Read MII PHY register. */
5852 case SIOCGMIIREG:
5853 if (data->phy_id != priv->id || data->reg_num >= 6)
5854 result = -EIO;
5855 else
5856 hw_r_phy(hw, port->linked->port_id, data->reg_num,
5857 &data->val_out);
5858 break;
5859
5860 /* Write MII PHY register. */
5861 case SIOCSMIIREG:
5862 if (!capable(CAP_NET_ADMIN))
5863 result = -EPERM;
5864 else if (data->phy_id != priv->id || data->reg_num >= 6)
5865 result = -EIO;
5866 else
5867 hw_w_phy(hw, port->linked->port_id, data->reg_num,
5868 data->val_in);
5869 break;
5870
5871 default:
5872 result = -EOPNOTSUPP;
5873 }
5874
5875 up(&priv->proc_sem);
5876
5877 return result;
5878}
5879
5880/*
5881 * MII support
5882 */
5883
5884/**
5885 * mdio_read - read PHY register
5886 * @dev: Network device.
5887 * @phy_id: The PHY id.
5888 * @reg_num: The register number.
5889 *
5890 * This function returns the PHY register value.
5891 *
5892 * Return the register value.
5893 */
5894static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5895{
5896 struct dev_priv *priv = netdev_priv(dev);
5897 struct ksz_port *port = &priv->port;
5898 struct ksz_hw *hw = port->hw;
5899 u16 val_out;
5900
5901 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5902 return val_out;
5903}
5904
5905/**
5906 * mdio_write - set PHY register
5907 * @dev: Network device.
5908 * @phy_id: The PHY id.
5909 * @reg_num: The register number.
5910 * @val: The register value.
5911 *
5912 * This procedure sets the PHY register value.
5913 */
5914static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5915{
5916 struct dev_priv *priv = netdev_priv(dev);
5917 struct ksz_port *port = &priv->port;
5918 struct ksz_hw *hw = port->hw;
5919 int i;
5920 int pi;
5921
5922 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5923 hw_w_phy(hw, pi, reg_num << 1, val);
5924}
5925
5926/*
5927 * ethtool support
5928 */
5929
5930#define EEPROM_SIZE 0x40
5931
5932static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5933
5934#define ADVERTISED_ALL \
5935 (ADVERTISED_10baseT_Half | \
5936 ADVERTISED_10baseT_Full | \
5937 ADVERTISED_100baseT_Half | \
5938 ADVERTISED_100baseT_Full)
5939
5940/* These functions use the MII functions in mii.c. */
5941
5942/**
5943 * netdev_get_link_ksettings - get network device settings
5944 * @dev: Network device.
5945 * @cmd: Ethtool command.
5946 *
5947 * This function queries the PHY and returns its state in the ethtool command.
5948 *
5949 * Return 0 if successful; otherwise an error code.
5950 */
5951static int netdev_get_link_ksettings(struct net_device *dev,
5952 struct ethtool_link_ksettings *cmd)
5953{
5954 struct dev_priv *priv = netdev_priv(dev);
5955 struct dev_info *hw_priv = priv->adapter;
5956
5957 mutex_lock(&hw_priv->lock);
5958 mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5959 ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5960 mutex_unlock(&hw_priv->lock);
5961
5962 /* Save advertised settings for workaround in next function. */
5963 ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5964 cmd->link_modes.advertising);
5965
5966 return 0;
5967}
5968
5969/**
5970 * netdev_set_link_ksettings - set network device settings
5971 * @dev: Network device.
5972 * @cmd: Ethtool command.
5973 *
5974 * This function sets the PHY according to the ethtool command.
5975 *
5976 * Return 0 if successful; otherwise an error code.
5977 */
5978static int netdev_set_link_ksettings(struct net_device *dev,
5979 const struct ethtool_link_ksettings *cmd)
5980{
5981 struct dev_priv *priv = netdev_priv(dev);
5982 struct dev_info *hw_priv = priv->adapter;
5983 struct ksz_port *port = &priv->port;
5984 struct ethtool_link_ksettings copy_cmd;
5985 u32 speed = cmd->base.speed;
5986 u32 advertising;
5987 int rc;
5988
5989 ethtool_convert_link_mode_to_legacy_u32(&advertising,
5990 cmd->link_modes.advertising);
5991
5992 /*
5993 * ethtool utility does not change advertised setting if auto
5994 * negotiation is not specified explicitly.
5995 */
5996 if (cmd->base.autoneg && priv->advertising == advertising) {
5997 advertising |= ADVERTISED_ALL;
5998 if (10 == speed)
5999 advertising &=
6000 ~(ADVERTISED_100baseT_Full |
6001 ADVERTISED_100baseT_Half);
6002 else if (100 == speed)
6003 advertising &=
6004 ~(ADVERTISED_10baseT_Full |
6005 ADVERTISED_10baseT_Half);
6006 if (0 == cmd->base.duplex)
6007 advertising &=
6008 ~(ADVERTISED_100baseT_Full |
6009 ADVERTISED_10baseT_Full);
6010 else if (1 == cmd->base.duplex)
6011 advertising &=
6012 ~(ADVERTISED_100baseT_Half |
6013 ADVERTISED_10baseT_Half);
6014 }
6015 mutex_lock(&hw_priv->lock);
6016 if (cmd->base.autoneg &&
6017 (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
6018 port->duplex = 0;
6019 port->speed = 0;
6020 port->force_link = 0;
6021 } else {
6022 port->duplex = cmd->base.duplex + 1;
6023 if (1000 != speed)
6024 port->speed = speed;
6025 if (cmd->base.autoneg)
6026 port->force_link = 0;
6027 else
6028 port->force_link = 1;
6029 }
6030
6031 memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
6032 ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
6033 advertising);
6034 rc = mii_ethtool_set_link_ksettings(
6035 &priv->mii_if,
6036 (const struct ethtool_link_ksettings *)&copy_cmd);
6037 mutex_unlock(&hw_priv->lock);
6038 return rc;
6039}
6040
6041/**
6042 * netdev_nway_reset - restart auto-negotiation
6043 * @dev: Network device.
6044 *
6045 * This function restarts the PHY for auto-negotiation.
6046 *
6047 * Return 0 if successful; otherwise an error code.
6048 */
6049static int netdev_nway_reset(struct net_device *dev)
6050{
6051 struct dev_priv *priv = netdev_priv(dev);
6052 struct dev_info *hw_priv = priv->adapter;
6053 int rc;
6054
6055 mutex_lock(&hw_priv->lock);
6056 rc = mii_nway_restart(&priv->mii_if);
6057 mutex_unlock(&hw_priv->lock);
6058 return rc;
6059}
6060
6061/**
6062 * netdev_get_link - get network device link status
6063 * @dev: Network device.
6064 *
6065 * This function gets the link status from the PHY.
6066 *
6067 * Return true if PHY is linked and false otherwise.
6068 */
6069static u32 netdev_get_link(struct net_device *dev)
6070{
6071 struct dev_priv *priv = netdev_priv(dev);
6072 int rc;
6073
6074 rc = mii_link_ok(&priv->mii_if);
6075 return rc;
6076}
6077
6078/**
6079 * netdev_get_drvinfo - get network driver information
6080 * @dev: Network device.
6081 * @info: Ethtool driver info data structure.
6082 *
6083 * This procedure returns the driver information.
6084 */
6085static void netdev_get_drvinfo(struct net_device *dev,
6086 struct ethtool_drvinfo *info)
6087{
6088 struct dev_priv *priv = netdev_priv(dev);
6089 struct dev_info *hw_priv = priv->adapter;
6090
6091 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6092 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6093 strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6094 sizeof(info->bus_info));
6095}
6096
6097/**
6098 * netdev_get_regs_len - get length of register dump
6099 * @dev: Network device.
6100 *
6101 * This function returns the length of the register dump.
6102 *
6103 * Return length of the register dump.
6104 */
6105static struct hw_regs {
6106 int start;
6107 int end;
6108} hw_regs_range[] = {
6109 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS },
6110 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI },
6111 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6112 { KS884X_SIDER_P, KS8842_SGCR7_P },
6113 { KS8842_MACAR1_P, KS8842_TOSR8_P },
6114 { KS884X_P1MBCR_P, KS8842_P3ERCR_P },
6115 { 0, 0 }
6116};
6117
6118static int netdev_get_regs_len(struct net_device *dev)
6119{
6120 struct hw_regs *range = hw_regs_range;
6121 int regs_len = 0x10 * sizeof(u32);
6122
6123 while (range->end > range->start) {
6124 regs_len += (range->end - range->start + 3) / 4 * 4;
6125 range++;
6126 }
6127 return regs_len;
6128}
6129
6130/**
6131 * netdev_get_regs - get register dump
6132 * @dev: Network device.
6133 * @regs: Ethtool registers data structure.
6134 * @ptr: Buffer to store the register values.
6135 *
6136 * This procedure dumps the register values in the provided buffer.
6137 */
6138static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6139 void *ptr)
6140{
6141 struct dev_priv *priv = netdev_priv(dev);
6142 struct dev_info *hw_priv = priv->adapter;
6143 struct ksz_hw *hw = &hw_priv->hw;
6144 int *buf = (int *) ptr;
6145 struct hw_regs *range = hw_regs_range;
6146 int len;
6147
6148 mutex_lock(&hw_priv->lock);
6149 regs->version = 0;
6150 for (len = 0; len < 0x40; len += 4) {
6151 pci_read_config_dword(hw_priv->pdev, len, buf);
6152 buf++;
6153 }
6154 while (range->end > range->start) {
6155 for (len = range->start; len < range->end; len += 4) {
6156 *buf = readl(hw->io + len);
6157 buf++;
6158 }
6159 range++;
6160 }
6161 mutex_unlock(&hw_priv->lock);
6162}
6163
6164#define WOL_SUPPORT \
6165 (WAKE_PHY | WAKE_MAGIC | \
6166 WAKE_UCAST | WAKE_MCAST | \
6167 WAKE_BCAST | WAKE_ARP)
6168
6169/**
6170 * netdev_get_wol - get Wake-on-LAN support
6171 * @dev: Network device.
6172 * @wol: Ethtool Wake-on-LAN data structure.
6173 *
6174 * This procedure returns Wake-on-LAN support.
6175 */
6176static void netdev_get_wol(struct net_device *dev,
6177 struct ethtool_wolinfo *wol)
6178{
6179 struct dev_priv *priv = netdev_priv(dev);
6180 struct dev_info *hw_priv = priv->adapter;
6181
6182 wol->supported = hw_priv->wol_support;
6183 wol->wolopts = hw_priv->wol_enable;
6184 memset(&wol->sopass, 0, sizeof(wol->sopass));
6185}
6186
6187/**
6188 * netdev_set_wol - set Wake-on-LAN support
6189 * @dev: Network device.
6190 * @wol: Ethtool Wake-on-LAN data structure.
6191 *
6192 * This function sets Wake-on-LAN support.
6193 *
6194 * Return 0 if successful; otherwise an error code.
6195 */
6196static int netdev_set_wol(struct net_device *dev,
6197 struct ethtool_wolinfo *wol)
6198{
6199 struct dev_priv *priv = netdev_priv(dev);
6200 struct dev_info *hw_priv = priv->adapter;
6201
6202 /* Need to find a way to retrieve the device IP address. */
6203 static const u8 net_addr[] = { 192, 168, 1, 1 };
6204
6205 if (wol->wolopts & ~hw_priv->wol_support)
6206 return -EINVAL;
6207
6208 hw_priv->wol_enable = wol->wolopts;
6209
6210 /* Link wakeup cannot really be disabled. */
6211 if (wol->wolopts)
6212 hw_priv->wol_enable |= WAKE_PHY;
6213 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6214 return 0;
6215}
6216
6217/**
6218 * netdev_get_msglevel - get debug message level
6219 * @dev: Network device.
6220 *
6221 * This function returns current debug message level.
6222 *
6223 * Return current debug message flags.
6224 */
6225static u32 netdev_get_msglevel(struct net_device *dev)
6226{
6227 struct dev_priv *priv = netdev_priv(dev);
6228
6229 return priv->msg_enable;
6230}
6231
6232/**
6233 * netdev_set_msglevel - set debug message level
6234 * @dev: Network device.
6235 * @value: Debug message flags.
6236 *
6237 * This procedure sets debug message level.
6238 */
6239static void netdev_set_msglevel(struct net_device *dev, u32 value)
6240{
6241 struct dev_priv *priv = netdev_priv(dev);
6242
6243 priv->msg_enable = value;
6244}
6245
6246/**
6247 * netdev_get_eeprom_len - get EEPROM length
6248 * @dev: Network device.
6249 *
6250 * This function returns the length of the EEPROM.
6251 *
6252 * Return length of the EEPROM.
6253 */
6254static int netdev_get_eeprom_len(struct net_device *dev)
6255{
6256 return EEPROM_SIZE * 2;
6257}
6258
6259/**
6260 * netdev_get_eeprom - get EEPROM data
6261 * @dev: Network device.
6262 * @eeprom: Ethtool EEPROM data structure.
6263 * @data: Buffer to store the EEPROM data.
6264 *
6265 * This function dumps the EEPROM data in the provided buffer.
6266 *
6267 * Return 0 if successful; otherwise an error code.
6268 */
6269#define EEPROM_MAGIC 0x10A18842
6270
6271static int netdev_get_eeprom(struct net_device *dev,
6272 struct ethtool_eeprom *eeprom, u8 *data)
6273{
6274 struct dev_priv *priv = netdev_priv(dev);
6275 struct dev_info *hw_priv = priv->adapter;
6276 u8 *eeprom_byte = (u8 *) eeprom_data;
6277 int i;
6278 int len;
6279
6280 len = (eeprom->offset + eeprom->len + 1) / 2;
6281 for (i = eeprom->offset / 2; i < len; i++)
6282 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6283 eeprom->magic = EEPROM_MAGIC;
6284 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6285
6286 return 0;
6287}
6288
6289/**
6290 * netdev_set_eeprom - write EEPROM data
6291 * @dev: Network device.
6292 * @eeprom: Ethtool EEPROM data structure.
6293 * @data: Data buffer.
6294 *
6295 * This function modifies the EEPROM data one byte at a time.
6296 *
6297 * Return 0 if successful; otherwise an error code.
6298 */
6299static int netdev_set_eeprom(struct net_device *dev,
6300 struct ethtool_eeprom *eeprom, u8 *data)
6301{
6302 struct dev_priv *priv = netdev_priv(dev);
6303 struct dev_info *hw_priv = priv->adapter;
6304 u16 eeprom_word[EEPROM_SIZE];
6305 u8 *eeprom_byte = (u8 *) eeprom_word;
6306 int i;
6307 int len;
6308
6309 if (eeprom->magic != EEPROM_MAGIC)
6310 return -EINVAL;
6311
6312 len = (eeprom->offset + eeprom->len + 1) / 2;
6313 for (i = eeprom->offset / 2; i < len; i++)
6314 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6315 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6316 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6317 for (i = 0; i < EEPROM_SIZE; i++)
6318 if (eeprom_word[i] != eeprom_data[i]) {
6319 eeprom_data[i] = eeprom_word[i];
6320 eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6321 }
6322
6323 return 0;
6324}
6325
6326/**
6327 * netdev_get_pauseparam - get flow control parameters
6328 * @dev: Network device.
6329 * @pause: Ethtool PAUSE settings data structure.
6330 *
6331 * This procedure returns the PAUSE control flow settings.
6332 */
6333static void netdev_get_pauseparam(struct net_device *dev,
6334 struct ethtool_pauseparam *pause)
6335{
6336 struct dev_priv *priv = netdev_priv(dev);
6337 struct dev_info *hw_priv = priv->adapter;
6338 struct ksz_hw *hw = &hw_priv->hw;
6339
6340 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6341 if (!hw->ksz_switch) {
6342 pause->rx_pause =
6343 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6344 pause->tx_pause =
6345 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6346 } else {
6347 pause->rx_pause =
6348 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6349 SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6350 pause->tx_pause =
6351 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6352 SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6353 }
6354}
6355
6356/**
6357 * netdev_set_pauseparam - set flow control parameters
6358 * @dev: Network device.
6359 * @pause: Ethtool PAUSE settings data structure.
6360 *
6361 * This function sets the PAUSE control flow settings.
6362 * Not implemented yet.
6363 *
6364 * Return 0 if successful; otherwise an error code.
6365 */
6366static int netdev_set_pauseparam(struct net_device *dev,
6367 struct ethtool_pauseparam *pause)
6368{
6369 struct dev_priv *priv = netdev_priv(dev);
6370 struct dev_info *hw_priv = priv->adapter;
6371 struct ksz_hw *hw = &hw_priv->hw;
6372 struct ksz_port *port = &priv->port;
6373
6374 mutex_lock(&hw_priv->lock);
6375 if (pause->autoneg) {
6376 if (!pause->rx_pause && !pause->tx_pause)
6377 port->flow_ctrl = PHY_NO_FLOW_CTRL;
6378 else
6379 port->flow_ctrl = PHY_FLOW_CTRL;
6380 hw->overrides &= ~PAUSE_FLOW_CTRL;
6381 port->force_link = 0;
6382 if (hw->ksz_switch) {
6383 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6384 SWITCH_RX_FLOW_CTRL, 1);
6385 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6386 SWITCH_TX_FLOW_CTRL, 1);
6387 }
6388 port_set_link_speed(port);
6389 } else {
6390 hw->overrides |= PAUSE_FLOW_CTRL;
6391 if (hw->ksz_switch) {
6392 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6393 SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6394 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6395 SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6396 } else
6397 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6398 }
6399 mutex_unlock(&hw_priv->lock);
6400
6401 return 0;
6402}
6403
6404/**
6405 * netdev_get_ringparam - get tx/rx ring parameters
6406 * @dev: Network device.
6407 * @pause: Ethtool RING settings data structure.
6408 *
6409 * This procedure returns the TX/RX ring settings.
6410 */
6411static void netdev_get_ringparam(struct net_device *dev,
6412 struct ethtool_ringparam *ring)
6413{
6414 struct dev_priv *priv = netdev_priv(dev);
6415 struct dev_info *hw_priv = priv->adapter;
6416 struct ksz_hw *hw = &hw_priv->hw;
6417
6418 ring->tx_max_pending = (1 << 9);
6419 ring->tx_pending = hw->tx_desc_info.alloc;
6420 ring->rx_max_pending = (1 << 9);
6421 ring->rx_pending = hw->rx_desc_info.alloc;
6422}
6423
6424#define STATS_LEN (TOTAL_PORT_COUNTER_NUM)
6425
6426static struct {
6427 char string[ETH_GSTRING_LEN];
6428} ethtool_stats_keys[STATS_LEN] = {
6429 { "rx_lo_priority_octets" },
6430 { "rx_hi_priority_octets" },
6431 { "rx_undersize_packets" },
6432 { "rx_fragments" },
6433 { "rx_oversize_packets" },
6434 { "rx_jabbers" },
6435 { "rx_symbol_errors" },
6436 { "rx_crc_errors" },
6437 { "rx_align_errors" },
6438 { "rx_mac_ctrl_packets" },
6439 { "rx_pause_packets" },
6440 { "rx_bcast_packets" },
6441 { "rx_mcast_packets" },
6442 { "rx_ucast_packets" },
6443 { "rx_64_or_less_octet_packets" },
6444 { "rx_65_to_127_octet_packets" },
6445 { "rx_128_to_255_octet_packets" },
6446 { "rx_256_to_511_octet_packets" },
6447 { "rx_512_to_1023_octet_packets" },
6448 { "rx_1024_to_1522_octet_packets" },
6449
6450 { "tx_lo_priority_octets" },
6451 { "tx_hi_priority_octets" },
6452 { "tx_late_collisions" },
6453 { "tx_pause_packets" },
6454 { "tx_bcast_packets" },
6455 { "tx_mcast_packets" },
6456 { "tx_ucast_packets" },
6457 { "tx_deferred" },
6458 { "tx_total_collisions" },
6459 { "tx_excessive_collisions" },
6460 { "tx_single_collisions" },
6461 { "tx_mult_collisions" },
6462
6463 { "rx_discards" },
6464 { "tx_discards" },
6465};
6466
6467/**
6468 * netdev_get_strings - get statistics identity strings
6469 * @dev: Network device.
6470 * @stringset: String set identifier.
6471 * @buf: Buffer to store the strings.
6472 *
6473 * This procedure returns the strings used to identify the statistics.
6474 */
6475static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6476{
6477 struct dev_priv *priv = netdev_priv(dev);
6478 struct dev_info *hw_priv = priv->adapter;
6479 struct ksz_hw *hw = &hw_priv->hw;
6480
6481 if (ETH_SS_STATS == stringset)
6482 memcpy(buf, &ethtool_stats_keys,
6483 ETH_GSTRING_LEN * hw->mib_cnt);
6484}
6485
6486/**
6487 * netdev_get_sset_count - get statistics size
6488 * @dev: Network device.
6489 * @sset: The statistics set number.
6490 *
6491 * This function returns the size of the statistics to be reported.
6492 *
6493 * Return size of the statistics to be reported.
6494 */
6495static int netdev_get_sset_count(struct net_device *dev, int sset)
6496{
6497 struct dev_priv *priv = netdev_priv(dev);
6498 struct dev_info *hw_priv = priv->adapter;
6499 struct ksz_hw *hw = &hw_priv->hw;
6500
6501 switch (sset) {
6502 case ETH_SS_STATS:
6503 return hw->mib_cnt;
6504 default:
6505 return -EOPNOTSUPP;
6506 }
6507}
6508
6509/**
6510 * netdev_get_ethtool_stats - get network device statistics
6511 * @dev: Network device.
6512 * @stats: Ethtool statistics data structure.
6513 * @data: Buffer to store the statistics.
6514 *
6515 * This procedure returns the statistics.
6516 */
6517static void netdev_get_ethtool_stats(struct net_device *dev,
6518 struct ethtool_stats *stats, u64 *data)
6519{
6520 struct dev_priv *priv = netdev_priv(dev);
6521 struct dev_info *hw_priv = priv->adapter;
6522 struct ksz_hw *hw = &hw_priv->hw;
6523 struct ksz_port *port = &priv->port;
6524 int n_stats = stats->n_stats;
6525 int i;
6526 int n;
6527 int p;
6528 int rc;
6529 u64 counter[TOTAL_PORT_COUNTER_NUM];
6530
6531 mutex_lock(&hw_priv->lock);
6532 n = SWITCH_PORT_NUM;
6533 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6534 if (media_connected == hw->port_mib[p].state) {
6535 hw_priv->counter[p].read = 1;
6536
6537 /* Remember first port that requests read. */
6538 if (n == SWITCH_PORT_NUM)
6539 n = p;
6540 }
6541 }
6542 mutex_unlock(&hw_priv->lock);
6543
6544 if (n < SWITCH_PORT_NUM)
6545 schedule_work(&hw_priv->mib_read);
6546
6547 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6548 p = n;
6549 rc = wait_event_interruptible_timeout(
6550 hw_priv->counter[p].counter,
6551 2 == hw_priv->counter[p].read,
6552 HZ * 1);
6553 } else
6554 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6555 if (0 == i) {
6556 rc = wait_event_interruptible_timeout(
6557 hw_priv->counter[p].counter,
6558 2 == hw_priv->counter[p].read,
6559 HZ * 2);
6560 } else if (hw->port_mib[p].cnt_ptr) {
6561 rc = wait_event_interruptible_timeout(
6562 hw_priv->counter[p].counter,
6563 2 == hw_priv->counter[p].read,
6564 HZ * 1);
6565 }
6566 }
6567
6568 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6569 n = hw->mib_cnt;
6570 if (n > n_stats)
6571 n = n_stats;
6572 n_stats -= n;
6573 for (i = 0; i < n; i++)
6574 *data++ = counter[i];
6575}
6576
6577/**
6578 * netdev_set_features - set receive checksum support
6579 * @dev: Network device.
6580 * @features: New device features (offloads).
6581 *
6582 * This function sets receive checksum support setting.
6583 *
6584 * Return 0 if successful; otherwise an error code.
6585 */
6586static int netdev_set_features(struct net_device *dev,
6587 netdev_features_t features)
6588{
6589 struct dev_priv *priv = netdev_priv(dev);
6590 struct dev_info *hw_priv = priv->adapter;
6591 struct ksz_hw *hw = &hw_priv->hw;
6592
6593 mutex_lock(&hw_priv->lock);
6594
6595 /* see note in hw_setup() */
6596 if (features & NETIF_F_RXCSUM)
6597 hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6598 else
6599 hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6600
6601 if (hw->enabled)
6602 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6603
6604 mutex_unlock(&hw_priv->lock);
6605
6606 return 0;
6607}
6608
6609static const struct ethtool_ops netdev_ethtool_ops = {
6610 .nway_reset = netdev_nway_reset,
6611 .get_link = netdev_get_link,
6612 .get_drvinfo = netdev_get_drvinfo,
6613 .get_regs_len = netdev_get_regs_len,
6614 .get_regs = netdev_get_regs,
6615 .get_wol = netdev_get_wol,
6616 .set_wol = netdev_set_wol,
6617 .get_msglevel = netdev_get_msglevel,
6618 .set_msglevel = netdev_set_msglevel,
6619 .get_eeprom_len = netdev_get_eeprom_len,
6620 .get_eeprom = netdev_get_eeprom,
6621 .set_eeprom = netdev_set_eeprom,
6622 .get_pauseparam = netdev_get_pauseparam,
6623 .set_pauseparam = netdev_set_pauseparam,
6624 .get_ringparam = netdev_get_ringparam,
6625 .get_strings = netdev_get_strings,
6626 .get_sset_count = netdev_get_sset_count,
6627 .get_ethtool_stats = netdev_get_ethtool_stats,
6628 .get_link_ksettings = netdev_get_link_ksettings,
6629 .set_link_ksettings = netdev_set_link_ksettings,
6630};
6631
6632/*
6633 * Hardware monitoring
6634 */
6635
6636static void update_link(struct net_device *dev, struct dev_priv *priv,
6637 struct ksz_port *port)
6638{
6639 if (priv->media_state != port->linked->state) {
6640 priv->media_state = port->linked->state;
6641 if (netif_running(dev))
6642 set_media_state(dev, media_connected);
6643 }
6644}
6645
6646static void mib_read_work(struct work_struct *work)
6647{
6648 struct dev_info *hw_priv =
6649 container_of(work, struct dev_info, mib_read);
6650 struct ksz_hw *hw = &hw_priv->hw;
6651 struct ksz_port_mib *mib;
6652 int i;
6653
6654 next_jiffies = jiffies;
6655 for (i = 0; i < hw->mib_port_cnt; i++) {
6656 mib = &hw->port_mib[i];
6657
6658 /* Reading MIB counters or requested to read. */
6659 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6660
6661 /* Need to process receive interrupt. */
6662 if (port_r_cnt(hw, i))
6663 break;
6664 hw_priv->counter[i].read = 0;
6665
6666 /* Finish reading counters. */
6667 if (0 == mib->cnt_ptr) {
6668 hw_priv->counter[i].read = 2;
6669 wake_up_interruptible(
6670 &hw_priv->counter[i].counter);
6671 }
6672 } else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6673 /* Only read MIB counters when the port is connected. */
6674 if (media_connected == mib->state)
6675 hw_priv->counter[i].read = 1;
6676 next_jiffies += HZ * 1 * hw->mib_port_cnt;
6677 hw_priv->counter[i].time = next_jiffies;
6678
6679 /* Port is just disconnected. */
6680 } else if (mib->link_down) {
6681 mib->link_down = 0;
6682
6683 /* Read counters one last time after link is lost. */
6684 hw_priv->counter[i].read = 1;
6685 }
6686 }
6687}
6688
6689static void mib_monitor(struct timer_list *t)
6690{
6691 struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6692
6693 mib_read_work(&hw_priv->mib_read);
6694
6695 /* This is used to verify Wake-on-LAN is working. */
6696 if (hw_priv->pme_wait) {
6697 if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6698 hw_clr_wol_pme_status(&hw_priv->hw);
6699 hw_priv->pme_wait = 0;
6700 }
6701 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6702
6703 /* PME is asserted. Wait 2 seconds to clear it. */
6704 hw_priv->pme_wait = jiffies + HZ * 2;
6705 }
6706
6707 ksz_update_timer(&hw_priv->mib_timer_info);
6708}
6709
6710/**
6711 * dev_monitor - periodic monitoring
6712 * @ptr: Network device pointer.
6713 *
6714 * This routine is run in a kernel timer to monitor the network device.
6715 */
6716static void dev_monitor(struct timer_list *t)
6717{
6718 struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6719 struct net_device *dev = priv->mii_if.dev;
6720 struct dev_info *hw_priv = priv->adapter;
6721 struct ksz_hw *hw = &hw_priv->hw;
6722 struct ksz_port *port = &priv->port;
6723
6724 if (!(hw->features & LINK_INT_WORKING))
6725 port_get_link_speed(port);
6726 update_link(dev, priv, port);
6727
6728 ksz_update_timer(&priv->monitor_timer_info);
6729}
6730
6731/*
6732 * Linux network device interface functions
6733 */
6734
6735/* Driver exported variables */
6736
6737static int msg_enable;
6738
6739static char *macaddr = ":";
6740static char *mac1addr = ":";
6741
6742/*
6743 * This enables multiple network device mode for KSZ8842, which contains a
6744 * switch with two physical ports. Some users like to take control of the
6745 * ports for running Spanning Tree Protocol. The driver will create an
6746 * additional eth? device for the other port.
6747 *
6748 * Some limitations are the network devices cannot have different MTU and
6749 * multicast hash tables.
6750 */
6751static int multi_dev;
6752
6753/*
6754 * As most users select multiple network device mode to use Spanning Tree
6755 * Protocol, this enables a feature in which most unicast and multicast packets
6756 * are forwarded inside the switch and not passed to the host. Only packets
6757 * that need the host's attention are passed to it. This prevents the host
6758 * wasting CPU time to examine each and every incoming packets and do the
6759 * forwarding itself.
6760 *
6761 * As the hack requires the private bridge header, the driver cannot compile
6762 * with just the kernel headers.
6763 *
6764 * Enabling STP support also turns on multiple network device mode.
6765 */
6766static int stp;
6767
6768/*
6769 * This enables fast aging in the KSZ8842 switch. Not sure what situation
6770 * needs that. However, fast aging is used to flush the dynamic MAC table when
6771 * STP support is enabled.
6772 */
6773static int fast_aging;
6774
6775/**
6776 * netdev_init - initialize network device.
6777 * @dev: Network device.
6778 *
6779 * This function initializes the network device.
6780 *
6781 * Return 0 if successful; otherwise an error code indicating failure.
6782 */
6783static int __init netdev_init(struct net_device *dev)
6784{
6785 struct dev_priv *priv = netdev_priv(dev);
6786
6787 /* 500 ms timeout */
6788 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6789 dev_monitor);
6790
6791 /* 500 ms timeout */
6792 dev->watchdog_timeo = HZ / 2;
6793
6794 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6795
6796 /*
6797 * Hardware does not really support IPv6 checksum generation, but
6798 * driver actually runs faster with this on.
6799 */
6800 dev->hw_features |= NETIF_F_IPV6_CSUM;
6801
6802 dev->features |= dev->hw_features;
6803
6804 sema_init(&priv->proc_sem, 1);
6805
6806 priv->mii_if.phy_id_mask = 0x1;
6807 priv->mii_if.reg_num_mask = 0x7;
6808 priv->mii_if.dev = dev;
6809 priv->mii_if.mdio_read = mdio_read;
6810 priv->mii_if.mdio_write = mdio_write;
6811 priv->mii_if.phy_id = priv->port.first_port + 1;
6812
6813 priv->msg_enable = netif_msg_init(msg_enable,
6814 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6815
6816 return 0;
6817}
6818
6819static const struct net_device_ops netdev_ops = {
6820 .ndo_init = netdev_init,
6821 .ndo_open = netdev_open,
6822 .ndo_stop = netdev_close,
6823 .ndo_get_stats = netdev_query_statistics,
6824 .ndo_start_xmit = netdev_tx,
6825 .ndo_tx_timeout = netdev_tx_timeout,
6826 .ndo_change_mtu = netdev_change_mtu,
6827 .ndo_set_features = netdev_set_features,
6828 .ndo_set_mac_address = netdev_set_mac_address,
6829 .ndo_validate_addr = eth_validate_addr,
6830 .ndo_do_ioctl = netdev_ioctl,
6831 .ndo_set_rx_mode = netdev_set_rx_mode,
6832#ifdef CONFIG_NET_POLL_CONTROLLER
6833 .ndo_poll_controller = netdev_netpoll,
6834#endif
6835};
6836
6837static void netdev_free(struct net_device *dev)
6838{
6839 if (dev->watchdog_timeo)
6840 unregister_netdev(dev);
6841
6842 free_netdev(dev);
6843}
6844
6845struct platform_info {
6846 struct dev_info dev_info;
6847 struct net_device *netdev[SWITCH_PORT_NUM];
6848};
6849
6850static int net_device_present;
6851
6852static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6853{
6854 int i;
6855 int j;
6856 int got_num;
6857 int num;
6858
6859 i = j = num = got_num = 0;
6860 while (j < ETH_ALEN) {
6861 if (macaddr[i]) {
6862 int digit;
6863
6864 got_num = 1;
6865 digit = hex_to_bin(macaddr[i]);
6866 if (digit >= 0)
6867 num = num * 16 + digit;
6868 else if (':' == macaddr[i])
6869 got_num = 2;
6870 else
6871 break;
6872 } else if (got_num)
6873 got_num = 2;
6874 else
6875 break;
6876 if (2 == got_num) {
6877 if (MAIN_PORT == port) {
6878 hw_priv->hw.override_addr[j++] = (u8) num;
6879 hw_priv->hw.override_addr[5] +=
6880 hw_priv->hw.id;
6881 } else {
6882 hw_priv->hw.ksz_switch->other_addr[j++] =
6883 (u8) num;
6884 hw_priv->hw.ksz_switch->other_addr[5] +=
6885 hw_priv->hw.id;
6886 }
6887 num = got_num = 0;
6888 }
6889 i++;
6890 }
6891 if (ETH_ALEN == j) {
6892 if (MAIN_PORT == port)
6893 hw_priv->hw.mac_override = 1;
6894 }
6895}
6896
6897#define KS884X_DMA_MASK (~0x0UL)
6898
6899static void read_other_addr(struct ksz_hw *hw)
6900{
6901 int i;
6902 u16 data[3];
6903 struct ksz_switch *sw = hw->ksz_switch;
6904
6905 for (i = 0; i < 3; i++)
6906 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6907 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6908 sw->other_addr[5] = (u8) data[0];
6909 sw->other_addr[4] = (u8)(data[0] >> 8);
6910 sw->other_addr[3] = (u8) data[1];
6911 sw->other_addr[2] = (u8)(data[1] >> 8);
6912 sw->other_addr[1] = (u8) data[2];
6913 sw->other_addr[0] = (u8)(data[2] >> 8);
6914 }
6915}
6916
6917#ifndef PCI_VENDOR_ID_MICREL_KS
6918#define PCI_VENDOR_ID_MICREL_KS 0x16c6
6919#endif
6920
6921static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6922{
6923 struct net_device *dev;
6924 struct dev_priv *priv;
6925 struct dev_info *hw_priv;
6926 struct ksz_hw *hw;
6927 struct platform_info *info;
6928 struct ksz_port *port;
6929 unsigned long reg_base;
6930 unsigned long reg_len;
6931 int cnt;
6932 int i;
6933 int mib_port_count;
6934 int pi;
6935 int port_count;
6936 int result;
6937 char banner[sizeof(version)];
6938 struct ksz_switch *sw = NULL;
6939
6940 result = pci_enable_device(pdev);
6941 if (result)
6942 return result;
6943
6944 result = -ENODEV;
6945
6946 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6947 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6948 return result;
6949
6950 reg_base = pci_resource_start(pdev, 0);
6951 reg_len = pci_resource_len(pdev, 0);
6952 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6953 return result;
6954
6955 if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6956 return result;
6957 pci_set_master(pdev);
6958
6959 result = -ENOMEM;
6960
6961 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6962 if (!info)
6963 goto pcidev_init_dev_err;
6964
6965 hw_priv = &info->dev_info;
6966 hw_priv->pdev = pdev;
6967
6968 hw = &hw_priv->hw;
6969
6970 hw->io = ioremap(reg_base, reg_len);
6971 if (!hw->io)
6972 goto pcidev_init_io_err;
6973
6974 cnt = hw_init(hw);
6975 if (!cnt) {
6976 if (msg_enable & NETIF_MSG_PROBE)
6977 pr_alert("chip not detected\n");
6978 result = -ENODEV;
6979 goto pcidev_init_alloc_err;
6980 }
6981
6982 snprintf(banner, sizeof(banner), "%s", version);
6983 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */
6984 dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6985 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6986
6987 /* Assume device is KSZ8841. */
6988 hw->dev_count = 1;
6989 port_count = 1;
6990 mib_port_count = 1;
6991 hw->addr_list_size = 0;
6992 hw->mib_cnt = PORT_COUNTER_NUM;
6993 hw->mib_port_cnt = 1;
6994
6995 /* KSZ8842 has a switch with multiple ports. */
6996 if (2 == cnt) {
6997 if (fast_aging)
6998 hw->overrides |= FAST_AGING;
6999
7000 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7001
7002 /* Multiple network device interfaces are required. */
7003 if (multi_dev) {
7004 hw->dev_count = SWITCH_PORT_NUM;
7005 hw->addr_list_size = SWITCH_PORT_NUM - 1;
7006 }
7007
7008 /* Single network device has multiple ports. */
7009 if (1 == hw->dev_count) {
7010 port_count = SWITCH_PORT_NUM;
7011 mib_port_count = SWITCH_PORT_NUM;
7012 }
7013 hw->mib_port_cnt = TOTAL_PORT_NUM;
7014 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7015 if (!hw->ksz_switch)
7016 goto pcidev_init_alloc_err;
7017
7018 sw = hw->ksz_switch;
7019 }
7020 for (i = 0; i < hw->mib_port_cnt; i++)
7021 hw->port_mib[i].mib_start = 0;
7022
7023 hw->parent = hw_priv;
7024
7025 /* Default MTU is 1500. */
7026 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7027
7028 if (ksz_alloc_mem(hw_priv))
7029 goto pcidev_init_mem_err;
7030
7031 hw_priv->hw.id = net_device_present;
7032
7033 spin_lock_init(&hw_priv->hwlock);
7034 mutex_init(&hw_priv->lock);
7035
7036 for (i = 0; i < TOTAL_PORT_NUM; i++)
7037 init_waitqueue_head(&hw_priv->counter[i].counter);
7038
7039 if (macaddr[0] != ':')
7040 get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7041
7042 /* Read MAC address and initialize override address if not overridden. */
7043 hw_read_addr(hw);
7044
7045 /* Multiple device interfaces mode requires a second MAC address. */
7046 if (hw->dev_count > 1) {
7047 memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7048 read_other_addr(hw);
7049 if (mac1addr[0] != ':')
7050 get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7051 }
7052
7053 hw_setup(hw);
7054 if (hw->ksz_switch)
7055 sw_setup(hw);
7056 else {
7057 hw_priv->wol_support = WOL_SUPPORT;
7058 hw_priv->wol_enable = 0;
7059 }
7060
7061 INIT_WORK(&hw_priv->mib_read, mib_read_work);
7062
7063 /* 500 ms timeout */
7064 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7065 mib_monitor);
7066
7067 for (i = 0; i < hw->dev_count; i++) {
7068 dev = alloc_etherdev(sizeof(struct dev_priv));
7069 if (!dev)
7070 goto pcidev_init_reg_err;
7071 SET_NETDEV_DEV(dev, &pdev->dev);
7072 info->netdev[i] = dev;
7073
7074 priv = netdev_priv(dev);
7075 priv->adapter = hw_priv;
7076 priv->id = net_device_present++;
7077
7078 port = &priv->port;
7079 port->port_cnt = port_count;
7080 port->mib_port_cnt = mib_port_count;
7081 port->first_port = i;
7082 port->flow_ctrl = PHY_FLOW_CTRL;
7083
7084 port->hw = hw;
7085 port->linked = &hw->port_info[port->first_port];
7086
7087 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7088 hw->port_info[pi].port_id = pi;
7089 hw->port_info[pi].pdev = dev;
7090 hw->port_info[pi].state = media_disconnected;
7091 }
7092
7093 dev->mem_start = (unsigned long) hw->io;
7094 dev->mem_end = dev->mem_start + reg_len - 1;
7095 dev->irq = pdev->irq;
7096 if (MAIN_PORT == i)
7097 memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7098 ETH_ALEN);
7099 else {
7100 memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7101 if (ether_addr_equal(sw->other_addr, hw->override_addr))
7102 dev->dev_addr[5] += port->first_port;
7103 }
7104
7105 dev->netdev_ops = &netdev_ops;
7106 dev->ethtool_ops = &netdev_ethtool_ops;
7107
7108 /* MTU range: 60 - 1894 */
7109 dev->min_mtu = ETH_ZLEN;
7110 dev->max_mtu = MAX_RX_BUF_SIZE -
7111 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7112
7113 if (register_netdev(dev))
7114 goto pcidev_init_reg_err;
7115 port_set_power_saving(port, true);
7116 }
7117
7118 pci_dev_get(hw_priv->pdev);
7119 pci_set_drvdata(pdev, info);
7120 return 0;
7121
7122pcidev_init_reg_err:
7123 for (i = 0; i < hw->dev_count; i++) {
7124 if (info->netdev[i]) {
7125 netdev_free(info->netdev[i]);
7126 info->netdev[i] = NULL;
7127 }
7128 }
7129
7130pcidev_init_mem_err:
7131 ksz_free_mem(hw_priv);
7132 kfree(hw->ksz_switch);
7133
7134pcidev_init_alloc_err:
7135 iounmap(hw->io);
7136
7137pcidev_init_io_err:
7138 kfree(info);
7139
7140pcidev_init_dev_err:
7141 release_mem_region(reg_base, reg_len);
7142
7143 return result;
7144}
7145
7146static void pcidev_exit(struct pci_dev *pdev)
7147{
7148 int i;
7149 struct platform_info *info = pci_get_drvdata(pdev);
7150 struct dev_info *hw_priv = &info->dev_info;
7151
7152 release_mem_region(pci_resource_start(pdev, 0),
7153 pci_resource_len(pdev, 0));
7154 for (i = 0; i < hw_priv->hw.dev_count; i++) {
7155 if (info->netdev[i])
7156 netdev_free(info->netdev[i]);
7157 }
7158 if (hw_priv->hw.io)
7159 iounmap(hw_priv->hw.io);
7160 ksz_free_mem(hw_priv);
7161 kfree(hw_priv->hw.ksz_switch);
7162 pci_dev_put(hw_priv->pdev);
7163 kfree(info);
7164}
7165
7166#ifdef CONFIG_PM
7167static int pcidev_resume(struct pci_dev *pdev)
7168{
7169 int i;
7170 struct platform_info *info = pci_get_drvdata(pdev);
7171 struct dev_info *hw_priv = &info->dev_info;
7172 struct ksz_hw *hw = &hw_priv->hw;
7173
7174 pci_set_power_state(pdev, PCI_D0);
7175 pci_restore_state(pdev);
7176 pci_enable_wake(pdev, PCI_D0, 0);
7177
7178 if (hw_priv->wol_enable)
7179 hw_cfg_wol_pme(hw, 0);
7180 for (i = 0; i < hw->dev_count; i++) {
7181 if (info->netdev[i]) {
7182 struct net_device *dev = info->netdev[i];
7183
7184 if (netif_running(dev)) {
7185 netdev_open(dev);
7186 netif_device_attach(dev);
7187 }
7188 }
7189 }
7190 return 0;
7191}
7192
7193static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7194{
7195 int i;
7196 struct platform_info *info = pci_get_drvdata(pdev);
7197 struct dev_info *hw_priv = &info->dev_info;
7198 struct ksz_hw *hw = &hw_priv->hw;
7199
7200 /* Need to find a way to retrieve the device IP address. */
7201 static const u8 net_addr[] = { 192, 168, 1, 1 };
7202
7203 for (i = 0; i < hw->dev_count; i++) {
7204 if (info->netdev[i]) {
7205 struct net_device *dev = info->netdev[i];
7206
7207 if (netif_running(dev)) {
7208 netif_device_detach(dev);
7209 netdev_close(dev);
7210 }
7211 }
7212 }
7213 if (hw_priv->wol_enable) {
7214 hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7215 hw_cfg_wol_pme(hw, 1);
7216 }
7217
7218 pci_save_state(pdev);
7219 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7220 pci_set_power_state(pdev, pci_choose_state(pdev, state));
7221 return 0;
7222}
7223#endif
7224
7225static char pcidev_name[] = "ksz884xp";
7226
7227static const struct pci_device_id pcidev_table[] = {
7228 { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7229 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7230 { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7231 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7232 { 0 }
7233};
7234
7235MODULE_DEVICE_TABLE(pci, pcidev_table);
7236
7237static struct pci_driver pci_device_driver = {
7238#ifdef CONFIG_PM
7239 .suspend = pcidev_suspend,
7240 .resume = pcidev_resume,
7241#endif
7242 .name = pcidev_name,
7243 .id_table = pcidev_table,
7244 .probe = pcidev_init,
7245 .remove = pcidev_exit
7246};
7247
7248module_pci_driver(pci_device_driver);
7249
7250MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7251MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7252MODULE_LICENSE("GPL");
7253
7254module_param_named(message, msg_enable, int, 0);
7255MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7256
7257module_param(macaddr, charp, 0);
7258module_param(mac1addr, charp, 0);
7259module_param(fast_aging, int, 0);
7260module_param(multi_dev, int, 0);
7261module_param(stp, int, 0);
7262MODULE_PARM_DESC(macaddr, "MAC address");
7263MODULE_PARM_DESC(mac1addr, "Second MAC address");
7264MODULE_PARM_DESC(fast_aging, "Fast aging");
7265MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7266MODULE_PARM_DESC(stp, "STP support");