blob: c9fd83e8d9477d5599614cceca2315784301789e [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2
3/* Driver for Theobroma Systems UCAN devices, Protocol Version 3
4 *
5 * Copyright (C) 2018 Theobroma Systems Design und Consulting GmbH
6 *
7 *
8 * General Description:
9 *
10 * The USB Device uses three Endpoints:
11 *
12 * CONTROL Endpoint: Is used the setup the device (start, stop,
13 * info, configure).
14 *
15 * IN Endpoint: The device sends CAN Frame Messages and Device
16 * Information using the IN endpoint.
17 *
18 * OUT Endpoint: The driver sends configuration requests, and CAN
19 * Frames on the out endpoint.
20 *
21 * Error Handling:
22 *
23 * If error reporting is turned on the device encodes error into CAN
24 * error frames (see uapi/linux/can/error.h) and sends it using the
25 * IN Endpoint. The driver updates statistics and forward it.
26 */
27
28#include <linux/can.h>
29#include <linux/can/dev.h>
30#include <linux/can/error.h>
31#include <linux/module.h>
32#include <linux/netdevice.h>
33#include <linux/signal.h>
34#include <linux/skbuff.h>
35#include <linux/slab.h>
36#include <linux/usb.h>
37
38#include <linux/can.h>
39#include <linux/can/dev.h>
40#include <linux/can/error.h>
41
42#define UCAN_DRIVER_NAME "ucan"
43#define UCAN_MAX_RX_URBS 8
44/* the CAN controller needs a while to enable/disable the bus */
45#define UCAN_USB_CTL_PIPE_TIMEOUT 1000
46/* this driver currently supports protocol version 3 only */
47#define UCAN_PROTOCOL_VERSION_MIN 3
48#define UCAN_PROTOCOL_VERSION_MAX 3
49
50/* UCAN Message Definitions
51 * ------------------------
52 *
53 * ucan_message_out_t and ucan_message_in_t define the messages
54 * transmitted on the OUT and IN endpoint.
55 *
56 * Multibyte fields are transmitted with little endianness
57 *
58 * INTR Endpoint: a single uint32_t storing the current space in the fifo
59 *
60 * OUT Endpoint: single message of type ucan_message_out_t is
61 * transmitted on the out endpoint
62 *
63 * IN Endpoint: multiple messages ucan_message_in_t concateted in
64 * the following way:
65 *
66 * m[n].len <=> the length if message n(including the header in bytes)
67 * m[n] is is aligned to a 4 byte boundary, hence
68 * offset(m[0]) := 0;
69 * offset(m[n+1]) := offset(m[n]) + (m[n].len + 3) & 3
70 *
71 * this implies that
72 * offset(m[n]) % 4 <=> 0
73 */
74
75/* Device Global Commands */
76enum {
77 UCAN_DEVICE_GET_FW_STRING = 0,
78};
79
80/* UCAN Commands */
81enum {
82 /* start the can transceiver - val defines the operation mode */
83 UCAN_COMMAND_START = 0,
84 /* cancel pending transmissions and stop the can transceiver */
85 UCAN_COMMAND_STOP = 1,
86 /* send can transceiver into low-power sleep mode */
87 UCAN_COMMAND_SLEEP = 2,
88 /* wake up can transceiver from low-power sleep mode */
89 UCAN_COMMAND_WAKEUP = 3,
90 /* reset the can transceiver */
91 UCAN_COMMAND_RESET = 4,
92 /* get piece of info from the can transceiver - subcmd defines what
93 * piece
94 */
95 UCAN_COMMAND_GET = 5,
96 /* clear or disable hardware filter - subcmd defines which of the two */
97 UCAN_COMMAND_FILTER = 6,
98 /* Setup bittiming */
99 UCAN_COMMAND_SET_BITTIMING = 7,
100 /* recover from bus-off state */
101 UCAN_COMMAND_RESTART = 8,
102};
103
104/* UCAN_COMMAND_START and UCAN_COMMAND_GET_INFO operation modes (bitmap).
105 * Undefined bits must be set to 0.
106 */
107enum {
108 UCAN_MODE_LOOPBACK = BIT(0),
109 UCAN_MODE_SILENT = BIT(1),
110 UCAN_MODE_3_SAMPLES = BIT(2),
111 UCAN_MODE_ONE_SHOT = BIT(3),
112 UCAN_MODE_BERR_REPORT = BIT(4),
113};
114
115/* UCAN_COMMAND_GET subcommands */
116enum {
117 UCAN_COMMAND_GET_INFO = 0,
118 UCAN_COMMAND_GET_PROTOCOL_VERSION = 1,
119};
120
121/* UCAN_COMMAND_FILTER subcommands */
122enum {
123 UCAN_FILTER_CLEAR = 0,
124 UCAN_FILTER_DISABLE = 1,
125 UCAN_FILTER_ENABLE = 2,
126};
127
128/* OUT endpoint message types */
129enum {
130 UCAN_OUT_TX = 2, /* transmit a CAN frame */
131};
132
133/* IN endpoint message types */
134enum {
135 UCAN_IN_TX_COMPLETE = 1, /* CAN frame transmission completed */
136 UCAN_IN_RX = 2, /* CAN frame received */
137};
138
139struct ucan_ctl_cmd_start {
140 __le16 mode; /* OR-ing any of UCAN_MODE_* */
141} __packed;
142
143struct ucan_ctl_cmd_set_bittiming {
144 __le32 tq; /* Time quanta (TQ) in nanoseconds */
145 __le16 brp; /* TQ Prescaler */
146 __le16 sample_point; /* Samplepoint on tenth percent */
147 u8 prop_seg; /* Propagation segment in TQs */
148 u8 phase_seg1; /* Phase buffer segment 1 in TQs */
149 u8 phase_seg2; /* Phase buffer segment 2 in TQs */
150 u8 sjw; /* Synchronisation jump width in TQs */
151} __packed;
152
153struct ucan_ctl_cmd_device_info {
154 __le32 freq; /* Clock Frequency for tq generation */
155 u8 tx_fifo; /* Size of the transmission fifo */
156 u8 sjw_max; /* can_bittiming fields... */
157 u8 tseg1_min;
158 u8 tseg1_max;
159 u8 tseg2_min;
160 u8 tseg2_max;
161 __le16 brp_inc;
162 __le32 brp_min;
163 __le32 brp_max; /* ...can_bittiming fields */
164 __le16 ctrlmodes; /* supported control modes */
165 __le16 hwfilter; /* Number of HW filter banks */
166 __le16 rxmboxes; /* Number of receive Mailboxes */
167} __packed;
168
169struct ucan_ctl_cmd_get_protocol_version {
170 __le32 version;
171} __packed;
172
173union ucan_ctl_payload {
174 /* Setup Bittiming
175 * bmRequest == UCAN_COMMAND_START
176 */
177 struct ucan_ctl_cmd_start cmd_start;
178 /* Setup Bittiming
179 * bmRequest == UCAN_COMMAND_SET_BITTIMING
180 */
181 struct ucan_ctl_cmd_set_bittiming cmd_set_bittiming;
182 /* Get Device Information
183 * bmRequest == UCAN_COMMAND_GET; wValue = UCAN_COMMAND_GET_INFO
184 */
185 struct ucan_ctl_cmd_device_info cmd_get_device_info;
186 /* Get Protocol Version
187 * bmRequest == UCAN_COMMAND_GET;
188 * wValue = UCAN_COMMAND_GET_PROTOCOL_VERSION
189 */
190 struct ucan_ctl_cmd_get_protocol_version cmd_get_protocol_version;
191
192 u8 raw[128];
193} __packed;
194
195enum {
196 UCAN_TX_COMPLETE_SUCCESS = BIT(0),
197};
198
199/* Transmission Complete within ucan_message_in */
200struct ucan_tx_complete_entry_t {
201 u8 echo_index;
202 u8 flags;
203} __packed __aligned(0x2);
204
205/* CAN Data message format within ucan_message_in/out */
206struct ucan_can_msg {
207 /* note DLC is computed by
208 * msg.len - sizeof (msg.len)
209 * - sizeof (msg.type)
210 * - sizeof (msg.can_msg.id)
211 */
212 __le32 id;
213
214 union {
215 u8 data[CAN_MAX_DLEN]; /* Data of CAN frames */
216 u8 dlc; /* RTR dlc */
217 };
218} __packed;
219
220/* OUT Endpoint, outbound messages */
221struct ucan_message_out {
222 __le16 len; /* Length of the content include header */
223 u8 type; /* UCAN_OUT_TX and friends */
224 u8 subtype; /* command sub type */
225
226 union {
227 /* Transmit CAN frame
228 * (type == UCAN_TX) && ((msg.can_msg.id & CAN_RTR_FLAG) == 0)
229 * subtype stores the echo id
230 */
231 struct ucan_can_msg can_msg;
232 } msg;
233} __packed __aligned(0x4);
234
235/* IN Endpoint, inbound messages */
236struct ucan_message_in {
237 __le16 len; /* Length of the content include header */
238 u8 type; /* UCAN_IN_RX and friends */
239 u8 subtype; /* command sub type */
240
241 union {
242 /* CAN Frame received
243 * (type == UCAN_IN_RX)
244 * && ((msg.can_msg.id & CAN_RTR_FLAG) == 0)
245 */
246 struct ucan_can_msg can_msg;
247
248 /* CAN transmission complete
249 * (type == UCAN_IN_TX_COMPLETE)
250 */
251 struct ucan_tx_complete_entry_t can_tx_complete_msg[0];
252 } __aligned(0x4) msg;
253} __packed;
254
255/* Macros to calculate message lengths */
256#define UCAN_OUT_HDR_SIZE offsetof(struct ucan_message_out, msg)
257
258#define UCAN_IN_HDR_SIZE offsetof(struct ucan_message_in, msg)
259#define UCAN_IN_LEN(member) (UCAN_OUT_HDR_SIZE + sizeof(member))
260
261struct ucan_priv;
262
263/* Context Information for transmission URBs */
264struct ucan_urb_context {
265 struct ucan_priv *up;
266 u8 dlc;
267 bool allocated;
268};
269
270/* Information reported by the USB device */
271struct ucan_device_info {
272 struct can_bittiming_const bittiming_const;
273 u8 tx_fifo;
274};
275
276/* Driver private data */
277struct ucan_priv {
278 /* must be the first member */
279 struct can_priv can;
280
281 /* linux USB device structures */
282 struct usb_device *udev;
283 struct usb_interface *intf;
284 struct net_device *netdev;
285
286 /* lock for can->echo_skb (used around
287 * can_put/get/free_echo_skb
288 */
289 spinlock_t echo_skb_lock;
290
291 /* usb device information information */
292 u8 intf_index;
293 u8 in_ep_addr;
294 u8 out_ep_addr;
295 u16 in_ep_size;
296
297 /* transmission and reception buffers */
298 struct usb_anchor rx_urbs;
299 struct usb_anchor tx_urbs;
300
301 union ucan_ctl_payload *ctl_msg_buffer;
302 struct ucan_device_info device_info;
303
304 /* transmission control information and locks */
305 spinlock_t context_lock;
306 unsigned int available_tx_urbs;
307 struct ucan_urb_context *context_array;
308};
309
310static u8 ucan_get_can_dlc(struct ucan_can_msg *msg, u16 len)
311{
312 if (le32_to_cpu(msg->id) & CAN_RTR_FLAG)
313 return get_can_dlc(msg->dlc);
314 else
315 return get_can_dlc(len - (UCAN_IN_HDR_SIZE + sizeof(msg->id)));
316}
317
318static void ucan_release_context_array(struct ucan_priv *up)
319{
320 if (!up->context_array)
321 return;
322
323 /* lock is not needed because, driver is currently opening or closing */
324 up->available_tx_urbs = 0;
325
326 kfree(up->context_array);
327 up->context_array = NULL;
328}
329
330static int ucan_alloc_context_array(struct ucan_priv *up)
331{
332 int i;
333
334 /* release contexts if any */
335 ucan_release_context_array(up);
336
337 up->context_array = kcalloc(up->device_info.tx_fifo,
338 sizeof(*up->context_array),
339 GFP_KERNEL);
340 if (!up->context_array) {
341 netdev_err(up->netdev,
342 "Not enough memory to allocate tx contexts\n");
343 return -ENOMEM;
344 }
345
346 for (i = 0; i < up->device_info.tx_fifo; i++) {
347 up->context_array[i].allocated = false;
348 up->context_array[i].up = up;
349 }
350
351 /* lock is not needed because, driver is currently opening */
352 up->available_tx_urbs = up->device_info.tx_fifo;
353
354 return 0;
355}
356
357static struct ucan_urb_context *ucan_alloc_context(struct ucan_priv *up)
358{
359 int i;
360 unsigned long flags;
361 struct ucan_urb_context *ret = NULL;
362
363 if (WARN_ON_ONCE(!up->context_array))
364 return NULL;
365
366 /* execute context operation atomically */
367 spin_lock_irqsave(&up->context_lock, flags);
368
369 for (i = 0; i < up->device_info.tx_fifo; i++) {
370 if (!up->context_array[i].allocated) {
371 /* update context */
372 ret = &up->context_array[i];
373 up->context_array[i].allocated = true;
374
375 /* stop queue if necessary */
376 up->available_tx_urbs--;
377 if (!up->available_tx_urbs)
378 netif_stop_queue(up->netdev);
379
380 break;
381 }
382 }
383
384 spin_unlock_irqrestore(&up->context_lock, flags);
385 return ret;
386}
387
388static bool ucan_release_context(struct ucan_priv *up,
389 struct ucan_urb_context *ctx)
390{
391 unsigned long flags;
392 bool ret = false;
393
394 if (WARN_ON_ONCE(!up->context_array))
395 return false;
396
397 /* execute context operation atomically */
398 spin_lock_irqsave(&up->context_lock, flags);
399
400 /* context was not allocated, maybe the device sent garbage */
401 if (ctx->allocated) {
402 ctx->allocated = false;
403
404 /* check if the queue needs to be woken */
405 if (!up->available_tx_urbs)
406 netif_wake_queue(up->netdev);
407 up->available_tx_urbs++;
408
409 ret = true;
410 }
411
412 spin_unlock_irqrestore(&up->context_lock, flags);
413 return ret;
414}
415
416static int ucan_ctrl_command_out(struct ucan_priv *up,
417 u8 cmd, u16 subcmd, u16 datalen)
418{
419 return usb_control_msg(up->udev,
420 usb_sndctrlpipe(up->udev, 0),
421 cmd,
422 USB_DIR_OUT | USB_TYPE_VENDOR |
423 USB_RECIP_INTERFACE,
424 subcmd,
425 up->intf_index,
426 up->ctl_msg_buffer,
427 datalen,
428 UCAN_USB_CTL_PIPE_TIMEOUT);
429}
430
431static int ucan_device_request_in(struct ucan_priv *up,
432 u8 cmd, u16 subcmd, u16 datalen)
433{
434 return usb_control_msg(up->udev,
435 usb_rcvctrlpipe(up->udev, 0),
436 cmd,
437 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
438 subcmd,
439 0,
440 up->ctl_msg_buffer,
441 datalen,
442 UCAN_USB_CTL_PIPE_TIMEOUT);
443}
444
445/* Parse the device information structure reported by the device and
446 * setup private variables accordingly
447 */
448static void ucan_parse_device_info(struct ucan_priv *up,
449 struct ucan_ctl_cmd_device_info *device_info)
450{
451 struct can_bittiming_const *bittiming =
452 &up->device_info.bittiming_const;
453 u16 ctrlmodes;
454
455 /* store the data */
456 up->can.clock.freq = le32_to_cpu(device_info->freq);
457 up->device_info.tx_fifo = device_info->tx_fifo;
458 strcpy(bittiming->name, "ucan");
459 bittiming->tseg1_min = device_info->tseg1_min;
460 bittiming->tseg1_max = device_info->tseg1_max;
461 bittiming->tseg2_min = device_info->tseg2_min;
462 bittiming->tseg2_max = device_info->tseg2_max;
463 bittiming->sjw_max = device_info->sjw_max;
464 bittiming->brp_min = le32_to_cpu(device_info->brp_min);
465 bittiming->brp_max = le32_to_cpu(device_info->brp_max);
466 bittiming->brp_inc = le16_to_cpu(device_info->brp_inc);
467
468 ctrlmodes = le16_to_cpu(device_info->ctrlmodes);
469
470 up->can.ctrlmode_supported = 0;
471
472 if (ctrlmodes & UCAN_MODE_LOOPBACK)
473 up->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
474 if (ctrlmodes & UCAN_MODE_SILENT)
475 up->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
476 if (ctrlmodes & UCAN_MODE_3_SAMPLES)
477 up->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
478 if (ctrlmodes & UCAN_MODE_ONE_SHOT)
479 up->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
480 if (ctrlmodes & UCAN_MODE_BERR_REPORT)
481 up->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
482}
483
484/* Handle a CAN error frame that we have received from the device.
485 * Returns true if the can state has changed.
486 */
487static bool ucan_handle_error_frame(struct ucan_priv *up,
488 struct ucan_message_in *m,
489 canid_t canid)
490{
491 enum can_state new_state = up->can.state;
492 struct net_device_stats *net_stats = &up->netdev->stats;
493 struct can_device_stats *can_stats = &up->can.can_stats;
494
495 if (canid & CAN_ERR_LOSTARB)
496 can_stats->arbitration_lost++;
497
498 if (canid & CAN_ERR_BUSERROR)
499 can_stats->bus_error++;
500
501 if (canid & CAN_ERR_ACK)
502 net_stats->tx_errors++;
503
504 if (canid & CAN_ERR_BUSOFF)
505 new_state = CAN_STATE_BUS_OFF;
506
507 /* controller problems, details in data[1] */
508 if (canid & CAN_ERR_CRTL) {
509 u8 d1 = m->msg.can_msg.data[1];
510
511 if (d1 & CAN_ERR_CRTL_RX_OVERFLOW)
512 net_stats->rx_over_errors++;
513
514 /* controller state bits: if multiple are set the worst wins */
515 if (d1 & CAN_ERR_CRTL_ACTIVE)
516 new_state = CAN_STATE_ERROR_ACTIVE;
517
518 if (d1 & (CAN_ERR_CRTL_RX_WARNING | CAN_ERR_CRTL_TX_WARNING))
519 new_state = CAN_STATE_ERROR_WARNING;
520
521 if (d1 & (CAN_ERR_CRTL_RX_PASSIVE | CAN_ERR_CRTL_TX_PASSIVE))
522 new_state = CAN_STATE_ERROR_PASSIVE;
523 }
524
525 /* protocol error, details in data[2] */
526 if (canid & CAN_ERR_PROT) {
527 u8 d2 = m->msg.can_msg.data[2];
528
529 if (d2 & CAN_ERR_PROT_TX)
530 net_stats->tx_errors++;
531 else
532 net_stats->rx_errors++;
533 }
534
535 /* no state change - we are done */
536 if (up->can.state == new_state)
537 return false;
538
539 /* we switched into a better state */
540 if (up->can.state > new_state) {
541 up->can.state = new_state;
542 return true;
543 }
544
545 /* we switched into a worse state */
546 up->can.state = new_state;
547 switch (new_state) {
548 case CAN_STATE_BUS_OFF:
549 can_stats->bus_off++;
550 can_bus_off(up->netdev);
551 break;
552 case CAN_STATE_ERROR_PASSIVE:
553 can_stats->error_passive++;
554 break;
555 case CAN_STATE_ERROR_WARNING:
556 can_stats->error_warning++;
557 break;
558 default:
559 break;
560 }
561 return true;
562}
563
564/* Callback on reception of a can frame via the IN endpoint
565 *
566 * This function allocates an skb and transferres it to the Linux
567 * network stack
568 */
569static void ucan_rx_can_msg(struct ucan_priv *up, struct ucan_message_in *m)
570{
571 int len;
572 canid_t canid;
573 struct can_frame *cf;
574 struct sk_buff *skb;
575 struct net_device_stats *stats = &up->netdev->stats;
576
577 /* get the contents of the length field */
578 len = le16_to_cpu(m->len);
579
580 /* check sanity */
581 if (len < UCAN_IN_HDR_SIZE + sizeof(m->msg.can_msg.id)) {
582 netdev_warn(up->netdev, "invalid input message len: %d\n", len);
583 return;
584 }
585
586 /* handle error frames */
587 canid = le32_to_cpu(m->msg.can_msg.id);
588 if (canid & CAN_ERR_FLAG) {
589 bool busstate_changed = ucan_handle_error_frame(up, m, canid);
590
591 /* if berr-reporting is off only state changes get through */
592 if (!(up->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
593 !busstate_changed)
594 return;
595 } else {
596 canid_t canid_mask;
597 /* compute the mask for canid */
598 canid_mask = CAN_RTR_FLAG;
599 if (canid & CAN_EFF_FLAG)
600 canid_mask |= CAN_EFF_MASK | CAN_EFF_FLAG;
601 else
602 canid_mask |= CAN_SFF_MASK;
603
604 if (canid & ~canid_mask)
605 netdev_warn(up->netdev,
606 "unexpected bits set (canid %x, mask %x)",
607 canid, canid_mask);
608
609 canid &= canid_mask;
610 }
611
612 /* allocate skb */
613 skb = alloc_can_skb(up->netdev, &cf);
614 if (!skb)
615 return;
616
617 /* fill the can frame */
618 cf->can_id = canid;
619
620 /* compute DLC taking RTR_FLAG into account */
621 cf->can_dlc = ucan_get_can_dlc(&m->msg.can_msg, len);
622
623 /* copy the payload of non RTR frames */
624 if (!(cf->can_id & CAN_RTR_FLAG) || (cf->can_id & CAN_ERR_FLAG))
625 memcpy(cf->data, m->msg.can_msg.data, cf->can_dlc);
626
627 /* don't count error frames as real packets */
628 stats->rx_packets++;
629 stats->rx_bytes += cf->can_dlc;
630
631 /* pass it to Linux */
632 netif_rx(skb);
633}
634
635/* callback indicating completed transmission */
636static void ucan_tx_complete_msg(struct ucan_priv *up,
637 struct ucan_message_in *m)
638{
639 unsigned long flags;
640 u16 count, i;
641 u8 echo_index, dlc;
642 u16 len = le16_to_cpu(m->len);
643
644 struct ucan_urb_context *context;
645
646 if (len < UCAN_IN_HDR_SIZE || (len % 2 != 0)) {
647 netdev_err(up->netdev, "invalid tx complete length\n");
648 return;
649 }
650
651 count = (len - UCAN_IN_HDR_SIZE) / 2;
652 for (i = 0; i < count; i++) {
653 /* we did not submit such echo ids */
654 echo_index = m->msg.can_tx_complete_msg[i].echo_index;
655 if (echo_index >= up->device_info.tx_fifo) {
656 up->netdev->stats.tx_errors++;
657 netdev_err(up->netdev,
658 "invalid echo_index %d received\n",
659 echo_index);
660 continue;
661 }
662
663 /* gather information from the context */
664 context = &up->context_array[echo_index];
665 dlc = READ_ONCE(context->dlc);
666
667 /* Release context and restart queue if necessary.
668 * Also check if the context was allocated
669 */
670 if (!ucan_release_context(up, context))
671 continue;
672
673 spin_lock_irqsave(&up->echo_skb_lock, flags);
674 if (m->msg.can_tx_complete_msg[i].flags &
675 UCAN_TX_COMPLETE_SUCCESS) {
676 /* update statistics */
677 up->netdev->stats.tx_packets++;
678 up->netdev->stats.tx_bytes += dlc;
679 can_get_echo_skb(up->netdev, echo_index);
680 } else {
681 up->netdev->stats.tx_dropped++;
682 can_free_echo_skb(up->netdev, echo_index);
683 }
684 spin_unlock_irqrestore(&up->echo_skb_lock, flags);
685 }
686}
687
688/* callback on reception of a USB message */
689static void ucan_read_bulk_callback(struct urb *urb)
690{
691 int ret;
692 int pos;
693 struct ucan_priv *up = urb->context;
694 struct net_device *netdev = up->netdev;
695 struct ucan_message_in *m;
696
697 /* the device is not up and the driver should not receive any
698 * data on the bulk in pipe
699 */
700 if (WARN_ON(!up->context_array)) {
701 usb_free_coherent(up->udev,
702 up->in_ep_size,
703 urb->transfer_buffer,
704 urb->transfer_dma);
705 return;
706 }
707
708 /* check URB status */
709 switch (urb->status) {
710 case 0:
711 break;
712 case -ENOENT:
713 case -EPIPE:
714 case -EPROTO:
715 case -ESHUTDOWN:
716 case -ETIME:
717 /* urb is not resubmitted -> free dma data */
718 usb_free_coherent(up->udev,
719 up->in_ep_size,
720 urb->transfer_buffer,
721 urb->transfer_dma);
722 netdev_dbg(up->netdev, "not resumbmitting urb; status: %d\n",
723 urb->status);
724 return;
725 default:
726 goto resubmit;
727 }
728
729 /* sanity check */
730 if (!netif_device_present(netdev))
731 return;
732
733 /* iterate over input */
734 pos = 0;
735 while (pos < urb->actual_length) {
736 int len;
737
738 /* check sanity (length of header) */
739 if ((urb->actual_length - pos) < UCAN_IN_HDR_SIZE) {
740 netdev_warn(up->netdev,
741 "invalid message (short; no hdr; l:%d)\n",
742 urb->actual_length);
743 goto resubmit;
744 }
745
746 /* setup the message address */
747 m = (struct ucan_message_in *)
748 ((u8 *)urb->transfer_buffer + pos);
749 len = le16_to_cpu(m->len);
750
751 /* check sanity (length of content) */
752 if (urb->actual_length - pos < len) {
753 netdev_warn(up->netdev,
754 "invalid message (short; no data; l:%d)\n",
755 urb->actual_length);
756 print_hex_dump(KERN_WARNING,
757 "raw data: ",
758 DUMP_PREFIX_ADDRESS,
759 16,
760 1,
761 urb->transfer_buffer,
762 urb->actual_length,
763 true);
764
765 goto resubmit;
766 }
767
768 switch (m->type) {
769 case UCAN_IN_RX:
770 ucan_rx_can_msg(up, m);
771 break;
772 case UCAN_IN_TX_COMPLETE:
773 ucan_tx_complete_msg(up, m);
774 break;
775 default:
776 netdev_warn(up->netdev,
777 "invalid message (type; t:%d)\n",
778 m->type);
779 break;
780 }
781
782 /* proceed to next message */
783 pos += len;
784 /* align to 4 byte boundary */
785 pos = round_up(pos, 4);
786 }
787
788resubmit:
789 /* resubmit urb when done */
790 usb_fill_bulk_urb(urb, up->udev,
791 usb_rcvbulkpipe(up->udev,
792 up->in_ep_addr),
793 urb->transfer_buffer,
794 up->in_ep_size,
795 ucan_read_bulk_callback,
796 up);
797
798 usb_anchor_urb(urb, &up->rx_urbs);
799 ret = usb_submit_urb(urb, GFP_KERNEL);
800
801 if (ret < 0) {
802 netdev_err(up->netdev,
803 "failed resubmitting read bulk urb: %d\n",
804 ret);
805
806 usb_unanchor_urb(urb);
807 usb_free_coherent(up->udev,
808 up->in_ep_size,
809 urb->transfer_buffer,
810 urb->transfer_dma);
811
812 if (ret == -ENODEV)
813 netif_device_detach(netdev);
814 }
815}
816
817/* callback after transmission of a USB message */
818static void ucan_write_bulk_callback(struct urb *urb)
819{
820 unsigned long flags;
821 struct ucan_priv *up;
822 struct ucan_urb_context *context = urb->context;
823
824 /* get the urb context */
825 if (WARN_ON_ONCE(!context))
826 return;
827
828 /* free up our allocated buffer */
829 usb_free_coherent(urb->dev,
830 sizeof(struct ucan_message_out),
831 urb->transfer_buffer,
832 urb->transfer_dma);
833
834 up = context->up;
835 if (WARN_ON_ONCE(!up))
836 return;
837
838 /* sanity check */
839 if (!netif_device_present(up->netdev))
840 return;
841
842 /* transmission failed (USB - the device will not send a TX complete) */
843 if (urb->status) {
844 netdev_warn(up->netdev,
845 "failed to transmit USB message to device: %d\n",
846 urb->status);
847
848 /* update counters an cleanup */
849 spin_lock_irqsave(&up->echo_skb_lock, flags);
850 can_free_echo_skb(up->netdev, context - up->context_array);
851 spin_unlock_irqrestore(&up->echo_skb_lock, flags);
852
853 up->netdev->stats.tx_dropped++;
854
855 /* release context and restart the queue if necessary */
856 if (!ucan_release_context(up, context))
857 netdev_err(up->netdev,
858 "urb failed, failed to release context\n");
859 }
860}
861
862static void ucan_cleanup_rx_urbs(struct ucan_priv *up, struct urb **urbs)
863{
864 int i;
865
866 for (i = 0; i < UCAN_MAX_RX_URBS; i++) {
867 if (urbs[i]) {
868 usb_unanchor_urb(urbs[i]);
869 usb_free_coherent(up->udev,
870 up->in_ep_size,
871 urbs[i]->transfer_buffer,
872 urbs[i]->transfer_dma);
873 usb_free_urb(urbs[i]);
874 }
875 }
876
877 memset(urbs, 0, sizeof(*urbs) * UCAN_MAX_RX_URBS);
878}
879
880static int ucan_prepare_and_anchor_rx_urbs(struct ucan_priv *up,
881 struct urb **urbs)
882{
883 int i;
884
885 memset(urbs, 0, sizeof(*urbs) * UCAN_MAX_RX_URBS);
886
887 for (i = 0; i < UCAN_MAX_RX_URBS; i++) {
888 void *buf;
889
890 urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
891 if (!urbs[i])
892 goto err;
893
894 buf = usb_alloc_coherent(up->udev,
895 up->in_ep_size,
896 GFP_KERNEL, &urbs[i]->transfer_dma);
897 if (!buf) {
898 /* cleanup this urb */
899 usb_free_urb(urbs[i]);
900 urbs[i] = NULL;
901 goto err;
902 }
903
904 usb_fill_bulk_urb(urbs[i], up->udev,
905 usb_rcvbulkpipe(up->udev,
906 up->in_ep_addr),
907 buf,
908 up->in_ep_size,
909 ucan_read_bulk_callback,
910 up);
911
912 urbs[i]->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
913
914 usb_anchor_urb(urbs[i], &up->rx_urbs);
915 }
916 return 0;
917
918err:
919 /* cleanup other unsubmitted urbs */
920 ucan_cleanup_rx_urbs(up, urbs);
921 return -ENOMEM;
922}
923
924/* Submits rx urbs with the semantic: Either submit all, or cleanup
925 * everything. I case of errors submitted urbs are killed and all urbs in
926 * the array are freed. I case of no errors every entry in the urb
927 * array is set to NULL.
928 */
929static int ucan_submit_rx_urbs(struct ucan_priv *up, struct urb **urbs)
930{
931 int i, ret;
932
933 /* Iterate over all urbs to submit. On success remove the urb
934 * from the list.
935 */
936 for (i = 0; i < UCAN_MAX_RX_URBS; i++) {
937 ret = usb_submit_urb(urbs[i], GFP_KERNEL);
938 if (ret) {
939 netdev_err(up->netdev,
940 "could not submit urb; code: %d\n",
941 ret);
942 goto err;
943 }
944
945 /* Anchor URB and drop reference, USB core will take
946 * care of freeing it
947 */
948 usb_free_urb(urbs[i]);
949 urbs[i] = NULL;
950 }
951 return 0;
952
953err:
954 /* Cleanup unsubmitted urbs */
955 ucan_cleanup_rx_urbs(up, urbs);
956
957 /* Kill urbs that are already submitted */
958 usb_kill_anchored_urbs(&up->rx_urbs);
959
960 return ret;
961}
962
963/* Open the network device */
964static int ucan_open(struct net_device *netdev)
965{
966 int ret, ret_cleanup;
967 u16 ctrlmode;
968 struct urb *urbs[UCAN_MAX_RX_URBS];
969 struct ucan_priv *up = netdev_priv(netdev);
970
971 ret = ucan_alloc_context_array(up);
972 if (ret)
973 return ret;
974
975 /* Allocate and prepare IN URBS - allocated and anchored
976 * urbs are stored in urbs[] for clean
977 */
978 ret = ucan_prepare_and_anchor_rx_urbs(up, urbs);
979 if (ret)
980 goto err_contexts;
981
982 /* Check the control mode */
983 ctrlmode = 0;
984 if (up->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
985 ctrlmode |= UCAN_MODE_LOOPBACK;
986 if (up->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
987 ctrlmode |= UCAN_MODE_SILENT;
988 if (up->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
989 ctrlmode |= UCAN_MODE_3_SAMPLES;
990 if (up->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
991 ctrlmode |= UCAN_MODE_ONE_SHOT;
992
993 /* Enable this in any case - filtering is down within the
994 * receive path
995 */
996 ctrlmode |= UCAN_MODE_BERR_REPORT;
997 up->ctl_msg_buffer->cmd_start.mode = cpu_to_le16(ctrlmode);
998
999 /* Driver is ready to receive data - start the USB device */
1000 ret = ucan_ctrl_command_out(up, UCAN_COMMAND_START, 0, 2);
1001 if (ret < 0) {
1002 netdev_err(up->netdev,
1003 "could not start device, code: %d\n",
1004 ret);
1005 goto err_reset;
1006 }
1007
1008 /* Call CAN layer open */
1009 ret = open_candev(netdev);
1010 if (ret)
1011 goto err_stop;
1012
1013 /* Driver is ready to receive data. Submit RX URBS */
1014 ret = ucan_submit_rx_urbs(up, urbs);
1015 if (ret)
1016 goto err_stop;
1017
1018 up->can.state = CAN_STATE_ERROR_ACTIVE;
1019
1020 /* Start the network queue */
1021 netif_start_queue(netdev);
1022
1023 return 0;
1024
1025err_stop:
1026 /* The device have started already stop it */
1027 ret_cleanup = ucan_ctrl_command_out(up, UCAN_COMMAND_STOP, 0, 0);
1028 if (ret_cleanup < 0)
1029 netdev_err(up->netdev,
1030 "could not stop device, code: %d\n",
1031 ret_cleanup);
1032
1033err_reset:
1034 /* The device might have received data, reset it for
1035 * consistent state
1036 */
1037 ret_cleanup = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0);
1038 if (ret_cleanup < 0)
1039 netdev_err(up->netdev,
1040 "could not reset device, code: %d\n",
1041 ret_cleanup);
1042
1043 /* clean up unsubmitted urbs */
1044 ucan_cleanup_rx_urbs(up, urbs);
1045
1046err_contexts:
1047 ucan_release_context_array(up);
1048 return ret;
1049}
1050
1051static struct urb *ucan_prepare_tx_urb(struct ucan_priv *up,
1052 struct ucan_urb_context *context,
1053 struct can_frame *cf,
1054 u8 echo_index)
1055{
1056 int mlen;
1057 struct urb *urb;
1058 struct ucan_message_out *m;
1059
1060 /* create a URB, and a buffer for it, and copy the data to the URB */
1061 urb = usb_alloc_urb(0, GFP_ATOMIC);
1062 if (!urb) {
1063 netdev_err(up->netdev, "no memory left for URBs\n");
1064 return NULL;
1065 }
1066
1067 m = usb_alloc_coherent(up->udev,
1068 sizeof(struct ucan_message_out),
1069 GFP_ATOMIC,
1070 &urb->transfer_dma);
1071 if (!m) {
1072 netdev_err(up->netdev, "no memory left for USB buffer\n");
1073 usb_free_urb(urb);
1074 return NULL;
1075 }
1076
1077 /* build the USB message */
1078 m->type = UCAN_OUT_TX;
1079 m->msg.can_msg.id = cpu_to_le32(cf->can_id);
1080
1081 if (cf->can_id & CAN_RTR_FLAG) {
1082 mlen = UCAN_OUT_HDR_SIZE +
1083 offsetof(struct ucan_can_msg, dlc) +
1084 sizeof(m->msg.can_msg.dlc);
1085 m->msg.can_msg.dlc = cf->can_dlc;
1086 } else {
1087 mlen = UCAN_OUT_HDR_SIZE +
1088 sizeof(m->msg.can_msg.id) + cf->can_dlc;
1089 memcpy(m->msg.can_msg.data, cf->data, cf->can_dlc);
1090 }
1091 m->len = cpu_to_le16(mlen);
1092
1093 context->dlc = cf->can_dlc;
1094
1095 m->subtype = echo_index;
1096
1097 /* build the urb */
1098 usb_fill_bulk_urb(urb, up->udev,
1099 usb_sndbulkpipe(up->udev,
1100 up->out_ep_addr),
1101 m, mlen, ucan_write_bulk_callback, context);
1102 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
1103
1104 return urb;
1105}
1106
1107static void ucan_clean_up_tx_urb(struct ucan_priv *up, struct urb *urb)
1108{
1109 usb_free_coherent(up->udev, sizeof(struct ucan_message_out),
1110 urb->transfer_buffer, urb->transfer_dma);
1111 usb_free_urb(urb);
1112}
1113
1114/* callback when Linux needs to send a can frame */
1115static netdev_tx_t ucan_start_xmit(struct sk_buff *skb,
1116 struct net_device *netdev)
1117{
1118 unsigned long flags;
1119 int ret;
1120 u8 echo_index;
1121 struct urb *urb;
1122 struct ucan_urb_context *context;
1123 struct ucan_priv *up = netdev_priv(netdev);
1124 struct can_frame *cf = (struct can_frame *)skb->data;
1125
1126 /* check skb */
1127 if (can_dropped_invalid_skb(netdev, skb))
1128 return NETDEV_TX_OK;
1129
1130 /* allocate a context and slow down tx path, if fifo state is low */
1131 context = ucan_alloc_context(up);
1132 echo_index = context - up->context_array;
1133
1134 if (WARN_ON_ONCE(!context))
1135 return NETDEV_TX_BUSY;
1136
1137 /* prepare urb for transmission */
1138 urb = ucan_prepare_tx_urb(up, context, cf, echo_index);
1139 if (!urb)
1140 goto drop;
1141
1142 /* put the skb on can loopback stack */
1143 spin_lock_irqsave(&up->echo_skb_lock, flags);
1144 can_put_echo_skb(skb, up->netdev, echo_index);
1145 spin_unlock_irqrestore(&up->echo_skb_lock, flags);
1146
1147 /* transmit it */
1148 usb_anchor_urb(urb, &up->tx_urbs);
1149 ret = usb_submit_urb(urb, GFP_ATOMIC);
1150
1151 /* cleanup urb */
1152 if (ret) {
1153 /* on error, clean up */
1154 usb_unanchor_urb(urb);
1155 ucan_clean_up_tx_urb(up, urb);
1156 if (!ucan_release_context(up, context))
1157 netdev_err(up->netdev,
1158 "xmit err: failed to release context\n");
1159
1160 /* remove the skb from the echo stack - this also
1161 * frees the skb
1162 */
1163 spin_lock_irqsave(&up->echo_skb_lock, flags);
1164 can_free_echo_skb(up->netdev, echo_index);
1165 spin_unlock_irqrestore(&up->echo_skb_lock, flags);
1166
1167 if (ret == -ENODEV) {
1168 netif_device_detach(up->netdev);
1169 } else {
1170 netdev_warn(up->netdev,
1171 "xmit err: failed to submit urb %d\n",
1172 ret);
1173 up->netdev->stats.tx_dropped++;
1174 }
1175 return NETDEV_TX_OK;
1176 }
1177
1178 netif_trans_update(netdev);
1179
1180 /* release ref, as we do not need the urb anymore */
1181 usb_free_urb(urb);
1182
1183 return NETDEV_TX_OK;
1184
1185drop:
1186 if (!ucan_release_context(up, context))
1187 netdev_err(up->netdev,
1188 "xmit drop: failed to release context\n");
1189 dev_kfree_skb(skb);
1190 up->netdev->stats.tx_dropped++;
1191
1192 return NETDEV_TX_OK;
1193}
1194
1195/* Device goes down
1196 *
1197 * Clean up used resources
1198 */
1199static int ucan_close(struct net_device *netdev)
1200{
1201 int ret;
1202 struct ucan_priv *up = netdev_priv(netdev);
1203
1204 up->can.state = CAN_STATE_STOPPED;
1205
1206 /* stop sending data */
1207 usb_kill_anchored_urbs(&up->tx_urbs);
1208
1209 /* stop receiving data */
1210 usb_kill_anchored_urbs(&up->rx_urbs);
1211
1212 /* stop and reset can device */
1213 ret = ucan_ctrl_command_out(up, UCAN_COMMAND_STOP, 0, 0);
1214 if (ret < 0)
1215 netdev_err(up->netdev,
1216 "could not stop device, code: %d\n",
1217 ret);
1218
1219 ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0);
1220 if (ret < 0)
1221 netdev_err(up->netdev,
1222 "could not reset device, code: %d\n",
1223 ret);
1224
1225 netif_stop_queue(netdev);
1226
1227 ucan_release_context_array(up);
1228
1229 close_candev(up->netdev);
1230 return 0;
1231}
1232
1233/* CAN driver callbacks */
1234static const struct net_device_ops ucan_netdev_ops = {
1235 .ndo_open = ucan_open,
1236 .ndo_stop = ucan_close,
1237 .ndo_start_xmit = ucan_start_xmit,
1238 .ndo_change_mtu = can_change_mtu,
1239};
1240
1241/* Request to set bittiming
1242 *
1243 * This function generates an USB set bittiming message and transmits
1244 * it to the device
1245 */
1246static int ucan_set_bittiming(struct net_device *netdev)
1247{
1248 int ret;
1249 struct ucan_priv *up = netdev_priv(netdev);
1250 struct ucan_ctl_cmd_set_bittiming *cmd_set_bittiming;
1251
1252 cmd_set_bittiming = &up->ctl_msg_buffer->cmd_set_bittiming;
1253 cmd_set_bittiming->tq = cpu_to_le32(up->can.bittiming.tq);
1254 cmd_set_bittiming->brp = cpu_to_le16(up->can.bittiming.brp);
1255 cmd_set_bittiming->sample_point =
1256 cpu_to_le16(up->can.bittiming.sample_point);
1257 cmd_set_bittiming->prop_seg = up->can.bittiming.prop_seg;
1258 cmd_set_bittiming->phase_seg1 = up->can.bittiming.phase_seg1;
1259 cmd_set_bittiming->phase_seg2 = up->can.bittiming.phase_seg2;
1260 cmd_set_bittiming->sjw = up->can.bittiming.sjw;
1261
1262 ret = ucan_ctrl_command_out(up, UCAN_COMMAND_SET_BITTIMING, 0,
1263 sizeof(*cmd_set_bittiming));
1264 return (ret < 0) ? ret : 0;
1265}
1266
1267/* Restart the device to get it out of BUS-OFF state.
1268 * Called when the user runs "ip link set can1 type can restart".
1269 */
1270static int ucan_set_mode(struct net_device *netdev, enum can_mode mode)
1271{
1272 int ret;
1273 unsigned long flags;
1274 struct ucan_priv *up = netdev_priv(netdev);
1275
1276 switch (mode) {
1277 case CAN_MODE_START:
1278 netdev_dbg(up->netdev, "restarting device\n");
1279
1280 ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESTART, 0, 0);
1281 up->can.state = CAN_STATE_ERROR_ACTIVE;
1282
1283 /* check if queue can be restarted,
1284 * up->available_tx_urbs must be protected by the
1285 * lock
1286 */
1287 spin_lock_irqsave(&up->context_lock, flags);
1288
1289 if (up->available_tx_urbs > 0)
1290 netif_wake_queue(up->netdev);
1291
1292 spin_unlock_irqrestore(&up->context_lock, flags);
1293
1294 return ret;
1295 default:
1296 return -EOPNOTSUPP;
1297 }
1298}
1299
1300/* Probe the device, reset it and gather general device information */
1301static int ucan_probe(struct usb_interface *intf,
1302 const struct usb_device_id *id)
1303{
1304 int ret;
1305 int i;
1306 u32 protocol_version;
1307 struct usb_device *udev;
1308 struct net_device *netdev;
1309 struct usb_host_interface *iface_desc;
1310 struct ucan_priv *up;
1311 struct usb_endpoint_descriptor *ep;
1312 u16 in_ep_size;
1313 u16 out_ep_size;
1314 u8 in_ep_addr;
1315 u8 out_ep_addr;
1316 union ucan_ctl_payload *ctl_msg_buffer;
1317 char firmware_str[sizeof(union ucan_ctl_payload) + 1];
1318
1319 udev = interface_to_usbdev(intf);
1320
1321 /* Stage 1 - Interface Parsing
1322 * ---------------------------
1323 *
1324 * Identifie the device USB interface descriptor and its
1325 * endpoints. Probing is aborted on errors.
1326 */
1327
1328 /* check if the interface is sane */
1329 iface_desc = intf->cur_altsetting;
1330 if (!iface_desc)
1331 return -ENODEV;
1332
1333 dev_info(&udev->dev,
1334 "%s: probing device on interface #%d\n",
1335 UCAN_DRIVER_NAME,
1336 iface_desc->desc.bInterfaceNumber);
1337
1338 /* interface sanity check */
1339 if (iface_desc->desc.bNumEndpoints != 2) {
1340 dev_err(&udev->dev,
1341 "%s: invalid EP count (%d)",
1342 UCAN_DRIVER_NAME, iface_desc->desc.bNumEndpoints);
1343 goto err_firmware_needs_update;
1344 }
1345
1346 /* check interface endpoints */
1347 in_ep_addr = 0;
1348 out_ep_addr = 0;
1349 in_ep_size = 0;
1350 out_ep_size = 0;
1351 for (i = 0; i < iface_desc->desc.bNumEndpoints; i++) {
1352 ep = &iface_desc->endpoint[i].desc;
1353
1354 if (((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != 0) &&
1355 ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
1356 USB_ENDPOINT_XFER_BULK)) {
1357 /* In Endpoint */
1358 in_ep_addr = ep->bEndpointAddress;
1359 in_ep_addr &= USB_ENDPOINT_NUMBER_MASK;
1360 in_ep_size = le16_to_cpu(ep->wMaxPacketSize);
1361 } else if (((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ==
1362 0) &&
1363 ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
1364 USB_ENDPOINT_XFER_BULK)) {
1365 /* Out Endpoint */
1366 out_ep_addr = ep->bEndpointAddress;
1367 out_ep_addr &= USB_ENDPOINT_NUMBER_MASK;
1368 out_ep_size = le16_to_cpu(ep->wMaxPacketSize);
1369 }
1370 }
1371
1372 /* check if interface is sane */
1373 if (!in_ep_addr || !out_ep_addr) {
1374 dev_err(&udev->dev, "%s: invalid endpoint configuration\n",
1375 UCAN_DRIVER_NAME);
1376 goto err_firmware_needs_update;
1377 }
1378 if (in_ep_size < sizeof(struct ucan_message_in)) {
1379 dev_err(&udev->dev, "%s: invalid in_ep MaxPacketSize\n",
1380 UCAN_DRIVER_NAME);
1381 goto err_firmware_needs_update;
1382 }
1383 if (out_ep_size < sizeof(struct ucan_message_out)) {
1384 dev_err(&udev->dev, "%s: invalid out_ep MaxPacketSize\n",
1385 UCAN_DRIVER_NAME);
1386 goto err_firmware_needs_update;
1387 }
1388
1389 /* Stage 2 - Device Identification
1390 * -------------------------------
1391 *
1392 * The device interface seems to be a ucan device. Do further
1393 * compatibility checks. On error probing is aborted, on
1394 * success this stage leaves the ctl_msg_buffer with the
1395 * reported contents of a GET_INFO command (supported
1396 * bittimings, tx_fifo depth). This information is used in
1397 * Stage 3 for the final driver initialisation.
1398 */
1399
1400 /* Prepare Memory for control transferes */
1401 ctl_msg_buffer = devm_kzalloc(&udev->dev,
1402 sizeof(union ucan_ctl_payload),
1403 GFP_KERNEL);
1404 if (!ctl_msg_buffer) {
1405 dev_err(&udev->dev,
1406 "%s: failed to allocate control pipe memory\n",
1407 UCAN_DRIVER_NAME);
1408 return -ENOMEM;
1409 }
1410
1411 /* get protocol version
1412 *
1413 * note: ucan_ctrl_command_* wrappers cannot be used yet
1414 * because `up` is initialised in Stage 3
1415 */
1416 ret = usb_control_msg(udev,
1417 usb_rcvctrlpipe(udev, 0),
1418 UCAN_COMMAND_GET,
1419 USB_DIR_IN | USB_TYPE_VENDOR |
1420 USB_RECIP_INTERFACE,
1421 UCAN_COMMAND_GET_PROTOCOL_VERSION,
1422 iface_desc->desc.bInterfaceNumber,
1423 ctl_msg_buffer,
1424 sizeof(union ucan_ctl_payload),
1425 UCAN_USB_CTL_PIPE_TIMEOUT);
1426
1427 /* older firmware version do not support this command - those
1428 * are not supported by this drive
1429 */
1430 if (ret != 4) {
1431 dev_err(&udev->dev,
1432 "%s: could not read protocol version, ret=%d\n",
1433 UCAN_DRIVER_NAME, ret);
1434 if (ret >= 0)
1435 ret = -EINVAL;
1436 goto err_firmware_needs_update;
1437 }
1438
1439 /* this driver currently supports protocol version 3 only */
1440 protocol_version =
1441 le32_to_cpu(ctl_msg_buffer->cmd_get_protocol_version.version);
1442 if (protocol_version < UCAN_PROTOCOL_VERSION_MIN ||
1443 protocol_version > UCAN_PROTOCOL_VERSION_MAX) {
1444 dev_err(&udev->dev,
1445 "%s: device protocol version %d is not supported\n",
1446 UCAN_DRIVER_NAME, protocol_version);
1447 goto err_firmware_needs_update;
1448 }
1449
1450 /* request the device information and store it in ctl_msg_buffer
1451 *
1452 * note: ucan_ctrl_command_* wrappers connot be used yet
1453 * because `up` is initialised in Stage 3
1454 */
1455 ret = usb_control_msg(udev,
1456 usb_rcvctrlpipe(udev, 0),
1457 UCAN_COMMAND_GET,
1458 USB_DIR_IN | USB_TYPE_VENDOR |
1459 USB_RECIP_INTERFACE,
1460 UCAN_COMMAND_GET_INFO,
1461 iface_desc->desc.bInterfaceNumber,
1462 ctl_msg_buffer,
1463 sizeof(ctl_msg_buffer->cmd_get_device_info),
1464 UCAN_USB_CTL_PIPE_TIMEOUT);
1465
1466 if (ret < 0) {
1467 dev_err(&udev->dev, "%s: failed to retrieve device info\n",
1468 UCAN_DRIVER_NAME);
1469 goto err_firmware_needs_update;
1470 }
1471 if (ret < sizeof(ctl_msg_buffer->cmd_get_device_info)) {
1472 dev_err(&udev->dev, "%s: device reported invalid device info\n",
1473 UCAN_DRIVER_NAME);
1474 goto err_firmware_needs_update;
1475 }
1476 if (ctl_msg_buffer->cmd_get_device_info.tx_fifo == 0) {
1477 dev_err(&udev->dev,
1478 "%s: device reported invalid tx-fifo size\n",
1479 UCAN_DRIVER_NAME);
1480 goto err_firmware_needs_update;
1481 }
1482
1483 /* Stage 3 - Driver Initialisation
1484 * -------------------------------
1485 *
1486 * Register device to Linux, prepare private structures and
1487 * reset the device.
1488 */
1489
1490 /* allocate driver resources */
1491 netdev = alloc_candev(sizeof(struct ucan_priv),
1492 ctl_msg_buffer->cmd_get_device_info.tx_fifo);
1493 if (!netdev) {
1494 dev_err(&udev->dev,
1495 "%s: cannot allocate candev\n", UCAN_DRIVER_NAME);
1496 return -ENOMEM;
1497 }
1498
1499 up = netdev_priv(netdev);
1500
1501 /* initialze data */
1502 up->udev = udev;
1503 up->intf = intf;
1504 up->netdev = netdev;
1505 up->intf_index = iface_desc->desc.bInterfaceNumber;
1506 up->in_ep_addr = in_ep_addr;
1507 up->out_ep_addr = out_ep_addr;
1508 up->in_ep_size = in_ep_size;
1509 up->ctl_msg_buffer = ctl_msg_buffer;
1510 up->context_array = NULL;
1511 up->available_tx_urbs = 0;
1512
1513 up->can.state = CAN_STATE_STOPPED;
1514 up->can.bittiming_const = &up->device_info.bittiming_const;
1515 up->can.do_set_bittiming = ucan_set_bittiming;
1516 up->can.do_set_mode = &ucan_set_mode;
1517 spin_lock_init(&up->context_lock);
1518 spin_lock_init(&up->echo_skb_lock);
1519 netdev->netdev_ops = &ucan_netdev_ops;
1520
1521 usb_set_intfdata(intf, up);
1522 SET_NETDEV_DEV(netdev, &intf->dev);
1523
1524 /* parse device information
1525 * the data retrieved in Stage 2 is still available in
1526 * up->ctl_msg_buffer
1527 */
1528 ucan_parse_device_info(up, &ctl_msg_buffer->cmd_get_device_info);
1529
1530 /* just print some device information - if available */
1531 ret = ucan_device_request_in(up, UCAN_DEVICE_GET_FW_STRING, 0,
1532 sizeof(union ucan_ctl_payload));
1533 if (ret > 0) {
1534 /* copy string while ensuring zero terminiation */
1535 strncpy(firmware_str, up->ctl_msg_buffer->raw,
1536 sizeof(union ucan_ctl_payload));
1537 firmware_str[sizeof(union ucan_ctl_payload)] = '\0';
1538 } else {
1539 strcpy(firmware_str, "unknown");
1540 }
1541
1542 /* device is compatible, reset it */
1543 ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0);
1544 if (ret < 0)
1545 goto err_free_candev;
1546
1547 init_usb_anchor(&up->rx_urbs);
1548 init_usb_anchor(&up->tx_urbs);
1549
1550 up->can.state = CAN_STATE_STOPPED;
1551
1552 /* register the device */
1553 ret = register_candev(netdev);
1554 if (ret)
1555 goto err_free_candev;
1556
1557 /* initialisation complete, log device info */
1558 netdev_info(up->netdev, "registered device\n");
1559 netdev_info(up->netdev, "firmware string: %s\n", firmware_str);
1560
1561 /* success */
1562 return 0;
1563
1564err_free_candev:
1565 free_candev(netdev);
1566 return ret;
1567
1568err_firmware_needs_update:
1569 dev_err(&udev->dev,
1570 "%s: probe failed; try to update the device firmware\n",
1571 UCAN_DRIVER_NAME);
1572 return -ENODEV;
1573}
1574
1575/* disconnect the device */
1576static void ucan_disconnect(struct usb_interface *intf)
1577{
1578 struct ucan_priv *up = usb_get_intfdata(intf);
1579
1580 usb_set_intfdata(intf, NULL);
1581
1582 if (up) {
1583 unregister_netdev(up->netdev);
1584 free_candev(up->netdev);
1585 }
1586}
1587
1588static struct usb_device_id ucan_table[] = {
1589 /* Mule (soldered onto compute modules) */
1590 {USB_DEVICE_INTERFACE_NUMBER(0x2294, 0x425a, 0)},
1591 /* Seal (standalone USB stick) */
1592 {USB_DEVICE_INTERFACE_NUMBER(0x2294, 0x425b, 0)},
1593 {} /* Terminating entry */
1594};
1595
1596MODULE_DEVICE_TABLE(usb, ucan_table);
1597/* driver callbacks */
1598static struct usb_driver ucan_driver = {
1599 .name = UCAN_DRIVER_NAME,
1600 .probe = ucan_probe,
1601 .disconnect = ucan_disconnect,
1602 .id_table = ucan_table,
1603};
1604
1605module_usb_driver(ucan_driver);
1606
1607MODULE_LICENSE("GPL v2");
1608MODULE_AUTHOR("Martin Elshuber <martin.elshuber@theobroma-systems.com>");
1609MODULE_AUTHOR("Jakob Unterwurzacher <jakob.unterwurzacher@theobroma-systems.com>");
1610MODULE_DESCRIPTION("Driver for Theobroma Systems UCAN devices");