Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * background writeback - scan btree for dirty data and write it to the backing |
| 4 | * device |
| 5 | * |
| 6 | * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> |
| 7 | * Copyright 2012 Google, Inc. |
| 8 | */ |
| 9 | |
| 10 | #include "bcache.h" |
| 11 | #include "btree.h" |
| 12 | #include "debug.h" |
| 13 | #include "writeback.h" |
| 14 | |
| 15 | #include <linux/delay.h> |
| 16 | #include <linux/kthread.h> |
| 17 | #include <linux/sched/clock.h> |
| 18 | #include <trace/events/bcache.h> |
| 19 | |
| 20 | /* Rate limiting */ |
| 21 | static uint64_t __calc_target_rate(struct cached_dev *dc) |
| 22 | { |
| 23 | struct cache_set *c = dc->disk.c; |
| 24 | |
| 25 | /* |
| 26 | * This is the size of the cache, minus the amount used for |
| 27 | * flash-only devices |
| 28 | */ |
| 29 | uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size - |
| 30 | atomic_long_read(&c->flash_dev_dirty_sectors); |
| 31 | |
| 32 | /* |
| 33 | * Unfortunately there is no control of global dirty data. If the |
| 34 | * user states that they want 10% dirty data in the cache, and has, |
| 35 | * e.g., 5 backing volumes of equal size, we try and ensure each |
| 36 | * backing volume uses about 2% of the cache for dirty data. |
| 37 | */ |
| 38 | uint32_t bdev_share = |
| 39 | div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT, |
| 40 | c->cached_dev_sectors); |
| 41 | |
| 42 | uint64_t cache_dirty_target = |
| 43 | div_u64(cache_sectors * dc->writeback_percent, 100); |
| 44 | |
| 45 | /* Ensure each backing dev gets at least one dirty share */ |
| 46 | if (bdev_share < 1) |
| 47 | bdev_share = 1; |
| 48 | |
| 49 | return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT; |
| 50 | } |
| 51 | |
| 52 | static void __update_writeback_rate(struct cached_dev *dc) |
| 53 | { |
| 54 | /* |
| 55 | * PI controller: |
| 56 | * Figures out the amount that should be written per second. |
| 57 | * |
| 58 | * First, the error (number of sectors that are dirty beyond our |
| 59 | * target) is calculated. The error is accumulated (numerically |
| 60 | * integrated). |
| 61 | * |
| 62 | * Then, the proportional value and integral value are scaled |
| 63 | * based on configured values. These are stored as inverses to |
| 64 | * avoid fixed point math and to make configuration easy-- e.g. |
| 65 | * the default value of 40 for writeback_rate_p_term_inverse |
| 66 | * attempts to write at a rate that would retire all the dirty |
| 67 | * blocks in 40 seconds. |
| 68 | * |
| 69 | * The writeback_rate_i_inverse value of 10000 means that 1/10000th |
| 70 | * of the error is accumulated in the integral term per second. |
| 71 | * This acts as a slow, long-term average that is not subject to |
| 72 | * variations in usage like the p term. |
| 73 | */ |
| 74 | int64_t target = __calc_target_rate(dc); |
| 75 | int64_t dirty = bcache_dev_sectors_dirty(&dc->disk); |
| 76 | int64_t error = dirty - target; |
| 77 | int64_t proportional_scaled = |
| 78 | div_s64(error, dc->writeback_rate_p_term_inverse); |
| 79 | int64_t integral_scaled; |
| 80 | uint32_t new_rate; |
| 81 | |
| 82 | if ((error < 0 && dc->writeback_rate_integral > 0) || |
| 83 | (error > 0 && time_before64(local_clock(), |
| 84 | dc->writeback_rate.next + NSEC_PER_MSEC))) { |
| 85 | /* |
| 86 | * Only decrease the integral term if it's more than |
| 87 | * zero. Only increase the integral term if the device |
| 88 | * is keeping up. (Don't wind up the integral |
| 89 | * ineffectively in either case). |
| 90 | * |
| 91 | * It's necessary to scale this by |
| 92 | * writeback_rate_update_seconds to keep the integral |
| 93 | * term dimensioned properly. |
| 94 | */ |
| 95 | dc->writeback_rate_integral += error * |
| 96 | dc->writeback_rate_update_seconds; |
| 97 | } |
| 98 | |
| 99 | integral_scaled = div_s64(dc->writeback_rate_integral, |
| 100 | dc->writeback_rate_i_term_inverse); |
| 101 | |
| 102 | new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled), |
| 103 | dc->writeback_rate_minimum, NSEC_PER_SEC); |
| 104 | |
| 105 | dc->writeback_rate_proportional = proportional_scaled; |
| 106 | dc->writeback_rate_integral_scaled = integral_scaled; |
| 107 | dc->writeback_rate_change = new_rate - |
| 108 | atomic_long_read(&dc->writeback_rate.rate); |
| 109 | atomic_long_set(&dc->writeback_rate.rate, new_rate); |
| 110 | dc->writeback_rate_target = target; |
| 111 | } |
| 112 | |
| 113 | static bool set_at_max_writeback_rate(struct cache_set *c, |
| 114 | struct cached_dev *dc) |
| 115 | { |
| 116 | /* |
| 117 | * Idle_counter is increased everytime when update_writeback_rate() is |
| 118 | * called. If all backing devices attached to the same cache set have |
| 119 | * identical dc->writeback_rate_update_seconds values, it is about 6 |
| 120 | * rounds of update_writeback_rate() on each backing device before |
| 121 | * c->at_max_writeback_rate is set to 1, and then max wrteback rate set |
| 122 | * to each dc->writeback_rate.rate. |
| 123 | * In order to avoid extra locking cost for counting exact dirty cached |
| 124 | * devices number, c->attached_dev_nr is used to calculate the idle |
| 125 | * throushold. It might be bigger if not all cached device are in write- |
| 126 | * back mode, but it still works well with limited extra rounds of |
| 127 | * update_writeback_rate(). |
| 128 | */ |
| 129 | if (atomic_inc_return(&c->idle_counter) < |
| 130 | atomic_read(&c->attached_dev_nr) * 6) |
| 131 | return false; |
| 132 | |
| 133 | if (atomic_read(&c->at_max_writeback_rate) != 1) |
| 134 | atomic_set(&c->at_max_writeback_rate, 1); |
| 135 | |
| 136 | atomic_long_set(&dc->writeback_rate.rate, INT_MAX); |
| 137 | |
| 138 | /* keep writeback_rate_target as existing value */ |
| 139 | dc->writeback_rate_proportional = 0; |
| 140 | dc->writeback_rate_integral_scaled = 0; |
| 141 | dc->writeback_rate_change = 0; |
| 142 | |
| 143 | /* |
| 144 | * Check c->idle_counter and c->at_max_writeback_rate agagain in case |
| 145 | * new I/O arrives during before set_at_max_writeback_rate() returns. |
| 146 | * Then the writeback rate is set to 1, and its new value should be |
| 147 | * decided via __update_writeback_rate(). |
| 148 | */ |
| 149 | if ((atomic_read(&c->idle_counter) < |
| 150 | atomic_read(&c->attached_dev_nr) * 6) || |
| 151 | !atomic_read(&c->at_max_writeback_rate)) |
| 152 | return false; |
| 153 | |
| 154 | return true; |
| 155 | } |
| 156 | |
| 157 | static void update_writeback_rate(struct work_struct *work) |
| 158 | { |
| 159 | struct cached_dev *dc = container_of(to_delayed_work(work), |
| 160 | struct cached_dev, |
| 161 | writeback_rate_update); |
| 162 | struct cache_set *c = dc->disk.c; |
| 163 | |
| 164 | /* |
| 165 | * should check BCACHE_DEV_RATE_DW_RUNNING before calling |
| 166 | * cancel_delayed_work_sync(). |
| 167 | */ |
| 168 | set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); |
| 169 | /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ |
| 170 | smp_mb(); |
| 171 | |
| 172 | /* |
| 173 | * CACHE_SET_IO_DISABLE might be set via sysfs interface, |
| 174 | * check it here too. |
| 175 | */ |
| 176 | if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) || |
| 177 | test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { |
| 178 | clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); |
| 179 | /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ |
| 180 | smp_mb(); |
| 181 | return; |
| 182 | } |
| 183 | |
| 184 | if (atomic_read(&dc->has_dirty) && dc->writeback_percent) { |
| 185 | /* |
| 186 | * If the whole cache set is idle, set_at_max_writeback_rate() |
| 187 | * will set writeback rate to a max number. Then it is |
| 188 | * unncessary to update writeback rate for an idle cache set |
| 189 | * in maximum writeback rate number(s). |
| 190 | */ |
| 191 | if (!set_at_max_writeback_rate(c, dc)) { |
| 192 | down_read(&dc->writeback_lock); |
| 193 | __update_writeback_rate(dc); |
| 194 | up_read(&dc->writeback_lock); |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | |
| 199 | /* |
| 200 | * CACHE_SET_IO_DISABLE might be set via sysfs interface, |
| 201 | * check it here too. |
| 202 | */ |
| 203 | if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) && |
| 204 | !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { |
| 205 | schedule_delayed_work(&dc->writeback_rate_update, |
| 206 | dc->writeback_rate_update_seconds * HZ); |
| 207 | } |
| 208 | |
| 209 | /* |
| 210 | * should check BCACHE_DEV_RATE_DW_RUNNING before calling |
| 211 | * cancel_delayed_work_sync(). |
| 212 | */ |
| 213 | clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); |
| 214 | /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ |
| 215 | smp_mb(); |
| 216 | } |
| 217 | |
| 218 | static unsigned int writeback_delay(struct cached_dev *dc, |
| 219 | unsigned int sectors) |
| 220 | { |
| 221 | if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || |
| 222 | !dc->writeback_percent) |
| 223 | return 0; |
| 224 | |
| 225 | return bch_next_delay(&dc->writeback_rate, sectors); |
| 226 | } |
| 227 | |
| 228 | struct dirty_io { |
| 229 | struct closure cl; |
| 230 | struct cached_dev *dc; |
| 231 | uint16_t sequence; |
| 232 | struct bio bio; |
| 233 | }; |
| 234 | |
| 235 | static void dirty_init(struct keybuf_key *w) |
| 236 | { |
| 237 | struct dirty_io *io = w->private; |
| 238 | struct bio *bio = &io->bio; |
| 239 | |
| 240 | bio_init(bio, bio->bi_inline_vecs, |
| 241 | DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)); |
| 242 | if (!io->dc->writeback_percent) |
| 243 | bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); |
| 244 | |
| 245 | bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9; |
| 246 | bio->bi_private = w; |
| 247 | bch_bio_map(bio, NULL); |
| 248 | } |
| 249 | |
| 250 | static void dirty_io_destructor(struct closure *cl) |
| 251 | { |
| 252 | struct dirty_io *io = container_of(cl, struct dirty_io, cl); |
| 253 | |
| 254 | kfree(io); |
| 255 | } |
| 256 | |
| 257 | static void write_dirty_finish(struct closure *cl) |
| 258 | { |
| 259 | struct dirty_io *io = container_of(cl, struct dirty_io, cl); |
| 260 | struct keybuf_key *w = io->bio.bi_private; |
| 261 | struct cached_dev *dc = io->dc; |
| 262 | |
| 263 | bio_free_pages(&io->bio); |
| 264 | |
| 265 | /* This is kind of a dumb way of signalling errors. */ |
| 266 | if (KEY_DIRTY(&w->key)) { |
| 267 | int ret; |
| 268 | unsigned int i; |
| 269 | struct keylist keys; |
| 270 | |
| 271 | bch_keylist_init(&keys); |
| 272 | |
| 273 | bkey_copy(keys.top, &w->key); |
| 274 | SET_KEY_DIRTY(keys.top, false); |
| 275 | bch_keylist_push(&keys); |
| 276 | |
| 277 | for (i = 0; i < KEY_PTRS(&w->key); i++) |
| 278 | atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin); |
| 279 | |
| 280 | ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key); |
| 281 | |
| 282 | if (ret) |
| 283 | trace_bcache_writeback_collision(&w->key); |
| 284 | |
| 285 | atomic_long_inc(ret |
| 286 | ? &dc->disk.c->writeback_keys_failed |
| 287 | : &dc->disk.c->writeback_keys_done); |
| 288 | } |
| 289 | |
| 290 | bch_keybuf_del(&dc->writeback_keys, w); |
| 291 | up(&dc->in_flight); |
| 292 | |
| 293 | closure_return_with_destructor(cl, dirty_io_destructor); |
| 294 | } |
| 295 | |
| 296 | static void dirty_endio(struct bio *bio) |
| 297 | { |
| 298 | struct keybuf_key *w = bio->bi_private; |
| 299 | struct dirty_io *io = w->private; |
| 300 | |
| 301 | if (bio->bi_status) { |
| 302 | SET_KEY_DIRTY(&w->key, false); |
| 303 | bch_count_backing_io_errors(io->dc, bio); |
| 304 | } |
| 305 | |
| 306 | closure_put(&io->cl); |
| 307 | } |
| 308 | |
| 309 | static void write_dirty(struct closure *cl) |
| 310 | { |
| 311 | struct dirty_io *io = container_of(cl, struct dirty_io, cl); |
| 312 | struct keybuf_key *w = io->bio.bi_private; |
| 313 | struct cached_dev *dc = io->dc; |
| 314 | |
| 315 | uint16_t next_sequence; |
| 316 | |
| 317 | if (atomic_read(&dc->writeback_sequence_next) != io->sequence) { |
| 318 | /* Not our turn to write; wait for a write to complete */ |
| 319 | closure_wait(&dc->writeback_ordering_wait, cl); |
| 320 | |
| 321 | if (atomic_read(&dc->writeback_sequence_next) == io->sequence) { |
| 322 | /* |
| 323 | * Edge case-- it happened in indeterminate order |
| 324 | * relative to when we were added to wait list.. |
| 325 | */ |
| 326 | closure_wake_up(&dc->writeback_ordering_wait); |
| 327 | } |
| 328 | |
| 329 | continue_at(cl, write_dirty, io->dc->writeback_write_wq); |
| 330 | return; |
| 331 | } |
| 332 | |
| 333 | next_sequence = io->sequence + 1; |
| 334 | |
| 335 | /* |
| 336 | * IO errors are signalled using the dirty bit on the key. |
| 337 | * If we failed to read, we should not attempt to write to the |
| 338 | * backing device. Instead, immediately go to write_dirty_finish |
| 339 | * to clean up. |
| 340 | */ |
| 341 | if (KEY_DIRTY(&w->key)) { |
| 342 | dirty_init(w); |
| 343 | bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0); |
| 344 | io->bio.bi_iter.bi_sector = KEY_START(&w->key); |
| 345 | bio_set_dev(&io->bio, io->dc->bdev); |
| 346 | io->bio.bi_end_io = dirty_endio; |
| 347 | |
| 348 | /* I/O request sent to backing device */ |
| 349 | closure_bio_submit(io->dc->disk.c, &io->bio, cl); |
| 350 | } |
| 351 | |
| 352 | atomic_set(&dc->writeback_sequence_next, next_sequence); |
| 353 | closure_wake_up(&dc->writeback_ordering_wait); |
| 354 | |
| 355 | continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq); |
| 356 | } |
| 357 | |
| 358 | static void read_dirty_endio(struct bio *bio) |
| 359 | { |
| 360 | struct keybuf_key *w = bio->bi_private; |
| 361 | struct dirty_io *io = w->private; |
| 362 | |
| 363 | /* is_read = 1 */ |
| 364 | bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0), |
| 365 | bio->bi_status, 1, |
| 366 | "reading dirty data from cache"); |
| 367 | |
| 368 | dirty_endio(bio); |
| 369 | } |
| 370 | |
| 371 | static void read_dirty_submit(struct closure *cl) |
| 372 | { |
| 373 | struct dirty_io *io = container_of(cl, struct dirty_io, cl); |
| 374 | |
| 375 | closure_bio_submit(io->dc->disk.c, &io->bio, cl); |
| 376 | |
| 377 | continue_at(cl, write_dirty, io->dc->writeback_write_wq); |
| 378 | } |
| 379 | |
| 380 | static void read_dirty(struct cached_dev *dc) |
| 381 | { |
| 382 | unsigned int delay = 0; |
| 383 | struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w; |
| 384 | size_t size; |
| 385 | int nk, i; |
| 386 | struct dirty_io *io; |
| 387 | struct closure cl; |
| 388 | uint16_t sequence = 0; |
| 389 | |
| 390 | BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list)); |
| 391 | atomic_set(&dc->writeback_sequence_next, sequence); |
| 392 | closure_init_stack(&cl); |
| 393 | |
| 394 | /* |
| 395 | * XXX: if we error, background writeback just spins. Should use some |
| 396 | * mempools. |
| 397 | */ |
| 398 | |
| 399 | next = bch_keybuf_next(&dc->writeback_keys); |
| 400 | |
| 401 | while (!kthread_should_stop() && |
| 402 | !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && |
| 403 | next) { |
| 404 | size = 0; |
| 405 | nk = 0; |
| 406 | |
| 407 | do { |
| 408 | BUG_ON(ptr_stale(dc->disk.c, &next->key, 0)); |
| 409 | |
| 410 | /* |
| 411 | * Don't combine too many operations, even if they |
| 412 | * are all small. |
| 413 | */ |
| 414 | if (nk >= MAX_WRITEBACKS_IN_PASS) |
| 415 | break; |
| 416 | |
| 417 | /* |
| 418 | * If the current operation is very large, don't |
| 419 | * further combine operations. |
| 420 | */ |
| 421 | if (size >= MAX_WRITESIZE_IN_PASS) |
| 422 | break; |
| 423 | |
| 424 | /* |
| 425 | * Operations are only eligible to be combined |
| 426 | * if they are contiguous. |
| 427 | * |
| 428 | * TODO: add a heuristic willing to fire a |
| 429 | * certain amount of non-contiguous IO per pass, |
| 430 | * so that we can benefit from backing device |
| 431 | * command queueing. |
| 432 | */ |
| 433 | if ((nk != 0) && bkey_cmp(&keys[nk-1]->key, |
| 434 | &START_KEY(&next->key))) |
| 435 | break; |
| 436 | |
| 437 | size += KEY_SIZE(&next->key); |
| 438 | keys[nk++] = next; |
| 439 | } while ((next = bch_keybuf_next(&dc->writeback_keys))); |
| 440 | |
| 441 | /* Now we have gathered a set of 1..5 keys to write back. */ |
| 442 | for (i = 0; i < nk; i++) { |
| 443 | w = keys[i]; |
| 444 | |
| 445 | io = kzalloc(sizeof(struct dirty_io) + |
| 446 | sizeof(struct bio_vec) * |
| 447 | DIV_ROUND_UP(KEY_SIZE(&w->key), |
| 448 | PAGE_SECTORS), |
| 449 | GFP_KERNEL); |
| 450 | if (!io) |
| 451 | goto err; |
| 452 | |
| 453 | w->private = io; |
| 454 | io->dc = dc; |
| 455 | io->sequence = sequence++; |
| 456 | |
| 457 | dirty_init(w); |
| 458 | bio_set_op_attrs(&io->bio, REQ_OP_READ, 0); |
| 459 | io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0); |
| 460 | bio_set_dev(&io->bio, |
| 461 | PTR_CACHE(dc->disk.c, &w->key, 0)->bdev); |
| 462 | io->bio.bi_end_io = read_dirty_endio; |
| 463 | |
| 464 | if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL)) |
| 465 | goto err_free; |
| 466 | |
| 467 | trace_bcache_writeback(&w->key); |
| 468 | |
| 469 | down(&dc->in_flight); |
| 470 | |
| 471 | /* |
| 472 | * We've acquired a semaphore for the maximum |
| 473 | * simultaneous number of writebacks; from here |
| 474 | * everything happens asynchronously. |
| 475 | */ |
| 476 | closure_call(&io->cl, read_dirty_submit, NULL, &cl); |
| 477 | } |
| 478 | |
| 479 | delay = writeback_delay(dc, size); |
| 480 | |
| 481 | while (!kthread_should_stop() && |
| 482 | !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && |
| 483 | delay) { |
| 484 | schedule_timeout_interruptible(delay); |
| 485 | delay = writeback_delay(dc, 0); |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | if (0) { |
| 490 | err_free: |
| 491 | kfree(w->private); |
| 492 | err: |
| 493 | bch_keybuf_del(&dc->writeback_keys, w); |
| 494 | } |
| 495 | |
| 496 | /* |
| 497 | * Wait for outstanding writeback IOs to finish (and keybuf slots to be |
| 498 | * freed) before refilling again |
| 499 | */ |
| 500 | closure_sync(&cl); |
| 501 | } |
| 502 | |
| 503 | /* Scan for dirty data */ |
| 504 | |
| 505 | void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode, |
| 506 | uint64_t offset, int nr_sectors) |
| 507 | { |
| 508 | struct bcache_device *d = c->devices[inode]; |
| 509 | unsigned int stripe_offset, stripe, sectors_dirty; |
| 510 | |
| 511 | if (!d) |
| 512 | return; |
| 513 | |
| 514 | if (UUID_FLASH_ONLY(&c->uuids[inode])) |
| 515 | atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors); |
| 516 | |
| 517 | stripe = offset_to_stripe(d, offset); |
| 518 | stripe_offset = offset & (d->stripe_size - 1); |
| 519 | |
| 520 | while (nr_sectors) { |
| 521 | int s = min_t(unsigned int, abs(nr_sectors), |
| 522 | d->stripe_size - stripe_offset); |
| 523 | |
| 524 | if (nr_sectors < 0) |
| 525 | s = -s; |
| 526 | |
| 527 | if (stripe >= d->nr_stripes) |
| 528 | return; |
| 529 | |
| 530 | sectors_dirty = atomic_add_return(s, |
| 531 | d->stripe_sectors_dirty + stripe); |
| 532 | if (sectors_dirty == d->stripe_size) |
| 533 | set_bit(stripe, d->full_dirty_stripes); |
| 534 | else |
| 535 | clear_bit(stripe, d->full_dirty_stripes); |
| 536 | |
| 537 | nr_sectors -= s; |
| 538 | stripe_offset = 0; |
| 539 | stripe++; |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | static bool dirty_pred(struct keybuf *buf, struct bkey *k) |
| 544 | { |
| 545 | struct cached_dev *dc = container_of(buf, |
| 546 | struct cached_dev, |
| 547 | writeback_keys); |
| 548 | |
| 549 | BUG_ON(KEY_INODE(k) != dc->disk.id); |
| 550 | |
| 551 | return KEY_DIRTY(k); |
| 552 | } |
| 553 | |
| 554 | static void refill_full_stripes(struct cached_dev *dc) |
| 555 | { |
| 556 | struct keybuf *buf = &dc->writeback_keys; |
| 557 | unsigned int start_stripe, stripe, next_stripe; |
| 558 | bool wrapped = false; |
| 559 | |
| 560 | stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned)); |
| 561 | |
| 562 | if (stripe >= dc->disk.nr_stripes) |
| 563 | stripe = 0; |
| 564 | |
| 565 | start_stripe = stripe; |
| 566 | |
| 567 | while (1) { |
| 568 | stripe = find_next_bit(dc->disk.full_dirty_stripes, |
| 569 | dc->disk.nr_stripes, stripe); |
| 570 | |
| 571 | if (stripe == dc->disk.nr_stripes) |
| 572 | goto next; |
| 573 | |
| 574 | next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes, |
| 575 | dc->disk.nr_stripes, stripe); |
| 576 | |
| 577 | buf->last_scanned = KEY(dc->disk.id, |
| 578 | stripe * dc->disk.stripe_size, 0); |
| 579 | |
| 580 | bch_refill_keybuf(dc->disk.c, buf, |
| 581 | &KEY(dc->disk.id, |
| 582 | next_stripe * dc->disk.stripe_size, 0), |
| 583 | dirty_pred); |
| 584 | |
| 585 | if (array_freelist_empty(&buf->freelist)) |
| 586 | return; |
| 587 | |
| 588 | stripe = next_stripe; |
| 589 | next: |
| 590 | if (wrapped && stripe > start_stripe) |
| 591 | return; |
| 592 | |
| 593 | if (stripe == dc->disk.nr_stripes) { |
| 594 | stripe = 0; |
| 595 | wrapped = true; |
| 596 | } |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | /* |
| 601 | * Returns true if we scanned the entire disk |
| 602 | */ |
| 603 | static bool refill_dirty(struct cached_dev *dc) |
| 604 | { |
| 605 | struct keybuf *buf = &dc->writeback_keys; |
| 606 | struct bkey start = KEY(dc->disk.id, 0, 0); |
| 607 | struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0); |
| 608 | struct bkey start_pos; |
| 609 | |
| 610 | /* |
| 611 | * make sure keybuf pos is inside the range for this disk - at bringup |
| 612 | * we might not be attached yet so this disk's inode nr isn't |
| 613 | * initialized then |
| 614 | */ |
| 615 | if (bkey_cmp(&buf->last_scanned, &start) < 0 || |
| 616 | bkey_cmp(&buf->last_scanned, &end) > 0) |
| 617 | buf->last_scanned = start; |
| 618 | |
| 619 | if (dc->partial_stripes_expensive) { |
| 620 | refill_full_stripes(dc); |
| 621 | if (array_freelist_empty(&buf->freelist)) |
| 622 | return false; |
| 623 | } |
| 624 | |
| 625 | start_pos = buf->last_scanned; |
| 626 | bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred); |
| 627 | |
| 628 | if (bkey_cmp(&buf->last_scanned, &end) < 0) |
| 629 | return false; |
| 630 | |
| 631 | /* |
| 632 | * If we get to the end start scanning again from the beginning, and |
| 633 | * only scan up to where we initially started scanning from: |
| 634 | */ |
| 635 | buf->last_scanned = start; |
| 636 | bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred); |
| 637 | |
| 638 | return bkey_cmp(&buf->last_scanned, &start_pos) >= 0; |
| 639 | } |
| 640 | |
| 641 | static int bch_writeback_thread(void *arg) |
| 642 | { |
| 643 | struct cached_dev *dc = arg; |
| 644 | struct cache_set *c = dc->disk.c; |
| 645 | bool searched_full_index; |
| 646 | |
| 647 | bch_ratelimit_reset(&dc->writeback_rate); |
| 648 | |
| 649 | while (!kthread_should_stop() && |
| 650 | !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { |
| 651 | down_write(&dc->writeback_lock); |
| 652 | set_current_state(TASK_INTERRUPTIBLE); |
| 653 | /* |
| 654 | * If the bache device is detaching, skip here and continue |
| 655 | * to perform writeback. Otherwise, if no dirty data on cache, |
| 656 | * or there is dirty data on cache but writeback is disabled, |
| 657 | * the writeback thread should sleep here and wait for others |
| 658 | * to wake up it. |
| 659 | */ |
| 660 | if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && |
| 661 | (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) { |
| 662 | up_write(&dc->writeback_lock); |
| 663 | |
| 664 | if (kthread_should_stop() || |
| 665 | test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { |
| 666 | set_current_state(TASK_RUNNING); |
| 667 | break; |
| 668 | } |
| 669 | |
| 670 | schedule(); |
| 671 | continue; |
| 672 | } |
| 673 | set_current_state(TASK_RUNNING); |
| 674 | |
| 675 | searched_full_index = refill_dirty(dc); |
| 676 | |
| 677 | if (searched_full_index && |
| 678 | RB_EMPTY_ROOT(&dc->writeback_keys.keys)) { |
| 679 | atomic_set(&dc->has_dirty, 0); |
| 680 | SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); |
| 681 | bch_write_bdev_super(dc, NULL); |
| 682 | /* |
| 683 | * If bcache device is detaching via sysfs interface, |
| 684 | * writeback thread should stop after there is no dirty |
| 685 | * data on cache. BCACHE_DEV_DETACHING flag is set in |
| 686 | * bch_cached_dev_detach(). |
| 687 | */ |
| 688 | if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) { |
| 689 | up_write(&dc->writeback_lock); |
| 690 | break; |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | up_write(&dc->writeback_lock); |
| 695 | |
| 696 | read_dirty(dc); |
| 697 | |
| 698 | if (searched_full_index) { |
| 699 | unsigned int delay = dc->writeback_delay * HZ; |
| 700 | |
| 701 | while (delay && |
| 702 | !kthread_should_stop() && |
| 703 | !test_bit(CACHE_SET_IO_DISABLE, &c->flags) && |
| 704 | !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) |
| 705 | delay = schedule_timeout_interruptible(delay); |
| 706 | |
| 707 | bch_ratelimit_reset(&dc->writeback_rate); |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | cached_dev_put(dc); |
| 712 | wait_for_kthread_stop(); |
| 713 | |
| 714 | return 0; |
| 715 | } |
| 716 | |
| 717 | /* Init */ |
| 718 | #define INIT_KEYS_EACH_TIME 500000 |
| 719 | #define INIT_KEYS_SLEEP_MS 100 |
| 720 | |
| 721 | struct sectors_dirty_init { |
| 722 | struct btree_op op; |
| 723 | unsigned int inode; |
| 724 | size_t count; |
| 725 | struct bkey start; |
| 726 | }; |
| 727 | |
| 728 | static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b, |
| 729 | struct bkey *k) |
| 730 | { |
| 731 | struct sectors_dirty_init *op = container_of(_op, |
| 732 | struct sectors_dirty_init, op); |
| 733 | if (KEY_INODE(k) > op->inode) |
| 734 | return MAP_DONE; |
| 735 | |
| 736 | if (KEY_DIRTY(k)) |
| 737 | bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), |
| 738 | KEY_START(k), KEY_SIZE(k)); |
| 739 | |
| 740 | op->count++; |
| 741 | if (atomic_read(&b->c->search_inflight) && |
| 742 | !(op->count % INIT_KEYS_EACH_TIME)) { |
| 743 | bkey_copy_key(&op->start, k); |
| 744 | return -EAGAIN; |
| 745 | } |
| 746 | |
| 747 | return MAP_CONTINUE; |
| 748 | } |
| 749 | |
| 750 | void bch_sectors_dirty_init(struct bcache_device *d) |
| 751 | { |
| 752 | struct sectors_dirty_init op; |
| 753 | int ret; |
| 754 | |
| 755 | bch_btree_op_init(&op.op, -1); |
| 756 | op.inode = d->id; |
| 757 | op.count = 0; |
| 758 | op.start = KEY(op.inode, 0, 0); |
| 759 | |
| 760 | do { |
| 761 | ret = bch_btree_map_keys(&op.op, d->c, &op.start, |
| 762 | sectors_dirty_init_fn, 0); |
| 763 | if (ret == -EAGAIN) |
| 764 | schedule_timeout_interruptible( |
| 765 | msecs_to_jiffies(INIT_KEYS_SLEEP_MS)); |
| 766 | else if (ret < 0) { |
| 767 | pr_warn("sectors dirty init failed, ret=%d!", ret); |
| 768 | break; |
| 769 | } |
| 770 | } while (ret == -EAGAIN); |
| 771 | } |
| 772 | |
| 773 | void bch_cached_dev_writeback_init(struct cached_dev *dc) |
| 774 | { |
| 775 | sema_init(&dc->in_flight, 64); |
| 776 | init_rwsem(&dc->writeback_lock); |
| 777 | bch_keybuf_init(&dc->writeback_keys); |
| 778 | |
| 779 | dc->writeback_metadata = true; |
| 780 | dc->writeback_running = true; |
| 781 | dc->writeback_percent = 10; |
| 782 | dc->writeback_delay = 30; |
| 783 | atomic_long_set(&dc->writeback_rate.rate, 1024); |
| 784 | dc->writeback_rate_minimum = 8; |
| 785 | |
| 786 | dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT; |
| 787 | dc->writeback_rate_p_term_inverse = 40; |
| 788 | dc->writeback_rate_i_term_inverse = 10000; |
| 789 | |
| 790 | WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); |
| 791 | INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate); |
| 792 | } |
| 793 | |
| 794 | int bch_cached_dev_writeback_start(struct cached_dev *dc) |
| 795 | { |
| 796 | dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq", |
| 797 | WQ_MEM_RECLAIM, 0); |
| 798 | if (!dc->writeback_write_wq) |
| 799 | return -ENOMEM; |
| 800 | |
| 801 | cached_dev_get(dc); |
| 802 | dc->writeback_thread = kthread_create(bch_writeback_thread, dc, |
| 803 | "bcache_writeback"); |
| 804 | if (IS_ERR(dc->writeback_thread)) { |
| 805 | cached_dev_put(dc); |
| 806 | return PTR_ERR(dc->writeback_thread); |
| 807 | } |
| 808 | |
| 809 | WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); |
| 810 | schedule_delayed_work(&dc->writeback_rate_update, |
| 811 | dc->writeback_rate_update_seconds * HZ); |
| 812 | |
| 813 | bch_writeback_queue(dc); |
| 814 | |
| 815 | return 0; |
| 816 | } |