blob: 902d12d6d88b0755c74fb915bd372cca9ebfd08d [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Copyright(c) 2015 - 2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48/*
49 * This file contains all of the code that is specific to the HFI chip
50 */
51
52#include <linux/pci.h>
53#include <linux/delay.h>
54#include <linux/interrupt.h>
55#include <linux/module.h>
56
57#include "hfi.h"
58#include "trace.h"
59#include "mad.h"
60#include "pio.h"
61#include "sdma.h"
62#include "eprom.h"
63#include "efivar.h"
64#include "platform.h"
65#include "aspm.h"
66#include "affinity.h"
67#include "debugfs.h"
68#include "fault.h"
69
70#define NUM_IB_PORTS 1
71
72uint kdeth_qp;
73module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
74MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
75
76uint num_vls = HFI1_MAX_VLS_SUPPORTED;
77module_param(num_vls, uint, S_IRUGO);
78MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
79
80/*
81 * Default time to aggregate two 10K packets from the idle state
82 * (timer not running). The timer starts at the end of the first packet,
83 * so only the time for one 10K packet and header plus a bit extra is needed.
84 * 10 * 1024 + 64 header byte = 10304 byte
85 * 10304 byte / 12.5 GB/s = 824.32ns
86 */
87uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
88module_param(rcv_intr_timeout, uint, S_IRUGO);
89MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
90
91uint rcv_intr_count = 16; /* same as qib */
92module_param(rcv_intr_count, uint, S_IRUGO);
93MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
94
95ushort link_crc_mask = SUPPORTED_CRCS;
96module_param(link_crc_mask, ushort, S_IRUGO);
97MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
98
99uint loopback;
100module_param_named(loopback, loopback, uint, S_IRUGO);
101MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
102
103/* Other driver tunables */
104uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
105static ushort crc_14b_sideband = 1;
106static uint use_flr = 1;
107uint quick_linkup; /* skip LNI */
108
109struct flag_table {
110 u64 flag; /* the flag */
111 char *str; /* description string */
112 u16 extra; /* extra information */
113 u16 unused0;
114 u32 unused1;
115};
116
117/* str must be a string constant */
118#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
119#define FLAG_ENTRY0(str, flag) {flag, str, 0}
120
121/* Send Error Consequences */
122#define SEC_WRITE_DROPPED 0x1
123#define SEC_PACKET_DROPPED 0x2
124#define SEC_SC_HALTED 0x4 /* per-context only */
125#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
126
127#define DEFAULT_KRCVQS 2
128#define MIN_KERNEL_KCTXTS 2
129#define FIRST_KERNEL_KCTXT 1
130
131/*
132 * RSM instance allocation
133 * 0 - Verbs
134 * 1 - User Fecn Handling
135 * 2 - Vnic
136 */
137#define RSM_INS_VERBS 0
138#define RSM_INS_FECN 1
139#define RSM_INS_VNIC 2
140
141/* Bit offset into the GUID which carries HFI id information */
142#define GUID_HFI_INDEX_SHIFT 39
143
144/* extract the emulation revision */
145#define emulator_rev(dd) ((dd)->irev >> 8)
146/* parallel and serial emulation versions are 3 and 4 respectively */
147#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
148#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
149
150/* RSM fields for Verbs */
151/* packet type */
152#define IB_PACKET_TYPE 2ull
153#define QW_SHIFT 6ull
154/* QPN[7..1] */
155#define QPN_WIDTH 7ull
156
157/* LRH.BTH: QW 0, OFFSET 48 - for match */
158#define LRH_BTH_QW 0ull
159#define LRH_BTH_BIT_OFFSET 48ull
160#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
161#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
162#define LRH_BTH_SELECT
163#define LRH_BTH_MASK 3ull
164#define LRH_BTH_VALUE 2ull
165
166/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
167#define LRH_SC_QW 0ull
168#define LRH_SC_BIT_OFFSET 56ull
169#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
170#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
171#define LRH_SC_MASK 128ull
172#define LRH_SC_VALUE 0ull
173
174/* SC[n..0] QW 0, OFFSET 60 - for select */
175#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
176
177/* QPN[m+n:1] QW 1, OFFSET 1 */
178#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
179
180/* RSM fields for Vnic */
181/* L2_TYPE: QW 0, OFFSET 61 - for match */
182#define L2_TYPE_QW 0ull
183#define L2_TYPE_BIT_OFFSET 61ull
184#define L2_TYPE_OFFSET(off) ((L2_TYPE_QW << QW_SHIFT) | (off))
185#define L2_TYPE_MATCH_OFFSET L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
186#define L2_TYPE_MASK 3ull
187#define L2_16B_VALUE 2ull
188
189/* L4_TYPE QW 1, OFFSET 0 - for match */
190#define L4_TYPE_QW 1ull
191#define L4_TYPE_BIT_OFFSET 0ull
192#define L4_TYPE_OFFSET(off) ((L4_TYPE_QW << QW_SHIFT) | (off))
193#define L4_TYPE_MATCH_OFFSET L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
194#define L4_16B_TYPE_MASK 0xFFull
195#define L4_16B_ETH_VALUE 0x78ull
196
197/* 16B VESWID - for select */
198#define L4_16B_HDR_VESWID_OFFSET ((2 << QW_SHIFT) | (16ull))
199/* 16B ENTROPY - for select */
200#define L2_16B_ENTROPY_OFFSET ((1 << QW_SHIFT) | (32ull))
201
202/* defines to build power on SC2VL table */
203#define SC2VL_VAL( \
204 num, \
205 sc0, sc0val, \
206 sc1, sc1val, \
207 sc2, sc2val, \
208 sc3, sc3val, \
209 sc4, sc4val, \
210 sc5, sc5val, \
211 sc6, sc6val, \
212 sc7, sc7val) \
213( \
214 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
215 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
216 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
217 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
218 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
219 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
220 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
221 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
222)
223
224#define DC_SC_VL_VAL( \
225 range, \
226 e0, e0val, \
227 e1, e1val, \
228 e2, e2val, \
229 e3, e3val, \
230 e4, e4val, \
231 e5, e5val, \
232 e6, e6val, \
233 e7, e7val, \
234 e8, e8val, \
235 e9, e9val, \
236 e10, e10val, \
237 e11, e11val, \
238 e12, e12val, \
239 e13, e13val, \
240 e14, e14val, \
241 e15, e15val) \
242( \
243 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
244 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
245 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
246 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
247 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
248 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
249 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
250 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
251 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
252 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
253 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
254 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
255 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
256 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
257 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
258 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
259)
260
261/* all CceStatus sub-block freeze bits */
262#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
263 | CCE_STATUS_RXE_FROZE_SMASK \
264 | CCE_STATUS_TXE_FROZE_SMASK \
265 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
266/* all CceStatus sub-block TXE pause bits */
267#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
268 | CCE_STATUS_TXE_PAUSED_SMASK \
269 | CCE_STATUS_SDMA_PAUSED_SMASK)
270/* all CceStatus sub-block RXE pause bits */
271#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
272
273#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
274#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
275
276/*
277 * CCE Error flags.
278 */
279static struct flag_table cce_err_status_flags[] = {
280/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
281 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
282/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
283 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
284/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
285 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
286/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
287 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
288/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
289 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
290/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
291 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
292/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
293 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
294/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
295 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
296/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
297 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
298/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
299 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
300/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
301 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
302/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
303 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
304/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
305 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
306/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
307 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
308/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
309 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
310/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
311 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
312/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
313 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
314/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
315 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
316/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
317 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
318/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
319 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
320/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
321 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
322/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
323 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
324/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
325 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
326/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
327 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
328/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
329 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
330/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
331 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
332/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
333 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
334/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
335 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
336/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
337 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
338/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
339 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
340/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
341 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
342/*31*/ FLAG_ENTRY0("LATriggered",
343 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
344/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
345 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
346/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
347 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
348/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
349 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
350/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
351 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
352/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
353 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
354/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
355 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
356/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
357 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
358/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
359 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
360/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
361 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
362/*41-63 reserved*/
363};
364
365/*
366 * Misc Error flags
367 */
368#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
369static struct flag_table misc_err_status_flags[] = {
370/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
371/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
372/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
373/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
374/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
375/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
376/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
377/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
378/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
379/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
380/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
381/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
382/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
383};
384
385/*
386 * TXE PIO Error flags and consequences
387 */
388static struct flag_table pio_err_status_flags[] = {
389/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
390 SEC_WRITE_DROPPED,
391 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
392/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
393 SEC_SPC_FREEZE,
394 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
395/* 2*/ FLAG_ENTRY("PioCsrParity",
396 SEC_SPC_FREEZE,
397 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
398/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
399 SEC_SPC_FREEZE,
400 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
401/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
402 SEC_SPC_FREEZE,
403 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
404/* 5*/ FLAG_ENTRY("PioPccFifoParity",
405 SEC_SPC_FREEZE,
406 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
407/* 6*/ FLAG_ENTRY("PioPecFifoParity",
408 SEC_SPC_FREEZE,
409 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
410/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
411 SEC_SPC_FREEZE,
412 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
413/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
414 SEC_SPC_FREEZE,
415 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
416/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
417 SEC_SPC_FREEZE,
418 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
419/*10*/ FLAG_ENTRY("PioSmPktResetParity",
420 SEC_SPC_FREEZE,
421 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
422/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
423 SEC_SPC_FREEZE,
424 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
425/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
426 SEC_SPC_FREEZE,
427 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
428/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
429 0,
430 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
431/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
432 0,
433 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
434/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
435 SEC_SPC_FREEZE,
436 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
437/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
438 SEC_SPC_FREEZE,
439 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
440/*17*/ FLAG_ENTRY("PioInitSmIn",
441 0,
442 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
443/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
444 SEC_SPC_FREEZE,
445 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
446/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
447 SEC_SPC_FREEZE,
448 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
449/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
450 0,
451 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
452/*21*/ FLAG_ENTRY("PioWriteDataParity",
453 SEC_SPC_FREEZE,
454 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
455/*22*/ FLAG_ENTRY("PioStateMachine",
456 SEC_SPC_FREEZE,
457 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
458/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
459 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
460 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
461/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
462 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
463 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
464/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
465 SEC_SPC_FREEZE,
466 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
467/*26*/ FLAG_ENTRY("PioVlfSopParity",
468 SEC_SPC_FREEZE,
469 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
470/*27*/ FLAG_ENTRY("PioVlFifoParity",
471 SEC_SPC_FREEZE,
472 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
473/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
474 SEC_SPC_FREEZE,
475 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
476/*29*/ FLAG_ENTRY("PioPpmcSopLen",
477 SEC_SPC_FREEZE,
478 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
479/*30-31 reserved*/
480/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
481 SEC_SPC_FREEZE,
482 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
483/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
484 SEC_SPC_FREEZE,
485 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
486/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
487 SEC_SPC_FREEZE,
488 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
489/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
490 SEC_SPC_FREEZE,
491 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
492/*36-63 reserved*/
493};
494
495/* TXE PIO errors that cause an SPC freeze */
496#define ALL_PIO_FREEZE_ERR \
497 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
498 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
499 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
500 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
501 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
502 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
503 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
504 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
505 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
506 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
507 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
508 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
509 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
510 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
511 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
512 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
513 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
514 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
515 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
516 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
517 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
518 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
519 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
520 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
521 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
522 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
523 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
524 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
525 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
526
527/*
528 * TXE SDMA Error flags
529 */
530static struct flag_table sdma_err_status_flags[] = {
531/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
532 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
533/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
534 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
535/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
536 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
537/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
538 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
539/*04-63 reserved*/
540};
541
542/* TXE SDMA errors that cause an SPC freeze */
543#define ALL_SDMA_FREEZE_ERR \
544 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
545 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
546 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
547
548/* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
549#define PORT_DISCARD_EGRESS_ERRS \
550 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
551 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
552 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
553
554/*
555 * TXE Egress Error flags
556 */
557#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
558static struct flag_table egress_err_status_flags[] = {
559/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
560/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
561/* 2 reserved */
562/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
563 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
564/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
565/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
566/* 6 reserved */
567/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
568 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
569/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
570 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
571/* 9-10 reserved */
572/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
573 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
574/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
575/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
576/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
577/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
578/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
579 SEES(TX_SDMA0_DISALLOWED_PACKET)),
580/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
581 SEES(TX_SDMA1_DISALLOWED_PACKET)),
582/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
583 SEES(TX_SDMA2_DISALLOWED_PACKET)),
584/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
585 SEES(TX_SDMA3_DISALLOWED_PACKET)),
586/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
587 SEES(TX_SDMA4_DISALLOWED_PACKET)),
588/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
589 SEES(TX_SDMA5_DISALLOWED_PACKET)),
590/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
591 SEES(TX_SDMA6_DISALLOWED_PACKET)),
592/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
593 SEES(TX_SDMA7_DISALLOWED_PACKET)),
594/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
595 SEES(TX_SDMA8_DISALLOWED_PACKET)),
596/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
597 SEES(TX_SDMA9_DISALLOWED_PACKET)),
598/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
599 SEES(TX_SDMA10_DISALLOWED_PACKET)),
600/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
601 SEES(TX_SDMA11_DISALLOWED_PACKET)),
602/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
603 SEES(TX_SDMA12_DISALLOWED_PACKET)),
604/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
605 SEES(TX_SDMA13_DISALLOWED_PACKET)),
606/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
607 SEES(TX_SDMA14_DISALLOWED_PACKET)),
608/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
609 SEES(TX_SDMA15_DISALLOWED_PACKET)),
610/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
611 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
612/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
613 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
614/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
615 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
616/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
617 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
618/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
619 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
620/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
621 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
622/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
623 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
624/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
625 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
626/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
627 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
628/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
629/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
630/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
631/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
632/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
633/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
634/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
635/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
636/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
637/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
638/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
639/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
640/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
641/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
642/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
643/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
644/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
645/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
646/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
647/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
648/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
649/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
650 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
651/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
652 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
653};
654
655/*
656 * TXE Egress Error Info flags
657 */
658#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
659static struct flag_table egress_err_info_flags[] = {
660/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
661/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
662/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
664/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
665/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
666/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
667/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
668/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
669/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
670/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
671/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
672/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
673/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
674/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
675/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
676/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
677/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
678/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
679/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
680/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
681/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
682};
683
684/* TXE Egress errors that cause an SPC freeze */
685#define ALL_TXE_EGRESS_FREEZE_ERR \
686 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
687 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
688 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
689 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
690 | SEES(TX_LAUNCH_CSR_PARITY) \
691 | SEES(TX_SBRD_CTL_CSR_PARITY) \
692 | SEES(TX_CONFIG_PARITY) \
693 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
694 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
695 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
696 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
697 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
698 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
699 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
700 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
701 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
702 | SEES(TX_CREDIT_RETURN_PARITY))
703
704/*
705 * TXE Send error flags
706 */
707#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
708static struct flag_table send_err_status_flags[] = {
709/* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
710/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
711/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
712};
713
714/*
715 * TXE Send Context Error flags and consequences
716 */
717static struct flag_table sc_err_status_flags[] = {
718/* 0*/ FLAG_ENTRY("InconsistentSop",
719 SEC_PACKET_DROPPED | SEC_SC_HALTED,
720 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
721/* 1*/ FLAG_ENTRY("DisallowedPacket",
722 SEC_PACKET_DROPPED | SEC_SC_HALTED,
723 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
724/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
725 SEC_WRITE_DROPPED | SEC_SC_HALTED,
726 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
727/* 3*/ FLAG_ENTRY("WriteOverflow",
728 SEC_WRITE_DROPPED | SEC_SC_HALTED,
729 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
730/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
731 SEC_WRITE_DROPPED | SEC_SC_HALTED,
732 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
733/* 5-63 reserved*/
734};
735
736/*
737 * RXE Receive Error flags
738 */
739#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
740static struct flag_table rxe_err_status_flags[] = {
741/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
742/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
743/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
744/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
745/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
746/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
747/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
748/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
749/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
750/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
751/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
752/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
753/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
754/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
755/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
756/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
757/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
758 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
759/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
760/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
761/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
762 RXES(RBUF_BLOCK_LIST_READ_UNC)),
763/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
764 RXES(RBUF_BLOCK_LIST_READ_COR)),
765/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
766 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
767/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
768 RXES(RBUF_CSR_QENT_CNT_PARITY)),
769/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
770 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
771/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
772 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
773/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
774/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
775/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
776 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
777/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
778/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
779/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
780/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
781/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
782/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
783/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
784/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
785 RXES(RBUF_FL_INITDONE_PARITY)),
786/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
787 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
788/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
789/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
790/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
791/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
792 RXES(LOOKUP_DES_PART1_UNC_COR)),
793/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
794 RXES(LOOKUP_DES_PART2_PARITY)),
795/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
796/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
797/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
798/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
799/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
800/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
801/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
802/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
803/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
804/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
805/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
806/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
807/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
808/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
809/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
810/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
811/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
812/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
813/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
814/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
815/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
816/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
817};
818
819/* RXE errors that will trigger an SPC freeze */
820#define ALL_RXE_FREEZE_ERR \
821 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
828 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
829 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
830 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
831 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
832 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
833 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
834 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
835 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
836 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
837 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
838 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
839 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
840 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
841 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
842 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
843 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
844 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
845 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
846 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
847 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
848 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
849 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
850 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
851 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
852 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
853 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
854 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
855 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
856 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
857 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
858 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
859 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
860 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
861 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
862 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
863 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
864 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
865
866#define RXE_FREEZE_ABORT_MASK \
867 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
868 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
869 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
870
871/*
872 * DCC Error Flags
873 */
874#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
875static struct flag_table dcc_err_flags[] = {
876 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
877 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
878 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
879 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
880 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
881 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
882 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
883 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
884 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
885 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
886 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
887 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
888 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
889 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
890 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
891 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
892 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
893 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
894 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
895 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
896 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
897 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
898 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
899 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
900 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
901 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
902 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
903 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
904 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
905 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
906 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
907 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
908 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
909 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
910 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
911 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
912 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
913 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
914 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
915 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
916 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
917 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
918 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
919 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
920 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
921 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
922};
923
924/*
925 * LCB error flags
926 */
927#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
928static struct flag_table lcb_err_flags[] = {
929/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
930/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
931/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
932/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
933 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
934/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
935/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
936/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
937/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
938/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
939/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
940/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
941/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
942/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
943/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
944 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
945/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
946/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
947/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
948/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
949/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
950/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
951 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
952/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
953/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
954/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
955/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
956/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
957/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
958/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
959 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
960/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
961/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
962 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
963/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
964 LCBE(REDUNDANT_FLIT_PARITY_ERR))
965};
966
967/*
968 * DC8051 Error Flags
969 */
970#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
971static struct flag_table dc8051_err_flags[] = {
972 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
973 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
974 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
975 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
976 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
977 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
978 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
979 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
980 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
981 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
982 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
983};
984
985/*
986 * DC8051 Information Error flags
987 *
988 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
989 */
990static struct flag_table dc8051_info_err_flags[] = {
991 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
992 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
993 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
994 FLAG_ENTRY0("Serdes internal loopback failure",
995 FAILED_SERDES_INTERNAL_LOOPBACK),
996 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
997 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
998 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
999 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
1000 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
1001 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1002 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1003 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT),
1004 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT),
1005 FLAG_ENTRY0("External Device Request Timeout",
1006 EXTERNAL_DEVICE_REQ_TIMEOUT),
1007};
1008
1009/*
1010 * DC8051 Information Host Information flags
1011 *
1012 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1013 */
1014static struct flag_table dc8051_info_host_msg_flags[] = {
1015 FLAG_ENTRY0("Host request done", 0x0001),
1016 FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1017 FLAG_ENTRY0("BC SMA message", 0x0004),
1018 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1019 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1020 FLAG_ENTRY0("External device config request", 0x0020),
1021 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1022 FLAG_ENTRY0("LinkUp achieved", 0x0080),
1023 FLAG_ENTRY0("Link going down", 0x0100),
1024 FLAG_ENTRY0("Link width downgraded", 0x0200),
1025};
1026
1027static u32 encoded_size(u32 size);
1028static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1029static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1030static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1031 u8 *continuous);
1032static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1033 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1034static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1035 u8 *remote_tx_rate, u16 *link_widths);
1036static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1037 u8 *flag_bits, u16 *link_widths);
1038static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1039 u8 *device_rev);
1040static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1041static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1042 u8 *tx_polarity_inversion,
1043 u8 *rx_polarity_inversion, u8 *max_rate);
1044static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1045 unsigned int context, u64 err_status);
1046static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1047static void handle_dcc_err(struct hfi1_devdata *dd,
1048 unsigned int context, u64 err_status);
1049static void handle_lcb_err(struct hfi1_devdata *dd,
1050 unsigned int context, u64 err_status);
1051static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1059static void set_partition_keys(struct hfi1_pportdata *ppd);
1060static const char *link_state_name(u32 state);
1061static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1062 u32 state);
1063static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1064 u64 *out_data);
1065static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1066static int thermal_init(struct hfi1_devdata *dd);
1067
1068static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1069static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1070 int msecs);
1071static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1072 int msecs);
1073static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1074static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1075static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1076 int msecs);
1077static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1078static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1079static void handle_temp_err(struct hfi1_devdata *dd);
1080static void dc_shutdown(struct hfi1_devdata *dd);
1081static void dc_start(struct hfi1_devdata *dd);
1082static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1083 unsigned int *np);
1084static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1085static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1086static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1087static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1088
1089/*
1090 * Error interrupt table entry. This is used as input to the interrupt
1091 * "clear down" routine used for all second tier error interrupt register.
1092 * Second tier interrupt registers have a single bit representing them
1093 * in the top-level CceIntStatus.
1094 */
1095struct err_reg_info {
1096 u32 status; /* status CSR offset */
1097 u32 clear; /* clear CSR offset */
1098 u32 mask; /* mask CSR offset */
1099 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1100 const char *desc;
1101};
1102
1103#define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1104#define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1105#define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1106
1107/*
1108 * Helpers for building HFI and DC error interrupt table entries. Different
1109 * helpers are needed because of inconsistent register names.
1110 */
1111#define EE(reg, handler, desc) \
1112 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1113 handler, desc }
1114#define DC_EE1(reg, handler, desc) \
1115 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1116#define DC_EE2(reg, handler, desc) \
1117 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1118
1119/*
1120 * Table of the "misc" grouping of error interrupts. Each entry refers to
1121 * another register containing more information.
1122 */
1123static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1124/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1125/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1126/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1127/* 3*/ { 0, 0, 0, NULL }, /* reserved */
1128/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1129/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1130/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1131/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1132 /* the rest are reserved */
1133};
1134
1135/*
1136 * Index into the Various section of the interrupt sources
1137 * corresponding to the Critical Temperature interrupt.
1138 */
1139#define TCRIT_INT_SOURCE 4
1140
1141/*
1142 * SDMA error interrupt entry - refers to another register containing more
1143 * information.
1144 */
1145static const struct err_reg_info sdma_eng_err =
1146 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1147
1148static const struct err_reg_info various_err[NUM_VARIOUS] = {
1149/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1150/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1151/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1152/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1153/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1154 /* rest are reserved */
1155};
1156
1157/*
1158 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1159 * register can not be derived from the MTU value because 10K is not
1160 * a power of 2. Therefore, we need a constant. Everything else can
1161 * be calculated.
1162 */
1163#define DCC_CFG_PORT_MTU_CAP_10240 7
1164
1165/*
1166 * Table of the DC grouping of error interrupts. Each entry refers to
1167 * another register containing more information.
1168 */
1169static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1170/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1171/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1172/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1173/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1174 /* the rest are reserved */
1175};
1176
1177struct cntr_entry {
1178 /*
1179 * counter name
1180 */
1181 char *name;
1182
1183 /*
1184 * csr to read for name (if applicable)
1185 */
1186 u64 csr;
1187
1188 /*
1189 * offset into dd or ppd to store the counter's value
1190 */
1191 int offset;
1192
1193 /*
1194 * flags
1195 */
1196 u8 flags;
1197
1198 /*
1199 * accessor for stat element, context either dd or ppd
1200 */
1201 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1202 int mode, u64 data);
1203};
1204
1205#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1206#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1207
1208#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1209{ \
1210 name, \
1211 csr, \
1212 offset, \
1213 flags, \
1214 accessor \
1215}
1216
1217/* 32bit RXE */
1218#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1219CNTR_ELEM(#name, \
1220 (counter * 8 + RCV_COUNTER_ARRAY32), \
1221 0, flags | CNTR_32BIT, \
1222 port_access_u32_csr)
1223
1224#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1225CNTR_ELEM(#name, \
1226 (counter * 8 + RCV_COUNTER_ARRAY32), \
1227 0, flags | CNTR_32BIT, \
1228 dev_access_u32_csr)
1229
1230/* 64bit RXE */
1231#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1232CNTR_ELEM(#name, \
1233 (counter * 8 + RCV_COUNTER_ARRAY64), \
1234 0, flags, \
1235 port_access_u64_csr)
1236
1237#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1238CNTR_ELEM(#name, \
1239 (counter * 8 + RCV_COUNTER_ARRAY64), \
1240 0, flags, \
1241 dev_access_u64_csr)
1242
1243#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1244#define OVR_ELM(ctx) \
1245CNTR_ELEM("RcvHdrOvr" #ctx, \
1246 (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1247 0, CNTR_NORMAL, port_access_u64_csr)
1248
1249/* 32bit TXE */
1250#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1251CNTR_ELEM(#name, \
1252 (counter * 8 + SEND_COUNTER_ARRAY32), \
1253 0, flags | CNTR_32BIT, \
1254 port_access_u32_csr)
1255
1256/* 64bit TXE */
1257#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1258CNTR_ELEM(#name, \
1259 (counter * 8 + SEND_COUNTER_ARRAY64), \
1260 0, flags, \
1261 port_access_u64_csr)
1262
1263# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1264CNTR_ELEM(#name,\
1265 counter * 8 + SEND_COUNTER_ARRAY64, \
1266 0, \
1267 flags, \
1268 dev_access_u64_csr)
1269
1270/* CCE */
1271#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1272CNTR_ELEM(#name, \
1273 (counter * 8 + CCE_COUNTER_ARRAY32), \
1274 0, flags | CNTR_32BIT, \
1275 dev_access_u32_csr)
1276
1277#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1278CNTR_ELEM(#name, \
1279 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1280 0, flags | CNTR_32BIT, \
1281 dev_access_u32_csr)
1282
1283/* DC */
1284#define DC_PERF_CNTR(name, counter, flags) \
1285CNTR_ELEM(#name, \
1286 counter, \
1287 0, \
1288 flags, \
1289 dev_access_u64_csr)
1290
1291#define DC_PERF_CNTR_LCB(name, counter, flags) \
1292CNTR_ELEM(#name, \
1293 counter, \
1294 0, \
1295 flags, \
1296 dc_access_lcb_cntr)
1297
1298/* ibp counters */
1299#define SW_IBP_CNTR(name, cntr) \
1300CNTR_ELEM(#name, \
1301 0, \
1302 0, \
1303 CNTR_SYNTH, \
1304 access_ibp_##cntr)
1305
1306/**
1307 * hfi_addr_from_offset - return addr for readq/writeq
1308 * @dd - the dd device
1309 * @offset - the offset of the CSR within bar0
1310 *
1311 * This routine selects the appropriate base address
1312 * based on the indicated offset.
1313 */
1314static inline void __iomem *hfi1_addr_from_offset(
1315 const struct hfi1_devdata *dd,
1316 u32 offset)
1317{
1318 if (offset >= dd->base2_start)
1319 return dd->kregbase2 + (offset - dd->base2_start);
1320 return dd->kregbase1 + offset;
1321}
1322
1323/**
1324 * read_csr - read CSR at the indicated offset
1325 * @dd - the dd device
1326 * @offset - the offset of the CSR within bar0
1327 *
1328 * Return: the value read or all FF's if there
1329 * is no mapping
1330 */
1331u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1332{
1333 if (dd->flags & HFI1_PRESENT)
1334 return readq(hfi1_addr_from_offset(dd, offset));
1335 return -1;
1336}
1337
1338/**
1339 * write_csr - write CSR at the indicated offset
1340 * @dd - the dd device
1341 * @offset - the offset of the CSR within bar0
1342 * @value - value to write
1343 */
1344void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1345{
1346 if (dd->flags & HFI1_PRESENT) {
1347 void __iomem *base = hfi1_addr_from_offset(dd, offset);
1348
1349 /* avoid write to RcvArray */
1350 if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1351 return;
1352 writeq(value, base);
1353 }
1354}
1355
1356/**
1357 * get_csr_addr - return te iomem address for offset
1358 * @dd - the dd device
1359 * @offset - the offset of the CSR within bar0
1360 *
1361 * Return: The iomem address to use in subsequent
1362 * writeq/readq operations.
1363 */
1364void __iomem *get_csr_addr(
1365 const struct hfi1_devdata *dd,
1366 u32 offset)
1367{
1368 if (dd->flags & HFI1_PRESENT)
1369 return hfi1_addr_from_offset(dd, offset);
1370 return NULL;
1371}
1372
1373static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1374 int mode, u64 value)
1375{
1376 u64 ret;
1377
1378 if (mode == CNTR_MODE_R) {
1379 ret = read_csr(dd, csr);
1380 } else if (mode == CNTR_MODE_W) {
1381 write_csr(dd, csr, value);
1382 ret = value;
1383 } else {
1384 dd_dev_err(dd, "Invalid cntr register access mode");
1385 return 0;
1386 }
1387
1388 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1389 return ret;
1390}
1391
1392/* Dev Access */
1393static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1394 void *context, int vl, int mode, u64 data)
1395{
1396 struct hfi1_devdata *dd = context;
1397 u64 csr = entry->csr;
1398
1399 if (entry->flags & CNTR_SDMA) {
1400 if (vl == CNTR_INVALID_VL)
1401 return 0;
1402 csr += 0x100 * vl;
1403 } else {
1404 if (vl != CNTR_INVALID_VL)
1405 return 0;
1406 }
1407 return read_write_csr(dd, csr, mode, data);
1408}
1409
1410static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1411 void *context, int idx, int mode, u64 data)
1412{
1413 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1414
1415 if (dd->per_sdma && idx < dd->num_sdma)
1416 return dd->per_sdma[idx].err_cnt;
1417 return 0;
1418}
1419
1420static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1421 void *context, int idx, int mode, u64 data)
1422{
1423 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1424
1425 if (dd->per_sdma && idx < dd->num_sdma)
1426 return dd->per_sdma[idx].sdma_int_cnt;
1427 return 0;
1428}
1429
1430static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1431 void *context, int idx, int mode, u64 data)
1432{
1433 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1434
1435 if (dd->per_sdma && idx < dd->num_sdma)
1436 return dd->per_sdma[idx].idle_int_cnt;
1437 return 0;
1438}
1439
1440static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1441 void *context, int idx, int mode,
1442 u64 data)
1443{
1444 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1445
1446 if (dd->per_sdma && idx < dd->num_sdma)
1447 return dd->per_sdma[idx].progress_int_cnt;
1448 return 0;
1449}
1450
1451static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1452 int vl, int mode, u64 data)
1453{
1454 struct hfi1_devdata *dd = context;
1455
1456 u64 val = 0;
1457 u64 csr = entry->csr;
1458
1459 if (entry->flags & CNTR_VL) {
1460 if (vl == CNTR_INVALID_VL)
1461 return 0;
1462 csr += 8 * vl;
1463 } else {
1464 if (vl != CNTR_INVALID_VL)
1465 return 0;
1466 }
1467
1468 val = read_write_csr(dd, csr, mode, data);
1469 return val;
1470}
1471
1472static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1473 int vl, int mode, u64 data)
1474{
1475 struct hfi1_devdata *dd = context;
1476 u32 csr = entry->csr;
1477 int ret = 0;
1478
1479 if (vl != CNTR_INVALID_VL)
1480 return 0;
1481 if (mode == CNTR_MODE_R)
1482 ret = read_lcb_csr(dd, csr, &data);
1483 else if (mode == CNTR_MODE_W)
1484 ret = write_lcb_csr(dd, csr, data);
1485
1486 if (ret) {
1487 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1488 return 0;
1489 }
1490
1491 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1492 return data;
1493}
1494
1495/* Port Access */
1496static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1497 int vl, int mode, u64 data)
1498{
1499 struct hfi1_pportdata *ppd = context;
1500
1501 if (vl != CNTR_INVALID_VL)
1502 return 0;
1503 return read_write_csr(ppd->dd, entry->csr, mode, data);
1504}
1505
1506static u64 port_access_u64_csr(const struct cntr_entry *entry,
1507 void *context, int vl, int mode, u64 data)
1508{
1509 struct hfi1_pportdata *ppd = context;
1510 u64 val;
1511 u64 csr = entry->csr;
1512
1513 if (entry->flags & CNTR_VL) {
1514 if (vl == CNTR_INVALID_VL)
1515 return 0;
1516 csr += 8 * vl;
1517 } else {
1518 if (vl != CNTR_INVALID_VL)
1519 return 0;
1520 }
1521 val = read_write_csr(ppd->dd, csr, mode, data);
1522 return val;
1523}
1524
1525/* Software defined */
1526static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1527 u64 data)
1528{
1529 u64 ret;
1530
1531 if (mode == CNTR_MODE_R) {
1532 ret = *cntr;
1533 } else if (mode == CNTR_MODE_W) {
1534 *cntr = data;
1535 ret = data;
1536 } else {
1537 dd_dev_err(dd, "Invalid cntr sw access mode");
1538 return 0;
1539 }
1540
1541 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1542
1543 return ret;
1544}
1545
1546static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1547 int vl, int mode, u64 data)
1548{
1549 struct hfi1_pportdata *ppd = context;
1550
1551 if (vl != CNTR_INVALID_VL)
1552 return 0;
1553 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1554}
1555
1556static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1557 int vl, int mode, u64 data)
1558{
1559 struct hfi1_pportdata *ppd = context;
1560
1561 if (vl != CNTR_INVALID_VL)
1562 return 0;
1563 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1564}
1565
1566static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1567 void *context, int vl, int mode,
1568 u64 data)
1569{
1570 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1571
1572 if (vl != CNTR_INVALID_VL)
1573 return 0;
1574 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1575}
1576
1577static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1578 void *context, int vl, int mode, u64 data)
1579{
1580 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1581 u64 zero = 0;
1582 u64 *counter;
1583
1584 if (vl == CNTR_INVALID_VL)
1585 counter = &ppd->port_xmit_discards;
1586 else if (vl >= 0 && vl < C_VL_COUNT)
1587 counter = &ppd->port_xmit_discards_vl[vl];
1588 else
1589 counter = &zero;
1590
1591 return read_write_sw(ppd->dd, counter, mode, data);
1592}
1593
1594static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1595 void *context, int vl, int mode,
1596 u64 data)
1597{
1598 struct hfi1_pportdata *ppd = context;
1599
1600 if (vl != CNTR_INVALID_VL)
1601 return 0;
1602
1603 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1604 mode, data);
1605}
1606
1607static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1608 void *context, int vl, int mode, u64 data)
1609{
1610 struct hfi1_pportdata *ppd = context;
1611
1612 if (vl != CNTR_INVALID_VL)
1613 return 0;
1614
1615 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1616 mode, data);
1617}
1618
1619u64 get_all_cpu_total(u64 __percpu *cntr)
1620{
1621 int cpu;
1622 u64 counter = 0;
1623
1624 for_each_possible_cpu(cpu)
1625 counter += *per_cpu_ptr(cntr, cpu);
1626 return counter;
1627}
1628
1629static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1630 u64 __percpu *cntr,
1631 int vl, int mode, u64 data)
1632{
1633 u64 ret = 0;
1634
1635 if (vl != CNTR_INVALID_VL)
1636 return 0;
1637
1638 if (mode == CNTR_MODE_R) {
1639 ret = get_all_cpu_total(cntr) - *z_val;
1640 } else if (mode == CNTR_MODE_W) {
1641 /* A write can only zero the counter */
1642 if (data == 0)
1643 *z_val = get_all_cpu_total(cntr);
1644 else
1645 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1646 } else {
1647 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1648 return 0;
1649 }
1650
1651 return ret;
1652}
1653
1654static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1655 void *context, int vl, int mode, u64 data)
1656{
1657 struct hfi1_devdata *dd = context;
1658
1659 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1660 mode, data);
1661}
1662
1663static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1664 void *context, int vl, int mode, u64 data)
1665{
1666 struct hfi1_devdata *dd = context;
1667
1668 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1669 mode, data);
1670}
1671
1672static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1673 void *context, int vl, int mode, u64 data)
1674{
1675 struct hfi1_devdata *dd = context;
1676
1677 return dd->verbs_dev.n_piowait;
1678}
1679
1680static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1681 void *context, int vl, int mode, u64 data)
1682{
1683 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1684
1685 return dd->verbs_dev.n_piodrain;
1686}
1687
1688static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1689 void *context, int vl, int mode, u64 data)
1690{
1691 struct hfi1_devdata *dd = context;
1692
1693 return dd->verbs_dev.n_txwait;
1694}
1695
1696static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1697 void *context, int vl, int mode, u64 data)
1698{
1699 struct hfi1_devdata *dd = context;
1700
1701 return dd->verbs_dev.n_kmem_wait;
1702}
1703
1704static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1705 void *context, int vl, int mode, u64 data)
1706{
1707 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1708
1709 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1710 mode, data);
1711}
1712
1713/* Software counters for the error status bits within MISC_ERR_STATUS */
1714static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1715 void *context, int vl, int mode,
1716 u64 data)
1717{
1718 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1719
1720 return dd->misc_err_status_cnt[12];
1721}
1722
1723static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1724 void *context, int vl, int mode,
1725 u64 data)
1726{
1727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1728
1729 return dd->misc_err_status_cnt[11];
1730}
1731
1732static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1733 void *context, int vl, int mode,
1734 u64 data)
1735{
1736 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1737
1738 return dd->misc_err_status_cnt[10];
1739}
1740
1741static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1742 void *context, int vl,
1743 int mode, u64 data)
1744{
1745 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1746
1747 return dd->misc_err_status_cnt[9];
1748}
1749
1750static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1751 void *context, int vl, int mode,
1752 u64 data)
1753{
1754 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1755
1756 return dd->misc_err_status_cnt[8];
1757}
1758
1759static u64 access_misc_efuse_read_bad_addr_err_cnt(
1760 const struct cntr_entry *entry,
1761 void *context, int vl, int mode, u64 data)
1762{
1763 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1764
1765 return dd->misc_err_status_cnt[7];
1766}
1767
1768static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1769 void *context, int vl,
1770 int mode, u64 data)
1771{
1772 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1773
1774 return dd->misc_err_status_cnt[6];
1775}
1776
1777static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1778 void *context, int vl, int mode,
1779 u64 data)
1780{
1781 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1782
1783 return dd->misc_err_status_cnt[5];
1784}
1785
1786static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1787 void *context, int vl, int mode,
1788 u64 data)
1789{
1790 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1791
1792 return dd->misc_err_status_cnt[4];
1793}
1794
1795static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1796 void *context, int vl,
1797 int mode, u64 data)
1798{
1799 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1800
1801 return dd->misc_err_status_cnt[3];
1802}
1803
1804static u64 access_misc_csr_write_bad_addr_err_cnt(
1805 const struct cntr_entry *entry,
1806 void *context, int vl, int mode, u64 data)
1807{
1808 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1809
1810 return dd->misc_err_status_cnt[2];
1811}
1812
1813static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1814 void *context, int vl,
1815 int mode, u64 data)
1816{
1817 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1818
1819 return dd->misc_err_status_cnt[1];
1820}
1821
1822static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1823 void *context, int vl, int mode,
1824 u64 data)
1825{
1826 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1827
1828 return dd->misc_err_status_cnt[0];
1829}
1830
1831/*
1832 * Software counter for the aggregate of
1833 * individual CceErrStatus counters
1834 */
1835static u64 access_sw_cce_err_status_aggregated_cnt(
1836 const struct cntr_entry *entry,
1837 void *context, int vl, int mode, u64 data)
1838{
1839 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1840
1841 return dd->sw_cce_err_status_aggregate;
1842}
1843
1844/*
1845 * Software counters corresponding to each of the
1846 * error status bits within CceErrStatus
1847 */
1848static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1849 void *context, int vl, int mode,
1850 u64 data)
1851{
1852 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1853
1854 return dd->cce_err_status_cnt[40];
1855}
1856
1857static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1858 void *context, int vl, int mode,
1859 u64 data)
1860{
1861 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1862
1863 return dd->cce_err_status_cnt[39];
1864}
1865
1866static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1867 void *context, int vl, int mode,
1868 u64 data)
1869{
1870 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1871
1872 return dd->cce_err_status_cnt[38];
1873}
1874
1875static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1876 void *context, int vl, int mode,
1877 u64 data)
1878{
1879 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1880
1881 return dd->cce_err_status_cnt[37];
1882}
1883
1884static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1885 void *context, int vl, int mode,
1886 u64 data)
1887{
1888 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1889
1890 return dd->cce_err_status_cnt[36];
1891}
1892
1893static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1894 const struct cntr_entry *entry,
1895 void *context, int vl, int mode, u64 data)
1896{
1897 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1898
1899 return dd->cce_err_status_cnt[35];
1900}
1901
1902static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1903 const struct cntr_entry *entry,
1904 void *context, int vl, int mode, u64 data)
1905{
1906 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1907
1908 return dd->cce_err_status_cnt[34];
1909}
1910
1911static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1912 void *context, int vl,
1913 int mode, u64 data)
1914{
1915 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1916
1917 return dd->cce_err_status_cnt[33];
1918}
1919
1920static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1921 void *context, int vl, int mode,
1922 u64 data)
1923{
1924 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1925
1926 return dd->cce_err_status_cnt[32];
1927}
1928
1929static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1930 void *context, int vl, int mode, u64 data)
1931{
1932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933
1934 return dd->cce_err_status_cnt[31];
1935}
1936
1937static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1938 void *context, int vl, int mode,
1939 u64 data)
1940{
1941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942
1943 return dd->cce_err_status_cnt[30];
1944}
1945
1946static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1947 void *context, int vl, int mode,
1948 u64 data)
1949{
1950 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951
1952 return dd->cce_err_status_cnt[29];
1953}
1954
1955static u64 access_pcic_transmit_back_parity_err_cnt(
1956 const struct cntr_entry *entry,
1957 void *context, int vl, int mode, u64 data)
1958{
1959 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1960
1961 return dd->cce_err_status_cnt[28];
1962}
1963
1964static u64 access_pcic_transmit_front_parity_err_cnt(
1965 const struct cntr_entry *entry,
1966 void *context, int vl, int mode, u64 data)
1967{
1968 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1969
1970 return dd->cce_err_status_cnt[27];
1971}
1972
1973static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1974 void *context, int vl, int mode,
1975 u64 data)
1976{
1977 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1978
1979 return dd->cce_err_status_cnt[26];
1980}
1981
1982static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1983 void *context, int vl, int mode,
1984 u64 data)
1985{
1986 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1987
1988 return dd->cce_err_status_cnt[25];
1989}
1990
1991static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1992 void *context, int vl, int mode,
1993 u64 data)
1994{
1995 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1996
1997 return dd->cce_err_status_cnt[24];
1998}
1999
2000static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2001 void *context, int vl, int mode,
2002 u64 data)
2003{
2004 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2005
2006 return dd->cce_err_status_cnt[23];
2007}
2008
2009static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2010 void *context, int vl,
2011 int mode, u64 data)
2012{
2013 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2014
2015 return dd->cce_err_status_cnt[22];
2016}
2017
2018static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2019 void *context, int vl, int mode,
2020 u64 data)
2021{
2022 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2023
2024 return dd->cce_err_status_cnt[21];
2025}
2026
2027static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2028 const struct cntr_entry *entry,
2029 void *context, int vl, int mode, u64 data)
2030{
2031 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2032
2033 return dd->cce_err_status_cnt[20];
2034}
2035
2036static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2037 void *context, int vl,
2038 int mode, u64 data)
2039{
2040 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2041
2042 return dd->cce_err_status_cnt[19];
2043}
2044
2045static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2046 void *context, int vl, int mode,
2047 u64 data)
2048{
2049 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2050
2051 return dd->cce_err_status_cnt[18];
2052}
2053
2054static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2055 void *context, int vl, int mode,
2056 u64 data)
2057{
2058 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2059
2060 return dd->cce_err_status_cnt[17];
2061}
2062
2063static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2064 void *context, int vl, int mode,
2065 u64 data)
2066{
2067 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2068
2069 return dd->cce_err_status_cnt[16];
2070}
2071
2072static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2073 void *context, int vl, int mode,
2074 u64 data)
2075{
2076 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2077
2078 return dd->cce_err_status_cnt[15];
2079}
2080
2081static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2082 void *context, int vl,
2083 int mode, u64 data)
2084{
2085 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2086
2087 return dd->cce_err_status_cnt[14];
2088}
2089
2090static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2091 void *context, int vl, int mode,
2092 u64 data)
2093{
2094 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2095
2096 return dd->cce_err_status_cnt[13];
2097}
2098
2099static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2100 const struct cntr_entry *entry,
2101 void *context, int vl, int mode, u64 data)
2102{
2103 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2104
2105 return dd->cce_err_status_cnt[12];
2106}
2107
2108static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2109 const struct cntr_entry *entry,
2110 void *context, int vl, int mode, u64 data)
2111{
2112 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2113
2114 return dd->cce_err_status_cnt[11];
2115}
2116
2117static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2118 const struct cntr_entry *entry,
2119 void *context, int vl, int mode, u64 data)
2120{
2121 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2122
2123 return dd->cce_err_status_cnt[10];
2124}
2125
2126static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2127 const struct cntr_entry *entry,
2128 void *context, int vl, int mode, u64 data)
2129{
2130 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2131
2132 return dd->cce_err_status_cnt[9];
2133}
2134
2135static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2136 const struct cntr_entry *entry,
2137 void *context, int vl, int mode, u64 data)
2138{
2139 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2140
2141 return dd->cce_err_status_cnt[8];
2142}
2143
2144static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2145 void *context, int vl,
2146 int mode, u64 data)
2147{
2148 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2149
2150 return dd->cce_err_status_cnt[7];
2151}
2152
2153static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2154 const struct cntr_entry *entry,
2155 void *context, int vl, int mode, u64 data)
2156{
2157 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2158
2159 return dd->cce_err_status_cnt[6];
2160}
2161
2162static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2163 void *context, int vl, int mode,
2164 u64 data)
2165{
2166 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2167
2168 return dd->cce_err_status_cnt[5];
2169}
2170
2171static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2172 void *context, int vl, int mode,
2173 u64 data)
2174{
2175 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2176
2177 return dd->cce_err_status_cnt[4];
2178}
2179
2180static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2181 const struct cntr_entry *entry,
2182 void *context, int vl, int mode, u64 data)
2183{
2184 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2185
2186 return dd->cce_err_status_cnt[3];
2187}
2188
2189static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2190 void *context, int vl,
2191 int mode, u64 data)
2192{
2193 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2194
2195 return dd->cce_err_status_cnt[2];
2196}
2197
2198static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2199 void *context, int vl,
2200 int mode, u64 data)
2201{
2202 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2203
2204 return dd->cce_err_status_cnt[1];
2205}
2206
2207static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2208 void *context, int vl, int mode,
2209 u64 data)
2210{
2211 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2212
2213 return dd->cce_err_status_cnt[0];
2214}
2215
2216/*
2217 * Software counters corresponding to each of the
2218 * error status bits within RcvErrStatus
2219 */
2220static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2221 void *context, int vl, int mode,
2222 u64 data)
2223{
2224 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2225
2226 return dd->rcv_err_status_cnt[63];
2227}
2228
2229static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2230 void *context, int vl,
2231 int mode, u64 data)
2232{
2233 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2234
2235 return dd->rcv_err_status_cnt[62];
2236}
2237
2238static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2239 void *context, int vl, int mode,
2240 u64 data)
2241{
2242 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2243
2244 return dd->rcv_err_status_cnt[61];
2245}
2246
2247static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2248 void *context, int vl, int mode,
2249 u64 data)
2250{
2251 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2252
2253 return dd->rcv_err_status_cnt[60];
2254}
2255
2256static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2257 void *context, int vl,
2258 int mode, u64 data)
2259{
2260 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2261
2262 return dd->rcv_err_status_cnt[59];
2263}
2264
2265static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2266 void *context, int vl,
2267 int mode, u64 data)
2268{
2269 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2270
2271 return dd->rcv_err_status_cnt[58];
2272}
2273
2274static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2275 void *context, int vl, int mode,
2276 u64 data)
2277{
2278 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2279
2280 return dd->rcv_err_status_cnt[57];
2281}
2282
2283static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2284 void *context, int vl, int mode,
2285 u64 data)
2286{
2287 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2288
2289 return dd->rcv_err_status_cnt[56];
2290}
2291
2292static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2293 void *context, int vl, int mode,
2294 u64 data)
2295{
2296 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2297
2298 return dd->rcv_err_status_cnt[55];
2299}
2300
2301static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2302 const struct cntr_entry *entry,
2303 void *context, int vl, int mode, u64 data)
2304{
2305 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2306
2307 return dd->rcv_err_status_cnt[54];
2308}
2309
2310static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2311 const struct cntr_entry *entry,
2312 void *context, int vl, int mode, u64 data)
2313{
2314 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2315
2316 return dd->rcv_err_status_cnt[53];
2317}
2318
2319static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2320 void *context, int vl,
2321 int mode, u64 data)
2322{
2323 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2324
2325 return dd->rcv_err_status_cnt[52];
2326}
2327
2328static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2329 void *context, int vl,
2330 int mode, u64 data)
2331{
2332 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2333
2334 return dd->rcv_err_status_cnt[51];
2335}
2336
2337static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2338 void *context, int vl,
2339 int mode, u64 data)
2340{
2341 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2342
2343 return dd->rcv_err_status_cnt[50];
2344}
2345
2346static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2347 void *context, int vl,
2348 int mode, u64 data)
2349{
2350 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2351
2352 return dd->rcv_err_status_cnt[49];
2353}
2354
2355static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2356 void *context, int vl,
2357 int mode, u64 data)
2358{
2359 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2360
2361 return dd->rcv_err_status_cnt[48];
2362}
2363
2364static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2365 void *context, int vl,
2366 int mode, u64 data)
2367{
2368 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2369
2370 return dd->rcv_err_status_cnt[47];
2371}
2372
2373static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2374 void *context, int vl, int mode,
2375 u64 data)
2376{
2377 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2378
2379 return dd->rcv_err_status_cnt[46];
2380}
2381
2382static u64 access_rx_hq_intr_csr_parity_err_cnt(
2383 const struct cntr_entry *entry,
2384 void *context, int vl, int mode, u64 data)
2385{
2386 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2387
2388 return dd->rcv_err_status_cnt[45];
2389}
2390
2391static u64 access_rx_lookup_csr_parity_err_cnt(
2392 const struct cntr_entry *entry,
2393 void *context, int vl, int mode, u64 data)
2394{
2395 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2396
2397 return dd->rcv_err_status_cnt[44];
2398}
2399
2400static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2401 const struct cntr_entry *entry,
2402 void *context, int vl, int mode, u64 data)
2403{
2404 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2405
2406 return dd->rcv_err_status_cnt[43];
2407}
2408
2409static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2410 const struct cntr_entry *entry,
2411 void *context, int vl, int mode, u64 data)
2412{
2413 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2414
2415 return dd->rcv_err_status_cnt[42];
2416}
2417
2418static u64 access_rx_lookup_des_part2_parity_err_cnt(
2419 const struct cntr_entry *entry,
2420 void *context, int vl, int mode, u64 data)
2421{
2422 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2423
2424 return dd->rcv_err_status_cnt[41];
2425}
2426
2427static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2428 const struct cntr_entry *entry,
2429 void *context, int vl, int mode, u64 data)
2430{
2431 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2432
2433 return dd->rcv_err_status_cnt[40];
2434}
2435
2436static u64 access_rx_lookup_des_part1_unc_err_cnt(
2437 const struct cntr_entry *entry,
2438 void *context, int vl, int mode, u64 data)
2439{
2440 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2441
2442 return dd->rcv_err_status_cnt[39];
2443}
2444
2445static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2446 const struct cntr_entry *entry,
2447 void *context, int vl, int mode, u64 data)
2448{
2449 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2450
2451 return dd->rcv_err_status_cnt[38];
2452}
2453
2454static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2455 const struct cntr_entry *entry,
2456 void *context, int vl, int mode, u64 data)
2457{
2458 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2459
2460 return dd->rcv_err_status_cnt[37];
2461}
2462
2463static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2464 const struct cntr_entry *entry,
2465 void *context, int vl, int mode, u64 data)
2466{
2467 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2468
2469 return dd->rcv_err_status_cnt[36];
2470}
2471
2472static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2473 const struct cntr_entry *entry,
2474 void *context, int vl, int mode, u64 data)
2475{
2476 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2477
2478 return dd->rcv_err_status_cnt[35];
2479}
2480
2481static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2482 const struct cntr_entry *entry,
2483 void *context, int vl, int mode, u64 data)
2484{
2485 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2486
2487 return dd->rcv_err_status_cnt[34];
2488}
2489
2490static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2491 const struct cntr_entry *entry,
2492 void *context, int vl, int mode, u64 data)
2493{
2494 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2495
2496 return dd->rcv_err_status_cnt[33];
2497}
2498
2499static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2500 void *context, int vl, int mode,
2501 u64 data)
2502{
2503 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2504
2505 return dd->rcv_err_status_cnt[32];
2506}
2507
2508static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2509 void *context, int vl, int mode,
2510 u64 data)
2511{
2512 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2513
2514 return dd->rcv_err_status_cnt[31];
2515}
2516
2517static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2518 void *context, int vl, int mode,
2519 u64 data)
2520{
2521 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2522
2523 return dd->rcv_err_status_cnt[30];
2524}
2525
2526static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2527 void *context, int vl, int mode,
2528 u64 data)
2529{
2530 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2531
2532 return dd->rcv_err_status_cnt[29];
2533}
2534
2535static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2536 void *context, int vl,
2537 int mode, u64 data)
2538{
2539 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2540
2541 return dd->rcv_err_status_cnt[28];
2542}
2543
2544static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2545 const struct cntr_entry *entry,
2546 void *context, int vl, int mode, u64 data)
2547{
2548 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2549
2550 return dd->rcv_err_status_cnt[27];
2551}
2552
2553static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2554 const struct cntr_entry *entry,
2555 void *context, int vl, int mode, u64 data)
2556{
2557 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2558
2559 return dd->rcv_err_status_cnt[26];
2560}
2561
2562static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2563 const struct cntr_entry *entry,
2564 void *context, int vl, int mode, u64 data)
2565{
2566 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2567
2568 return dd->rcv_err_status_cnt[25];
2569}
2570
2571static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2572 const struct cntr_entry *entry,
2573 void *context, int vl, int mode, u64 data)
2574{
2575 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2576
2577 return dd->rcv_err_status_cnt[24];
2578}
2579
2580static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2581 const struct cntr_entry *entry,
2582 void *context, int vl, int mode, u64 data)
2583{
2584 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2585
2586 return dd->rcv_err_status_cnt[23];
2587}
2588
2589static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2590 const struct cntr_entry *entry,
2591 void *context, int vl, int mode, u64 data)
2592{
2593 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2594
2595 return dd->rcv_err_status_cnt[22];
2596}
2597
2598static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2599 const struct cntr_entry *entry,
2600 void *context, int vl, int mode, u64 data)
2601{
2602 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2603
2604 return dd->rcv_err_status_cnt[21];
2605}
2606
2607static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2608 const struct cntr_entry *entry,
2609 void *context, int vl, int mode, u64 data)
2610{
2611 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2612
2613 return dd->rcv_err_status_cnt[20];
2614}
2615
2616static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2617 const struct cntr_entry *entry,
2618 void *context, int vl, int mode, u64 data)
2619{
2620 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2621
2622 return dd->rcv_err_status_cnt[19];
2623}
2624
2625static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2626 void *context, int vl,
2627 int mode, u64 data)
2628{
2629 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2630
2631 return dd->rcv_err_status_cnt[18];
2632}
2633
2634static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2635 void *context, int vl,
2636 int mode, u64 data)
2637{
2638 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2639
2640 return dd->rcv_err_status_cnt[17];
2641}
2642
2643static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2644 const struct cntr_entry *entry,
2645 void *context, int vl, int mode, u64 data)
2646{
2647 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2648
2649 return dd->rcv_err_status_cnt[16];
2650}
2651
2652static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2653 const struct cntr_entry *entry,
2654 void *context, int vl, int mode, u64 data)
2655{
2656 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2657
2658 return dd->rcv_err_status_cnt[15];
2659}
2660
2661static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2662 void *context, int vl,
2663 int mode, u64 data)
2664{
2665 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2666
2667 return dd->rcv_err_status_cnt[14];
2668}
2669
2670static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2671 void *context, int vl,
2672 int mode, u64 data)
2673{
2674 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2675
2676 return dd->rcv_err_status_cnt[13];
2677}
2678
2679static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2680 void *context, int vl, int mode,
2681 u64 data)
2682{
2683 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2684
2685 return dd->rcv_err_status_cnt[12];
2686}
2687
2688static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2689 void *context, int vl, int mode,
2690 u64 data)
2691{
2692 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2693
2694 return dd->rcv_err_status_cnt[11];
2695}
2696
2697static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2698 void *context, int vl, int mode,
2699 u64 data)
2700{
2701 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2702
2703 return dd->rcv_err_status_cnt[10];
2704}
2705
2706static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2707 void *context, int vl, int mode,
2708 u64 data)
2709{
2710 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2711
2712 return dd->rcv_err_status_cnt[9];
2713}
2714
2715static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2716 void *context, int vl, int mode,
2717 u64 data)
2718{
2719 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2720
2721 return dd->rcv_err_status_cnt[8];
2722}
2723
2724static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2725 const struct cntr_entry *entry,
2726 void *context, int vl, int mode, u64 data)
2727{
2728 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2729
2730 return dd->rcv_err_status_cnt[7];
2731}
2732
2733static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2734 const struct cntr_entry *entry,
2735 void *context, int vl, int mode, u64 data)
2736{
2737 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2738
2739 return dd->rcv_err_status_cnt[6];
2740}
2741
2742static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2743 void *context, int vl, int mode,
2744 u64 data)
2745{
2746 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2747
2748 return dd->rcv_err_status_cnt[5];
2749}
2750
2751static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2752 void *context, int vl, int mode,
2753 u64 data)
2754{
2755 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2756
2757 return dd->rcv_err_status_cnt[4];
2758}
2759
2760static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2761 void *context, int vl, int mode,
2762 u64 data)
2763{
2764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2765
2766 return dd->rcv_err_status_cnt[3];
2767}
2768
2769static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2770 void *context, int vl, int mode,
2771 u64 data)
2772{
2773 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2774
2775 return dd->rcv_err_status_cnt[2];
2776}
2777
2778static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2779 void *context, int vl, int mode,
2780 u64 data)
2781{
2782 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2783
2784 return dd->rcv_err_status_cnt[1];
2785}
2786
2787static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2788 void *context, int vl, int mode,
2789 u64 data)
2790{
2791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2792
2793 return dd->rcv_err_status_cnt[0];
2794}
2795
2796/*
2797 * Software counters corresponding to each of the
2798 * error status bits within SendPioErrStatus
2799 */
2800static u64 access_pio_pec_sop_head_parity_err_cnt(
2801 const struct cntr_entry *entry,
2802 void *context, int vl, int mode, u64 data)
2803{
2804 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2805
2806 return dd->send_pio_err_status_cnt[35];
2807}
2808
2809static u64 access_pio_pcc_sop_head_parity_err_cnt(
2810 const struct cntr_entry *entry,
2811 void *context, int vl, int mode, u64 data)
2812{
2813 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2814
2815 return dd->send_pio_err_status_cnt[34];
2816}
2817
2818static u64 access_pio_last_returned_cnt_parity_err_cnt(
2819 const struct cntr_entry *entry,
2820 void *context, int vl, int mode, u64 data)
2821{
2822 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2823
2824 return dd->send_pio_err_status_cnt[33];
2825}
2826
2827static u64 access_pio_current_free_cnt_parity_err_cnt(
2828 const struct cntr_entry *entry,
2829 void *context, int vl, int mode, u64 data)
2830{
2831 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2832
2833 return dd->send_pio_err_status_cnt[32];
2834}
2835
2836static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2837 void *context, int vl, int mode,
2838 u64 data)
2839{
2840 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2841
2842 return dd->send_pio_err_status_cnt[31];
2843}
2844
2845static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2846 void *context, int vl, int mode,
2847 u64 data)
2848{
2849 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2850
2851 return dd->send_pio_err_status_cnt[30];
2852}
2853
2854static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2855 void *context, int vl, int mode,
2856 u64 data)
2857{
2858 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2859
2860 return dd->send_pio_err_status_cnt[29];
2861}
2862
2863static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2864 const struct cntr_entry *entry,
2865 void *context, int vl, int mode, u64 data)
2866{
2867 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2868
2869 return dd->send_pio_err_status_cnt[28];
2870}
2871
2872static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2873 void *context, int vl, int mode,
2874 u64 data)
2875{
2876 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2877
2878 return dd->send_pio_err_status_cnt[27];
2879}
2880
2881static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2882 void *context, int vl, int mode,
2883 u64 data)
2884{
2885 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2886
2887 return dd->send_pio_err_status_cnt[26];
2888}
2889
2890static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2891 void *context, int vl,
2892 int mode, u64 data)
2893{
2894 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2895
2896 return dd->send_pio_err_status_cnt[25];
2897}
2898
2899static u64 access_pio_block_qw_count_parity_err_cnt(
2900 const struct cntr_entry *entry,
2901 void *context, int vl, int mode, u64 data)
2902{
2903 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2904
2905 return dd->send_pio_err_status_cnt[24];
2906}
2907
2908static u64 access_pio_write_qw_valid_parity_err_cnt(
2909 const struct cntr_entry *entry,
2910 void *context, int vl, int mode, u64 data)
2911{
2912 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2913
2914 return dd->send_pio_err_status_cnt[23];
2915}
2916
2917static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2918 void *context, int vl, int mode,
2919 u64 data)
2920{
2921 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2922
2923 return dd->send_pio_err_status_cnt[22];
2924}
2925
2926static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2927 void *context, int vl,
2928 int mode, u64 data)
2929{
2930 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2931
2932 return dd->send_pio_err_status_cnt[21];
2933}
2934
2935static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2936 void *context, int vl,
2937 int mode, u64 data)
2938{
2939 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2940
2941 return dd->send_pio_err_status_cnt[20];
2942}
2943
2944static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2945 void *context, int vl,
2946 int mode, u64 data)
2947{
2948 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2949
2950 return dd->send_pio_err_status_cnt[19];
2951}
2952
2953static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2954 const struct cntr_entry *entry,
2955 void *context, int vl, int mode, u64 data)
2956{
2957 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2958
2959 return dd->send_pio_err_status_cnt[18];
2960}
2961
2962static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2963 void *context, int vl, int mode,
2964 u64 data)
2965{
2966 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2967
2968 return dd->send_pio_err_status_cnt[17];
2969}
2970
2971static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2972 void *context, int vl, int mode,
2973 u64 data)
2974{
2975 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2976
2977 return dd->send_pio_err_status_cnt[16];
2978}
2979
2980static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2981 const struct cntr_entry *entry,
2982 void *context, int vl, int mode, u64 data)
2983{
2984 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2985
2986 return dd->send_pio_err_status_cnt[15];
2987}
2988
2989static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2990 const struct cntr_entry *entry,
2991 void *context, int vl, int mode, u64 data)
2992{
2993 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2994
2995 return dd->send_pio_err_status_cnt[14];
2996}
2997
2998static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2999 const struct cntr_entry *entry,
3000 void *context, int vl, int mode, u64 data)
3001{
3002 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3003
3004 return dd->send_pio_err_status_cnt[13];
3005}
3006
3007static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3008 const struct cntr_entry *entry,
3009 void *context, int vl, int mode, u64 data)
3010{
3011 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3012
3013 return dd->send_pio_err_status_cnt[12];
3014}
3015
3016static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3017 const struct cntr_entry *entry,
3018 void *context, int vl, int mode, u64 data)
3019{
3020 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3021
3022 return dd->send_pio_err_status_cnt[11];
3023}
3024
3025static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3026 const struct cntr_entry *entry,
3027 void *context, int vl, int mode, u64 data)
3028{
3029 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3030
3031 return dd->send_pio_err_status_cnt[10];
3032}
3033
3034static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3035 const struct cntr_entry *entry,
3036 void *context, int vl, int mode, u64 data)
3037{
3038 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3039
3040 return dd->send_pio_err_status_cnt[9];
3041}
3042
3043static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3044 const struct cntr_entry *entry,
3045 void *context, int vl, int mode, u64 data)
3046{
3047 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3048
3049 return dd->send_pio_err_status_cnt[8];
3050}
3051
3052static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3053 const struct cntr_entry *entry,
3054 void *context, int vl, int mode, u64 data)
3055{
3056 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3057
3058 return dd->send_pio_err_status_cnt[7];
3059}
3060
3061static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3062 void *context, int vl, int mode,
3063 u64 data)
3064{
3065 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3066
3067 return dd->send_pio_err_status_cnt[6];
3068}
3069
3070static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3071 void *context, int vl, int mode,
3072 u64 data)
3073{
3074 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3075
3076 return dd->send_pio_err_status_cnt[5];
3077}
3078
3079static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3080 void *context, int vl, int mode,
3081 u64 data)
3082{
3083 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3084
3085 return dd->send_pio_err_status_cnt[4];
3086}
3087
3088static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3089 void *context, int vl, int mode,
3090 u64 data)
3091{
3092 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3093
3094 return dd->send_pio_err_status_cnt[3];
3095}
3096
3097static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3098 void *context, int vl, int mode,
3099 u64 data)
3100{
3101 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3102
3103 return dd->send_pio_err_status_cnt[2];
3104}
3105
3106static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3107 void *context, int vl,
3108 int mode, u64 data)
3109{
3110 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3111
3112 return dd->send_pio_err_status_cnt[1];
3113}
3114
3115static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3116 void *context, int vl, int mode,
3117 u64 data)
3118{
3119 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3120
3121 return dd->send_pio_err_status_cnt[0];
3122}
3123
3124/*
3125 * Software counters corresponding to each of the
3126 * error status bits within SendDmaErrStatus
3127 */
3128static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3129 const struct cntr_entry *entry,
3130 void *context, int vl, int mode, u64 data)
3131{
3132 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3133
3134 return dd->send_dma_err_status_cnt[3];
3135}
3136
3137static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3138 const struct cntr_entry *entry,
3139 void *context, int vl, int mode, u64 data)
3140{
3141 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3142
3143 return dd->send_dma_err_status_cnt[2];
3144}
3145
3146static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3147 void *context, int vl, int mode,
3148 u64 data)
3149{
3150 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3151
3152 return dd->send_dma_err_status_cnt[1];
3153}
3154
3155static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3156 void *context, int vl, int mode,
3157 u64 data)
3158{
3159 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3160
3161 return dd->send_dma_err_status_cnt[0];
3162}
3163
3164/*
3165 * Software counters corresponding to each of the
3166 * error status bits within SendEgressErrStatus
3167 */
3168static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3169 const struct cntr_entry *entry,
3170 void *context, int vl, int mode, u64 data)
3171{
3172 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3173
3174 return dd->send_egress_err_status_cnt[63];
3175}
3176
3177static u64 access_tx_read_sdma_memory_csr_err_cnt(
3178 const struct cntr_entry *entry,
3179 void *context, int vl, int mode, u64 data)
3180{
3181 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3182
3183 return dd->send_egress_err_status_cnt[62];
3184}
3185
3186static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3187 void *context, int vl, int mode,
3188 u64 data)
3189{
3190 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3191
3192 return dd->send_egress_err_status_cnt[61];
3193}
3194
3195static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3196 void *context, int vl,
3197 int mode, u64 data)
3198{
3199 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3200
3201 return dd->send_egress_err_status_cnt[60];
3202}
3203
3204static u64 access_tx_read_sdma_memory_cor_err_cnt(
3205 const struct cntr_entry *entry,
3206 void *context, int vl, int mode, u64 data)
3207{
3208 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3209
3210 return dd->send_egress_err_status_cnt[59];
3211}
3212
3213static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3214 void *context, int vl, int mode,
3215 u64 data)
3216{
3217 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3218
3219 return dd->send_egress_err_status_cnt[58];
3220}
3221
3222static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3223 void *context, int vl, int mode,
3224 u64 data)
3225{
3226 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3227
3228 return dd->send_egress_err_status_cnt[57];
3229}
3230
3231static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3232 void *context, int vl, int mode,
3233 u64 data)
3234{
3235 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3236
3237 return dd->send_egress_err_status_cnt[56];
3238}
3239
3240static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3241 void *context, int vl, int mode,
3242 u64 data)
3243{
3244 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3245
3246 return dd->send_egress_err_status_cnt[55];
3247}
3248
3249static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3250 void *context, int vl, int mode,
3251 u64 data)
3252{
3253 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3254
3255 return dd->send_egress_err_status_cnt[54];
3256}
3257
3258static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3259 void *context, int vl, int mode,
3260 u64 data)
3261{
3262 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3263
3264 return dd->send_egress_err_status_cnt[53];
3265}
3266
3267static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3268 void *context, int vl, int mode,
3269 u64 data)
3270{
3271 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3272
3273 return dd->send_egress_err_status_cnt[52];
3274}
3275
3276static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3277 void *context, int vl, int mode,
3278 u64 data)
3279{
3280 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3281
3282 return dd->send_egress_err_status_cnt[51];
3283}
3284
3285static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3286 void *context, int vl, int mode,
3287 u64 data)
3288{
3289 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3290
3291 return dd->send_egress_err_status_cnt[50];
3292}
3293
3294static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3295 void *context, int vl, int mode,
3296 u64 data)
3297{
3298 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3299
3300 return dd->send_egress_err_status_cnt[49];
3301}
3302
3303static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3304 void *context, int vl, int mode,
3305 u64 data)
3306{
3307 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3308
3309 return dd->send_egress_err_status_cnt[48];
3310}
3311
3312static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3313 void *context, int vl, int mode,
3314 u64 data)
3315{
3316 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3317
3318 return dd->send_egress_err_status_cnt[47];
3319}
3320
3321static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3322 void *context, int vl, int mode,
3323 u64 data)
3324{
3325 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3326
3327 return dd->send_egress_err_status_cnt[46];
3328}
3329
3330static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3331 void *context, int vl, int mode,
3332 u64 data)
3333{
3334 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3335
3336 return dd->send_egress_err_status_cnt[45];
3337}
3338
3339static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3340 void *context, int vl,
3341 int mode, u64 data)
3342{
3343 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3344
3345 return dd->send_egress_err_status_cnt[44];
3346}
3347
3348static u64 access_tx_read_sdma_memory_unc_err_cnt(
3349 const struct cntr_entry *entry,
3350 void *context, int vl, int mode, u64 data)
3351{
3352 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3353
3354 return dd->send_egress_err_status_cnt[43];
3355}
3356
3357static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3358 void *context, int vl, int mode,
3359 u64 data)
3360{
3361 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3362
3363 return dd->send_egress_err_status_cnt[42];
3364}
3365
3366static u64 access_tx_credit_return_partiy_err_cnt(
3367 const struct cntr_entry *entry,
3368 void *context, int vl, int mode, u64 data)
3369{
3370 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3371
3372 return dd->send_egress_err_status_cnt[41];
3373}
3374
3375static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3376 const struct cntr_entry *entry,
3377 void *context, int vl, int mode, u64 data)
3378{
3379 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3380
3381 return dd->send_egress_err_status_cnt[40];
3382}
3383
3384static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3385 const struct cntr_entry *entry,
3386 void *context, int vl, int mode, u64 data)
3387{
3388 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3389
3390 return dd->send_egress_err_status_cnt[39];
3391}
3392
3393static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3394 const struct cntr_entry *entry,
3395 void *context, int vl, int mode, u64 data)
3396{
3397 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3398
3399 return dd->send_egress_err_status_cnt[38];
3400}
3401
3402static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3403 const struct cntr_entry *entry,
3404 void *context, int vl, int mode, u64 data)
3405{
3406 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3407
3408 return dd->send_egress_err_status_cnt[37];
3409}
3410
3411static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3412 const struct cntr_entry *entry,
3413 void *context, int vl, int mode, u64 data)
3414{
3415 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3416
3417 return dd->send_egress_err_status_cnt[36];
3418}
3419
3420static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3421 const struct cntr_entry *entry,
3422 void *context, int vl, int mode, u64 data)
3423{
3424 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3425
3426 return dd->send_egress_err_status_cnt[35];
3427}
3428
3429static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3430 const struct cntr_entry *entry,
3431 void *context, int vl, int mode, u64 data)
3432{
3433 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3434
3435 return dd->send_egress_err_status_cnt[34];
3436}
3437
3438static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3439 const struct cntr_entry *entry,
3440 void *context, int vl, int mode, u64 data)
3441{
3442 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3443
3444 return dd->send_egress_err_status_cnt[33];
3445}
3446
3447static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3448 const struct cntr_entry *entry,
3449 void *context, int vl, int mode, u64 data)
3450{
3451 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3452
3453 return dd->send_egress_err_status_cnt[32];
3454}
3455
3456static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3457 const struct cntr_entry *entry,
3458 void *context, int vl, int mode, u64 data)
3459{
3460 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3461
3462 return dd->send_egress_err_status_cnt[31];
3463}
3464
3465static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3466 const struct cntr_entry *entry,
3467 void *context, int vl, int mode, u64 data)
3468{
3469 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3470
3471 return dd->send_egress_err_status_cnt[30];
3472}
3473
3474static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3475 const struct cntr_entry *entry,
3476 void *context, int vl, int mode, u64 data)
3477{
3478 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3479
3480 return dd->send_egress_err_status_cnt[29];
3481}
3482
3483static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3484 const struct cntr_entry *entry,
3485 void *context, int vl, int mode, u64 data)
3486{
3487 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3488
3489 return dd->send_egress_err_status_cnt[28];
3490}
3491
3492static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3493 const struct cntr_entry *entry,
3494 void *context, int vl, int mode, u64 data)
3495{
3496 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3497
3498 return dd->send_egress_err_status_cnt[27];
3499}
3500
3501static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3502 const struct cntr_entry *entry,
3503 void *context, int vl, int mode, u64 data)
3504{
3505 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3506
3507 return dd->send_egress_err_status_cnt[26];
3508}
3509
3510static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3511 const struct cntr_entry *entry,
3512 void *context, int vl, int mode, u64 data)
3513{
3514 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3515
3516 return dd->send_egress_err_status_cnt[25];
3517}
3518
3519static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3520 const struct cntr_entry *entry,
3521 void *context, int vl, int mode, u64 data)
3522{
3523 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3524
3525 return dd->send_egress_err_status_cnt[24];
3526}
3527
3528static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3529 const struct cntr_entry *entry,
3530 void *context, int vl, int mode, u64 data)
3531{
3532 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3533
3534 return dd->send_egress_err_status_cnt[23];
3535}
3536
3537static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3538 const struct cntr_entry *entry,
3539 void *context, int vl, int mode, u64 data)
3540{
3541 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3542
3543 return dd->send_egress_err_status_cnt[22];
3544}
3545
3546static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3547 const struct cntr_entry *entry,
3548 void *context, int vl, int mode, u64 data)
3549{
3550 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3551
3552 return dd->send_egress_err_status_cnt[21];
3553}
3554
3555static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3556 const struct cntr_entry *entry,
3557 void *context, int vl, int mode, u64 data)
3558{
3559 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3560
3561 return dd->send_egress_err_status_cnt[20];
3562}
3563
3564static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3565 const struct cntr_entry *entry,
3566 void *context, int vl, int mode, u64 data)
3567{
3568 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3569
3570 return dd->send_egress_err_status_cnt[19];
3571}
3572
3573static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3574 const struct cntr_entry *entry,
3575 void *context, int vl, int mode, u64 data)
3576{
3577 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3578
3579 return dd->send_egress_err_status_cnt[18];
3580}
3581
3582static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3583 const struct cntr_entry *entry,
3584 void *context, int vl, int mode, u64 data)
3585{
3586 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3587
3588 return dd->send_egress_err_status_cnt[17];
3589}
3590
3591static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3592 const struct cntr_entry *entry,
3593 void *context, int vl, int mode, u64 data)
3594{
3595 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3596
3597 return dd->send_egress_err_status_cnt[16];
3598}
3599
3600static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3601 void *context, int vl, int mode,
3602 u64 data)
3603{
3604 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3605
3606 return dd->send_egress_err_status_cnt[15];
3607}
3608
3609static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3610 void *context, int vl,
3611 int mode, u64 data)
3612{
3613 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3614
3615 return dd->send_egress_err_status_cnt[14];
3616}
3617
3618static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3619 void *context, int vl, int mode,
3620 u64 data)
3621{
3622 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3623
3624 return dd->send_egress_err_status_cnt[13];
3625}
3626
3627static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3628 void *context, int vl, int mode,
3629 u64 data)
3630{
3631 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3632
3633 return dd->send_egress_err_status_cnt[12];
3634}
3635
3636static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3637 const struct cntr_entry *entry,
3638 void *context, int vl, int mode, u64 data)
3639{
3640 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3641
3642 return dd->send_egress_err_status_cnt[11];
3643}
3644
3645static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3646 void *context, int vl, int mode,
3647 u64 data)
3648{
3649 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3650
3651 return dd->send_egress_err_status_cnt[10];
3652}
3653
3654static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3655 void *context, int vl, int mode,
3656 u64 data)
3657{
3658 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3659
3660 return dd->send_egress_err_status_cnt[9];
3661}
3662
3663static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3664 const struct cntr_entry *entry,
3665 void *context, int vl, int mode, u64 data)
3666{
3667 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3668
3669 return dd->send_egress_err_status_cnt[8];
3670}
3671
3672static u64 access_tx_pio_launch_intf_parity_err_cnt(
3673 const struct cntr_entry *entry,
3674 void *context, int vl, int mode, u64 data)
3675{
3676 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3677
3678 return dd->send_egress_err_status_cnt[7];
3679}
3680
3681static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3682 void *context, int vl, int mode,
3683 u64 data)
3684{
3685 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3686
3687 return dd->send_egress_err_status_cnt[6];
3688}
3689
3690static u64 access_tx_incorrect_link_state_err_cnt(
3691 const struct cntr_entry *entry,
3692 void *context, int vl, int mode, u64 data)
3693{
3694 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3695
3696 return dd->send_egress_err_status_cnt[5];
3697}
3698
3699static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3700 void *context, int vl, int mode,
3701 u64 data)
3702{
3703 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3704
3705 return dd->send_egress_err_status_cnt[4];
3706}
3707
3708static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3709 const struct cntr_entry *entry,
3710 void *context, int vl, int mode, u64 data)
3711{
3712 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3713
3714 return dd->send_egress_err_status_cnt[3];
3715}
3716
3717static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3718 void *context, int vl, int mode,
3719 u64 data)
3720{
3721 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3722
3723 return dd->send_egress_err_status_cnt[2];
3724}
3725
3726static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3727 const struct cntr_entry *entry,
3728 void *context, int vl, int mode, u64 data)
3729{
3730 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3731
3732 return dd->send_egress_err_status_cnt[1];
3733}
3734
3735static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3736 const struct cntr_entry *entry,
3737 void *context, int vl, int mode, u64 data)
3738{
3739 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3740
3741 return dd->send_egress_err_status_cnt[0];
3742}
3743
3744/*
3745 * Software counters corresponding to each of the
3746 * error status bits within SendErrStatus
3747 */
3748static u64 access_send_csr_write_bad_addr_err_cnt(
3749 const struct cntr_entry *entry,
3750 void *context, int vl, int mode, u64 data)
3751{
3752 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3753
3754 return dd->send_err_status_cnt[2];
3755}
3756
3757static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3758 void *context, int vl,
3759 int mode, u64 data)
3760{
3761 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3762
3763 return dd->send_err_status_cnt[1];
3764}
3765
3766static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3767 void *context, int vl, int mode,
3768 u64 data)
3769{
3770 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3771
3772 return dd->send_err_status_cnt[0];
3773}
3774
3775/*
3776 * Software counters corresponding to each of the
3777 * error status bits within SendCtxtErrStatus
3778 */
3779static u64 access_pio_write_out_of_bounds_err_cnt(
3780 const struct cntr_entry *entry,
3781 void *context, int vl, int mode, u64 data)
3782{
3783 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3784
3785 return dd->sw_ctxt_err_status_cnt[4];
3786}
3787
3788static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3789 void *context, int vl, int mode,
3790 u64 data)
3791{
3792 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3793
3794 return dd->sw_ctxt_err_status_cnt[3];
3795}
3796
3797static u64 access_pio_write_crosses_boundary_err_cnt(
3798 const struct cntr_entry *entry,
3799 void *context, int vl, int mode, u64 data)
3800{
3801 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3802
3803 return dd->sw_ctxt_err_status_cnt[2];
3804}
3805
3806static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3807 void *context, int vl,
3808 int mode, u64 data)
3809{
3810 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3811
3812 return dd->sw_ctxt_err_status_cnt[1];
3813}
3814
3815static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3816 void *context, int vl, int mode,
3817 u64 data)
3818{
3819 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3820
3821 return dd->sw_ctxt_err_status_cnt[0];
3822}
3823
3824/*
3825 * Software counters corresponding to each of the
3826 * error status bits within SendDmaEngErrStatus
3827 */
3828static u64 access_sdma_header_request_fifo_cor_err_cnt(
3829 const struct cntr_entry *entry,
3830 void *context, int vl, int mode, u64 data)
3831{
3832 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3833
3834 return dd->sw_send_dma_eng_err_status_cnt[23];
3835}
3836
3837static u64 access_sdma_header_storage_cor_err_cnt(
3838 const struct cntr_entry *entry,
3839 void *context, int vl, int mode, u64 data)
3840{
3841 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3842
3843 return dd->sw_send_dma_eng_err_status_cnt[22];
3844}
3845
3846static u64 access_sdma_packet_tracking_cor_err_cnt(
3847 const struct cntr_entry *entry,
3848 void *context, int vl, int mode, u64 data)
3849{
3850 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3851
3852 return dd->sw_send_dma_eng_err_status_cnt[21];
3853}
3854
3855static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3856 void *context, int vl, int mode,
3857 u64 data)
3858{
3859 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3860
3861 return dd->sw_send_dma_eng_err_status_cnt[20];
3862}
3863
3864static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3865 void *context, int vl, int mode,
3866 u64 data)
3867{
3868 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3869
3870 return dd->sw_send_dma_eng_err_status_cnt[19];
3871}
3872
3873static u64 access_sdma_header_request_fifo_unc_err_cnt(
3874 const struct cntr_entry *entry,
3875 void *context, int vl, int mode, u64 data)
3876{
3877 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3878
3879 return dd->sw_send_dma_eng_err_status_cnt[18];
3880}
3881
3882static u64 access_sdma_header_storage_unc_err_cnt(
3883 const struct cntr_entry *entry,
3884 void *context, int vl, int mode, u64 data)
3885{
3886 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3887
3888 return dd->sw_send_dma_eng_err_status_cnt[17];
3889}
3890
3891static u64 access_sdma_packet_tracking_unc_err_cnt(
3892 const struct cntr_entry *entry,
3893 void *context, int vl, int mode, u64 data)
3894{
3895 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3896
3897 return dd->sw_send_dma_eng_err_status_cnt[16];
3898}
3899
3900static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3901 void *context, int vl, int mode,
3902 u64 data)
3903{
3904 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3905
3906 return dd->sw_send_dma_eng_err_status_cnt[15];
3907}
3908
3909static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3910 void *context, int vl, int mode,
3911 u64 data)
3912{
3913 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3914
3915 return dd->sw_send_dma_eng_err_status_cnt[14];
3916}
3917
3918static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3919 void *context, int vl, int mode,
3920 u64 data)
3921{
3922 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3923
3924 return dd->sw_send_dma_eng_err_status_cnt[13];
3925}
3926
3927static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3928 void *context, int vl, int mode,
3929 u64 data)
3930{
3931 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3932
3933 return dd->sw_send_dma_eng_err_status_cnt[12];
3934}
3935
3936static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3937 void *context, int vl, int mode,
3938 u64 data)
3939{
3940 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3941
3942 return dd->sw_send_dma_eng_err_status_cnt[11];
3943}
3944
3945static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3946 void *context, int vl, int mode,
3947 u64 data)
3948{
3949 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3950
3951 return dd->sw_send_dma_eng_err_status_cnt[10];
3952}
3953
3954static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3955 void *context, int vl, int mode,
3956 u64 data)
3957{
3958 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3959
3960 return dd->sw_send_dma_eng_err_status_cnt[9];
3961}
3962
3963static u64 access_sdma_packet_desc_overflow_err_cnt(
3964 const struct cntr_entry *entry,
3965 void *context, int vl, int mode, u64 data)
3966{
3967 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3968
3969 return dd->sw_send_dma_eng_err_status_cnt[8];
3970}
3971
3972static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3973 void *context, int vl,
3974 int mode, u64 data)
3975{
3976 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3977
3978 return dd->sw_send_dma_eng_err_status_cnt[7];
3979}
3980
3981static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3982 void *context, int vl, int mode, u64 data)
3983{
3984 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985
3986 return dd->sw_send_dma_eng_err_status_cnt[6];
3987}
3988
3989static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3990 void *context, int vl, int mode,
3991 u64 data)
3992{
3993 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994
3995 return dd->sw_send_dma_eng_err_status_cnt[5];
3996}
3997
3998static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3999 void *context, int vl, int mode,
4000 u64 data)
4001{
4002 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003
4004 return dd->sw_send_dma_eng_err_status_cnt[4];
4005}
4006
4007static u64 access_sdma_tail_out_of_bounds_err_cnt(
4008 const struct cntr_entry *entry,
4009 void *context, int vl, int mode, u64 data)
4010{
4011 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4012
4013 return dd->sw_send_dma_eng_err_status_cnt[3];
4014}
4015
4016static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4017 void *context, int vl, int mode,
4018 u64 data)
4019{
4020 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4021
4022 return dd->sw_send_dma_eng_err_status_cnt[2];
4023}
4024
4025static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4026 void *context, int vl, int mode,
4027 u64 data)
4028{
4029 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4030
4031 return dd->sw_send_dma_eng_err_status_cnt[1];
4032}
4033
4034static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4035 void *context, int vl, int mode,
4036 u64 data)
4037{
4038 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4039
4040 return dd->sw_send_dma_eng_err_status_cnt[0];
4041}
4042
4043static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4044 void *context, int vl, int mode,
4045 u64 data)
4046{
4047 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4048
4049 u64 val = 0;
4050 u64 csr = entry->csr;
4051
4052 val = read_write_csr(dd, csr, mode, data);
4053 if (mode == CNTR_MODE_R) {
4054 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4055 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4056 } else if (mode == CNTR_MODE_W) {
4057 dd->sw_rcv_bypass_packet_errors = 0;
4058 } else {
4059 dd_dev_err(dd, "Invalid cntr register access mode");
4060 return 0;
4061 }
4062 return val;
4063}
4064
4065#define def_access_sw_cpu(cntr) \
4066static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
4067 void *context, int vl, int mode, u64 data) \
4068{ \
4069 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4070 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
4071 ppd->ibport_data.rvp.cntr, vl, \
4072 mode, data); \
4073}
4074
4075def_access_sw_cpu(rc_acks);
4076def_access_sw_cpu(rc_qacks);
4077def_access_sw_cpu(rc_delayed_comp);
4078
4079#define def_access_ibp_counter(cntr) \
4080static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
4081 void *context, int vl, int mode, u64 data) \
4082{ \
4083 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4084 \
4085 if (vl != CNTR_INVALID_VL) \
4086 return 0; \
4087 \
4088 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
4089 mode, data); \
4090}
4091
4092def_access_ibp_counter(loop_pkts);
4093def_access_ibp_counter(rc_resends);
4094def_access_ibp_counter(rnr_naks);
4095def_access_ibp_counter(other_naks);
4096def_access_ibp_counter(rc_timeouts);
4097def_access_ibp_counter(pkt_drops);
4098def_access_ibp_counter(dmawait);
4099def_access_ibp_counter(rc_seqnak);
4100def_access_ibp_counter(rc_dupreq);
4101def_access_ibp_counter(rdma_seq);
4102def_access_ibp_counter(unaligned);
4103def_access_ibp_counter(seq_naks);
4104
4105static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4106[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4107[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4108 CNTR_NORMAL),
4109[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4110 CNTR_NORMAL),
4111[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4112 RCV_TID_FLOW_GEN_MISMATCH_CNT,
4113 CNTR_NORMAL),
4114[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4115 CNTR_NORMAL),
4116[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4117 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4118[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4119 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4120[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4121 CNTR_NORMAL),
4122[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4123 CNTR_NORMAL),
4124[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4125 CNTR_NORMAL),
4126[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4127 CNTR_NORMAL),
4128[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4129 CNTR_NORMAL),
4130[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4131 CNTR_NORMAL),
4132[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4133 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4134[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4135 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4136[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4137 CNTR_SYNTH),
4138[C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4139 access_dc_rcv_err_cnt),
4140[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4141 CNTR_SYNTH),
4142[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4143 CNTR_SYNTH),
4144[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4145 CNTR_SYNTH),
4146[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4147 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4148[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4149 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4150 CNTR_SYNTH),
4151[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4152 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4153[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4154 CNTR_SYNTH),
4155[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4156 CNTR_SYNTH),
4157[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4158 CNTR_SYNTH),
4159[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4160 CNTR_SYNTH),
4161[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4162 CNTR_SYNTH),
4163[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4164 CNTR_SYNTH),
4165[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4166 CNTR_SYNTH),
4167[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4168 CNTR_SYNTH | CNTR_VL),
4169[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4170 CNTR_SYNTH | CNTR_VL),
4171[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4172[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4173 CNTR_SYNTH | CNTR_VL),
4174[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4175[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4176 CNTR_SYNTH | CNTR_VL),
4177[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4178 CNTR_SYNTH),
4179[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4180 CNTR_SYNTH | CNTR_VL),
4181[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4182 CNTR_SYNTH),
4183[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4184 CNTR_SYNTH | CNTR_VL),
4185[C_DC_TOTAL_CRC] =
4186 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4187 CNTR_SYNTH),
4188[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4189 CNTR_SYNTH),
4190[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4191 CNTR_SYNTH),
4192[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4193 CNTR_SYNTH),
4194[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4195 CNTR_SYNTH),
4196[C_DC_CRC_MULT_LN] =
4197 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4198 CNTR_SYNTH),
4199[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4200 CNTR_SYNTH),
4201[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4202 CNTR_SYNTH),
4203[C_DC_SEQ_CRC_CNT] =
4204 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4205 CNTR_SYNTH),
4206[C_DC_ESC0_ONLY_CNT] =
4207 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4208 CNTR_SYNTH),
4209[C_DC_ESC0_PLUS1_CNT] =
4210 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4211 CNTR_SYNTH),
4212[C_DC_ESC0_PLUS2_CNT] =
4213 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4214 CNTR_SYNTH),
4215[C_DC_REINIT_FROM_PEER_CNT] =
4216 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4217 CNTR_SYNTH),
4218[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4219 CNTR_SYNTH),
4220[C_DC_MISC_FLG_CNT] =
4221 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4222 CNTR_SYNTH),
4223[C_DC_PRF_GOOD_LTP_CNT] =
4224 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4225[C_DC_PRF_ACCEPTED_LTP_CNT] =
4226 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4227 CNTR_SYNTH),
4228[C_DC_PRF_RX_FLIT_CNT] =
4229 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4230[C_DC_PRF_TX_FLIT_CNT] =
4231 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4232[C_DC_PRF_CLK_CNTR] =
4233 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4234[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4235 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4236[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4237 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4238 CNTR_SYNTH),
4239[C_DC_PG_STS_TX_SBE_CNT] =
4240 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4241[C_DC_PG_STS_TX_MBE_CNT] =
4242 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4243 CNTR_SYNTH),
4244[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4245 access_sw_cpu_intr),
4246[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4247 access_sw_cpu_rcv_limit),
4248[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4249 access_sw_vtx_wait),
4250[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4251 access_sw_pio_wait),
4252[C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4253 access_sw_pio_drain),
4254[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4255 access_sw_kmem_wait),
4256[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4257 access_sw_send_schedule),
4258[C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4259 SEND_DMA_DESC_FETCHED_CNT, 0,
4260 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4261 dev_access_u32_csr),
4262[C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4263 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4264 access_sde_int_cnt),
4265[C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4266 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4267 access_sde_err_cnt),
4268[C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4269 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4270 access_sde_idle_int_cnt),
4271[C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4272 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4273 access_sde_progress_int_cnt),
4274/* MISC_ERR_STATUS */
4275[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4276 CNTR_NORMAL,
4277 access_misc_pll_lock_fail_err_cnt),
4278[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4279 CNTR_NORMAL,
4280 access_misc_mbist_fail_err_cnt),
4281[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4282 CNTR_NORMAL,
4283 access_misc_invalid_eep_cmd_err_cnt),
4284[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4285 CNTR_NORMAL,
4286 access_misc_efuse_done_parity_err_cnt),
4287[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4288 CNTR_NORMAL,
4289 access_misc_efuse_write_err_cnt),
4290[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4291 0, CNTR_NORMAL,
4292 access_misc_efuse_read_bad_addr_err_cnt),
4293[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4294 CNTR_NORMAL,
4295 access_misc_efuse_csr_parity_err_cnt),
4296[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4297 CNTR_NORMAL,
4298 access_misc_fw_auth_failed_err_cnt),
4299[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4300 CNTR_NORMAL,
4301 access_misc_key_mismatch_err_cnt),
4302[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4303 CNTR_NORMAL,
4304 access_misc_sbus_write_failed_err_cnt),
4305[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4306 CNTR_NORMAL,
4307 access_misc_csr_write_bad_addr_err_cnt),
4308[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4309 CNTR_NORMAL,
4310 access_misc_csr_read_bad_addr_err_cnt),
4311[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4312 CNTR_NORMAL,
4313 access_misc_csr_parity_err_cnt),
4314/* CceErrStatus */
4315[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4316 CNTR_NORMAL,
4317 access_sw_cce_err_status_aggregated_cnt),
4318[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4319 CNTR_NORMAL,
4320 access_cce_msix_csr_parity_err_cnt),
4321[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4322 CNTR_NORMAL,
4323 access_cce_int_map_unc_err_cnt),
4324[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4325 CNTR_NORMAL,
4326 access_cce_int_map_cor_err_cnt),
4327[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4328 CNTR_NORMAL,
4329 access_cce_msix_table_unc_err_cnt),
4330[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4331 CNTR_NORMAL,
4332 access_cce_msix_table_cor_err_cnt),
4333[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4334 0, CNTR_NORMAL,
4335 access_cce_rxdma_conv_fifo_parity_err_cnt),
4336[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4337 0, CNTR_NORMAL,
4338 access_cce_rcpl_async_fifo_parity_err_cnt),
4339[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4340 CNTR_NORMAL,
4341 access_cce_seg_write_bad_addr_err_cnt),
4342[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4343 CNTR_NORMAL,
4344 access_cce_seg_read_bad_addr_err_cnt),
4345[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4346 CNTR_NORMAL,
4347 access_la_triggered_cnt),
4348[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4349 CNTR_NORMAL,
4350 access_cce_trgt_cpl_timeout_err_cnt),
4351[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4352 CNTR_NORMAL,
4353 access_pcic_receive_parity_err_cnt),
4354[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4355 CNTR_NORMAL,
4356 access_pcic_transmit_back_parity_err_cnt),
4357[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4358 0, CNTR_NORMAL,
4359 access_pcic_transmit_front_parity_err_cnt),
4360[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4361 CNTR_NORMAL,
4362 access_pcic_cpl_dat_q_unc_err_cnt),
4363[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4364 CNTR_NORMAL,
4365 access_pcic_cpl_hd_q_unc_err_cnt),
4366[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4367 CNTR_NORMAL,
4368 access_pcic_post_dat_q_unc_err_cnt),
4369[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4370 CNTR_NORMAL,
4371 access_pcic_post_hd_q_unc_err_cnt),
4372[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4373 CNTR_NORMAL,
4374 access_pcic_retry_sot_mem_unc_err_cnt),
4375[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4376 CNTR_NORMAL,
4377 access_pcic_retry_mem_unc_err),
4378[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4379 CNTR_NORMAL,
4380 access_pcic_n_post_dat_q_parity_err_cnt),
4381[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4382 CNTR_NORMAL,
4383 access_pcic_n_post_h_q_parity_err_cnt),
4384[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4385 CNTR_NORMAL,
4386 access_pcic_cpl_dat_q_cor_err_cnt),
4387[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4388 CNTR_NORMAL,
4389 access_pcic_cpl_hd_q_cor_err_cnt),
4390[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4391 CNTR_NORMAL,
4392 access_pcic_post_dat_q_cor_err_cnt),
4393[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4394 CNTR_NORMAL,
4395 access_pcic_post_hd_q_cor_err_cnt),
4396[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4397 CNTR_NORMAL,
4398 access_pcic_retry_sot_mem_cor_err_cnt),
4399[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4400 CNTR_NORMAL,
4401 access_pcic_retry_mem_cor_err_cnt),
4402[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4403 "CceCli1AsyncFifoDbgParityError", 0, 0,
4404 CNTR_NORMAL,
4405 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4406[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4407 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4408 CNTR_NORMAL,
4409 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4410 ),
4411[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4412 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4413 CNTR_NORMAL,
4414 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4415[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4416 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4417 CNTR_NORMAL,
4418 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4419[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4420 0, CNTR_NORMAL,
4421 access_cce_cli2_async_fifo_parity_err_cnt),
4422[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4423 CNTR_NORMAL,
4424 access_cce_csr_cfg_bus_parity_err_cnt),
4425[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4426 0, CNTR_NORMAL,
4427 access_cce_cli0_async_fifo_parity_err_cnt),
4428[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4429 CNTR_NORMAL,
4430 access_cce_rspd_data_parity_err_cnt),
4431[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4432 CNTR_NORMAL,
4433 access_cce_trgt_access_err_cnt),
4434[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4435 0, CNTR_NORMAL,
4436 access_cce_trgt_async_fifo_parity_err_cnt),
4437[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4438 CNTR_NORMAL,
4439 access_cce_csr_write_bad_addr_err_cnt),
4440[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4441 CNTR_NORMAL,
4442 access_cce_csr_read_bad_addr_err_cnt),
4443[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4444 CNTR_NORMAL,
4445 access_ccs_csr_parity_err_cnt),
4446
4447/* RcvErrStatus */
4448[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4449 CNTR_NORMAL,
4450 access_rx_csr_parity_err_cnt),
4451[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4452 CNTR_NORMAL,
4453 access_rx_csr_write_bad_addr_err_cnt),
4454[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4455 CNTR_NORMAL,
4456 access_rx_csr_read_bad_addr_err_cnt),
4457[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4458 CNTR_NORMAL,
4459 access_rx_dma_csr_unc_err_cnt),
4460[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4461 CNTR_NORMAL,
4462 access_rx_dma_dq_fsm_encoding_err_cnt),
4463[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4464 CNTR_NORMAL,
4465 access_rx_dma_eq_fsm_encoding_err_cnt),
4466[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4467 CNTR_NORMAL,
4468 access_rx_dma_csr_parity_err_cnt),
4469[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4470 CNTR_NORMAL,
4471 access_rx_rbuf_data_cor_err_cnt),
4472[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4473 CNTR_NORMAL,
4474 access_rx_rbuf_data_unc_err_cnt),
4475[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4476 CNTR_NORMAL,
4477 access_rx_dma_data_fifo_rd_cor_err_cnt),
4478[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4479 CNTR_NORMAL,
4480 access_rx_dma_data_fifo_rd_unc_err_cnt),
4481[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4482 CNTR_NORMAL,
4483 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4484[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4485 CNTR_NORMAL,
4486 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4487[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4488 CNTR_NORMAL,
4489 access_rx_rbuf_desc_part2_cor_err_cnt),
4490[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4491 CNTR_NORMAL,
4492 access_rx_rbuf_desc_part2_unc_err_cnt),
4493[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4494 CNTR_NORMAL,
4495 access_rx_rbuf_desc_part1_cor_err_cnt),
4496[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4497 CNTR_NORMAL,
4498 access_rx_rbuf_desc_part1_unc_err_cnt),
4499[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4500 CNTR_NORMAL,
4501 access_rx_hq_intr_fsm_err_cnt),
4502[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4503 CNTR_NORMAL,
4504 access_rx_hq_intr_csr_parity_err_cnt),
4505[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4506 CNTR_NORMAL,
4507 access_rx_lookup_csr_parity_err_cnt),
4508[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4509 CNTR_NORMAL,
4510 access_rx_lookup_rcv_array_cor_err_cnt),
4511[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4512 CNTR_NORMAL,
4513 access_rx_lookup_rcv_array_unc_err_cnt),
4514[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4515 0, CNTR_NORMAL,
4516 access_rx_lookup_des_part2_parity_err_cnt),
4517[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4518 0, CNTR_NORMAL,
4519 access_rx_lookup_des_part1_unc_cor_err_cnt),
4520[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4521 CNTR_NORMAL,
4522 access_rx_lookup_des_part1_unc_err_cnt),
4523[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4524 CNTR_NORMAL,
4525 access_rx_rbuf_next_free_buf_cor_err_cnt),
4526[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4527 CNTR_NORMAL,
4528 access_rx_rbuf_next_free_buf_unc_err_cnt),
4529[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4530 "RxRbufFlInitWrAddrParityErr", 0, 0,
4531 CNTR_NORMAL,
4532 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4533[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4534 0, CNTR_NORMAL,
4535 access_rx_rbuf_fl_initdone_parity_err_cnt),
4536[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4537 0, CNTR_NORMAL,
4538 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4539[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4540 CNTR_NORMAL,
4541 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4542[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4543 CNTR_NORMAL,
4544 access_rx_rbuf_empty_err_cnt),
4545[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4546 CNTR_NORMAL,
4547 access_rx_rbuf_full_err_cnt),
4548[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4549 CNTR_NORMAL,
4550 access_rbuf_bad_lookup_err_cnt),
4551[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4552 CNTR_NORMAL,
4553 access_rbuf_ctx_id_parity_err_cnt),
4554[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4555 CNTR_NORMAL,
4556 access_rbuf_csr_qeopdw_parity_err_cnt),
4557[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4558 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4559 CNTR_NORMAL,
4560 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4561[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4562 "RxRbufCsrQTlPtrParityErr", 0, 0,
4563 CNTR_NORMAL,
4564 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4565[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4566 0, CNTR_NORMAL,
4567 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4568[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4569 0, CNTR_NORMAL,
4570 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4571[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4572 0, 0, CNTR_NORMAL,
4573 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4574[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4575 0, CNTR_NORMAL,
4576 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4577[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4578 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4579 CNTR_NORMAL,
4580 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4581[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4582 0, CNTR_NORMAL,
4583 access_rx_rbuf_block_list_read_cor_err_cnt),
4584[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4585 0, CNTR_NORMAL,
4586 access_rx_rbuf_block_list_read_unc_err_cnt),
4587[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4588 CNTR_NORMAL,
4589 access_rx_rbuf_lookup_des_cor_err_cnt),
4590[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4591 CNTR_NORMAL,
4592 access_rx_rbuf_lookup_des_unc_err_cnt),
4593[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4594 "RxRbufLookupDesRegUncCorErr", 0, 0,
4595 CNTR_NORMAL,
4596 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4597[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4598 CNTR_NORMAL,
4599 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4600[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4601 CNTR_NORMAL,
4602 access_rx_rbuf_free_list_cor_err_cnt),
4603[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4604 CNTR_NORMAL,
4605 access_rx_rbuf_free_list_unc_err_cnt),
4606[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4607 CNTR_NORMAL,
4608 access_rx_rcv_fsm_encoding_err_cnt),
4609[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4610 CNTR_NORMAL,
4611 access_rx_dma_flag_cor_err_cnt),
4612[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4613 CNTR_NORMAL,
4614 access_rx_dma_flag_unc_err_cnt),
4615[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4616 CNTR_NORMAL,
4617 access_rx_dc_sop_eop_parity_err_cnt),
4618[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4619 CNTR_NORMAL,
4620 access_rx_rcv_csr_parity_err_cnt),
4621[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4622 CNTR_NORMAL,
4623 access_rx_rcv_qp_map_table_cor_err_cnt),
4624[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4625 CNTR_NORMAL,
4626 access_rx_rcv_qp_map_table_unc_err_cnt),
4627[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4628 CNTR_NORMAL,
4629 access_rx_rcv_data_cor_err_cnt),
4630[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4631 CNTR_NORMAL,
4632 access_rx_rcv_data_unc_err_cnt),
4633[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4634 CNTR_NORMAL,
4635 access_rx_rcv_hdr_cor_err_cnt),
4636[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4637 CNTR_NORMAL,
4638 access_rx_rcv_hdr_unc_err_cnt),
4639[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4640 CNTR_NORMAL,
4641 access_rx_dc_intf_parity_err_cnt),
4642[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4643 CNTR_NORMAL,
4644 access_rx_dma_csr_cor_err_cnt),
4645/* SendPioErrStatus */
4646[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4647 CNTR_NORMAL,
4648 access_pio_pec_sop_head_parity_err_cnt),
4649[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4650 CNTR_NORMAL,
4651 access_pio_pcc_sop_head_parity_err_cnt),
4652[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4653 0, 0, CNTR_NORMAL,
4654 access_pio_last_returned_cnt_parity_err_cnt),
4655[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4656 0, CNTR_NORMAL,
4657 access_pio_current_free_cnt_parity_err_cnt),
4658[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4659 CNTR_NORMAL,
4660 access_pio_reserved_31_err_cnt),
4661[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4662 CNTR_NORMAL,
4663 access_pio_reserved_30_err_cnt),
4664[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4665 CNTR_NORMAL,
4666 access_pio_ppmc_sop_len_err_cnt),
4667[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4668 CNTR_NORMAL,
4669 access_pio_ppmc_bqc_mem_parity_err_cnt),
4670[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4671 CNTR_NORMAL,
4672 access_pio_vl_fifo_parity_err_cnt),
4673[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4674 CNTR_NORMAL,
4675 access_pio_vlf_sop_parity_err_cnt),
4676[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4677 CNTR_NORMAL,
4678 access_pio_vlf_v1_len_parity_err_cnt),
4679[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4680 CNTR_NORMAL,
4681 access_pio_block_qw_count_parity_err_cnt),
4682[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4683 CNTR_NORMAL,
4684 access_pio_write_qw_valid_parity_err_cnt),
4685[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4686 CNTR_NORMAL,
4687 access_pio_state_machine_err_cnt),
4688[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4689 CNTR_NORMAL,
4690 access_pio_write_data_parity_err_cnt),
4691[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4692 CNTR_NORMAL,
4693 access_pio_host_addr_mem_cor_err_cnt),
4694[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4695 CNTR_NORMAL,
4696 access_pio_host_addr_mem_unc_err_cnt),
4697[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4698 CNTR_NORMAL,
4699 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4700[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4701 CNTR_NORMAL,
4702 access_pio_init_sm_in_err_cnt),
4703[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4704 CNTR_NORMAL,
4705 access_pio_ppmc_pbl_fifo_err_cnt),
4706[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4707 0, CNTR_NORMAL,
4708 access_pio_credit_ret_fifo_parity_err_cnt),
4709[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4710 CNTR_NORMAL,
4711 access_pio_v1_len_mem_bank1_cor_err_cnt),
4712[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4713 CNTR_NORMAL,
4714 access_pio_v1_len_mem_bank0_cor_err_cnt),
4715[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4716 CNTR_NORMAL,
4717 access_pio_v1_len_mem_bank1_unc_err_cnt),
4718[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4719 CNTR_NORMAL,
4720 access_pio_v1_len_mem_bank0_unc_err_cnt),
4721[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4722 CNTR_NORMAL,
4723 access_pio_sm_pkt_reset_parity_err_cnt),
4724[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4725 CNTR_NORMAL,
4726 access_pio_pkt_evict_fifo_parity_err_cnt),
4727[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4728 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4729 CNTR_NORMAL,
4730 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4731[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4732 CNTR_NORMAL,
4733 access_pio_sbrdctl_crrel_parity_err_cnt),
4734[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4735 CNTR_NORMAL,
4736 access_pio_pec_fifo_parity_err_cnt),
4737[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4738 CNTR_NORMAL,
4739 access_pio_pcc_fifo_parity_err_cnt),
4740[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4741 CNTR_NORMAL,
4742 access_pio_sb_mem_fifo1_err_cnt),
4743[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4744 CNTR_NORMAL,
4745 access_pio_sb_mem_fifo0_err_cnt),
4746[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4747 CNTR_NORMAL,
4748 access_pio_csr_parity_err_cnt),
4749[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4750 CNTR_NORMAL,
4751 access_pio_write_addr_parity_err_cnt),
4752[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4753 CNTR_NORMAL,
4754 access_pio_write_bad_ctxt_err_cnt),
4755/* SendDmaErrStatus */
4756[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4757 0, CNTR_NORMAL,
4758 access_sdma_pcie_req_tracking_cor_err_cnt),
4759[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4760 0, CNTR_NORMAL,
4761 access_sdma_pcie_req_tracking_unc_err_cnt),
4762[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4763 CNTR_NORMAL,
4764 access_sdma_csr_parity_err_cnt),
4765[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4766 CNTR_NORMAL,
4767 access_sdma_rpy_tag_err_cnt),
4768/* SendEgressErrStatus */
4769[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4770 CNTR_NORMAL,
4771 access_tx_read_pio_memory_csr_unc_err_cnt),
4772[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4773 0, CNTR_NORMAL,
4774 access_tx_read_sdma_memory_csr_err_cnt),
4775[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4776 CNTR_NORMAL,
4777 access_tx_egress_fifo_cor_err_cnt),
4778[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4779 CNTR_NORMAL,
4780 access_tx_read_pio_memory_cor_err_cnt),
4781[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4782 CNTR_NORMAL,
4783 access_tx_read_sdma_memory_cor_err_cnt),
4784[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4785 CNTR_NORMAL,
4786 access_tx_sb_hdr_cor_err_cnt),
4787[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4788 CNTR_NORMAL,
4789 access_tx_credit_overrun_err_cnt),
4790[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4791 CNTR_NORMAL,
4792 access_tx_launch_fifo8_cor_err_cnt),
4793[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4794 CNTR_NORMAL,
4795 access_tx_launch_fifo7_cor_err_cnt),
4796[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4797 CNTR_NORMAL,
4798 access_tx_launch_fifo6_cor_err_cnt),
4799[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4800 CNTR_NORMAL,
4801 access_tx_launch_fifo5_cor_err_cnt),
4802[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4803 CNTR_NORMAL,
4804 access_tx_launch_fifo4_cor_err_cnt),
4805[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4806 CNTR_NORMAL,
4807 access_tx_launch_fifo3_cor_err_cnt),
4808[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4809 CNTR_NORMAL,
4810 access_tx_launch_fifo2_cor_err_cnt),
4811[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4812 CNTR_NORMAL,
4813 access_tx_launch_fifo1_cor_err_cnt),
4814[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4815 CNTR_NORMAL,
4816 access_tx_launch_fifo0_cor_err_cnt),
4817[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4818 CNTR_NORMAL,
4819 access_tx_credit_return_vl_err_cnt),
4820[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4821 CNTR_NORMAL,
4822 access_tx_hcrc_insertion_err_cnt),
4823[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4824 CNTR_NORMAL,
4825 access_tx_egress_fifo_unc_err_cnt),
4826[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4827 CNTR_NORMAL,
4828 access_tx_read_pio_memory_unc_err_cnt),
4829[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4830 CNTR_NORMAL,
4831 access_tx_read_sdma_memory_unc_err_cnt),
4832[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4833 CNTR_NORMAL,
4834 access_tx_sb_hdr_unc_err_cnt),
4835[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4836 CNTR_NORMAL,
4837 access_tx_credit_return_partiy_err_cnt),
4838[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4839 0, 0, CNTR_NORMAL,
4840 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4841[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4842 0, 0, CNTR_NORMAL,
4843 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4844[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4845 0, 0, CNTR_NORMAL,
4846 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4847[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4848 0, 0, CNTR_NORMAL,
4849 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4850[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4851 0, 0, CNTR_NORMAL,
4852 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4853[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4854 0, 0, CNTR_NORMAL,
4855 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4856[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4857 0, 0, CNTR_NORMAL,
4858 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4859[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4860 0, 0, CNTR_NORMAL,
4861 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4862[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4863 0, 0, CNTR_NORMAL,
4864 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4865[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4866 0, 0, CNTR_NORMAL,
4867 access_tx_sdma15_disallowed_packet_err_cnt),
4868[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4869 0, 0, CNTR_NORMAL,
4870 access_tx_sdma14_disallowed_packet_err_cnt),
4871[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4872 0, 0, CNTR_NORMAL,
4873 access_tx_sdma13_disallowed_packet_err_cnt),
4874[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4875 0, 0, CNTR_NORMAL,
4876 access_tx_sdma12_disallowed_packet_err_cnt),
4877[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4878 0, 0, CNTR_NORMAL,
4879 access_tx_sdma11_disallowed_packet_err_cnt),
4880[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4881 0, 0, CNTR_NORMAL,
4882 access_tx_sdma10_disallowed_packet_err_cnt),
4883[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4884 0, 0, CNTR_NORMAL,
4885 access_tx_sdma9_disallowed_packet_err_cnt),
4886[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4887 0, 0, CNTR_NORMAL,
4888 access_tx_sdma8_disallowed_packet_err_cnt),
4889[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4890 0, 0, CNTR_NORMAL,
4891 access_tx_sdma7_disallowed_packet_err_cnt),
4892[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4893 0, 0, CNTR_NORMAL,
4894 access_tx_sdma6_disallowed_packet_err_cnt),
4895[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4896 0, 0, CNTR_NORMAL,
4897 access_tx_sdma5_disallowed_packet_err_cnt),
4898[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4899 0, 0, CNTR_NORMAL,
4900 access_tx_sdma4_disallowed_packet_err_cnt),
4901[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4902 0, 0, CNTR_NORMAL,
4903 access_tx_sdma3_disallowed_packet_err_cnt),
4904[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4905 0, 0, CNTR_NORMAL,
4906 access_tx_sdma2_disallowed_packet_err_cnt),
4907[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4908 0, 0, CNTR_NORMAL,
4909 access_tx_sdma1_disallowed_packet_err_cnt),
4910[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4911 0, 0, CNTR_NORMAL,
4912 access_tx_sdma0_disallowed_packet_err_cnt),
4913[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4914 CNTR_NORMAL,
4915 access_tx_config_parity_err_cnt),
4916[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4917 CNTR_NORMAL,
4918 access_tx_sbrd_ctl_csr_parity_err_cnt),
4919[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4920 CNTR_NORMAL,
4921 access_tx_launch_csr_parity_err_cnt),
4922[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4923 CNTR_NORMAL,
4924 access_tx_illegal_vl_err_cnt),
4925[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4926 "TxSbrdCtlStateMachineParityErr", 0, 0,
4927 CNTR_NORMAL,
4928 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4929[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4930 CNTR_NORMAL,
4931 access_egress_reserved_10_err_cnt),
4932[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4933 CNTR_NORMAL,
4934 access_egress_reserved_9_err_cnt),
4935[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4936 0, 0, CNTR_NORMAL,
4937 access_tx_sdma_launch_intf_parity_err_cnt),
4938[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4939 CNTR_NORMAL,
4940 access_tx_pio_launch_intf_parity_err_cnt),
4941[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4942 CNTR_NORMAL,
4943 access_egress_reserved_6_err_cnt),
4944[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4945 CNTR_NORMAL,
4946 access_tx_incorrect_link_state_err_cnt),
4947[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4948 CNTR_NORMAL,
4949 access_tx_linkdown_err_cnt),
4950[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4951 "EgressFifoUnderrunOrParityErr", 0, 0,
4952 CNTR_NORMAL,
4953 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4954[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4955 CNTR_NORMAL,
4956 access_egress_reserved_2_err_cnt),
4957[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4958 CNTR_NORMAL,
4959 access_tx_pkt_integrity_mem_unc_err_cnt),
4960[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4961 CNTR_NORMAL,
4962 access_tx_pkt_integrity_mem_cor_err_cnt),
4963/* SendErrStatus */
4964[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4965 CNTR_NORMAL,
4966 access_send_csr_write_bad_addr_err_cnt),
4967[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4968 CNTR_NORMAL,
4969 access_send_csr_read_bad_addr_err_cnt),
4970[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4971 CNTR_NORMAL,
4972 access_send_csr_parity_cnt),
4973/* SendCtxtErrStatus */
4974[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4975 CNTR_NORMAL,
4976 access_pio_write_out_of_bounds_err_cnt),
4977[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4978 CNTR_NORMAL,
4979 access_pio_write_overflow_err_cnt),
4980[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4981 0, 0, CNTR_NORMAL,
4982 access_pio_write_crosses_boundary_err_cnt),
4983[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4984 CNTR_NORMAL,
4985 access_pio_disallowed_packet_err_cnt),
4986[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4987 CNTR_NORMAL,
4988 access_pio_inconsistent_sop_err_cnt),
4989/* SendDmaEngErrStatus */
4990[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4991 0, 0, CNTR_NORMAL,
4992 access_sdma_header_request_fifo_cor_err_cnt),
4993[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4994 CNTR_NORMAL,
4995 access_sdma_header_storage_cor_err_cnt),
4996[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4997 CNTR_NORMAL,
4998 access_sdma_packet_tracking_cor_err_cnt),
4999[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5000 CNTR_NORMAL,
5001 access_sdma_assembly_cor_err_cnt),
5002[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5003 CNTR_NORMAL,
5004 access_sdma_desc_table_cor_err_cnt),
5005[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5006 0, 0, CNTR_NORMAL,
5007 access_sdma_header_request_fifo_unc_err_cnt),
5008[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5009 CNTR_NORMAL,
5010 access_sdma_header_storage_unc_err_cnt),
5011[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5012 CNTR_NORMAL,
5013 access_sdma_packet_tracking_unc_err_cnt),
5014[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5015 CNTR_NORMAL,
5016 access_sdma_assembly_unc_err_cnt),
5017[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5018 CNTR_NORMAL,
5019 access_sdma_desc_table_unc_err_cnt),
5020[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5021 CNTR_NORMAL,
5022 access_sdma_timeout_err_cnt),
5023[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5024 CNTR_NORMAL,
5025 access_sdma_header_length_err_cnt),
5026[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5027 CNTR_NORMAL,
5028 access_sdma_header_address_err_cnt),
5029[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5030 CNTR_NORMAL,
5031 access_sdma_header_select_err_cnt),
5032[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5033 CNTR_NORMAL,
5034 access_sdma_reserved_9_err_cnt),
5035[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5036 CNTR_NORMAL,
5037 access_sdma_packet_desc_overflow_err_cnt),
5038[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5039 CNTR_NORMAL,
5040 access_sdma_length_mismatch_err_cnt),
5041[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5042 CNTR_NORMAL,
5043 access_sdma_halt_err_cnt),
5044[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5045 CNTR_NORMAL,
5046 access_sdma_mem_read_err_cnt),
5047[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5048 CNTR_NORMAL,
5049 access_sdma_first_desc_err_cnt),
5050[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5051 CNTR_NORMAL,
5052 access_sdma_tail_out_of_bounds_err_cnt),
5053[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5054 CNTR_NORMAL,
5055 access_sdma_too_long_err_cnt),
5056[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5057 CNTR_NORMAL,
5058 access_sdma_gen_mismatch_err_cnt),
5059[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5060 CNTR_NORMAL,
5061 access_sdma_wrong_dw_err_cnt),
5062};
5063
5064static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5065[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5066 CNTR_NORMAL),
5067[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5068 CNTR_NORMAL),
5069[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5070 CNTR_NORMAL),
5071[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5072 CNTR_NORMAL),
5073[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5074 CNTR_NORMAL),
5075[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5076 CNTR_NORMAL),
5077[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5078 CNTR_NORMAL),
5079[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5080[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5081[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5082[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5083 CNTR_SYNTH | CNTR_VL),
5084[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5085 CNTR_SYNTH | CNTR_VL),
5086[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5087 CNTR_SYNTH | CNTR_VL),
5088[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5089[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5090[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5091 access_sw_link_dn_cnt),
5092[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5093 access_sw_link_up_cnt),
5094[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5095 access_sw_unknown_frame_cnt),
5096[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5097 access_sw_xmit_discards),
5098[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5099 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5100 access_sw_xmit_discards),
5101[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5102 access_xmit_constraint_errs),
5103[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5104 access_rcv_constraint_errs),
5105[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5106[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5107[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5108[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5109[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5110[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5111[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5112[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5113[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5114[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5115[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5116[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5117[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5118 access_sw_cpu_rc_acks),
5119[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5120 access_sw_cpu_rc_qacks),
5121[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5122 access_sw_cpu_rc_delayed_comp),
5123[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5124[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5125[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5126[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5127[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5128[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5129[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5130[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5131[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5132[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5133[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5134[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5135[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5136[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5137[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5138[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5139[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5140[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5141[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5142[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5143[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5144[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5145[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5146[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5147[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5148[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5149[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5150[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5151[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5152[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5153[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5154[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5155[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5156[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5157[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5158[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5159[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5160[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5161[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5162[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5163[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5164[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5165[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5166[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5167[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5168[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5169[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5170[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5171[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5172[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5173[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5174[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5175[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5176[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5177[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5178[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5179[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5180[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5181[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5182[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5183[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5184[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5185[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5186[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5187[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5188[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5189[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5190[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5191[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5192[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5193[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5194[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5195[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5196[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5197[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5198[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5199[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5200[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5201[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5202[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5203};
5204
5205/* ======================================================================== */
5206
5207/* return true if this is chip revision revision a */
5208int is_ax(struct hfi1_devdata *dd)
5209{
5210 u8 chip_rev_minor =
5211 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5212 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5213 return (chip_rev_minor & 0xf0) == 0;
5214}
5215
5216/* return true if this is chip revision revision b */
5217int is_bx(struct hfi1_devdata *dd)
5218{
5219 u8 chip_rev_minor =
5220 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5221 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5222 return (chip_rev_minor & 0xF0) == 0x10;
5223}
5224
5225/*
5226 * Append string s to buffer buf. Arguments curp and len are the current
5227 * position and remaining length, respectively.
5228 *
5229 * return 0 on success, 1 on out of room
5230 */
5231static int append_str(char *buf, char **curp, int *lenp, const char *s)
5232{
5233 char *p = *curp;
5234 int len = *lenp;
5235 int result = 0; /* success */
5236 char c;
5237
5238 /* add a comma, if first in the buffer */
5239 if (p != buf) {
5240 if (len == 0) {
5241 result = 1; /* out of room */
5242 goto done;
5243 }
5244 *p++ = ',';
5245 len--;
5246 }
5247
5248 /* copy the string */
5249 while ((c = *s++) != 0) {
5250 if (len == 0) {
5251 result = 1; /* out of room */
5252 goto done;
5253 }
5254 *p++ = c;
5255 len--;
5256 }
5257
5258done:
5259 /* write return values */
5260 *curp = p;
5261 *lenp = len;
5262
5263 return result;
5264}
5265
5266/*
5267 * Using the given flag table, print a comma separated string into
5268 * the buffer. End in '*' if the buffer is too short.
5269 */
5270static char *flag_string(char *buf, int buf_len, u64 flags,
5271 struct flag_table *table, int table_size)
5272{
5273 char extra[32];
5274 char *p = buf;
5275 int len = buf_len;
5276 int no_room = 0;
5277 int i;
5278
5279 /* make sure there is at least 2 so we can form "*" */
5280 if (len < 2)
5281 return "";
5282
5283 len--; /* leave room for a nul */
5284 for (i = 0; i < table_size; i++) {
5285 if (flags & table[i].flag) {
5286 no_room = append_str(buf, &p, &len, table[i].str);
5287 if (no_room)
5288 break;
5289 flags &= ~table[i].flag;
5290 }
5291 }
5292
5293 /* any undocumented bits left? */
5294 if (!no_room && flags) {
5295 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5296 no_room = append_str(buf, &p, &len, extra);
5297 }
5298
5299 /* add * if ran out of room */
5300 if (no_room) {
5301 /* may need to back up to add space for a '*' */
5302 if (len == 0)
5303 --p;
5304 *p++ = '*';
5305 }
5306
5307 /* add final nul - space already allocated above */
5308 *p = 0;
5309 return buf;
5310}
5311
5312/* first 8 CCE error interrupt source names */
5313static const char * const cce_misc_names[] = {
5314 "CceErrInt", /* 0 */
5315 "RxeErrInt", /* 1 */
5316 "MiscErrInt", /* 2 */
5317 "Reserved3", /* 3 */
5318 "PioErrInt", /* 4 */
5319 "SDmaErrInt", /* 5 */
5320 "EgressErrInt", /* 6 */
5321 "TxeErrInt" /* 7 */
5322};
5323
5324/*
5325 * Return the miscellaneous error interrupt name.
5326 */
5327static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5328{
5329 if (source < ARRAY_SIZE(cce_misc_names))
5330 strncpy(buf, cce_misc_names[source], bsize);
5331 else
5332 snprintf(buf, bsize, "Reserved%u",
5333 source + IS_GENERAL_ERR_START);
5334
5335 return buf;
5336}
5337
5338/*
5339 * Return the SDMA engine error interrupt name.
5340 */
5341static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5342{
5343 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5344 return buf;
5345}
5346
5347/*
5348 * Return the send context error interrupt name.
5349 */
5350static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5351{
5352 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5353 return buf;
5354}
5355
5356static const char * const various_names[] = {
5357 "PbcInt",
5358 "GpioAssertInt",
5359 "Qsfp1Int",
5360 "Qsfp2Int",
5361 "TCritInt"
5362};
5363
5364/*
5365 * Return the various interrupt name.
5366 */
5367static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5368{
5369 if (source < ARRAY_SIZE(various_names))
5370 strncpy(buf, various_names[source], bsize);
5371 else
5372 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5373 return buf;
5374}
5375
5376/*
5377 * Return the DC interrupt name.
5378 */
5379static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5380{
5381 static const char * const dc_int_names[] = {
5382 "common",
5383 "lcb",
5384 "8051",
5385 "lbm" /* local block merge */
5386 };
5387
5388 if (source < ARRAY_SIZE(dc_int_names))
5389 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5390 else
5391 snprintf(buf, bsize, "DCInt%u", source);
5392 return buf;
5393}
5394
5395static const char * const sdma_int_names[] = {
5396 "SDmaInt",
5397 "SdmaIdleInt",
5398 "SdmaProgressInt",
5399};
5400
5401/*
5402 * Return the SDMA engine interrupt name.
5403 */
5404static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5405{
5406 /* what interrupt */
5407 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5408 /* which engine */
5409 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5410
5411 if (likely(what < 3))
5412 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5413 else
5414 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5415 return buf;
5416}
5417
5418/*
5419 * Return the receive available interrupt name.
5420 */
5421static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5422{
5423 snprintf(buf, bsize, "RcvAvailInt%u", source);
5424 return buf;
5425}
5426
5427/*
5428 * Return the receive urgent interrupt name.
5429 */
5430static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5431{
5432 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5433 return buf;
5434}
5435
5436/*
5437 * Return the send credit interrupt name.
5438 */
5439static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5440{
5441 snprintf(buf, bsize, "SendCreditInt%u", source);
5442 return buf;
5443}
5444
5445/*
5446 * Return the reserved interrupt name.
5447 */
5448static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5449{
5450 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5451 return buf;
5452}
5453
5454static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5455{
5456 return flag_string(buf, buf_len, flags,
5457 cce_err_status_flags,
5458 ARRAY_SIZE(cce_err_status_flags));
5459}
5460
5461static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5462{
5463 return flag_string(buf, buf_len, flags,
5464 rxe_err_status_flags,
5465 ARRAY_SIZE(rxe_err_status_flags));
5466}
5467
5468static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5469{
5470 return flag_string(buf, buf_len, flags, misc_err_status_flags,
5471 ARRAY_SIZE(misc_err_status_flags));
5472}
5473
5474static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5475{
5476 return flag_string(buf, buf_len, flags,
5477 pio_err_status_flags,
5478 ARRAY_SIZE(pio_err_status_flags));
5479}
5480
5481static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5482{
5483 return flag_string(buf, buf_len, flags,
5484 sdma_err_status_flags,
5485 ARRAY_SIZE(sdma_err_status_flags));
5486}
5487
5488static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5489{
5490 return flag_string(buf, buf_len, flags,
5491 egress_err_status_flags,
5492 ARRAY_SIZE(egress_err_status_flags));
5493}
5494
5495static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5496{
5497 return flag_string(buf, buf_len, flags,
5498 egress_err_info_flags,
5499 ARRAY_SIZE(egress_err_info_flags));
5500}
5501
5502static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5503{
5504 return flag_string(buf, buf_len, flags,
5505 send_err_status_flags,
5506 ARRAY_SIZE(send_err_status_flags));
5507}
5508
5509static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5510{
5511 char buf[96];
5512 int i = 0;
5513
5514 /*
5515 * For most these errors, there is nothing that can be done except
5516 * report or record it.
5517 */
5518 dd_dev_info(dd, "CCE Error: %s\n",
5519 cce_err_status_string(buf, sizeof(buf), reg));
5520
5521 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5522 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5523 /* this error requires a manual drop into SPC freeze mode */
5524 /* then a fix up */
5525 start_freeze_handling(dd->pport, FREEZE_SELF);
5526 }
5527
5528 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5529 if (reg & (1ull << i)) {
5530 incr_cntr64(&dd->cce_err_status_cnt[i]);
5531 /* maintain a counter over all cce_err_status errors */
5532 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5533 }
5534 }
5535}
5536
5537/*
5538 * Check counters for receive errors that do not have an interrupt
5539 * associated with them.
5540 */
5541#define RCVERR_CHECK_TIME 10
5542static void update_rcverr_timer(struct timer_list *t)
5543{
5544 struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5545 struct hfi1_pportdata *ppd = dd->pport;
5546 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5547
5548 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5549 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5550 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5551 set_link_down_reason(
5552 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5553 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5554 queue_work(ppd->link_wq, &ppd->link_bounce_work);
5555 }
5556 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5557
5558 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5559}
5560
5561static int init_rcverr(struct hfi1_devdata *dd)
5562{
5563 timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5564 /* Assume the hardware counter has been reset */
5565 dd->rcv_ovfl_cnt = 0;
5566 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5567}
5568
5569static void free_rcverr(struct hfi1_devdata *dd)
5570{
5571 if (dd->rcverr_timer.function)
5572 del_timer_sync(&dd->rcverr_timer);
5573}
5574
5575static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5576{
5577 char buf[96];
5578 int i = 0;
5579
5580 dd_dev_info(dd, "Receive Error: %s\n",
5581 rxe_err_status_string(buf, sizeof(buf), reg));
5582
5583 if (reg & ALL_RXE_FREEZE_ERR) {
5584 int flags = 0;
5585
5586 /*
5587 * Freeze mode recovery is disabled for the errors
5588 * in RXE_FREEZE_ABORT_MASK
5589 */
5590 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5591 flags = FREEZE_ABORT;
5592
5593 start_freeze_handling(dd->pport, flags);
5594 }
5595
5596 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5597 if (reg & (1ull << i))
5598 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5599 }
5600}
5601
5602static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5603{
5604 char buf[96];
5605 int i = 0;
5606
5607 dd_dev_info(dd, "Misc Error: %s",
5608 misc_err_status_string(buf, sizeof(buf), reg));
5609 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5610 if (reg & (1ull << i))
5611 incr_cntr64(&dd->misc_err_status_cnt[i]);
5612 }
5613}
5614
5615static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5616{
5617 char buf[96];
5618 int i = 0;
5619
5620 dd_dev_info(dd, "PIO Error: %s\n",
5621 pio_err_status_string(buf, sizeof(buf), reg));
5622
5623 if (reg & ALL_PIO_FREEZE_ERR)
5624 start_freeze_handling(dd->pport, 0);
5625
5626 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5627 if (reg & (1ull << i))
5628 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5629 }
5630}
5631
5632static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5633{
5634 char buf[96];
5635 int i = 0;
5636
5637 dd_dev_info(dd, "SDMA Error: %s\n",
5638 sdma_err_status_string(buf, sizeof(buf), reg));
5639
5640 if (reg & ALL_SDMA_FREEZE_ERR)
5641 start_freeze_handling(dd->pport, 0);
5642
5643 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5644 if (reg & (1ull << i))
5645 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5646 }
5647}
5648
5649static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5650{
5651 incr_cntr64(&ppd->port_xmit_discards);
5652}
5653
5654static void count_port_inactive(struct hfi1_devdata *dd)
5655{
5656 __count_port_discards(dd->pport);
5657}
5658
5659/*
5660 * We have had a "disallowed packet" error during egress. Determine the
5661 * integrity check which failed, and update relevant error counter, etc.
5662 *
5663 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5664 * bit of state per integrity check, and so we can miss the reason for an
5665 * egress error if more than one packet fails the same integrity check
5666 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5667 */
5668static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5669 int vl)
5670{
5671 struct hfi1_pportdata *ppd = dd->pport;
5672 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5673 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5674 char buf[96];
5675
5676 /* clear down all observed info as quickly as possible after read */
5677 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5678
5679 dd_dev_info(dd,
5680 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5681 info, egress_err_info_string(buf, sizeof(buf), info), src);
5682
5683 /* Eventually add other counters for each bit */
5684 if (info & PORT_DISCARD_EGRESS_ERRS) {
5685 int weight, i;
5686
5687 /*
5688 * Count all applicable bits as individual errors and
5689 * attribute them to the packet that triggered this handler.
5690 * This may not be completely accurate due to limitations
5691 * on the available hardware error information. There is
5692 * a single information register and any number of error
5693 * packets may have occurred and contributed to it before
5694 * this routine is called. This means that:
5695 * a) If multiple packets with the same error occur before
5696 * this routine is called, earlier packets are missed.
5697 * There is only a single bit for each error type.
5698 * b) Errors may not be attributed to the correct VL.
5699 * The driver is attributing all bits in the info register
5700 * to the packet that triggered this call, but bits
5701 * could be an accumulation of different packets with
5702 * different VLs.
5703 * c) A single error packet may have multiple counts attached
5704 * to it. There is no way for the driver to know if
5705 * multiple bits set in the info register are due to a
5706 * single packet or multiple packets. The driver assumes
5707 * multiple packets.
5708 */
5709 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5710 for (i = 0; i < weight; i++) {
5711 __count_port_discards(ppd);
5712 if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5713 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5714 else if (vl == 15)
5715 incr_cntr64(&ppd->port_xmit_discards_vl
5716 [C_VL_15]);
5717 }
5718 }
5719}
5720
5721/*
5722 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5723 * register. Does it represent a 'port inactive' error?
5724 */
5725static inline int port_inactive_err(u64 posn)
5726{
5727 return (posn >= SEES(TX_LINKDOWN) &&
5728 posn <= SEES(TX_INCORRECT_LINK_STATE));
5729}
5730
5731/*
5732 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5733 * register. Does it represent a 'disallowed packet' error?
5734 */
5735static inline int disallowed_pkt_err(int posn)
5736{
5737 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5738 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5739}
5740
5741/*
5742 * Input value is a bit position of one of the SDMA engine disallowed
5743 * packet errors. Return which engine. Use of this must be guarded by
5744 * disallowed_pkt_err().
5745 */
5746static inline int disallowed_pkt_engine(int posn)
5747{
5748 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5749}
5750
5751/*
5752 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5753 * be done.
5754 */
5755static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5756{
5757 struct sdma_vl_map *m;
5758 int vl;
5759
5760 /* range check */
5761 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5762 return -1;
5763
5764 rcu_read_lock();
5765 m = rcu_dereference(dd->sdma_map);
5766 vl = m->engine_to_vl[engine];
5767 rcu_read_unlock();
5768
5769 return vl;
5770}
5771
5772/*
5773 * Translate the send context (sofware index) into a VL. Return -1 if the
5774 * translation cannot be done.
5775 */
5776static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5777{
5778 struct send_context_info *sci;
5779 struct send_context *sc;
5780 int i;
5781
5782 sci = &dd->send_contexts[sw_index];
5783
5784 /* there is no information for user (PSM) and ack contexts */
5785 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5786 return -1;
5787
5788 sc = sci->sc;
5789 if (!sc)
5790 return -1;
5791 if (dd->vld[15].sc == sc)
5792 return 15;
5793 for (i = 0; i < num_vls; i++)
5794 if (dd->vld[i].sc == sc)
5795 return i;
5796
5797 return -1;
5798}
5799
5800static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5801{
5802 u64 reg_copy = reg, handled = 0;
5803 char buf[96];
5804 int i = 0;
5805
5806 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5807 start_freeze_handling(dd->pport, 0);
5808 else if (is_ax(dd) &&
5809 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5810 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5811 start_freeze_handling(dd->pport, 0);
5812
5813 while (reg_copy) {
5814 int posn = fls64(reg_copy);
5815 /* fls64() returns a 1-based offset, we want it zero based */
5816 int shift = posn - 1;
5817 u64 mask = 1ULL << shift;
5818
5819 if (port_inactive_err(shift)) {
5820 count_port_inactive(dd);
5821 handled |= mask;
5822 } else if (disallowed_pkt_err(shift)) {
5823 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5824
5825 handle_send_egress_err_info(dd, vl);
5826 handled |= mask;
5827 }
5828 reg_copy &= ~mask;
5829 }
5830
5831 reg &= ~handled;
5832
5833 if (reg)
5834 dd_dev_info(dd, "Egress Error: %s\n",
5835 egress_err_status_string(buf, sizeof(buf), reg));
5836
5837 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5838 if (reg & (1ull << i))
5839 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5840 }
5841}
5842
5843static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5844{
5845 char buf[96];
5846 int i = 0;
5847
5848 dd_dev_info(dd, "Send Error: %s\n",
5849 send_err_status_string(buf, sizeof(buf), reg));
5850
5851 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5852 if (reg & (1ull << i))
5853 incr_cntr64(&dd->send_err_status_cnt[i]);
5854 }
5855}
5856
5857/*
5858 * The maximum number of times the error clear down will loop before
5859 * blocking a repeating error. This value is arbitrary.
5860 */
5861#define MAX_CLEAR_COUNT 20
5862
5863/*
5864 * Clear and handle an error register. All error interrupts are funneled
5865 * through here to have a central location to correctly handle single-
5866 * or multi-shot errors.
5867 *
5868 * For non per-context registers, call this routine with a context value
5869 * of 0 so the per-context offset is zero.
5870 *
5871 * If the handler loops too many times, assume that something is wrong
5872 * and can't be fixed, so mask the error bits.
5873 */
5874static void interrupt_clear_down(struct hfi1_devdata *dd,
5875 u32 context,
5876 const struct err_reg_info *eri)
5877{
5878 u64 reg;
5879 u32 count;
5880
5881 /* read in a loop until no more errors are seen */
5882 count = 0;
5883 while (1) {
5884 reg = read_kctxt_csr(dd, context, eri->status);
5885 if (reg == 0)
5886 break;
5887 write_kctxt_csr(dd, context, eri->clear, reg);
5888 if (likely(eri->handler))
5889 eri->handler(dd, context, reg);
5890 count++;
5891 if (count > MAX_CLEAR_COUNT) {
5892 u64 mask;
5893
5894 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5895 eri->desc, reg);
5896 /*
5897 * Read-modify-write so any other masked bits
5898 * remain masked.
5899 */
5900 mask = read_kctxt_csr(dd, context, eri->mask);
5901 mask &= ~reg;
5902 write_kctxt_csr(dd, context, eri->mask, mask);
5903 break;
5904 }
5905 }
5906}
5907
5908/*
5909 * CCE block "misc" interrupt. Source is < 16.
5910 */
5911static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5912{
5913 const struct err_reg_info *eri = &misc_errs[source];
5914
5915 if (eri->handler) {
5916 interrupt_clear_down(dd, 0, eri);
5917 } else {
5918 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5919 source);
5920 }
5921}
5922
5923static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5924{
5925 return flag_string(buf, buf_len, flags,
5926 sc_err_status_flags,
5927 ARRAY_SIZE(sc_err_status_flags));
5928}
5929
5930/*
5931 * Send context error interrupt. Source (hw_context) is < 160.
5932 *
5933 * All send context errors cause the send context to halt. The normal
5934 * clear-down mechanism cannot be used because we cannot clear the
5935 * error bits until several other long-running items are done first.
5936 * This is OK because with the context halted, nothing else is going
5937 * to happen on it anyway.
5938 */
5939static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5940 unsigned int hw_context)
5941{
5942 struct send_context_info *sci;
5943 struct send_context *sc;
5944 char flags[96];
5945 u64 status;
5946 u32 sw_index;
5947 int i = 0;
5948 unsigned long irq_flags;
5949
5950 sw_index = dd->hw_to_sw[hw_context];
5951 if (sw_index >= dd->num_send_contexts) {
5952 dd_dev_err(dd,
5953 "out of range sw index %u for send context %u\n",
5954 sw_index, hw_context);
5955 return;
5956 }
5957 sci = &dd->send_contexts[sw_index];
5958 spin_lock_irqsave(&dd->sc_lock, irq_flags);
5959 sc = sci->sc;
5960 if (!sc) {
5961 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5962 sw_index, hw_context);
5963 spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5964 return;
5965 }
5966
5967 /* tell the software that a halt has begun */
5968 sc_stop(sc, SCF_HALTED);
5969
5970 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5971
5972 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5973 send_context_err_status_string(flags, sizeof(flags),
5974 status));
5975
5976 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5977 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5978
5979 /*
5980 * Automatically restart halted kernel contexts out of interrupt
5981 * context. User contexts must ask the driver to restart the context.
5982 */
5983 if (sc->type != SC_USER)
5984 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5985 spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5986
5987 /*
5988 * Update the counters for the corresponding status bits.
5989 * Note that these particular counters are aggregated over all
5990 * 160 contexts.
5991 */
5992 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5993 if (status & (1ull << i))
5994 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5995 }
5996}
5997
5998static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5999 unsigned int source, u64 status)
6000{
6001 struct sdma_engine *sde;
6002 int i = 0;
6003
6004 sde = &dd->per_sdma[source];
6005#ifdef CONFIG_SDMA_VERBOSITY
6006 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6007 slashstrip(__FILE__), __LINE__, __func__);
6008 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6009 sde->this_idx, source, (unsigned long long)status);
6010#endif
6011 sde->err_cnt++;
6012 sdma_engine_error(sde, status);
6013
6014 /*
6015 * Update the counters for the corresponding status bits.
6016 * Note that these particular counters are aggregated over
6017 * all 16 DMA engines.
6018 */
6019 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6020 if (status & (1ull << i))
6021 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6022 }
6023}
6024
6025/*
6026 * CCE block SDMA error interrupt. Source is < 16.
6027 */
6028static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6029{
6030#ifdef CONFIG_SDMA_VERBOSITY
6031 struct sdma_engine *sde = &dd->per_sdma[source];
6032
6033 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6034 slashstrip(__FILE__), __LINE__, __func__);
6035 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6036 source);
6037 sdma_dumpstate(sde);
6038#endif
6039 interrupt_clear_down(dd, source, &sdma_eng_err);
6040}
6041
6042/*
6043 * CCE block "various" interrupt. Source is < 8.
6044 */
6045static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6046{
6047 const struct err_reg_info *eri = &various_err[source];
6048
6049 /*
6050 * TCritInt cannot go through interrupt_clear_down()
6051 * because it is not a second tier interrupt. The handler
6052 * should be called directly.
6053 */
6054 if (source == TCRIT_INT_SOURCE)
6055 handle_temp_err(dd);
6056 else if (eri->handler)
6057 interrupt_clear_down(dd, 0, eri);
6058 else
6059 dd_dev_info(dd,
6060 "%s: Unimplemented/reserved interrupt %d\n",
6061 __func__, source);
6062}
6063
6064static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6065{
6066 /* src_ctx is always zero */
6067 struct hfi1_pportdata *ppd = dd->pport;
6068 unsigned long flags;
6069 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6070
6071 if (reg & QSFP_HFI0_MODPRST_N) {
6072 if (!qsfp_mod_present(ppd)) {
6073 dd_dev_info(dd, "%s: QSFP module removed\n",
6074 __func__);
6075
6076 ppd->driver_link_ready = 0;
6077 /*
6078 * Cable removed, reset all our information about the
6079 * cache and cable capabilities
6080 */
6081
6082 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6083 /*
6084 * We don't set cache_refresh_required here as we expect
6085 * an interrupt when a cable is inserted
6086 */
6087 ppd->qsfp_info.cache_valid = 0;
6088 ppd->qsfp_info.reset_needed = 0;
6089 ppd->qsfp_info.limiting_active = 0;
6090 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6091 flags);
6092 /* Invert the ModPresent pin now to detect plug-in */
6093 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6094 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6095
6096 if ((ppd->offline_disabled_reason >
6097 HFI1_ODR_MASK(
6098 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6099 (ppd->offline_disabled_reason ==
6100 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6101 ppd->offline_disabled_reason =
6102 HFI1_ODR_MASK(
6103 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6104
6105 if (ppd->host_link_state == HLS_DN_POLL) {
6106 /*
6107 * The link is still in POLL. This means
6108 * that the normal link down processing
6109 * will not happen. We have to do it here
6110 * before turning the DC off.
6111 */
6112 queue_work(ppd->link_wq, &ppd->link_down_work);
6113 }
6114 } else {
6115 dd_dev_info(dd, "%s: QSFP module inserted\n",
6116 __func__);
6117
6118 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6119 ppd->qsfp_info.cache_valid = 0;
6120 ppd->qsfp_info.cache_refresh_required = 1;
6121 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6122 flags);
6123
6124 /*
6125 * Stop inversion of ModPresent pin to detect
6126 * removal of the cable
6127 */
6128 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6129 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6130 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6131
6132 ppd->offline_disabled_reason =
6133 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6134 }
6135 }
6136
6137 if (reg & QSFP_HFI0_INT_N) {
6138 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6139 __func__);
6140 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6141 ppd->qsfp_info.check_interrupt_flags = 1;
6142 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6143 }
6144
6145 /* Schedule the QSFP work only if there is a cable attached. */
6146 if (qsfp_mod_present(ppd))
6147 queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6148}
6149
6150static int request_host_lcb_access(struct hfi1_devdata *dd)
6151{
6152 int ret;
6153
6154 ret = do_8051_command(dd, HCMD_MISC,
6155 (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6156 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6157 if (ret != HCMD_SUCCESS) {
6158 dd_dev_err(dd, "%s: command failed with error %d\n",
6159 __func__, ret);
6160 }
6161 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6162}
6163
6164static int request_8051_lcb_access(struct hfi1_devdata *dd)
6165{
6166 int ret;
6167
6168 ret = do_8051_command(dd, HCMD_MISC,
6169 (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6170 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6171 if (ret != HCMD_SUCCESS) {
6172 dd_dev_err(dd, "%s: command failed with error %d\n",
6173 __func__, ret);
6174 }
6175 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6176}
6177
6178/*
6179 * Set the LCB selector - allow host access. The DCC selector always
6180 * points to the host.
6181 */
6182static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6183{
6184 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6185 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6186 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6187}
6188
6189/*
6190 * Clear the LCB selector - allow 8051 access. The DCC selector always
6191 * points to the host.
6192 */
6193static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6194{
6195 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6196 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6197}
6198
6199/*
6200 * Acquire LCB access from the 8051. If the host already has access,
6201 * just increment a counter. Otherwise, inform the 8051 that the
6202 * host is taking access.
6203 *
6204 * Returns:
6205 * 0 on success
6206 * -EBUSY if the 8051 has control and cannot be disturbed
6207 * -errno if unable to acquire access from the 8051
6208 */
6209int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6210{
6211 struct hfi1_pportdata *ppd = dd->pport;
6212 int ret = 0;
6213
6214 /*
6215 * Use the host link state lock so the operation of this routine
6216 * { link state check, selector change, count increment } can occur
6217 * as a unit against a link state change. Otherwise there is a
6218 * race between the state change and the count increment.
6219 */
6220 if (sleep_ok) {
6221 mutex_lock(&ppd->hls_lock);
6222 } else {
6223 while (!mutex_trylock(&ppd->hls_lock))
6224 udelay(1);
6225 }
6226
6227 /* this access is valid only when the link is up */
6228 if (ppd->host_link_state & HLS_DOWN) {
6229 dd_dev_info(dd, "%s: link state %s not up\n",
6230 __func__, link_state_name(ppd->host_link_state));
6231 ret = -EBUSY;
6232 goto done;
6233 }
6234
6235 if (dd->lcb_access_count == 0) {
6236 ret = request_host_lcb_access(dd);
6237 if (ret) {
6238 dd_dev_err(dd,
6239 "%s: unable to acquire LCB access, err %d\n",
6240 __func__, ret);
6241 goto done;
6242 }
6243 set_host_lcb_access(dd);
6244 }
6245 dd->lcb_access_count++;
6246done:
6247 mutex_unlock(&ppd->hls_lock);
6248 return ret;
6249}
6250
6251/*
6252 * Release LCB access by decrementing the use count. If the count is moving
6253 * from 1 to 0, inform 8051 that it has control back.
6254 *
6255 * Returns:
6256 * 0 on success
6257 * -errno if unable to release access to the 8051
6258 */
6259int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6260{
6261 int ret = 0;
6262
6263 /*
6264 * Use the host link state lock because the acquire needed it.
6265 * Here, we only need to keep { selector change, count decrement }
6266 * as a unit.
6267 */
6268 if (sleep_ok) {
6269 mutex_lock(&dd->pport->hls_lock);
6270 } else {
6271 while (!mutex_trylock(&dd->pport->hls_lock))
6272 udelay(1);
6273 }
6274
6275 if (dd->lcb_access_count == 0) {
6276 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
6277 __func__);
6278 goto done;
6279 }
6280
6281 if (dd->lcb_access_count == 1) {
6282 set_8051_lcb_access(dd);
6283 ret = request_8051_lcb_access(dd);
6284 if (ret) {
6285 dd_dev_err(dd,
6286 "%s: unable to release LCB access, err %d\n",
6287 __func__, ret);
6288 /* restore host access if the grant didn't work */
6289 set_host_lcb_access(dd);
6290 goto done;
6291 }
6292 }
6293 dd->lcb_access_count--;
6294done:
6295 mutex_unlock(&dd->pport->hls_lock);
6296 return ret;
6297}
6298
6299/*
6300 * Initialize LCB access variables and state. Called during driver load,
6301 * after most of the initialization is finished.
6302 *
6303 * The DC default is LCB access on for the host. The driver defaults to
6304 * leaving access to the 8051. Assign access now - this constrains the call
6305 * to this routine to be after all LCB set-up is done. In particular, after
6306 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6307 */
6308static void init_lcb_access(struct hfi1_devdata *dd)
6309{
6310 dd->lcb_access_count = 0;
6311}
6312
6313/*
6314 * Write a response back to a 8051 request.
6315 */
6316static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6317{
6318 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6319 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6320 (u64)return_code <<
6321 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6322 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6323}
6324
6325/*
6326 * Handle host requests from the 8051.
6327 */
6328static void handle_8051_request(struct hfi1_pportdata *ppd)
6329{
6330 struct hfi1_devdata *dd = ppd->dd;
6331 u64 reg;
6332 u16 data = 0;
6333 u8 type;
6334
6335 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6336 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6337 return; /* no request */
6338
6339 /* zero out COMPLETED so the response is seen */
6340 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6341
6342 /* extract request details */
6343 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6344 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6345 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6346 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6347
6348 switch (type) {
6349 case HREQ_LOAD_CONFIG:
6350 case HREQ_SAVE_CONFIG:
6351 case HREQ_READ_CONFIG:
6352 case HREQ_SET_TX_EQ_ABS:
6353 case HREQ_SET_TX_EQ_REL:
6354 case HREQ_ENABLE:
6355 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6356 type);
6357 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6358 break;
6359 case HREQ_LCB_RESET:
6360 /* Put the LCB, RX FPE and TX FPE into reset */
6361 write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6362 /* Make sure the write completed */
6363 (void)read_csr(dd, DCC_CFG_RESET);
6364 /* Hold the reset long enough to take effect */
6365 udelay(1);
6366 /* Take the LCB, RX FPE and TX FPE out of reset */
6367 write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6368 hreq_response(dd, HREQ_SUCCESS, 0);
6369
6370 break;
6371 case HREQ_CONFIG_DONE:
6372 hreq_response(dd, HREQ_SUCCESS, 0);
6373 break;
6374
6375 case HREQ_INTERFACE_TEST:
6376 hreq_response(dd, HREQ_SUCCESS, data);
6377 break;
6378 default:
6379 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6380 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6381 break;
6382 }
6383}
6384
6385/*
6386 * Set up allocation unit vaulue.
6387 */
6388void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6389{
6390 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6391
6392 /* do not modify other values in the register */
6393 reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6394 reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6395 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6396}
6397
6398/*
6399 * Set up initial VL15 credits of the remote. Assumes the rest of
6400 * the CM credit registers are zero from a previous global or credit reset.
6401 * Shared limit for VL15 will always be 0.
6402 */
6403void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6404{
6405 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6406
6407 /* set initial values for total and shared credit limit */
6408 reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6409 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6410
6411 /*
6412 * Set total limit to be equal to VL15 credits.
6413 * Leave shared limit at 0.
6414 */
6415 reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6416 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6417
6418 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6419 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6420}
6421
6422/*
6423 * Zero all credit details from the previous connection and
6424 * reset the CM manager's internal counters.
6425 */
6426void reset_link_credits(struct hfi1_devdata *dd)
6427{
6428 int i;
6429
6430 /* remove all previous VL credit limits */
6431 for (i = 0; i < TXE_NUM_DATA_VL; i++)
6432 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6433 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6434 write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6435 /* reset the CM block */
6436 pio_send_control(dd, PSC_CM_RESET);
6437 /* reset cached value */
6438 dd->vl15buf_cached = 0;
6439}
6440
6441/* convert a vCU to a CU */
6442static u32 vcu_to_cu(u8 vcu)
6443{
6444 return 1 << vcu;
6445}
6446
6447/* convert a CU to a vCU */
6448static u8 cu_to_vcu(u32 cu)
6449{
6450 return ilog2(cu);
6451}
6452
6453/* convert a vAU to an AU */
6454static u32 vau_to_au(u8 vau)
6455{
6456 return 8 * (1 << vau);
6457}
6458
6459static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6460{
6461 ppd->sm_trap_qp = 0x0;
6462 ppd->sa_qp = 0x1;
6463}
6464
6465/*
6466 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6467 */
6468static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6469{
6470 u64 reg;
6471
6472 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6473 write_csr(dd, DC_LCB_CFG_RUN, 0);
6474 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6475 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6476 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6477 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6478 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6479 reg = read_csr(dd, DCC_CFG_RESET);
6480 write_csr(dd, DCC_CFG_RESET, reg |
6481 DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6482 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6483 if (!abort) {
6484 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6485 write_csr(dd, DCC_CFG_RESET, reg);
6486 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6487 }
6488}
6489
6490/*
6491 * This routine should be called after the link has been transitioned to
6492 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6493 * reset).
6494 *
6495 * The expectation is that the caller of this routine would have taken
6496 * care of properly transitioning the link into the correct state.
6497 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6498 * before calling this function.
6499 */
6500static void _dc_shutdown(struct hfi1_devdata *dd)
6501{
6502 lockdep_assert_held(&dd->dc8051_lock);
6503
6504 if (dd->dc_shutdown)
6505 return;
6506
6507 dd->dc_shutdown = 1;
6508 /* Shutdown the LCB */
6509 lcb_shutdown(dd, 1);
6510 /*
6511 * Going to OFFLINE would have causes the 8051 to put the
6512 * SerDes into reset already. Just need to shut down the 8051,
6513 * itself.
6514 */
6515 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6516}
6517
6518static void dc_shutdown(struct hfi1_devdata *dd)
6519{
6520 mutex_lock(&dd->dc8051_lock);
6521 _dc_shutdown(dd);
6522 mutex_unlock(&dd->dc8051_lock);
6523}
6524
6525/*
6526 * Calling this after the DC has been brought out of reset should not
6527 * do any damage.
6528 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6529 * before calling this function.
6530 */
6531static void _dc_start(struct hfi1_devdata *dd)
6532{
6533 lockdep_assert_held(&dd->dc8051_lock);
6534
6535 if (!dd->dc_shutdown)
6536 return;
6537
6538 /* Take the 8051 out of reset */
6539 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6540 /* Wait until 8051 is ready */
6541 if (wait_fm_ready(dd, TIMEOUT_8051_START))
6542 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6543 __func__);
6544
6545 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6546 write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6547 /* lcb_shutdown() with abort=1 does not restore these */
6548 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6549 dd->dc_shutdown = 0;
6550}
6551
6552static void dc_start(struct hfi1_devdata *dd)
6553{
6554 mutex_lock(&dd->dc8051_lock);
6555 _dc_start(dd);
6556 mutex_unlock(&dd->dc8051_lock);
6557}
6558
6559/*
6560 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6561 */
6562static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6563{
6564 u64 rx_radr, tx_radr;
6565 u32 version;
6566
6567 if (dd->icode != ICODE_FPGA_EMULATION)
6568 return;
6569
6570 /*
6571 * These LCB defaults on emulator _s are good, nothing to do here:
6572 * LCB_CFG_TX_FIFOS_RADR
6573 * LCB_CFG_RX_FIFOS_RADR
6574 * LCB_CFG_LN_DCLK
6575 * LCB_CFG_IGNORE_LOST_RCLK
6576 */
6577 if (is_emulator_s(dd))
6578 return;
6579 /* else this is _p */
6580
6581 version = emulator_rev(dd);
6582 if (!is_ax(dd))
6583 version = 0x2d; /* all B0 use 0x2d or higher settings */
6584
6585 if (version <= 0x12) {
6586 /* release 0x12 and below */
6587
6588 /*
6589 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6590 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6591 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6592 */
6593 rx_radr =
6594 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6595 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6596 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6597 /*
6598 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6599 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6600 */
6601 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6602 } else if (version <= 0x18) {
6603 /* release 0x13 up to 0x18 */
6604 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6605 rx_radr =
6606 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6607 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6608 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6609 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6610 } else if (version == 0x19) {
6611 /* release 0x19 */
6612 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6613 rx_radr =
6614 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6615 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6616 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6617 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6618 } else if (version == 0x1a) {
6619 /* release 0x1a */
6620 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6621 rx_radr =
6622 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6623 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6624 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6625 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6626 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6627 } else {
6628 /* release 0x1b and higher */
6629 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6630 rx_radr =
6631 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6632 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6633 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6634 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6635 }
6636
6637 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6638 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6639 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6640 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6641 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6642}
6643
6644/*
6645 * Handle a SMA idle message
6646 *
6647 * This is a work-queue function outside of the interrupt.
6648 */
6649void handle_sma_message(struct work_struct *work)
6650{
6651 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6652 sma_message_work);
6653 struct hfi1_devdata *dd = ppd->dd;
6654 u64 msg;
6655 int ret;
6656
6657 /*
6658 * msg is bytes 1-4 of the 40-bit idle message - the command code
6659 * is stripped off
6660 */
6661 ret = read_idle_sma(dd, &msg);
6662 if (ret)
6663 return;
6664 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6665 /*
6666 * React to the SMA message. Byte[1] (0 for us) is the command.
6667 */
6668 switch (msg & 0xff) {
6669 case SMA_IDLE_ARM:
6670 /*
6671 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6672 * State Transitions
6673 *
6674 * Only expected in INIT or ARMED, discard otherwise.
6675 */
6676 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6677 ppd->neighbor_normal = 1;
6678 break;
6679 case SMA_IDLE_ACTIVE:
6680 /*
6681 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6682 * State Transitions
6683 *
6684 * Can activate the node. Discard otherwise.
6685 */
6686 if (ppd->host_link_state == HLS_UP_ARMED &&
6687 ppd->is_active_optimize_enabled) {
6688 ppd->neighbor_normal = 1;
6689 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6690 if (ret)
6691 dd_dev_err(
6692 dd,
6693 "%s: received Active SMA idle message, couldn't set link to Active\n",
6694 __func__);
6695 }
6696 break;
6697 default:
6698 dd_dev_err(dd,
6699 "%s: received unexpected SMA idle message 0x%llx\n",
6700 __func__, msg);
6701 break;
6702 }
6703}
6704
6705static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6706{
6707 u64 rcvctrl;
6708 unsigned long flags;
6709
6710 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6711 rcvctrl = read_csr(dd, RCV_CTRL);
6712 rcvctrl |= add;
6713 rcvctrl &= ~clear;
6714 write_csr(dd, RCV_CTRL, rcvctrl);
6715 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6716}
6717
6718static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6719{
6720 adjust_rcvctrl(dd, add, 0);
6721}
6722
6723static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6724{
6725 adjust_rcvctrl(dd, 0, clear);
6726}
6727
6728/*
6729 * Called from all interrupt handlers to start handling an SPC freeze.
6730 */
6731void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6732{
6733 struct hfi1_devdata *dd = ppd->dd;
6734 struct send_context *sc;
6735 int i;
6736 int sc_flags;
6737
6738 if (flags & FREEZE_SELF)
6739 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6740
6741 /* enter frozen mode */
6742 dd->flags |= HFI1_FROZEN;
6743
6744 /* notify all SDMA engines that they are going into a freeze */
6745 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6746
6747 sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6748 SCF_LINK_DOWN : 0);
6749 /* do halt pre-handling on all enabled send contexts */
6750 for (i = 0; i < dd->num_send_contexts; i++) {
6751 sc = dd->send_contexts[i].sc;
6752 if (sc && (sc->flags & SCF_ENABLED))
6753 sc_stop(sc, sc_flags);
6754 }
6755
6756 /* Send context are frozen. Notify user space */
6757 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6758
6759 if (flags & FREEZE_ABORT) {
6760 dd_dev_err(dd,
6761 "Aborted freeze recovery. Please REBOOT system\n");
6762 return;
6763 }
6764 /* queue non-interrupt handler */
6765 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6766}
6767
6768/*
6769 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6770 * depending on the "freeze" parameter.
6771 *
6772 * No need to return an error if it times out, our only option
6773 * is to proceed anyway.
6774 */
6775static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6776{
6777 unsigned long timeout;
6778 u64 reg;
6779
6780 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6781 while (1) {
6782 reg = read_csr(dd, CCE_STATUS);
6783 if (freeze) {
6784 /* waiting until all indicators are set */
6785 if ((reg & ALL_FROZE) == ALL_FROZE)
6786 return; /* all done */
6787 } else {
6788 /* waiting until all indicators are clear */
6789 if ((reg & ALL_FROZE) == 0)
6790 return; /* all done */
6791 }
6792
6793 if (time_after(jiffies, timeout)) {
6794 dd_dev_err(dd,
6795 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6796 freeze ? "" : "un", reg & ALL_FROZE,
6797 freeze ? ALL_FROZE : 0ull);
6798 return;
6799 }
6800 usleep_range(80, 120);
6801 }
6802}
6803
6804/*
6805 * Do all freeze handling for the RXE block.
6806 */
6807static void rxe_freeze(struct hfi1_devdata *dd)
6808{
6809 int i;
6810 struct hfi1_ctxtdata *rcd;
6811
6812 /* disable port */
6813 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6814
6815 /* disable all receive contexts */
6816 for (i = 0; i < dd->num_rcv_contexts; i++) {
6817 rcd = hfi1_rcd_get_by_index(dd, i);
6818 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6819 hfi1_rcd_put(rcd);
6820 }
6821}
6822
6823/*
6824 * Unfreeze handling for the RXE block - kernel contexts only.
6825 * This will also enable the port. User contexts will do unfreeze
6826 * handling on a per-context basis as they call into the driver.
6827 *
6828 */
6829static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6830{
6831 u32 rcvmask;
6832 u16 i;
6833 struct hfi1_ctxtdata *rcd;
6834
6835 /* enable all kernel contexts */
6836 for (i = 0; i < dd->num_rcv_contexts; i++) {
6837 rcd = hfi1_rcd_get_by_index(dd, i);
6838
6839 /* Ensure all non-user contexts(including vnic) are enabled */
6840 if (!rcd ||
6841 (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6842 hfi1_rcd_put(rcd);
6843 continue;
6844 }
6845 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6846 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6847 rcvmask |= rcd->rcvhdrtail_kvaddr ?
6848 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6849 hfi1_rcvctrl(dd, rcvmask, rcd);
6850 hfi1_rcd_put(rcd);
6851 }
6852
6853 /* enable port */
6854 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6855}
6856
6857/*
6858 * Non-interrupt SPC freeze handling.
6859 *
6860 * This is a work-queue function outside of the triggering interrupt.
6861 */
6862void handle_freeze(struct work_struct *work)
6863{
6864 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6865 freeze_work);
6866 struct hfi1_devdata *dd = ppd->dd;
6867
6868 /* wait for freeze indicators on all affected blocks */
6869 wait_for_freeze_status(dd, 1);
6870
6871 /* SPC is now frozen */
6872
6873 /* do send PIO freeze steps */
6874 pio_freeze(dd);
6875
6876 /* do send DMA freeze steps */
6877 sdma_freeze(dd);
6878
6879 /* do send egress freeze steps - nothing to do */
6880
6881 /* do receive freeze steps */
6882 rxe_freeze(dd);
6883
6884 /*
6885 * Unfreeze the hardware - clear the freeze, wait for each
6886 * block's frozen bit to clear, then clear the frozen flag.
6887 */
6888 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6889 wait_for_freeze_status(dd, 0);
6890
6891 if (is_ax(dd)) {
6892 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6893 wait_for_freeze_status(dd, 1);
6894 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6895 wait_for_freeze_status(dd, 0);
6896 }
6897
6898 /* do send PIO unfreeze steps for kernel contexts */
6899 pio_kernel_unfreeze(dd);
6900
6901 /* do send DMA unfreeze steps */
6902 sdma_unfreeze(dd);
6903
6904 /* do send egress unfreeze steps - nothing to do */
6905
6906 /* do receive unfreeze steps for kernel contexts */
6907 rxe_kernel_unfreeze(dd);
6908
6909 /*
6910 * The unfreeze procedure touches global device registers when
6911 * it disables and re-enables RXE. Mark the device unfrozen
6912 * after all that is done so other parts of the driver waiting
6913 * for the device to unfreeze don't do things out of order.
6914 *
6915 * The above implies that the meaning of HFI1_FROZEN flag is
6916 * "Device has gone into freeze mode and freeze mode handling
6917 * is still in progress."
6918 *
6919 * The flag will be removed when freeze mode processing has
6920 * completed.
6921 */
6922 dd->flags &= ~HFI1_FROZEN;
6923 wake_up(&dd->event_queue);
6924
6925 /* no longer frozen */
6926}
6927
6928/**
6929 * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6930 * counters.
6931 * @ppd: info of physical Hfi port
6932 * @link_width: new link width after link up or downgrade
6933 *
6934 * Update the PortXmitWait and PortVlXmitWait counters after
6935 * a link up or downgrade event to reflect a link width change.
6936 */
6937static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6938{
6939 int i;
6940 u16 tx_width;
6941 u16 link_speed;
6942
6943 tx_width = tx_link_width(link_width);
6944 link_speed = get_link_speed(ppd->link_speed_active);
6945
6946 /*
6947 * There are C_VL_COUNT number of PortVLXmitWait counters.
6948 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6949 */
6950 for (i = 0; i < C_VL_COUNT + 1; i++)
6951 get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6952}
6953
6954/*
6955 * Handle a link up interrupt from the 8051.
6956 *
6957 * This is a work-queue function outside of the interrupt.
6958 */
6959void handle_link_up(struct work_struct *work)
6960{
6961 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6962 link_up_work);
6963 struct hfi1_devdata *dd = ppd->dd;
6964
6965 set_link_state(ppd, HLS_UP_INIT);
6966
6967 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6968 read_ltp_rtt(dd);
6969 /*
6970 * OPA specifies that certain counters are cleared on a transition
6971 * to link up, so do that.
6972 */
6973 clear_linkup_counters(dd);
6974 /*
6975 * And (re)set link up default values.
6976 */
6977 set_linkup_defaults(ppd);
6978
6979 /*
6980 * Set VL15 credits. Use cached value from verify cap interrupt.
6981 * In case of quick linkup or simulator, vl15 value will be set by
6982 * handle_linkup_change. VerifyCap interrupt handler will not be
6983 * called in those scenarios.
6984 */
6985 if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6986 set_up_vl15(dd, dd->vl15buf_cached);
6987
6988 /* enforce link speed enabled */
6989 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6990 /* oops - current speed is not enabled, bounce */
6991 dd_dev_err(dd,
6992 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6993 ppd->link_speed_active, ppd->link_speed_enabled);
6994 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6995 OPA_LINKDOWN_REASON_SPEED_POLICY);
6996 set_link_state(ppd, HLS_DN_OFFLINE);
6997 start_link(ppd);
6998 }
6999}
7000
7001/*
7002 * Several pieces of LNI information were cached for SMA in ppd.
7003 * Reset these on link down
7004 */
7005static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7006{
7007 ppd->neighbor_guid = 0;
7008 ppd->neighbor_port_number = 0;
7009 ppd->neighbor_type = 0;
7010 ppd->neighbor_fm_security = 0;
7011}
7012
7013static const char * const link_down_reason_strs[] = {
7014 [OPA_LINKDOWN_REASON_NONE] = "None",
7015 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7016 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7017 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7018 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7019 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7020 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7021 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7022 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7023 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7024 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7025 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7026 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7027 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7028 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7029 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7030 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7031 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7032 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7033 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7034 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7035 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7036 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7037 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7038 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7039 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7040 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7041 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7042 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7043 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7044 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7045 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7046 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7047 "Excessive buffer overrun",
7048 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7049 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7050 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7051 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7052 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7053 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7054 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7055 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7056 "Local media not installed",
7057 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7058 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7059 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7060 "End to end not installed",
7061 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7062 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7063 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7064 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7065 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7066 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7067};
7068
7069/* return the neighbor link down reason string */
7070static const char *link_down_reason_str(u8 reason)
7071{
7072 const char *str = NULL;
7073
7074 if (reason < ARRAY_SIZE(link_down_reason_strs))
7075 str = link_down_reason_strs[reason];
7076 if (!str)
7077 str = "(invalid)";
7078
7079 return str;
7080}
7081
7082/*
7083 * Handle a link down interrupt from the 8051.
7084 *
7085 * This is a work-queue function outside of the interrupt.
7086 */
7087void handle_link_down(struct work_struct *work)
7088{
7089 u8 lcl_reason, neigh_reason = 0;
7090 u8 link_down_reason;
7091 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7092 link_down_work);
7093 int was_up;
7094 static const char ldr_str[] = "Link down reason: ";
7095
7096 if ((ppd->host_link_state &
7097 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7098 ppd->port_type == PORT_TYPE_FIXED)
7099 ppd->offline_disabled_reason =
7100 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7101
7102 /* Go offline first, then deal with reading/writing through 8051 */
7103 was_up = !!(ppd->host_link_state & HLS_UP);
7104 set_link_state(ppd, HLS_DN_OFFLINE);
7105 xchg(&ppd->is_link_down_queued, 0);
7106
7107 if (was_up) {
7108 lcl_reason = 0;
7109 /* link down reason is only valid if the link was up */
7110 read_link_down_reason(ppd->dd, &link_down_reason);
7111 switch (link_down_reason) {
7112 case LDR_LINK_TRANSFER_ACTIVE_LOW:
7113 /* the link went down, no idle message reason */
7114 dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7115 ldr_str);
7116 break;
7117 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7118 /*
7119 * The neighbor reason is only valid if an idle message
7120 * was received for it.
7121 */
7122 read_planned_down_reason_code(ppd->dd, &neigh_reason);
7123 dd_dev_info(ppd->dd,
7124 "%sNeighbor link down message %d, %s\n",
7125 ldr_str, neigh_reason,
7126 link_down_reason_str(neigh_reason));
7127 break;
7128 case LDR_RECEIVED_HOST_OFFLINE_REQ:
7129 dd_dev_info(ppd->dd,
7130 "%sHost requested link to go offline\n",
7131 ldr_str);
7132 break;
7133 default:
7134 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7135 ldr_str, link_down_reason);
7136 break;
7137 }
7138
7139 /*
7140 * If no reason, assume peer-initiated but missed
7141 * LinkGoingDown idle flits.
7142 */
7143 if (neigh_reason == 0)
7144 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7145 } else {
7146 /* went down while polling or going up */
7147 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7148 }
7149
7150 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7151
7152 /* inform the SMA when the link transitions from up to down */
7153 if (was_up && ppd->local_link_down_reason.sma == 0 &&
7154 ppd->neigh_link_down_reason.sma == 0) {
7155 ppd->local_link_down_reason.sma =
7156 ppd->local_link_down_reason.latest;
7157 ppd->neigh_link_down_reason.sma =
7158 ppd->neigh_link_down_reason.latest;
7159 }
7160
7161 reset_neighbor_info(ppd);
7162
7163 /* disable the port */
7164 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7165
7166 /*
7167 * If there is no cable attached, turn the DC off. Otherwise,
7168 * start the link bring up.
7169 */
7170 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7171 dc_shutdown(ppd->dd);
7172 else
7173 start_link(ppd);
7174}
7175
7176void handle_link_bounce(struct work_struct *work)
7177{
7178 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7179 link_bounce_work);
7180
7181 /*
7182 * Only do something if the link is currently up.
7183 */
7184 if (ppd->host_link_state & HLS_UP) {
7185 set_link_state(ppd, HLS_DN_OFFLINE);
7186 start_link(ppd);
7187 } else {
7188 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7189 __func__, link_state_name(ppd->host_link_state));
7190 }
7191}
7192
7193/*
7194 * Mask conversion: Capability exchange to Port LTP. The capability
7195 * exchange has an implicit 16b CRC that is mandatory.
7196 */
7197static int cap_to_port_ltp(int cap)
7198{
7199 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7200
7201 if (cap & CAP_CRC_14B)
7202 port_ltp |= PORT_LTP_CRC_MODE_14;
7203 if (cap & CAP_CRC_48B)
7204 port_ltp |= PORT_LTP_CRC_MODE_48;
7205 if (cap & CAP_CRC_12B_16B_PER_LANE)
7206 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7207
7208 return port_ltp;
7209}
7210
7211/*
7212 * Convert an OPA Port LTP mask to capability mask
7213 */
7214int port_ltp_to_cap(int port_ltp)
7215{
7216 int cap_mask = 0;
7217
7218 if (port_ltp & PORT_LTP_CRC_MODE_14)
7219 cap_mask |= CAP_CRC_14B;
7220 if (port_ltp & PORT_LTP_CRC_MODE_48)
7221 cap_mask |= CAP_CRC_48B;
7222 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7223 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7224
7225 return cap_mask;
7226}
7227
7228/*
7229 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7230 */
7231static int lcb_to_port_ltp(int lcb_crc)
7232{
7233 int port_ltp = 0;
7234
7235 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7236 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7237 else if (lcb_crc == LCB_CRC_48B)
7238 port_ltp = PORT_LTP_CRC_MODE_48;
7239 else if (lcb_crc == LCB_CRC_14B)
7240 port_ltp = PORT_LTP_CRC_MODE_14;
7241 else
7242 port_ltp = PORT_LTP_CRC_MODE_16;
7243
7244 return port_ltp;
7245}
7246
7247static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7248{
7249 if (ppd->pkeys[2] != 0) {
7250 ppd->pkeys[2] = 0;
7251 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7252 hfi1_event_pkey_change(ppd->dd, ppd->port);
7253 }
7254}
7255
7256/*
7257 * Convert the given link width to the OPA link width bitmask.
7258 */
7259static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7260{
7261 switch (width) {
7262 case 0:
7263 /*
7264 * Simulator and quick linkup do not set the width.
7265 * Just set it to 4x without complaint.
7266 */
7267 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7268 return OPA_LINK_WIDTH_4X;
7269 return 0; /* no lanes up */
7270 case 1: return OPA_LINK_WIDTH_1X;
7271 case 2: return OPA_LINK_WIDTH_2X;
7272 case 3: return OPA_LINK_WIDTH_3X;
7273 default:
7274 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7275 __func__, width);
7276 /* fall through */
7277 case 4: return OPA_LINK_WIDTH_4X;
7278 }
7279}
7280
7281/*
7282 * Do a population count on the bottom nibble.
7283 */
7284static const u8 bit_counts[16] = {
7285 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7286};
7287
7288static inline u8 nibble_to_count(u8 nibble)
7289{
7290 return bit_counts[nibble & 0xf];
7291}
7292
7293/*
7294 * Read the active lane information from the 8051 registers and return
7295 * their widths.
7296 *
7297 * Active lane information is found in these 8051 registers:
7298 * enable_lane_tx
7299 * enable_lane_rx
7300 */
7301static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7302 u16 *rx_width)
7303{
7304 u16 tx, rx;
7305 u8 enable_lane_rx;
7306 u8 enable_lane_tx;
7307 u8 tx_polarity_inversion;
7308 u8 rx_polarity_inversion;
7309 u8 max_rate;
7310
7311 /* read the active lanes */
7312 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7313 &rx_polarity_inversion, &max_rate);
7314 read_local_lni(dd, &enable_lane_rx);
7315
7316 /* convert to counts */
7317 tx = nibble_to_count(enable_lane_tx);
7318 rx = nibble_to_count(enable_lane_rx);
7319
7320 /*
7321 * Set link_speed_active here, overriding what was set in
7322 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7323 * set the max_rate field in handle_verify_cap until v0.19.
7324 */
7325 if ((dd->icode == ICODE_RTL_SILICON) &&
7326 (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7327 /* max_rate: 0 = 12.5G, 1 = 25G */
7328 switch (max_rate) {
7329 case 0:
7330 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7331 break;
7332 default:
7333 dd_dev_err(dd,
7334 "%s: unexpected max rate %d, using 25Gb\n",
7335 __func__, (int)max_rate);
7336 /* fall through */
7337 case 1:
7338 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7339 break;
7340 }
7341 }
7342
7343 dd_dev_info(dd,
7344 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7345 enable_lane_tx, tx, enable_lane_rx, rx);
7346 *tx_width = link_width_to_bits(dd, tx);
7347 *rx_width = link_width_to_bits(dd, rx);
7348}
7349
7350/*
7351 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7352 * Valid after the end of VerifyCap and during LinkUp. Does not change
7353 * after link up. I.e. look elsewhere for downgrade information.
7354 *
7355 * Bits are:
7356 * + bits [7:4] contain the number of active transmitters
7357 * + bits [3:0] contain the number of active receivers
7358 * These are numbers 1 through 4 and can be different values if the
7359 * link is asymmetric.
7360 *
7361 * verify_cap_local_fm_link_width[0] retains its original value.
7362 */
7363static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7364 u16 *rx_width)
7365{
7366 u16 widths, tx, rx;
7367 u8 misc_bits, local_flags;
7368 u16 active_tx, active_rx;
7369
7370 read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7371 tx = widths >> 12;
7372 rx = (widths >> 8) & 0xf;
7373
7374 *tx_width = link_width_to_bits(dd, tx);
7375 *rx_width = link_width_to_bits(dd, rx);
7376
7377 /* print the active widths */
7378 get_link_widths(dd, &active_tx, &active_rx);
7379}
7380
7381/*
7382 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7383 * hardware information when the link first comes up.
7384 *
7385 * The link width is not available until after VerifyCap.AllFramesReceived
7386 * (the trigger for handle_verify_cap), so this is outside that routine
7387 * and should be called when the 8051 signals linkup.
7388 */
7389void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7390{
7391 u16 tx_width, rx_width;
7392
7393 /* get end-of-LNI link widths */
7394 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7395
7396 /* use tx_width as the link is supposed to be symmetric on link up */
7397 ppd->link_width_active = tx_width;
7398 /* link width downgrade active (LWD.A) starts out matching LW.A */
7399 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7400 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7401 /* per OPA spec, on link up LWD.E resets to LWD.S */
7402 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7403 /* cache the active egress rate (units {10^6 bits/sec]) */
7404 ppd->current_egress_rate = active_egress_rate(ppd);
7405}
7406
7407/*
7408 * Handle a verify capabilities interrupt from the 8051.
7409 *
7410 * This is a work-queue function outside of the interrupt.
7411 */
7412void handle_verify_cap(struct work_struct *work)
7413{
7414 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7415 link_vc_work);
7416 struct hfi1_devdata *dd = ppd->dd;
7417 u64 reg;
7418 u8 power_management;
7419 u8 continuous;
7420 u8 vcu;
7421 u8 vau;
7422 u8 z;
7423 u16 vl15buf;
7424 u16 link_widths;
7425 u16 crc_mask;
7426 u16 crc_val;
7427 u16 device_id;
7428 u16 active_tx, active_rx;
7429 u8 partner_supported_crc;
7430 u8 remote_tx_rate;
7431 u8 device_rev;
7432
7433 set_link_state(ppd, HLS_VERIFY_CAP);
7434
7435 lcb_shutdown(dd, 0);
7436 adjust_lcb_for_fpga_serdes(dd);
7437
7438 read_vc_remote_phy(dd, &power_management, &continuous);
7439 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7440 &partner_supported_crc);
7441 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7442 read_remote_device_id(dd, &device_id, &device_rev);
7443
7444 /* print the active widths */
7445 get_link_widths(dd, &active_tx, &active_rx);
7446 dd_dev_info(dd,
7447 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7448 (int)power_management, (int)continuous);
7449 dd_dev_info(dd,
7450 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7451 (int)vau, (int)z, (int)vcu, (int)vl15buf,
7452 (int)partner_supported_crc);
7453 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7454 (u32)remote_tx_rate, (u32)link_widths);
7455 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7456 (u32)device_id, (u32)device_rev);
7457 /*
7458 * The peer vAU value just read is the peer receiver value. HFI does
7459 * not support a transmit vAU of 0 (AU == 8). We advertised that
7460 * with Z=1 in the fabric capabilities sent to the peer. The peer
7461 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7462 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7463 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7464 * subject to the Z value exception.
7465 */
7466 if (vau == 0)
7467 vau = 1;
7468 set_up_vau(dd, vau);
7469
7470 /*
7471 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7472 * credits value and wait for link-up interrupt ot set it.
7473 */
7474 set_up_vl15(dd, 0);
7475 dd->vl15buf_cached = vl15buf;
7476
7477 /* set up the LCB CRC mode */
7478 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7479
7480 /* order is important: use the lowest bit in common */
7481 if (crc_mask & CAP_CRC_14B)
7482 crc_val = LCB_CRC_14B;
7483 else if (crc_mask & CAP_CRC_48B)
7484 crc_val = LCB_CRC_48B;
7485 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7486 crc_val = LCB_CRC_12B_16B_PER_LANE;
7487 else
7488 crc_val = LCB_CRC_16B;
7489
7490 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7491 write_csr(dd, DC_LCB_CFG_CRC_MODE,
7492 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7493
7494 /* set (14b only) or clear sideband credit */
7495 reg = read_csr(dd, SEND_CM_CTRL);
7496 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7497 write_csr(dd, SEND_CM_CTRL,
7498 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7499 } else {
7500 write_csr(dd, SEND_CM_CTRL,
7501 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7502 }
7503
7504 ppd->link_speed_active = 0; /* invalid value */
7505 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7506 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7507 switch (remote_tx_rate) {
7508 case 0:
7509 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7510 break;
7511 case 1:
7512 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7513 break;
7514 }
7515 } else {
7516 /* actual rate is highest bit of the ANDed rates */
7517 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7518
7519 if (rate & 2)
7520 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7521 else if (rate & 1)
7522 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7523 }
7524 if (ppd->link_speed_active == 0) {
7525 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7526 __func__, (int)remote_tx_rate);
7527 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7528 }
7529
7530 /*
7531 * Cache the values of the supported, enabled, and active
7532 * LTP CRC modes to return in 'portinfo' queries. But the bit
7533 * flags that are returned in the portinfo query differ from
7534 * what's in the link_crc_mask, crc_sizes, and crc_val
7535 * variables. Convert these here.
7536 */
7537 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7538 /* supported crc modes */
7539 ppd->port_ltp_crc_mode |=
7540 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7541 /* enabled crc modes */
7542 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7543 /* active crc mode */
7544
7545 /* set up the remote credit return table */
7546 assign_remote_cm_au_table(dd, vcu);
7547
7548 /*
7549 * The LCB is reset on entry to handle_verify_cap(), so this must
7550 * be applied on every link up.
7551 *
7552 * Adjust LCB error kill enable to kill the link if
7553 * these RBUF errors are seen:
7554 * REPLAY_BUF_MBE_SMASK
7555 * FLIT_INPUT_BUF_MBE_SMASK
7556 */
7557 if (is_ax(dd)) { /* fixed in B0 */
7558 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7559 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7560 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7561 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7562 }
7563
7564 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7565 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7566
7567 /* give 8051 access to the LCB CSRs */
7568 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7569 set_8051_lcb_access(dd);
7570
7571 /* tell the 8051 to go to LinkUp */
7572 set_link_state(ppd, HLS_GOING_UP);
7573}
7574
7575/**
7576 * apply_link_downgrade_policy - Apply the link width downgrade enabled
7577 * policy against the current active link widths.
7578 * @ppd: info of physical Hfi port
7579 * @refresh_widths: True indicates link downgrade event
7580 * @return: True indicates a successful link downgrade. False indicates
7581 * link downgrade event failed and the link will bounce back to
7582 * default link width.
7583 *
7584 * Called when the enabled policy changes or the active link widths
7585 * change.
7586 * Refresh_widths indicates that a link downgrade occurred. The
7587 * link_downgraded variable is set by refresh_widths and
7588 * determines the success/failure of the policy application.
7589 */
7590bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7591 bool refresh_widths)
7592{
7593 int do_bounce = 0;
7594 int tries;
7595 u16 lwde;
7596 u16 tx, rx;
7597 bool link_downgraded = refresh_widths;
7598
7599 /* use the hls lock to avoid a race with actual link up */
7600 tries = 0;
7601retry:
7602 mutex_lock(&ppd->hls_lock);
7603 /* only apply if the link is up */
7604 if (ppd->host_link_state & HLS_DOWN) {
7605 /* still going up..wait and retry */
7606 if (ppd->host_link_state & HLS_GOING_UP) {
7607 if (++tries < 1000) {
7608 mutex_unlock(&ppd->hls_lock);
7609 usleep_range(100, 120); /* arbitrary */
7610 goto retry;
7611 }
7612 dd_dev_err(ppd->dd,
7613 "%s: giving up waiting for link state change\n",
7614 __func__);
7615 }
7616 goto done;
7617 }
7618
7619 lwde = ppd->link_width_downgrade_enabled;
7620
7621 if (refresh_widths) {
7622 get_link_widths(ppd->dd, &tx, &rx);
7623 ppd->link_width_downgrade_tx_active = tx;
7624 ppd->link_width_downgrade_rx_active = rx;
7625 }
7626
7627 if (ppd->link_width_downgrade_tx_active == 0 ||
7628 ppd->link_width_downgrade_rx_active == 0) {
7629 /* the 8051 reported a dead link as a downgrade */
7630 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7631 link_downgraded = false;
7632 } else if (lwde == 0) {
7633 /* downgrade is disabled */
7634
7635 /* bounce if not at starting active width */
7636 if ((ppd->link_width_active !=
7637 ppd->link_width_downgrade_tx_active) ||
7638 (ppd->link_width_active !=
7639 ppd->link_width_downgrade_rx_active)) {
7640 dd_dev_err(ppd->dd,
7641 "Link downgrade is disabled and link has downgraded, downing link\n");
7642 dd_dev_err(ppd->dd,
7643 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7644 ppd->link_width_active,
7645 ppd->link_width_downgrade_tx_active,
7646 ppd->link_width_downgrade_rx_active);
7647 do_bounce = 1;
7648 link_downgraded = false;
7649 }
7650 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7651 (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7652 /* Tx or Rx is outside the enabled policy */
7653 dd_dev_err(ppd->dd,
7654 "Link is outside of downgrade allowed, downing link\n");
7655 dd_dev_err(ppd->dd,
7656 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7657 lwde, ppd->link_width_downgrade_tx_active,
7658 ppd->link_width_downgrade_rx_active);
7659 do_bounce = 1;
7660 link_downgraded = false;
7661 }
7662
7663done:
7664 mutex_unlock(&ppd->hls_lock);
7665
7666 if (do_bounce) {
7667 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7668 OPA_LINKDOWN_REASON_WIDTH_POLICY);
7669 set_link_state(ppd, HLS_DN_OFFLINE);
7670 start_link(ppd);
7671 }
7672
7673 return link_downgraded;
7674}
7675
7676/*
7677 * Handle a link downgrade interrupt from the 8051.
7678 *
7679 * This is a work-queue function outside of the interrupt.
7680 */
7681void handle_link_downgrade(struct work_struct *work)
7682{
7683 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7684 link_downgrade_work);
7685
7686 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7687 if (apply_link_downgrade_policy(ppd, true))
7688 update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7689}
7690
7691static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7692{
7693 return flag_string(buf, buf_len, flags, dcc_err_flags,
7694 ARRAY_SIZE(dcc_err_flags));
7695}
7696
7697static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7698{
7699 return flag_string(buf, buf_len, flags, lcb_err_flags,
7700 ARRAY_SIZE(lcb_err_flags));
7701}
7702
7703static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7704{
7705 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7706 ARRAY_SIZE(dc8051_err_flags));
7707}
7708
7709static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7710{
7711 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7712 ARRAY_SIZE(dc8051_info_err_flags));
7713}
7714
7715static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7716{
7717 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7718 ARRAY_SIZE(dc8051_info_host_msg_flags));
7719}
7720
7721static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7722{
7723 struct hfi1_pportdata *ppd = dd->pport;
7724 u64 info, err, host_msg;
7725 int queue_link_down = 0;
7726 char buf[96];
7727
7728 /* look at the flags */
7729 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7730 /* 8051 information set by firmware */
7731 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7732 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7733 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7734 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7735 host_msg = (info >>
7736 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7737 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7738
7739 /*
7740 * Handle error flags.
7741 */
7742 if (err & FAILED_LNI) {
7743 /*
7744 * LNI error indications are cleared by the 8051
7745 * only when starting polling. Only pay attention
7746 * to them when in the states that occur during
7747 * LNI.
7748 */
7749 if (ppd->host_link_state
7750 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7751 queue_link_down = 1;
7752 dd_dev_info(dd, "Link error: %s\n",
7753 dc8051_info_err_string(buf,
7754 sizeof(buf),
7755 err &
7756 FAILED_LNI));
7757 }
7758 err &= ~(u64)FAILED_LNI;
7759 }
7760 /* unknown frames can happen durning LNI, just count */
7761 if (err & UNKNOWN_FRAME) {
7762 ppd->unknown_frame_count++;
7763 err &= ~(u64)UNKNOWN_FRAME;
7764 }
7765 if (err) {
7766 /* report remaining errors, but do not do anything */
7767 dd_dev_err(dd, "8051 info error: %s\n",
7768 dc8051_info_err_string(buf, sizeof(buf),
7769 err));
7770 }
7771
7772 /*
7773 * Handle host message flags.
7774 */
7775 if (host_msg & HOST_REQ_DONE) {
7776 /*
7777 * Presently, the driver does a busy wait for
7778 * host requests to complete. This is only an
7779 * informational message.
7780 * NOTE: The 8051 clears the host message
7781 * information *on the next 8051 command*.
7782 * Therefore, when linkup is achieved,
7783 * this flag will still be set.
7784 */
7785 host_msg &= ~(u64)HOST_REQ_DONE;
7786 }
7787 if (host_msg & BC_SMA_MSG) {
7788 queue_work(ppd->link_wq, &ppd->sma_message_work);
7789 host_msg &= ~(u64)BC_SMA_MSG;
7790 }
7791 if (host_msg & LINKUP_ACHIEVED) {
7792 dd_dev_info(dd, "8051: Link up\n");
7793 queue_work(ppd->link_wq, &ppd->link_up_work);
7794 host_msg &= ~(u64)LINKUP_ACHIEVED;
7795 }
7796 if (host_msg & EXT_DEVICE_CFG_REQ) {
7797 handle_8051_request(ppd);
7798 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7799 }
7800 if (host_msg & VERIFY_CAP_FRAME) {
7801 queue_work(ppd->link_wq, &ppd->link_vc_work);
7802 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7803 }
7804 if (host_msg & LINK_GOING_DOWN) {
7805 const char *extra = "";
7806 /* no downgrade action needed if going down */
7807 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7808 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7809 extra = " (ignoring downgrade)";
7810 }
7811 dd_dev_info(dd, "8051: Link down%s\n", extra);
7812 queue_link_down = 1;
7813 host_msg &= ~(u64)LINK_GOING_DOWN;
7814 }
7815 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7816 queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7817 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7818 }
7819 if (host_msg) {
7820 /* report remaining messages, but do not do anything */
7821 dd_dev_info(dd, "8051 info host message: %s\n",
7822 dc8051_info_host_msg_string(buf,
7823 sizeof(buf),
7824 host_msg));
7825 }
7826
7827 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7828 }
7829 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7830 /*
7831 * Lost the 8051 heartbeat. If this happens, we
7832 * receive constant interrupts about it. Disable
7833 * the interrupt after the first.
7834 */
7835 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7836 write_csr(dd, DC_DC8051_ERR_EN,
7837 read_csr(dd, DC_DC8051_ERR_EN) &
7838 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7839
7840 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7841 }
7842 if (reg) {
7843 /* report the error, but do not do anything */
7844 dd_dev_err(dd, "8051 error: %s\n",
7845 dc8051_err_string(buf, sizeof(buf), reg));
7846 }
7847
7848 if (queue_link_down) {
7849 /*
7850 * if the link is already going down or disabled, do not
7851 * queue another. If there's a link down entry already
7852 * queued, don't queue another one.
7853 */
7854 if ((ppd->host_link_state &
7855 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7856 ppd->link_enabled == 0) {
7857 dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7858 __func__, ppd->host_link_state,
7859 ppd->link_enabled);
7860 } else {
7861 if (xchg(&ppd->is_link_down_queued, 1) == 1)
7862 dd_dev_info(dd,
7863 "%s: link down request already queued\n",
7864 __func__);
7865 else
7866 queue_work(ppd->link_wq, &ppd->link_down_work);
7867 }
7868 }
7869}
7870
7871static const char * const fm_config_txt[] = {
7872[0] =
7873 "BadHeadDist: Distance violation between two head flits",
7874[1] =
7875 "BadTailDist: Distance violation between two tail flits",
7876[2] =
7877 "BadCtrlDist: Distance violation between two credit control flits",
7878[3] =
7879 "BadCrdAck: Credits return for unsupported VL",
7880[4] =
7881 "UnsupportedVLMarker: Received VL Marker",
7882[5] =
7883 "BadPreempt: Exceeded the preemption nesting level",
7884[6] =
7885 "BadControlFlit: Received unsupported control flit",
7886/* no 7 */
7887[8] =
7888 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7889};
7890
7891static const char * const port_rcv_txt[] = {
7892[1] =
7893 "BadPktLen: Illegal PktLen",
7894[2] =
7895 "PktLenTooLong: Packet longer than PktLen",
7896[3] =
7897 "PktLenTooShort: Packet shorter than PktLen",
7898[4] =
7899 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7900[5] =
7901 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7902[6] =
7903 "BadL2: Illegal L2 opcode",
7904[7] =
7905 "BadSC: Unsupported SC",
7906[9] =
7907 "BadRC: Illegal RC",
7908[11] =
7909 "PreemptError: Preempting with same VL",
7910[12] =
7911 "PreemptVL15: Preempting a VL15 packet",
7912};
7913
7914#define OPA_LDR_FMCONFIG_OFFSET 16
7915#define OPA_LDR_PORTRCV_OFFSET 0
7916static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7917{
7918 u64 info, hdr0, hdr1;
7919 const char *extra;
7920 char buf[96];
7921 struct hfi1_pportdata *ppd = dd->pport;
7922 u8 lcl_reason = 0;
7923 int do_bounce = 0;
7924
7925 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7926 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7927 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7928 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7929 /* set status bit */
7930 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7931 }
7932 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7933 }
7934
7935 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7936 struct hfi1_pportdata *ppd = dd->pport;
7937 /* this counter saturates at (2^32) - 1 */
7938 if (ppd->link_downed < (u32)UINT_MAX)
7939 ppd->link_downed++;
7940 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7941 }
7942
7943 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7944 u8 reason_valid = 1;
7945
7946 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7947 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7948 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7949 /* set status bit */
7950 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7951 }
7952 switch (info) {
7953 case 0:
7954 case 1:
7955 case 2:
7956 case 3:
7957 case 4:
7958 case 5:
7959 case 6:
7960 extra = fm_config_txt[info];
7961 break;
7962 case 8:
7963 extra = fm_config_txt[info];
7964 if (ppd->port_error_action &
7965 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7966 do_bounce = 1;
7967 /*
7968 * lcl_reason cannot be derived from info
7969 * for this error
7970 */
7971 lcl_reason =
7972 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7973 }
7974 break;
7975 default:
7976 reason_valid = 0;
7977 snprintf(buf, sizeof(buf), "reserved%lld", info);
7978 extra = buf;
7979 break;
7980 }
7981
7982 if (reason_valid && !do_bounce) {
7983 do_bounce = ppd->port_error_action &
7984 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7985 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7986 }
7987
7988 /* just report this */
7989 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7990 extra);
7991 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7992 }
7993
7994 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7995 u8 reason_valid = 1;
7996
7997 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7998 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7999 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8000 if (!(dd->err_info_rcvport.status_and_code &
8001 OPA_EI_STATUS_SMASK)) {
8002 dd->err_info_rcvport.status_and_code =
8003 info & OPA_EI_CODE_SMASK;
8004 /* set status bit */
8005 dd->err_info_rcvport.status_and_code |=
8006 OPA_EI_STATUS_SMASK;
8007 /*
8008 * save first 2 flits in the packet that caused
8009 * the error
8010 */
8011 dd->err_info_rcvport.packet_flit1 = hdr0;
8012 dd->err_info_rcvport.packet_flit2 = hdr1;
8013 }
8014 switch (info) {
8015 case 1:
8016 case 2:
8017 case 3:
8018 case 4:
8019 case 5:
8020 case 6:
8021 case 7:
8022 case 9:
8023 case 11:
8024 case 12:
8025 extra = port_rcv_txt[info];
8026 break;
8027 default:
8028 reason_valid = 0;
8029 snprintf(buf, sizeof(buf), "reserved%lld", info);
8030 extra = buf;
8031 break;
8032 }
8033
8034 if (reason_valid && !do_bounce) {
8035 do_bounce = ppd->port_error_action &
8036 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
8037 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8038 }
8039
8040 /* just report this */
8041 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8042 " hdr0 0x%llx, hdr1 0x%llx\n",
8043 extra, hdr0, hdr1);
8044
8045 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8046 }
8047
8048 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8049 /* informative only */
8050 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8051 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8052 }
8053 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8054 /* informative only */
8055 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8056 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8057 }
8058
8059 if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8060 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8061
8062 /* report any remaining errors */
8063 if (reg)
8064 dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8065 dcc_err_string(buf, sizeof(buf), reg));
8066
8067 if (lcl_reason == 0)
8068 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8069
8070 if (do_bounce) {
8071 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8072 __func__);
8073 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8074 queue_work(ppd->link_wq, &ppd->link_bounce_work);
8075 }
8076}
8077
8078static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8079{
8080 char buf[96];
8081
8082 dd_dev_info(dd, "LCB Error: %s\n",
8083 lcb_err_string(buf, sizeof(buf), reg));
8084}
8085
8086/*
8087 * CCE block DC interrupt. Source is < 8.
8088 */
8089static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8090{
8091 const struct err_reg_info *eri = &dc_errs[source];
8092
8093 if (eri->handler) {
8094 interrupt_clear_down(dd, 0, eri);
8095 } else if (source == 3 /* dc_lbm_int */) {
8096 /*
8097 * This indicates that a parity error has occurred on the
8098 * address/control lines presented to the LBM. The error
8099 * is a single pulse, there is no associated error flag,
8100 * and it is non-maskable. This is because if a parity
8101 * error occurs on the request the request is dropped.
8102 * This should never occur, but it is nice to know if it
8103 * ever does.
8104 */
8105 dd_dev_err(dd, "Parity error in DC LBM block\n");
8106 } else {
8107 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8108 }
8109}
8110
8111/*
8112 * TX block send credit interrupt. Source is < 160.
8113 */
8114static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8115{
8116 sc_group_release_update(dd, source);
8117}
8118
8119/*
8120 * TX block SDMA interrupt. Source is < 48.
8121 *
8122 * SDMA interrupts are grouped by type:
8123 *
8124 * 0 - N-1 = SDma
8125 * N - 2N-1 = SDmaProgress
8126 * 2N - 3N-1 = SDmaIdle
8127 */
8128static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8129{
8130 /* what interrupt */
8131 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
8132 /* which engine */
8133 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8134
8135#ifdef CONFIG_SDMA_VERBOSITY
8136 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8137 slashstrip(__FILE__), __LINE__, __func__);
8138 sdma_dumpstate(&dd->per_sdma[which]);
8139#endif
8140
8141 if (likely(what < 3 && which < dd->num_sdma)) {
8142 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8143 } else {
8144 /* should not happen */
8145 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8146 }
8147}
8148
8149/**
8150 * is_rcv_avail_int() - User receive context available IRQ handler
8151 * @dd: valid dd
8152 * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8153 *
8154 * RX block receive available interrupt. Source is < 160.
8155 *
8156 * This is the general interrupt handler for user (PSM) receive contexts,
8157 * and can only be used for non-threaded IRQs.
8158 */
8159static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8160{
8161 struct hfi1_ctxtdata *rcd;
8162 char *err_detail;
8163
8164 if (likely(source < dd->num_rcv_contexts)) {
8165 rcd = hfi1_rcd_get_by_index(dd, source);
8166 if (rcd) {
8167 handle_user_interrupt(rcd);
8168 hfi1_rcd_put(rcd);
8169 return; /* OK */
8170 }
8171 /* received an interrupt, but no rcd */
8172 err_detail = "dataless";
8173 } else {
8174 /* received an interrupt, but are not using that context */
8175 err_detail = "out of range";
8176 }
8177 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8178 err_detail, source);
8179}
8180
8181/**
8182 * is_rcv_urgent_int() - User receive context urgent IRQ handler
8183 * @dd: valid dd
8184 * @source: logical IRQ source (ofse from IS_RCVURGENT_START)
8185 *
8186 * RX block receive urgent interrupt. Source is < 160.
8187 *
8188 * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8189 */
8190static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8191{
8192 struct hfi1_ctxtdata *rcd;
8193 char *err_detail;
8194
8195 if (likely(source < dd->num_rcv_contexts)) {
8196 rcd = hfi1_rcd_get_by_index(dd, source);
8197 if (rcd) {
8198 handle_user_interrupt(rcd);
8199 hfi1_rcd_put(rcd);
8200 return; /* OK */
8201 }
8202 /* received an interrupt, but no rcd */
8203 err_detail = "dataless";
8204 } else {
8205 /* received an interrupt, but are not using that context */
8206 err_detail = "out of range";
8207 }
8208 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8209 err_detail, source);
8210}
8211
8212/*
8213 * Reserved range interrupt. Should not be called in normal operation.
8214 */
8215static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8216{
8217 char name[64];
8218
8219 dd_dev_err(dd, "unexpected %s interrupt\n",
8220 is_reserved_name(name, sizeof(name), source));
8221}
8222
8223static const struct is_table is_table[] = {
8224/*
8225 * start end
8226 * name func interrupt func
8227 */
8228{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
8229 is_misc_err_name, is_misc_err_int },
8230{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
8231 is_sdma_eng_err_name, is_sdma_eng_err_int },
8232{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8233 is_sendctxt_err_name, is_sendctxt_err_int },
8234{ IS_SDMA_START, IS_SDMA_END,
8235 is_sdma_eng_name, is_sdma_eng_int },
8236{ IS_VARIOUS_START, IS_VARIOUS_END,
8237 is_various_name, is_various_int },
8238{ IS_DC_START, IS_DC_END,
8239 is_dc_name, is_dc_int },
8240{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
8241 is_rcv_avail_name, is_rcv_avail_int },
8242{ IS_RCVURGENT_START, IS_RCVURGENT_END,
8243 is_rcv_urgent_name, is_rcv_urgent_int },
8244{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
8245 is_send_credit_name, is_send_credit_int},
8246{ IS_RESERVED_START, IS_RESERVED_END,
8247 is_reserved_name, is_reserved_int},
8248};
8249
8250/*
8251 * Interrupt source interrupt - called when the given source has an interrupt.
8252 * Source is a bit index into an array of 64-bit integers.
8253 */
8254static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8255{
8256 const struct is_table *entry;
8257
8258 /* avoids a double compare by walking the table in-order */
8259 for (entry = &is_table[0]; entry->is_name; entry++) {
8260 if (source < entry->end) {
8261 trace_hfi1_interrupt(dd, entry, source);
8262 entry->is_int(dd, source - entry->start);
8263 return;
8264 }
8265 }
8266 /* fell off the end */
8267 dd_dev_err(dd, "invalid interrupt source %u\n", source);
8268}
8269
8270/**
8271 * gerneral_interrupt() - General interrupt handler
8272 * @irq: MSIx IRQ vector
8273 * @data: hfi1 devdata
8274 *
8275 * This is able to correctly handle all non-threaded interrupts. Receive
8276 * context DATA IRQs are threaded and are not supported by this handler.
8277 *
8278 */
8279static irqreturn_t general_interrupt(int irq, void *data)
8280{
8281 struct hfi1_devdata *dd = data;
8282 u64 regs[CCE_NUM_INT_CSRS];
8283 u32 bit;
8284 int i;
8285 irqreturn_t handled = IRQ_NONE;
8286
8287 this_cpu_inc(*dd->int_counter);
8288
8289 /* phase 1: scan and clear all handled interrupts */
8290 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8291 if (dd->gi_mask[i] == 0) {
8292 regs[i] = 0; /* used later */
8293 continue;
8294 }
8295 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8296 dd->gi_mask[i];
8297 /* only clear if anything is set */
8298 if (regs[i])
8299 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8300 }
8301
8302 /* phase 2: call the appropriate handler */
8303 for_each_set_bit(bit, (unsigned long *)&regs[0],
8304 CCE_NUM_INT_CSRS * 64) {
8305 is_interrupt(dd, bit);
8306 handled = IRQ_HANDLED;
8307 }
8308
8309 return handled;
8310}
8311
8312static irqreturn_t sdma_interrupt(int irq, void *data)
8313{
8314 struct sdma_engine *sde = data;
8315 struct hfi1_devdata *dd = sde->dd;
8316 u64 status;
8317
8318#ifdef CONFIG_SDMA_VERBOSITY
8319 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8320 slashstrip(__FILE__), __LINE__, __func__);
8321 sdma_dumpstate(sde);
8322#endif
8323
8324 this_cpu_inc(*dd->int_counter);
8325
8326 /* This read_csr is really bad in the hot path */
8327 status = read_csr(dd,
8328 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8329 & sde->imask;
8330 if (likely(status)) {
8331 /* clear the interrupt(s) */
8332 write_csr(dd,
8333 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8334 status);
8335
8336 /* handle the interrupt(s) */
8337 sdma_engine_interrupt(sde, status);
8338 } else {
8339 dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8340 sde->this_idx);
8341 }
8342 return IRQ_HANDLED;
8343}
8344
8345/*
8346 * Clear the receive interrupt. Use a read of the interrupt clear CSR
8347 * to insure that the write completed. This does NOT guarantee that
8348 * queued DMA writes to memory from the chip are pushed.
8349 */
8350static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8351{
8352 struct hfi1_devdata *dd = rcd->dd;
8353 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8354
8355 mmiowb(); /* make sure everything before is written */
8356 write_csr(dd, addr, rcd->imask);
8357 /* force the above write on the chip and get a value back */
8358 (void)read_csr(dd, addr);
8359}
8360
8361/* force the receive interrupt */
8362void force_recv_intr(struct hfi1_ctxtdata *rcd)
8363{
8364 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8365}
8366
8367/*
8368 * Return non-zero if a packet is present.
8369 *
8370 * This routine is called when rechecking for packets after the RcvAvail
8371 * interrupt has been cleared down. First, do a quick check of memory for
8372 * a packet present. If not found, use an expensive CSR read of the context
8373 * tail to determine the actual tail. The CSR read is necessary because there
8374 * is no method to push pending DMAs to memory other than an interrupt and we
8375 * are trying to determine if we need to force an interrupt.
8376 */
8377static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8378{
8379 u32 tail;
8380 int present;
8381
8382 if (!rcd->rcvhdrtail_kvaddr)
8383 present = (rcd->seq_cnt ==
8384 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8385 else /* is RDMA rtail */
8386 present = (rcd->head != get_rcvhdrtail(rcd));
8387
8388 if (present)
8389 return 1;
8390
8391 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8392 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8393 return rcd->head != tail;
8394}
8395
8396/*
8397 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8398 * This routine will try to handle packets immediately (latency), but if
8399 * it finds too many, it will invoke the thread handler (bandwitdh). The
8400 * chip receive interrupt is *not* cleared down until this or the thread (if
8401 * invoked) is finished. The intent is to avoid extra interrupts while we
8402 * are processing packets anyway.
8403 */
8404static irqreturn_t receive_context_interrupt(int irq, void *data)
8405{
8406 struct hfi1_ctxtdata *rcd = data;
8407 struct hfi1_devdata *dd = rcd->dd;
8408 int disposition;
8409 int present;
8410
8411 trace_hfi1_receive_interrupt(dd, rcd);
8412 this_cpu_inc(*dd->int_counter);
8413 aspm_ctx_disable(rcd);
8414
8415 /* receive interrupt remains blocked while processing packets */
8416 disposition = rcd->do_interrupt(rcd, 0);
8417
8418 /*
8419 * Too many packets were seen while processing packets in this
8420 * IRQ handler. Invoke the handler thread. The receive interrupt
8421 * remains blocked.
8422 */
8423 if (disposition == RCV_PKT_LIMIT)
8424 return IRQ_WAKE_THREAD;
8425
8426 /*
8427 * The packet processor detected no more packets. Clear the receive
8428 * interrupt and recheck for a packet packet that may have arrived
8429 * after the previous check and interrupt clear. If a packet arrived,
8430 * force another interrupt.
8431 */
8432 clear_recv_intr(rcd);
8433 present = check_packet_present(rcd);
8434 if (present)
8435 force_recv_intr(rcd);
8436
8437 return IRQ_HANDLED;
8438}
8439
8440/*
8441 * Receive packet thread handler. This expects to be invoked with the
8442 * receive interrupt still blocked.
8443 */
8444static irqreturn_t receive_context_thread(int irq, void *data)
8445{
8446 struct hfi1_ctxtdata *rcd = data;
8447 int present;
8448
8449 /* receive interrupt is still blocked from the IRQ handler */
8450 (void)rcd->do_interrupt(rcd, 1);
8451
8452 /*
8453 * The packet processor will only return if it detected no more
8454 * packets. Hold IRQs here so we can safely clear the interrupt and
8455 * recheck for a packet that may have arrived after the previous
8456 * check and the interrupt clear. If a packet arrived, force another
8457 * interrupt.
8458 */
8459 local_irq_disable();
8460 clear_recv_intr(rcd);
8461 present = check_packet_present(rcd);
8462 if (present)
8463 force_recv_intr(rcd);
8464 local_irq_enable();
8465
8466 return IRQ_HANDLED;
8467}
8468
8469/* ========================================================================= */
8470
8471u32 read_physical_state(struct hfi1_devdata *dd)
8472{
8473 u64 reg;
8474
8475 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8476 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8477 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8478}
8479
8480u32 read_logical_state(struct hfi1_devdata *dd)
8481{
8482 u64 reg;
8483
8484 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8485 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8486 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8487}
8488
8489static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8490{
8491 u64 reg;
8492
8493 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8494 /* clear current state, set new state */
8495 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8496 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8497 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8498}
8499
8500/*
8501 * Use the 8051 to read a LCB CSR.
8502 */
8503static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8504{
8505 u32 regno;
8506 int ret;
8507
8508 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8509 if (acquire_lcb_access(dd, 0) == 0) {
8510 *data = read_csr(dd, addr);
8511 release_lcb_access(dd, 0);
8512 return 0;
8513 }
8514 return -EBUSY;
8515 }
8516
8517 /* register is an index of LCB registers: (offset - base) / 8 */
8518 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8519 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8520 if (ret != HCMD_SUCCESS)
8521 return -EBUSY;
8522 return 0;
8523}
8524
8525/*
8526 * Provide a cache for some of the LCB registers in case the LCB is
8527 * unavailable.
8528 * (The LCB is unavailable in certain link states, for example.)
8529 */
8530struct lcb_datum {
8531 u32 off;
8532 u64 val;
8533};
8534
8535static struct lcb_datum lcb_cache[] = {
8536 { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8537 { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8538 { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8539};
8540
8541static void update_lcb_cache(struct hfi1_devdata *dd)
8542{
8543 int i;
8544 int ret;
8545 u64 val;
8546
8547 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8548 ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8549
8550 /* Update if we get good data */
8551 if (likely(ret != -EBUSY))
8552 lcb_cache[i].val = val;
8553 }
8554}
8555
8556static int read_lcb_cache(u32 off, u64 *val)
8557{
8558 int i;
8559
8560 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8561 if (lcb_cache[i].off == off) {
8562 *val = lcb_cache[i].val;
8563 return 0;
8564 }
8565 }
8566
8567 pr_warn("%s bad offset 0x%x\n", __func__, off);
8568 return -1;
8569}
8570
8571/*
8572 * Read an LCB CSR. Access may not be in host control, so check.
8573 * Return 0 on success, -EBUSY on failure.
8574 */
8575int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8576{
8577 struct hfi1_pportdata *ppd = dd->pport;
8578
8579 /* if up, go through the 8051 for the value */
8580 if (ppd->host_link_state & HLS_UP)
8581 return read_lcb_via_8051(dd, addr, data);
8582 /* if going up or down, check the cache, otherwise, no access */
8583 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8584 if (read_lcb_cache(addr, data))
8585 return -EBUSY;
8586 return 0;
8587 }
8588
8589 /* otherwise, host has access */
8590 *data = read_csr(dd, addr);
8591 return 0;
8592}
8593
8594/*
8595 * Use the 8051 to write a LCB CSR.
8596 */
8597static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8598{
8599 u32 regno;
8600 int ret;
8601
8602 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8603 (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8604 if (acquire_lcb_access(dd, 0) == 0) {
8605 write_csr(dd, addr, data);
8606 release_lcb_access(dd, 0);
8607 return 0;
8608 }
8609 return -EBUSY;
8610 }
8611
8612 /* register is an index of LCB registers: (offset - base) / 8 */
8613 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8614 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8615 if (ret != HCMD_SUCCESS)
8616 return -EBUSY;
8617 return 0;
8618}
8619
8620/*
8621 * Write an LCB CSR. Access may not be in host control, so check.
8622 * Return 0 on success, -EBUSY on failure.
8623 */
8624int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8625{
8626 struct hfi1_pportdata *ppd = dd->pport;
8627
8628 /* if up, go through the 8051 for the value */
8629 if (ppd->host_link_state & HLS_UP)
8630 return write_lcb_via_8051(dd, addr, data);
8631 /* if going up or down, no access */
8632 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8633 return -EBUSY;
8634 /* otherwise, host has access */
8635 write_csr(dd, addr, data);
8636 return 0;
8637}
8638
8639/*
8640 * Returns:
8641 * < 0 = Linux error, not able to get access
8642 * > 0 = 8051 command RETURN_CODE
8643 */
8644static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8645 u64 *out_data)
8646{
8647 u64 reg, completed;
8648 int return_code;
8649 unsigned long timeout;
8650
8651 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8652
8653 mutex_lock(&dd->dc8051_lock);
8654
8655 /* We can't send any commands to the 8051 if it's in reset */
8656 if (dd->dc_shutdown) {
8657 return_code = -ENODEV;
8658 goto fail;
8659 }
8660
8661 /*
8662 * If an 8051 host command timed out previously, then the 8051 is
8663 * stuck.
8664 *
8665 * On first timeout, attempt to reset and restart the entire DC
8666 * block (including 8051). (Is this too big of a hammer?)
8667 *
8668 * If the 8051 times out a second time, the reset did not bring it
8669 * back to healthy life. In that case, fail any subsequent commands.
8670 */
8671 if (dd->dc8051_timed_out) {
8672 if (dd->dc8051_timed_out > 1) {
8673 dd_dev_err(dd,
8674 "Previous 8051 host command timed out, skipping command %u\n",
8675 type);
8676 return_code = -ENXIO;
8677 goto fail;
8678 }
8679 _dc_shutdown(dd);
8680 _dc_start(dd);
8681 }
8682
8683 /*
8684 * If there is no timeout, then the 8051 command interface is
8685 * waiting for a command.
8686 */
8687
8688 /*
8689 * When writing a LCB CSR, out_data contains the full value to
8690 * to be written, while in_data contains the relative LCB
8691 * address in 7:0. Do the work here, rather than the caller,
8692 * of distrubting the write data to where it needs to go:
8693 *
8694 * Write data
8695 * 39:00 -> in_data[47:8]
8696 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8697 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8698 */
8699 if (type == HCMD_WRITE_LCB_CSR) {
8700 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8701 /* must preserve COMPLETED - it is tied to hardware */
8702 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8703 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8704 reg |= ((((*out_data) >> 40) & 0xff) <<
8705 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8706 | ((((*out_data) >> 48) & 0xffff) <<
8707 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8708 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8709 }
8710
8711 /*
8712 * Do two writes: the first to stabilize the type and req_data, the
8713 * second to activate.
8714 */
8715 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8716 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8717 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8718 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8719 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8720 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8721 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8722
8723 /* wait for completion, alternate: interrupt */
8724 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8725 while (1) {
8726 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8727 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8728 if (completed)
8729 break;
8730 if (time_after(jiffies, timeout)) {
8731 dd->dc8051_timed_out++;
8732 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8733 if (out_data)
8734 *out_data = 0;
8735 return_code = -ETIMEDOUT;
8736 goto fail;
8737 }
8738 udelay(2);
8739 }
8740
8741 if (out_data) {
8742 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8743 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8744 if (type == HCMD_READ_LCB_CSR) {
8745 /* top 16 bits are in a different register */
8746 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8747 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8748 << (48
8749 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8750 }
8751 }
8752 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8753 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8754 dd->dc8051_timed_out = 0;
8755 /*
8756 * Clear command for next user.
8757 */
8758 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8759
8760fail:
8761 mutex_unlock(&dd->dc8051_lock);
8762 return return_code;
8763}
8764
8765static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8766{
8767 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8768}
8769
8770int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8771 u8 lane_id, u32 config_data)
8772{
8773 u64 data;
8774 int ret;
8775
8776 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8777 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8778 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8779 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8780 if (ret != HCMD_SUCCESS) {
8781 dd_dev_err(dd,
8782 "load 8051 config: field id %d, lane %d, err %d\n",
8783 (int)field_id, (int)lane_id, ret);
8784 }
8785 return ret;
8786}
8787
8788/*
8789 * Read the 8051 firmware "registers". Use the RAM directly. Always
8790 * set the result, even on error.
8791 * Return 0 on success, -errno on failure
8792 */
8793int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8794 u32 *result)
8795{
8796 u64 big_data;
8797 u32 addr;
8798 int ret;
8799
8800 /* address start depends on the lane_id */
8801 if (lane_id < 4)
8802 addr = (4 * NUM_GENERAL_FIELDS)
8803 + (lane_id * 4 * NUM_LANE_FIELDS);
8804 else
8805 addr = 0;
8806 addr += field_id * 4;
8807
8808 /* read is in 8-byte chunks, hardware will truncate the address down */
8809 ret = read_8051_data(dd, addr, 8, &big_data);
8810
8811 if (ret == 0) {
8812 /* extract the 4 bytes we want */
8813 if (addr & 0x4)
8814 *result = (u32)(big_data >> 32);
8815 else
8816 *result = (u32)big_data;
8817 } else {
8818 *result = 0;
8819 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8820 __func__, lane_id, field_id);
8821 }
8822
8823 return ret;
8824}
8825
8826static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8827 u8 continuous)
8828{
8829 u32 frame;
8830
8831 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8832 | power_management << POWER_MANAGEMENT_SHIFT;
8833 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8834 GENERAL_CONFIG, frame);
8835}
8836
8837static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8838 u16 vl15buf, u8 crc_sizes)
8839{
8840 u32 frame;
8841
8842 frame = (u32)vau << VAU_SHIFT
8843 | (u32)z << Z_SHIFT
8844 | (u32)vcu << VCU_SHIFT
8845 | (u32)vl15buf << VL15BUF_SHIFT
8846 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8847 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8848 GENERAL_CONFIG, frame);
8849}
8850
8851static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8852 u8 *flag_bits, u16 *link_widths)
8853{
8854 u32 frame;
8855
8856 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8857 &frame);
8858 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8859 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8860 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8861}
8862
8863static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8864 u8 misc_bits,
8865 u8 flag_bits,
8866 u16 link_widths)
8867{
8868 u32 frame;
8869
8870 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8871 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8872 | (u32)link_widths << LINK_WIDTH_SHIFT;
8873 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8874 frame);
8875}
8876
8877static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8878 u8 device_rev)
8879{
8880 u32 frame;
8881
8882 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8883 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8884 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8885}
8886
8887static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8888 u8 *device_rev)
8889{
8890 u32 frame;
8891
8892 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8893 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8894 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8895 & REMOTE_DEVICE_REV_MASK;
8896}
8897
8898int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8899{
8900 u32 frame;
8901 u32 mask;
8902
8903 mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8904 read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8905 /* Clear, then set field */
8906 frame &= ~mask;
8907 frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8908 return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8909 frame);
8910}
8911
8912void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8913 u8 *ver_patch)
8914{
8915 u32 frame;
8916
8917 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8918 *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8919 STS_FM_VERSION_MAJOR_MASK;
8920 *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8921 STS_FM_VERSION_MINOR_MASK;
8922
8923 read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8924 *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8925 STS_FM_VERSION_PATCH_MASK;
8926}
8927
8928static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8929 u8 *continuous)
8930{
8931 u32 frame;
8932
8933 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8934 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8935 & POWER_MANAGEMENT_MASK;
8936 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8937 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8938}
8939
8940static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8941 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8942{
8943 u32 frame;
8944
8945 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8946 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8947 *z = (frame >> Z_SHIFT) & Z_MASK;
8948 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8949 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8950 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8951}
8952
8953static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8954 u8 *remote_tx_rate,
8955 u16 *link_widths)
8956{
8957 u32 frame;
8958
8959 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8960 &frame);
8961 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8962 & REMOTE_TX_RATE_MASK;
8963 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8964}
8965
8966static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8967{
8968 u32 frame;
8969
8970 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8971 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8972}
8973
8974static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8975{
8976 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8977}
8978
8979static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8980{
8981 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8982}
8983
8984void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8985{
8986 u32 frame;
8987 int ret;
8988
8989 *link_quality = 0;
8990 if (dd->pport->host_link_state & HLS_UP) {
8991 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8992 &frame);
8993 if (ret == 0)
8994 *link_quality = (frame >> LINK_QUALITY_SHIFT)
8995 & LINK_QUALITY_MASK;
8996 }
8997}
8998
8999static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9000{
9001 u32 frame;
9002
9003 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9004 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9005}
9006
9007static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9008{
9009 u32 frame;
9010
9011 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9012 *ldr = (frame & 0xff);
9013}
9014
9015static int read_tx_settings(struct hfi1_devdata *dd,
9016 u8 *enable_lane_tx,
9017 u8 *tx_polarity_inversion,
9018 u8 *rx_polarity_inversion,
9019 u8 *max_rate)
9020{
9021 u32 frame;
9022 int ret;
9023
9024 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9025 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9026 & ENABLE_LANE_TX_MASK;
9027 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9028 & TX_POLARITY_INVERSION_MASK;
9029 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9030 & RX_POLARITY_INVERSION_MASK;
9031 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9032 return ret;
9033}
9034
9035static int write_tx_settings(struct hfi1_devdata *dd,
9036 u8 enable_lane_tx,
9037 u8 tx_polarity_inversion,
9038 u8 rx_polarity_inversion,
9039 u8 max_rate)
9040{
9041 u32 frame;
9042
9043 /* no need to mask, all variable sizes match field widths */
9044 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9045 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9046 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9047 | max_rate << MAX_RATE_SHIFT;
9048 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9049}
9050
9051/*
9052 * Read an idle LCB message.
9053 *
9054 * Returns 0 on success, -EINVAL on error
9055 */
9056static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9057{
9058 int ret;
9059
9060 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9061 if (ret != HCMD_SUCCESS) {
9062 dd_dev_err(dd, "read idle message: type %d, err %d\n",
9063 (u32)type, ret);
9064 return -EINVAL;
9065 }
9066 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9067 /* return only the payload as we already know the type */
9068 *data_out >>= IDLE_PAYLOAD_SHIFT;
9069 return 0;
9070}
9071
9072/*
9073 * Read an idle SMA message. To be done in response to a notification from
9074 * the 8051.
9075 *
9076 * Returns 0 on success, -EINVAL on error
9077 */
9078static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9079{
9080 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9081 data);
9082}
9083
9084/*
9085 * Send an idle LCB message.
9086 *
9087 * Returns 0 on success, -EINVAL on error
9088 */
9089static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9090{
9091 int ret;
9092
9093 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9094 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9095 if (ret != HCMD_SUCCESS) {
9096 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9097 data, ret);
9098 return -EINVAL;
9099 }
9100 return 0;
9101}
9102
9103/*
9104 * Send an idle SMA message.
9105 *
9106 * Returns 0 on success, -EINVAL on error
9107 */
9108int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9109{
9110 u64 data;
9111
9112 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9113 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9114 return send_idle_message(dd, data);
9115}
9116
9117/*
9118 * Initialize the LCB then do a quick link up. This may or may not be
9119 * in loopback.
9120 *
9121 * return 0 on success, -errno on error
9122 */
9123static int do_quick_linkup(struct hfi1_devdata *dd)
9124{
9125 int ret;
9126
9127 lcb_shutdown(dd, 0);
9128
9129 if (loopback) {
9130 /* LCB_CFG_LOOPBACK.VAL = 2 */
9131 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
9132 write_csr(dd, DC_LCB_CFG_LOOPBACK,
9133 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9134 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9135 }
9136
9137 /* start the LCBs */
9138 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9139 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9140
9141 /* simulator only loopback steps */
9142 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9143 /* LCB_CFG_RUN.EN = 1 */
9144 write_csr(dd, DC_LCB_CFG_RUN,
9145 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9146
9147 ret = wait_link_transfer_active(dd, 10);
9148 if (ret)
9149 return ret;
9150
9151 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9152 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9153 }
9154
9155 if (!loopback) {
9156 /*
9157 * When doing quick linkup and not in loopback, both
9158 * sides must be done with LCB set-up before either
9159 * starts the quick linkup. Put a delay here so that
9160 * both sides can be started and have a chance to be
9161 * done with LCB set up before resuming.
9162 */
9163 dd_dev_err(dd,
9164 "Pausing for peer to be finished with LCB set up\n");
9165 msleep(5000);
9166 dd_dev_err(dd, "Continuing with quick linkup\n");
9167 }
9168
9169 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9170 set_8051_lcb_access(dd);
9171
9172 /*
9173 * State "quick" LinkUp request sets the physical link state to
9174 * LinkUp without a verify capability sequence.
9175 * This state is in simulator v37 and later.
9176 */
9177 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9178 if (ret != HCMD_SUCCESS) {
9179 dd_dev_err(dd,
9180 "%s: set physical link state to quick LinkUp failed with return %d\n",
9181 __func__, ret);
9182
9183 set_host_lcb_access(dd);
9184 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9185
9186 if (ret >= 0)
9187 ret = -EINVAL;
9188 return ret;
9189 }
9190
9191 return 0; /* success */
9192}
9193
9194/*
9195 * Do all special steps to set up loopback.
9196 */
9197static int init_loopback(struct hfi1_devdata *dd)
9198{
9199 dd_dev_info(dd, "Entering loopback mode\n");
9200
9201 /* all loopbacks should disable self GUID check */
9202 write_csr(dd, DC_DC8051_CFG_MODE,
9203 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9204
9205 /*
9206 * The simulator has only one loopback option - LCB. Switch
9207 * to that option, which includes quick link up.
9208 *
9209 * Accept all valid loopback values.
9210 */
9211 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9212 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9213 loopback == LOOPBACK_CABLE)) {
9214 loopback = LOOPBACK_LCB;
9215 quick_linkup = 1;
9216 return 0;
9217 }
9218
9219 /*
9220 * SerDes loopback init sequence is handled in set_local_link_attributes
9221 */
9222 if (loopback == LOOPBACK_SERDES)
9223 return 0;
9224
9225 /* LCB loopback - handled at poll time */
9226 if (loopback == LOOPBACK_LCB) {
9227 quick_linkup = 1; /* LCB is always quick linkup */
9228
9229 /* not supported in emulation due to emulation RTL changes */
9230 if (dd->icode == ICODE_FPGA_EMULATION) {
9231 dd_dev_err(dd,
9232 "LCB loopback not supported in emulation\n");
9233 return -EINVAL;
9234 }
9235 return 0;
9236 }
9237
9238 /* external cable loopback requires no extra steps */
9239 if (loopback == LOOPBACK_CABLE)
9240 return 0;
9241
9242 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9243 return -EINVAL;
9244}
9245
9246/*
9247 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9248 * used in the Verify Capability link width attribute.
9249 */
9250static u16 opa_to_vc_link_widths(u16 opa_widths)
9251{
9252 int i;
9253 u16 result = 0;
9254
9255 static const struct link_bits {
9256 u16 from;
9257 u16 to;
9258 } opa_link_xlate[] = {
9259 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
9260 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
9261 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
9262 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
9263 };
9264
9265 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9266 if (opa_widths & opa_link_xlate[i].from)
9267 result |= opa_link_xlate[i].to;
9268 }
9269 return result;
9270}
9271
9272/*
9273 * Set link attributes before moving to polling.
9274 */
9275static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9276{
9277 struct hfi1_devdata *dd = ppd->dd;
9278 u8 enable_lane_tx;
9279 u8 tx_polarity_inversion;
9280 u8 rx_polarity_inversion;
9281 int ret;
9282 u32 misc_bits = 0;
9283 /* reset our fabric serdes to clear any lingering problems */
9284 fabric_serdes_reset(dd);
9285
9286 /* set the local tx rate - need to read-modify-write */
9287 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9288 &rx_polarity_inversion, &ppd->local_tx_rate);
9289 if (ret)
9290 goto set_local_link_attributes_fail;
9291
9292 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9293 /* set the tx rate to the fastest enabled */
9294 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9295 ppd->local_tx_rate = 1;
9296 else
9297 ppd->local_tx_rate = 0;
9298 } else {
9299 /* set the tx rate to all enabled */
9300 ppd->local_tx_rate = 0;
9301 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9302 ppd->local_tx_rate |= 2;
9303 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9304 ppd->local_tx_rate |= 1;
9305 }
9306
9307 enable_lane_tx = 0xF; /* enable all four lanes */
9308 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9309 rx_polarity_inversion, ppd->local_tx_rate);
9310 if (ret != HCMD_SUCCESS)
9311 goto set_local_link_attributes_fail;
9312
9313 ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9314 if (ret != HCMD_SUCCESS) {
9315 dd_dev_err(dd,
9316 "Failed to set host interface version, return 0x%x\n",
9317 ret);
9318 goto set_local_link_attributes_fail;
9319 }
9320
9321 /*
9322 * DC supports continuous updates.
9323 */
9324 ret = write_vc_local_phy(dd,
9325 0 /* no power management */,
9326 1 /* continuous updates */);
9327 if (ret != HCMD_SUCCESS)
9328 goto set_local_link_attributes_fail;
9329
9330 /* z=1 in the next call: AU of 0 is not supported by the hardware */
9331 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9332 ppd->port_crc_mode_enabled);
9333 if (ret != HCMD_SUCCESS)
9334 goto set_local_link_attributes_fail;
9335
9336 /*
9337 * SerDes loopback init sequence requires
9338 * setting bit 0 of MISC_CONFIG_BITS
9339 */
9340 if (loopback == LOOPBACK_SERDES)
9341 misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9342
9343 /*
9344 * An external device configuration request is used to reset the LCB
9345 * to retry to obtain operational lanes when the first attempt is
9346 * unsuccesful.
9347 */
9348 if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9349 misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9350
9351 ret = write_vc_local_link_mode(dd, misc_bits, 0,
9352 opa_to_vc_link_widths(
9353 ppd->link_width_enabled));
9354 if (ret != HCMD_SUCCESS)
9355 goto set_local_link_attributes_fail;
9356
9357 /* let peer know who we are */
9358 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9359 if (ret == HCMD_SUCCESS)
9360 return 0;
9361
9362set_local_link_attributes_fail:
9363 dd_dev_err(dd,
9364 "Failed to set local link attributes, return 0x%x\n",
9365 ret);
9366 return ret;
9367}
9368
9369/*
9370 * Call this to start the link.
9371 * Do not do anything if the link is disabled.
9372 * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9373 */
9374int start_link(struct hfi1_pportdata *ppd)
9375{
9376 /*
9377 * Tune the SerDes to a ballpark setting for optimal signal and bit
9378 * error rate. Needs to be done before starting the link.
9379 */
9380 tune_serdes(ppd);
9381
9382 if (!ppd->driver_link_ready) {
9383 dd_dev_info(ppd->dd,
9384 "%s: stopping link start because driver is not ready\n",
9385 __func__);
9386 return 0;
9387 }
9388
9389 /*
9390 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9391 * pkey table can be configured properly if the HFI unit is connected
9392 * to switch port with MgmtAllowed=NO
9393 */
9394 clear_full_mgmt_pkey(ppd);
9395
9396 return set_link_state(ppd, HLS_DN_POLL);
9397}
9398
9399static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9400{
9401 struct hfi1_devdata *dd = ppd->dd;
9402 u64 mask;
9403 unsigned long timeout;
9404
9405 /*
9406 * Some QSFP cables have a quirk that asserts the IntN line as a side
9407 * effect of power up on plug-in. We ignore this false positive
9408 * interrupt until the module has finished powering up by waiting for
9409 * a minimum timeout of the module inrush initialization time of
9410 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9411 * module have stabilized.
9412 */
9413 msleep(500);
9414
9415 /*
9416 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9417 */
9418 timeout = jiffies + msecs_to_jiffies(2000);
9419 while (1) {
9420 mask = read_csr(dd, dd->hfi1_id ?
9421 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9422 if (!(mask & QSFP_HFI0_INT_N))
9423 break;
9424 if (time_after(jiffies, timeout)) {
9425 dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9426 __func__);
9427 break;
9428 }
9429 udelay(2);
9430 }
9431}
9432
9433static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9434{
9435 struct hfi1_devdata *dd = ppd->dd;
9436 u64 mask;
9437
9438 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9439 if (enable) {
9440 /*
9441 * Clear the status register to avoid an immediate interrupt
9442 * when we re-enable the IntN pin
9443 */
9444 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9445 QSFP_HFI0_INT_N);
9446 mask |= (u64)QSFP_HFI0_INT_N;
9447 } else {
9448 mask &= ~(u64)QSFP_HFI0_INT_N;
9449 }
9450 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9451}
9452
9453int reset_qsfp(struct hfi1_pportdata *ppd)
9454{
9455 struct hfi1_devdata *dd = ppd->dd;
9456 u64 mask, qsfp_mask;
9457
9458 /* Disable INT_N from triggering QSFP interrupts */
9459 set_qsfp_int_n(ppd, 0);
9460
9461 /* Reset the QSFP */
9462 mask = (u64)QSFP_HFI0_RESET_N;
9463
9464 qsfp_mask = read_csr(dd,
9465 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9466 qsfp_mask &= ~mask;
9467 write_csr(dd,
9468 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9469
9470 udelay(10);
9471
9472 qsfp_mask |= mask;
9473 write_csr(dd,
9474 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9475
9476 wait_for_qsfp_init(ppd);
9477
9478 /*
9479 * Allow INT_N to trigger the QSFP interrupt to watch
9480 * for alarms and warnings
9481 */
9482 set_qsfp_int_n(ppd, 1);
9483
9484 /*
9485 * After the reset, AOC transmitters are enabled by default. They need
9486 * to be turned off to complete the QSFP setup before they can be
9487 * enabled again.
9488 */
9489 return set_qsfp_tx(ppd, 0);
9490}
9491
9492static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9493 u8 *qsfp_interrupt_status)
9494{
9495 struct hfi1_devdata *dd = ppd->dd;
9496
9497 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9498 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9499 dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9500 __func__);
9501
9502 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9503 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9504 dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9505 __func__);
9506
9507 /*
9508 * The remaining alarms/warnings don't matter if the link is down.
9509 */
9510 if (ppd->host_link_state & HLS_DOWN)
9511 return 0;
9512
9513 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9514 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9515 dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9516 __func__);
9517
9518 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9519 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9520 dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9521 __func__);
9522
9523 /* Byte 2 is vendor specific */
9524
9525 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9526 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9527 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9528 __func__);
9529
9530 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9531 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9532 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9533 __func__);
9534
9535 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9536 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9537 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9538 __func__);
9539
9540 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9541 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9542 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9543 __func__);
9544
9545 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9546 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9547 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9548 __func__);
9549
9550 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9551 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9552 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9553 __func__);
9554
9555 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9556 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9557 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9558 __func__);
9559
9560 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9561 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9562 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9563 __func__);
9564
9565 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9566 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9567 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9568 __func__);
9569
9570 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9571 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9572 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9573 __func__);
9574
9575 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9576 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9577 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9578 __func__);
9579
9580 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9581 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9582 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9583 __func__);
9584
9585 /* Bytes 9-10 and 11-12 are reserved */
9586 /* Bytes 13-15 are vendor specific */
9587
9588 return 0;
9589}
9590
9591/* This routine will only be scheduled if the QSFP module present is asserted */
9592void qsfp_event(struct work_struct *work)
9593{
9594 struct qsfp_data *qd;
9595 struct hfi1_pportdata *ppd;
9596 struct hfi1_devdata *dd;
9597
9598 qd = container_of(work, struct qsfp_data, qsfp_work);
9599 ppd = qd->ppd;
9600 dd = ppd->dd;
9601
9602 /* Sanity check */
9603 if (!qsfp_mod_present(ppd))
9604 return;
9605
9606 if (ppd->host_link_state == HLS_DN_DISABLE) {
9607 dd_dev_info(ppd->dd,
9608 "%s: stopping link start because link is disabled\n",
9609 __func__);
9610 return;
9611 }
9612
9613 /*
9614 * Turn DC back on after cable has been re-inserted. Up until
9615 * now, the DC has been in reset to save power.
9616 */
9617 dc_start(dd);
9618
9619 if (qd->cache_refresh_required) {
9620 set_qsfp_int_n(ppd, 0);
9621
9622 wait_for_qsfp_init(ppd);
9623
9624 /*
9625 * Allow INT_N to trigger the QSFP interrupt to watch
9626 * for alarms and warnings
9627 */
9628 set_qsfp_int_n(ppd, 1);
9629
9630 start_link(ppd);
9631 }
9632
9633 if (qd->check_interrupt_flags) {
9634 u8 qsfp_interrupt_status[16] = {0,};
9635
9636 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9637 &qsfp_interrupt_status[0], 16) != 16) {
9638 dd_dev_info(dd,
9639 "%s: Failed to read status of QSFP module\n",
9640 __func__);
9641 } else {
9642 unsigned long flags;
9643
9644 handle_qsfp_error_conditions(
9645 ppd, qsfp_interrupt_status);
9646 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9647 ppd->qsfp_info.check_interrupt_flags = 0;
9648 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9649 flags);
9650 }
9651 }
9652}
9653
9654static void init_qsfp_int(struct hfi1_devdata *dd)
9655{
9656 struct hfi1_pportdata *ppd = dd->pport;
9657 u64 qsfp_mask, cce_int_mask;
9658 const int qsfp1_int_smask = QSFP1_INT % 64;
9659 const int qsfp2_int_smask = QSFP2_INT % 64;
9660
9661 /*
9662 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9663 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9664 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9665 * the index of the appropriate CSR in the CCEIntMask CSR array
9666 */
9667 cce_int_mask = read_csr(dd, CCE_INT_MASK +
9668 (8 * (QSFP1_INT / 64)));
9669 if (dd->hfi1_id) {
9670 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9671 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9672 cce_int_mask);
9673 } else {
9674 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9675 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9676 cce_int_mask);
9677 }
9678
9679 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9680 /* Clear current status to avoid spurious interrupts */
9681 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9682 qsfp_mask);
9683 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9684 qsfp_mask);
9685
9686 set_qsfp_int_n(ppd, 0);
9687
9688 /* Handle active low nature of INT_N and MODPRST_N pins */
9689 if (qsfp_mod_present(ppd))
9690 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9691 write_csr(dd,
9692 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9693 qsfp_mask);
9694}
9695
9696/*
9697 * Do a one-time initialize of the LCB block.
9698 */
9699static void init_lcb(struct hfi1_devdata *dd)
9700{
9701 /* simulator does not correctly handle LCB cclk loopback, skip */
9702 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9703 return;
9704
9705 /* the DC has been reset earlier in the driver load */
9706
9707 /* set LCB for cclk loopback on the port */
9708 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9709 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9710 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9711 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9712 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9713 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9714 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9715}
9716
9717/*
9718 * Perform a test read on the QSFP. Return 0 on success, -ERRNO
9719 * on error.
9720 */
9721static int test_qsfp_read(struct hfi1_pportdata *ppd)
9722{
9723 int ret;
9724 u8 status;
9725
9726 /*
9727 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9728 * not present
9729 */
9730 if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9731 return 0;
9732
9733 /* read byte 2, the status byte */
9734 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9735 if (ret < 0)
9736 return ret;
9737 if (ret != 1)
9738 return -EIO;
9739
9740 return 0; /* success */
9741}
9742
9743/*
9744 * Values for QSFP retry.
9745 *
9746 * Give up after 10s (20 x 500ms). The overall timeout was empirically
9747 * arrived at from experience on a large cluster.
9748 */
9749#define MAX_QSFP_RETRIES 20
9750#define QSFP_RETRY_WAIT 500 /* msec */
9751
9752/*
9753 * Try a QSFP read. If it fails, schedule a retry for later.
9754 * Called on first link activation after driver load.
9755 */
9756static void try_start_link(struct hfi1_pportdata *ppd)
9757{
9758 if (test_qsfp_read(ppd)) {
9759 /* read failed */
9760 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9761 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9762 return;
9763 }
9764 dd_dev_info(ppd->dd,
9765 "QSFP not responding, waiting and retrying %d\n",
9766 (int)ppd->qsfp_retry_count);
9767 ppd->qsfp_retry_count++;
9768 queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9769 msecs_to_jiffies(QSFP_RETRY_WAIT));
9770 return;
9771 }
9772 ppd->qsfp_retry_count = 0;
9773
9774 start_link(ppd);
9775}
9776
9777/*
9778 * Workqueue function to start the link after a delay.
9779 */
9780void handle_start_link(struct work_struct *work)
9781{
9782 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9783 start_link_work.work);
9784 try_start_link(ppd);
9785}
9786
9787int bringup_serdes(struct hfi1_pportdata *ppd)
9788{
9789 struct hfi1_devdata *dd = ppd->dd;
9790 u64 guid;
9791 int ret;
9792
9793 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9794 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9795
9796 guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9797 if (!guid) {
9798 if (dd->base_guid)
9799 guid = dd->base_guid + ppd->port - 1;
9800 ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9801 }
9802
9803 /* Set linkinit_reason on power up per OPA spec */
9804 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9805
9806 /* one-time init of the LCB */
9807 init_lcb(dd);
9808
9809 if (loopback) {
9810 ret = init_loopback(dd);
9811 if (ret < 0)
9812 return ret;
9813 }
9814
9815 get_port_type(ppd);
9816 if (ppd->port_type == PORT_TYPE_QSFP) {
9817 set_qsfp_int_n(ppd, 0);
9818 wait_for_qsfp_init(ppd);
9819 set_qsfp_int_n(ppd, 1);
9820 }
9821
9822 try_start_link(ppd);
9823 return 0;
9824}
9825
9826void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9827{
9828 struct hfi1_devdata *dd = ppd->dd;
9829
9830 /*
9831 * Shut down the link and keep it down. First turn off that the
9832 * driver wants to allow the link to be up (driver_link_ready).
9833 * Then make sure the link is not automatically restarted
9834 * (link_enabled). Cancel any pending restart. And finally
9835 * go offline.
9836 */
9837 ppd->driver_link_ready = 0;
9838 ppd->link_enabled = 0;
9839
9840 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9841 flush_delayed_work(&ppd->start_link_work);
9842 cancel_delayed_work_sync(&ppd->start_link_work);
9843
9844 ppd->offline_disabled_reason =
9845 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9846 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9847 OPA_LINKDOWN_REASON_REBOOT);
9848 set_link_state(ppd, HLS_DN_OFFLINE);
9849
9850 /* disable the port */
9851 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9852}
9853
9854static inline int init_cpu_counters(struct hfi1_devdata *dd)
9855{
9856 struct hfi1_pportdata *ppd;
9857 int i;
9858
9859 ppd = (struct hfi1_pportdata *)(dd + 1);
9860 for (i = 0; i < dd->num_pports; i++, ppd++) {
9861 ppd->ibport_data.rvp.rc_acks = NULL;
9862 ppd->ibport_data.rvp.rc_qacks = NULL;
9863 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9864 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9865 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9866 if (!ppd->ibport_data.rvp.rc_acks ||
9867 !ppd->ibport_data.rvp.rc_delayed_comp ||
9868 !ppd->ibport_data.rvp.rc_qacks)
9869 return -ENOMEM;
9870 }
9871
9872 return 0;
9873}
9874
9875/*
9876 * index is the index into the receive array
9877 */
9878void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9879 u32 type, unsigned long pa, u16 order)
9880{
9881 u64 reg;
9882
9883 if (!(dd->flags & HFI1_PRESENT))
9884 goto done;
9885
9886 if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9887 pa = 0;
9888 order = 0;
9889 } else if (type > PT_INVALID) {
9890 dd_dev_err(dd,
9891 "unexpected receive array type %u for index %u, not handled\n",
9892 type, index);
9893 goto done;
9894 }
9895 trace_hfi1_put_tid(dd, index, type, pa, order);
9896
9897#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9898 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9899 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9900 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9901 << RCV_ARRAY_RT_ADDR_SHIFT;
9902 trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9903 writeq(reg, dd->rcvarray_wc + (index * 8));
9904
9905 if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9906 /*
9907 * Eager entries are written and flushed
9908 *
9909 * Expected entries are flushed every 4 writes
9910 */
9911 flush_wc();
9912done:
9913 return;
9914}
9915
9916void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9917{
9918 struct hfi1_devdata *dd = rcd->dd;
9919 u32 i;
9920
9921 /* this could be optimized */
9922 for (i = rcd->eager_base; i < rcd->eager_base +
9923 rcd->egrbufs.alloced; i++)
9924 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9925
9926 for (i = rcd->expected_base;
9927 i < rcd->expected_base + rcd->expected_count; i++)
9928 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9929}
9930
9931static const char * const ib_cfg_name_strings[] = {
9932 "HFI1_IB_CFG_LIDLMC",
9933 "HFI1_IB_CFG_LWID_DG_ENB",
9934 "HFI1_IB_CFG_LWID_ENB",
9935 "HFI1_IB_CFG_LWID",
9936 "HFI1_IB_CFG_SPD_ENB",
9937 "HFI1_IB_CFG_SPD",
9938 "HFI1_IB_CFG_RXPOL_ENB",
9939 "HFI1_IB_CFG_LREV_ENB",
9940 "HFI1_IB_CFG_LINKLATENCY",
9941 "HFI1_IB_CFG_HRTBT",
9942 "HFI1_IB_CFG_OP_VLS",
9943 "HFI1_IB_CFG_VL_HIGH_CAP",
9944 "HFI1_IB_CFG_VL_LOW_CAP",
9945 "HFI1_IB_CFG_OVERRUN_THRESH",
9946 "HFI1_IB_CFG_PHYERR_THRESH",
9947 "HFI1_IB_CFG_LINKDEFAULT",
9948 "HFI1_IB_CFG_PKEYS",
9949 "HFI1_IB_CFG_MTU",
9950 "HFI1_IB_CFG_LSTATE",
9951 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9952 "HFI1_IB_CFG_PMA_TICKS",
9953 "HFI1_IB_CFG_PORT"
9954};
9955
9956static const char *ib_cfg_name(int which)
9957{
9958 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9959 return "invalid";
9960 return ib_cfg_name_strings[which];
9961}
9962
9963int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9964{
9965 struct hfi1_devdata *dd = ppd->dd;
9966 int val = 0;
9967
9968 switch (which) {
9969 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9970 val = ppd->link_width_enabled;
9971 break;
9972 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9973 val = ppd->link_width_active;
9974 break;
9975 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9976 val = ppd->link_speed_enabled;
9977 break;
9978 case HFI1_IB_CFG_SPD: /* current Link speed */
9979 val = ppd->link_speed_active;
9980 break;
9981
9982 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9983 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9984 case HFI1_IB_CFG_LINKLATENCY:
9985 goto unimplemented;
9986
9987 case HFI1_IB_CFG_OP_VLS:
9988 val = ppd->actual_vls_operational;
9989 break;
9990 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9991 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9992 break;
9993 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9994 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9995 break;
9996 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9997 val = ppd->overrun_threshold;
9998 break;
9999 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10000 val = ppd->phy_error_threshold;
10001 break;
10002 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10003 val = HLS_DEFAULT;
10004 break;
10005
10006 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10007 case HFI1_IB_CFG_PMA_TICKS:
10008 default:
10009unimplemented:
10010 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10011 dd_dev_info(
10012 dd,
10013 "%s: which %s: not implemented\n",
10014 __func__,
10015 ib_cfg_name(which));
10016 break;
10017 }
10018
10019 return val;
10020}
10021
10022/*
10023 * The largest MAD packet size.
10024 */
10025#define MAX_MAD_PACKET 2048
10026
10027/*
10028 * Return the maximum header bytes that can go on the _wire_
10029 * for this device. This count includes the ICRC which is
10030 * not part of the packet held in memory but it is appended
10031 * by the HW.
10032 * This is dependent on the device's receive header entry size.
10033 * HFI allows this to be set per-receive context, but the
10034 * driver presently enforces a global value.
10035 */
10036u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10037{
10038 /*
10039 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10040 * the Receive Header Entry Size minus the PBC (or RHF) size
10041 * plus one DW for the ICRC appended by HW.
10042 *
10043 * dd->rcd[0].rcvhdrqentsize is in DW.
10044 * We use rcd[0] as all context will have the same value. Also,
10045 * the first kernel context would have been allocated by now so
10046 * we are guaranteed a valid value.
10047 */
10048 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10049}
10050
10051/*
10052 * Set Send Length
10053 * @ppd - per port data
10054 *
10055 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
10056 * registers compare against LRH.PktLen, so use the max bytes included
10057 * in the LRH.
10058 *
10059 * This routine changes all VL values except VL15, which it maintains at
10060 * the same value.
10061 */
10062static void set_send_length(struct hfi1_pportdata *ppd)
10063{
10064 struct hfi1_devdata *dd = ppd->dd;
10065 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10066 u32 maxvlmtu = dd->vld[15].mtu;
10067 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10068 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10069 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10070 int i, j;
10071 u32 thres;
10072
10073 for (i = 0; i < ppd->vls_supported; i++) {
10074 if (dd->vld[i].mtu > maxvlmtu)
10075 maxvlmtu = dd->vld[i].mtu;
10076 if (i <= 3)
10077 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10078 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10079 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10080 else
10081 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10082 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10083 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10084 }
10085 write_csr(dd, SEND_LEN_CHECK0, len1);
10086 write_csr(dd, SEND_LEN_CHECK1, len2);
10087 /* adjust kernel credit return thresholds based on new MTUs */
10088 /* all kernel receive contexts have the same hdrqentsize */
10089 for (i = 0; i < ppd->vls_supported; i++) {
10090 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10091 sc_mtu_to_threshold(dd->vld[i].sc,
10092 dd->vld[i].mtu,
10093 dd->rcd[0]->rcvhdrqentsize));
10094 for (j = 0; j < INIT_SC_PER_VL; j++)
10095 sc_set_cr_threshold(
10096 pio_select_send_context_vl(dd, j, i),
10097 thres);
10098 }
10099 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10100 sc_mtu_to_threshold(dd->vld[15].sc,
10101 dd->vld[15].mtu,
10102 dd->rcd[0]->rcvhdrqentsize));
10103 sc_set_cr_threshold(dd->vld[15].sc, thres);
10104
10105 /* Adjust maximum MTU for the port in DC */
10106 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10107 (ilog2(maxvlmtu >> 8) + 1);
10108 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10109 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10110 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10111 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10112 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10113}
10114
10115static void set_lidlmc(struct hfi1_pportdata *ppd)
10116{
10117 int i;
10118 u64 sreg = 0;
10119 struct hfi1_devdata *dd = ppd->dd;
10120 u32 mask = ~((1U << ppd->lmc) - 1);
10121 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10122 u32 lid;
10123
10124 /*
10125 * Program 0 in CSR if port lid is extended. This prevents
10126 * 9B packets being sent out for large lids.
10127 */
10128 lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10129 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10130 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10131 c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10132 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10133 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10134 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10135 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10136
10137 /*
10138 * Iterate over all the send contexts and set their SLID check
10139 */
10140 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10141 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10142 (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10143 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10144
10145 for (i = 0; i < chip_send_contexts(dd); i++) {
10146 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10147 i, (u32)sreg);
10148 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10149 }
10150
10151 /* Now we have to do the same thing for the sdma engines */
10152 sdma_update_lmc(dd, mask, lid);
10153}
10154
10155static const char *state_completed_string(u32 completed)
10156{
10157 static const char * const state_completed[] = {
10158 "EstablishComm",
10159 "OptimizeEQ",
10160 "VerifyCap"
10161 };
10162
10163 if (completed < ARRAY_SIZE(state_completed))
10164 return state_completed[completed];
10165
10166 return "unknown";
10167}
10168
10169static const char all_lanes_dead_timeout_expired[] =
10170 "All lanes were inactive – was the interconnect media removed?";
10171static const char tx_out_of_policy[] =
10172 "Passing lanes on local port do not meet the local link width policy";
10173static const char no_state_complete[] =
10174 "State timeout occurred before link partner completed the state";
10175static const char * const state_complete_reasons[] = {
10176 [0x00] = "Reason unknown",
10177 [0x01] = "Link was halted by driver, refer to LinkDownReason",
10178 [0x02] = "Link partner reported failure",
10179 [0x10] = "Unable to achieve frame sync on any lane",
10180 [0x11] =
10181 "Unable to find a common bit rate with the link partner",
10182 [0x12] =
10183 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10184 [0x13] =
10185 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10186 [0x14] = no_state_complete,
10187 [0x15] =
10188 "State timeout occurred before link partner identified equalization presets",
10189 [0x16] =
10190 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10191 [0x17] = tx_out_of_policy,
10192 [0x20] = all_lanes_dead_timeout_expired,
10193 [0x21] =
10194 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10195 [0x22] = no_state_complete,
10196 [0x23] =
10197 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10198 [0x24] = tx_out_of_policy,
10199 [0x30] = all_lanes_dead_timeout_expired,
10200 [0x31] =
10201 "State timeout occurred waiting for host to process received frames",
10202 [0x32] = no_state_complete,
10203 [0x33] =
10204 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10205 [0x34] = tx_out_of_policy,
10206 [0x35] = "Negotiated link width is mutually exclusive",
10207 [0x36] =
10208 "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10209 [0x37] = "Unable to resolve secure data exchange",
10210};
10211
10212static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10213 u32 code)
10214{
10215 const char *str = NULL;
10216
10217 if (code < ARRAY_SIZE(state_complete_reasons))
10218 str = state_complete_reasons[code];
10219
10220 if (str)
10221 return str;
10222 return "Reserved";
10223}
10224
10225/* describe the given last state complete frame */
10226static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10227 const char *prefix)
10228{
10229 struct hfi1_devdata *dd = ppd->dd;
10230 u32 success;
10231 u32 state;
10232 u32 reason;
10233 u32 lanes;
10234
10235 /*
10236 * Decode frame:
10237 * [ 0: 0] - success
10238 * [ 3: 1] - state
10239 * [ 7: 4] - next state timeout
10240 * [15: 8] - reason code
10241 * [31:16] - lanes
10242 */
10243 success = frame & 0x1;
10244 state = (frame >> 1) & 0x7;
10245 reason = (frame >> 8) & 0xff;
10246 lanes = (frame >> 16) & 0xffff;
10247
10248 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10249 prefix, frame);
10250 dd_dev_err(dd, " last reported state state: %s (0x%x)\n",
10251 state_completed_string(state), state);
10252 dd_dev_err(dd, " state successfully completed: %s\n",
10253 success ? "yes" : "no");
10254 dd_dev_err(dd, " fail reason 0x%x: %s\n",
10255 reason, state_complete_reason_code_string(ppd, reason));
10256 dd_dev_err(dd, " passing lane mask: 0x%x", lanes);
10257}
10258
10259/*
10260 * Read the last state complete frames and explain them. This routine
10261 * expects to be called if the link went down during link negotiation
10262 * and initialization (LNI). That is, anywhere between polling and link up.
10263 */
10264static void check_lni_states(struct hfi1_pportdata *ppd)
10265{
10266 u32 last_local_state;
10267 u32 last_remote_state;
10268
10269 read_last_local_state(ppd->dd, &last_local_state);
10270 read_last_remote_state(ppd->dd, &last_remote_state);
10271
10272 /*
10273 * Don't report anything if there is nothing to report. A value of
10274 * 0 means the link was taken down while polling and there was no
10275 * training in-process.
10276 */
10277 if (last_local_state == 0 && last_remote_state == 0)
10278 return;
10279
10280 decode_state_complete(ppd, last_local_state, "transmitted");
10281 decode_state_complete(ppd, last_remote_state, "received");
10282}
10283
10284/* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10285static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10286{
10287 u64 reg;
10288 unsigned long timeout;
10289
10290 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10291 timeout = jiffies + msecs_to_jiffies(wait_ms);
10292 while (1) {
10293 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10294 if (reg)
10295 break;
10296 if (time_after(jiffies, timeout)) {
10297 dd_dev_err(dd,
10298 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10299 return -ETIMEDOUT;
10300 }
10301 udelay(2);
10302 }
10303 return 0;
10304}
10305
10306/* called when the logical link state is not down as it should be */
10307static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10308{
10309 struct hfi1_devdata *dd = ppd->dd;
10310
10311 /*
10312 * Bring link up in LCB loopback
10313 */
10314 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10315 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10316 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10317
10318 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10319 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10320 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10321 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10322
10323 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10324 (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10325 udelay(3);
10326 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10327 write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10328
10329 wait_link_transfer_active(dd, 100);
10330
10331 /*
10332 * Bring the link down again.
10333 */
10334 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10335 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10336 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10337
10338 dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10339}
10340
10341/*
10342 * Helper for set_link_state(). Do not call except from that routine.
10343 * Expects ppd->hls_mutex to be held.
10344 *
10345 * @rem_reason value to be sent to the neighbor
10346 *
10347 * LinkDownReasons only set if transition succeeds.
10348 */
10349static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10350{
10351 struct hfi1_devdata *dd = ppd->dd;
10352 u32 previous_state;
10353 int offline_state_ret;
10354 int ret;
10355
10356 update_lcb_cache(dd);
10357
10358 previous_state = ppd->host_link_state;
10359 ppd->host_link_state = HLS_GOING_OFFLINE;
10360
10361 /* start offline transition */
10362 ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10363
10364 if (ret != HCMD_SUCCESS) {
10365 dd_dev_err(dd,
10366 "Failed to transition to Offline link state, return %d\n",
10367 ret);
10368 return -EINVAL;
10369 }
10370 if (ppd->offline_disabled_reason ==
10371 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10372 ppd->offline_disabled_reason =
10373 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10374
10375 offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10376 if (offline_state_ret < 0)
10377 return offline_state_ret;
10378
10379 /* Disabling AOC transmitters */
10380 if (ppd->port_type == PORT_TYPE_QSFP &&
10381 ppd->qsfp_info.limiting_active &&
10382 qsfp_mod_present(ppd)) {
10383 int ret;
10384
10385 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10386 if (ret == 0) {
10387 set_qsfp_tx(ppd, 0);
10388 release_chip_resource(dd, qsfp_resource(dd));
10389 } else {
10390 /* not fatal, but should warn */
10391 dd_dev_err(dd,
10392 "Unable to acquire lock to turn off QSFP TX\n");
10393 }
10394 }
10395
10396 /*
10397 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10398 * can take a while for the link to go down.
10399 */
10400 if (offline_state_ret != PLS_OFFLINE_QUIET) {
10401 ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10402 if (ret < 0)
10403 return ret;
10404 }
10405
10406 /*
10407 * Now in charge of LCB - must be after the physical state is
10408 * offline.quiet and before host_link_state is changed.
10409 */
10410 set_host_lcb_access(dd);
10411 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10412
10413 /* make sure the logical state is also down */
10414 ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10415 if (ret)
10416 force_logical_link_state_down(ppd);
10417
10418 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10419 update_statusp(ppd, IB_PORT_DOWN);
10420
10421 /*
10422 * The LNI has a mandatory wait time after the physical state
10423 * moves to Offline.Quiet. The wait time may be different
10424 * depending on how the link went down. The 8051 firmware
10425 * will observe the needed wait time and only move to ready
10426 * when that is completed. The largest of the quiet timeouts
10427 * is 6s, so wait that long and then at least 0.5s more for
10428 * other transitions, and another 0.5s for a buffer.
10429 */
10430 ret = wait_fm_ready(dd, 7000);
10431 if (ret) {
10432 dd_dev_err(dd,
10433 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10434 /* state is really offline, so make it so */
10435 ppd->host_link_state = HLS_DN_OFFLINE;
10436 return ret;
10437 }
10438
10439 /*
10440 * The state is now offline and the 8051 is ready to accept host
10441 * requests.
10442 * - change our state
10443 * - notify others if we were previously in a linkup state
10444 */
10445 ppd->host_link_state = HLS_DN_OFFLINE;
10446 if (previous_state & HLS_UP) {
10447 /* went down while link was up */
10448 handle_linkup_change(dd, 0);
10449 } else if (previous_state
10450 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10451 /* went down while attempting link up */
10452 check_lni_states(ppd);
10453
10454 /* The QSFP doesn't need to be reset on LNI failure */
10455 ppd->qsfp_info.reset_needed = 0;
10456 }
10457
10458 /* the active link width (downgrade) is 0 on link down */
10459 ppd->link_width_active = 0;
10460 ppd->link_width_downgrade_tx_active = 0;
10461 ppd->link_width_downgrade_rx_active = 0;
10462 ppd->current_egress_rate = 0;
10463 return 0;
10464}
10465
10466/* return the link state name */
10467static const char *link_state_name(u32 state)
10468{
10469 const char *name;
10470 int n = ilog2(state);
10471 static const char * const names[] = {
10472 [__HLS_UP_INIT_BP] = "INIT",
10473 [__HLS_UP_ARMED_BP] = "ARMED",
10474 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
10475 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
10476 [__HLS_DN_POLL_BP] = "POLL",
10477 [__HLS_DN_DISABLE_BP] = "DISABLE",
10478 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
10479 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
10480 [__HLS_GOING_UP_BP] = "GOING_UP",
10481 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10482 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10483 };
10484
10485 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10486 return name ? name : "unknown";
10487}
10488
10489/* return the link state reason name */
10490static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10491{
10492 if (state == HLS_UP_INIT) {
10493 switch (ppd->linkinit_reason) {
10494 case OPA_LINKINIT_REASON_LINKUP:
10495 return "(LINKUP)";
10496 case OPA_LINKINIT_REASON_FLAPPING:
10497 return "(FLAPPING)";
10498 case OPA_LINKINIT_OUTSIDE_POLICY:
10499 return "(OUTSIDE_POLICY)";
10500 case OPA_LINKINIT_QUARANTINED:
10501 return "(QUARANTINED)";
10502 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10503 return "(INSUFIC_CAPABILITY)";
10504 default:
10505 break;
10506 }
10507 }
10508 return "";
10509}
10510
10511/*
10512 * driver_pstate - convert the driver's notion of a port's
10513 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10514 * Return -1 (converted to a u32) to indicate error.
10515 */
10516u32 driver_pstate(struct hfi1_pportdata *ppd)
10517{
10518 switch (ppd->host_link_state) {
10519 case HLS_UP_INIT:
10520 case HLS_UP_ARMED:
10521 case HLS_UP_ACTIVE:
10522 return IB_PORTPHYSSTATE_LINKUP;
10523 case HLS_DN_POLL:
10524 return IB_PORTPHYSSTATE_POLLING;
10525 case HLS_DN_DISABLE:
10526 return IB_PORTPHYSSTATE_DISABLED;
10527 case HLS_DN_OFFLINE:
10528 return OPA_PORTPHYSSTATE_OFFLINE;
10529 case HLS_VERIFY_CAP:
10530 return IB_PORTPHYSSTATE_TRAINING;
10531 case HLS_GOING_UP:
10532 return IB_PORTPHYSSTATE_TRAINING;
10533 case HLS_GOING_OFFLINE:
10534 return OPA_PORTPHYSSTATE_OFFLINE;
10535 case HLS_LINK_COOLDOWN:
10536 return OPA_PORTPHYSSTATE_OFFLINE;
10537 case HLS_DN_DOWNDEF:
10538 default:
10539 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10540 ppd->host_link_state);
10541 return -1;
10542 }
10543}
10544
10545/*
10546 * driver_lstate - convert the driver's notion of a port's
10547 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10548 * (converted to a u32) to indicate error.
10549 */
10550u32 driver_lstate(struct hfi1_pportdata *ppd)
10551{
10552 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10553 return IB_PORT_DOWN;
10554
10555 switch (ppd->host_link_state & HLS_UP) {
10556 case HLS_UP_INIT:
10557 return IB_PORT_INIT;
10558 case HLS_UP_ARMED:
10559 return IB_PORT_ARMED;
10560 case HLS_UP_ACTIVE:
10561 return IB_PORT_ACTIVE;
10562 default:
10563 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10564 ppd->host_link_state);
10565 return -1;
10566 }
10567}
10568
10569void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10570 u8 neigh_reason, u8 rem_reason)
10571{
10572 if (ppd->local_link_down_reason.latest == 0 &&
10573 ppd->neigh_link_down_reason.latest == 0) {
10574 ppd->local_link_down_reason.latest = lcl_reason;
10575 ppd->neigh_link_down_reason.latest = neigh_reason;
10576 ppd->remote_link_down_reason = rem_reason;
10577 }
10578}
10579
10580/*
10581 * Verify if BCT for data VLs is non-zero.
10582 */
10583static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10584{
10585 return !!ppd->actual_vls_operational;
10586}
10587
10588/*
10589 * Change the physical and/or logical link state.
10590 *
10591 * Do not call this routine while inside an interrupt. It contains
10592 * calls to routines that can take multiple seconds to finish.
10593 *
10594 * Returns 0 on success, -errno on failure.
10595 */
10596int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10597{
10598 struct hfi1_devdata *dd = ppd->dd;
10599 struct ib_event event = {.device = NULL};
10600 int ret1, ret = 0;
10601 int orig_new_state, poll_bounce;
10602
10603 mutex_lock(&ppd->hls_lock);
10604
10605 orig_new_state = state;
10606 if (state == HLS_DN_DOWNDEF)
10607 state = HLS_DEFAULT;
10608
10609 /* interpret poll -> poll as a link bounce */
10610 poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10611 state == HLS_DN_POLL;
10612
10613 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10614 link_state_name(ppd->host_link_state),
10615 link_state_name(orig_new_state),
10616 poll_bounce ? "(bounce) " : "",
10617 link_state_reason_name(ppd, state));
10618
10619 /*
10620 * If we're going to a (HLS_*) link state that implies the logical
10621 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10622 * reset is_sm_config_started to 0.
10623 */
10624 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10625 ppd->is_sm_config_started = 0;
10626
10627 /*
10628 * Do nothing if the states match. Let a poll to poll link bounce
10629 * go through.
10630 */
10631 if (ppd->host_link_state == state && !poll_bounce)
10632 goto done;
10633
10634 switch (state) {
10635 case HLS_UP_INIT:
10636 if (ppd->host_link_state == HLS_DN_POLL &&
10637 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10638 /*
10639 * Quick link up jumps from polling to here.
10640 *
10641 * Whether in normal or loopback mode, the
10642 * simulator jumps from polling to link up.
10643 * Accept that here.
10644 */
10645 /* OK */
10646 } else if (ppd->host_link_state != HLS_GOING_UP) {
10647 goto unexpected;
10648 }
10649
10650 /*
10651 * Wait for Link_Up physical state.
10652 * Physical and Logical states should already be
10653 * be transitioned to LinkUp and LinkInit respectively.
10654 */
10655 ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10656 if (ret) {
10657 dd_dev_err(dd,
10658 "%s: physical state did not change to LINK-UP\n",
10659 __func__);
10660 break;
10661 }
10662
10663 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10664 if (ret) {
10665 dd_dev_err(dd,
10666 "%s: logical state did not change to INIT\n",
10667 __func__);
10668 break;
10669 }
10670
10671 /* clear old transient LINKINIT_REASON code */
10672 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10673 ppd->linkinit_reason =
10674 OPA_LINKINIT_REASON_LINKUP;
10675
10676 /* enable the port */
10677 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10678
10679 handle_linkup_change(dd, 1);
10680 pio_kernel_linkup(dd);
10681
10682 /*
10683 * After link up, a new link width will have been set.
10684 * Update the xmit counters with regards to the new
10685 * link width.
10686 */
10687 update_xmit_counters(ppd, ppd->link_width_active);
10688
10689 ppd->host_link_state = HLS_UP_INIT;
10690 update_statusp(ppd, IB_PORT_INIT);
10691 break;
10692 case HLS_UP_ARMED:
10693 if (ppd->host_link_state != HLS_UP_INIT)
10694 goto unexpected;
10695
10696 if (!data_vls_operational(ppd)) {
10697 dd_dev_err(dd,
10698 "%s: data VLs not operational\n", __func__);
10699 ret = -EINVAL;
10700 break;
10701 }
10702
10703 set_logical_state(dd, LSTATE_ARMED);
10704 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10705 if (ret) {
10706 dd_dev_err(dd,
10707 "%s: logical state did not change to ARMED\n",
10708 __func__);
10709 break;
10710 }
10711 ppd->host_link_state = HLS_UP_ARMED;
10712 update_statusp(ppd, IB_PORT_ARMED);
10713 /*
10714 * The simulator does not currently implement SMA messages,
10715 * so neighbor_normal is not set. Set it here when we first
10716 * move to Armed.
10717 */
10718 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10719 ppd->neighbor_normal = 1;
10720 break;
10721 case HLS_UP_ACTIVE:
10722 if (ppd->host_link_state != HLS_UP_ARMED)
10723 goto unexpected;
10724
10725 set_logical_state(dd, LSTATE_ACTIVE);
10726 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10727 if (ret) {
10728 dd_dev_err(dd,
10729 "%s: logical state did not change to ACTIVE\n",
10730 __func__);
10731 } else {
10732 /* tell all engines to go running */
10733 sdma_all_running(dd);
10734 ppd->host_link_state = HLS_UP_ACTIVE;
10735 update_statusp(ppd, IB_PORT_ACTIVE);
10736
10737 /* Signal the IB layer that the port has went active */
10738 event.device = &dd->verbs_dev.rdi.ibdev;
10739 event.element.port_num = ppd->port;
10740 event.event = IB_EVENT_PORT_ACTIVE;
10741 }
10742 break;
10743 case HLS_DN_POLL:
10744 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10745 ppd->host_link_state == HLS_DN_OFFLINE) &&
10746 dd->dc_shutdown)
10747 dc_start(dd);
10748 /* Hand LED control to the DC */
10749 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10750
10751 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10752 u8 tmp = ppd->link_enabled;
10753
10754 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10755 if (ret) {
10756 ppd->link_enabled = tmp;
10757 break;
10758 }
10759 ppd->remote_link_down_reason = 0;
10760
10761 if (ppd->driver_link_ready)
10762 ppd->link_enabled = 1;
10763 }
10764
10765 set_all_slowpath(ppd->dd);
10766 ret = set_local_link_attributes(ppd);
10767 if (ret)
10768 break;
10769
10770 ppd->port_error_action = 0;
10771 ppd->host_link_state = HLS_DN_POLL;
10772
10773 if (quick_linkup) {
10774 /* quick linkup does not go into polling */
10775 ret = do_quick_linkup(dd);
10776 } else {
10777 ret1 = set_physical_link_state(dd, PLS_POLLING);
10778 if (ret1 != HCMD_SUCCESS) {
10779 dd_dev_err(dd,
10780 "Failed to transition to Polling link state, return 0x%x\n",
10781 ret1);
10782 ret = -EINVAL;
10783 }
10784 }
10785 ppd->offline_disabled_reason =
10786 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10787 /*
10788 * If an error occurred above, go back to offline. The
10789 * caller may reschedule another attempt.
10790 */
10791 if (ret)
10792 goto_offline(ppd, 0);
10793 else
10794 log_physical_state(ppd, PLS_POLLING);
10795 break;
10796 case HLS_DN_DISABLE:
10797 /* link is disabled */
10798 ppd->link_enabled = 0;
10799
10800 /* allow any state to transition to disabled */
10801
10802 /* must transition to offline first */
10803 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10804 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10805 if (ret)
10806 break;
10807 ppd->remote_link_down_reason = 0;
10808 }
10809
10810 if (!dd->dc_shutdown) {
10811 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10812 if (ret1 != HCMD_SUCCESS) {
10813 dd_dev_err(dd,
10814 "Failed to transition to Disabled link state, return 0x%x\n",
10815 ret1);
10816 ret = -EINVAL;
10817 break;
10818 }
10819 ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10820 if (ret) {
10821 dd_dev_err(dd,
10822 "%s: physical state did not change to DISABLED\n",
10823 __func__);
10824 break;
10825 }
10826 dc_shutdown(dd);
10827 }
10828 ppd->host_link_state = HLS_DN_DISABLE;
10829 break;
10830 case HLS_DN_OFFLINE:
10831 if (ppd->host_link_state == HLS_DN_DISABLE)
10832 dc_start(dd);
10833
10834 /* allow any state to transition to offline */
10835 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10836 if (!ret)
10837 ppd->remote_link_down_reason = 0;
10838 break;
10839 case HLS_VERIFY_CAP:
10840 if (ppd->host_link_state != HLS_DN_POLL)
10841 goto unexpected;
10842 ppd->host_link_state = HLS_VERIFY_CAP;
10843 log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10844 break;
10845 case HLS_GOING_UP:
10846 if (ppd->host_link_state != HLS_VERIFY_CAP)
10847 goto unexpected;
10848
10849 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10850 if (ret1 != HCMD_SUCCESS) {
10851 dd_dev_err(dd,
10852 "Failed to transition to link up state, return 0x%x\n",
10853 ret1);
10854 ret = -EINVAL;
10855 break;
10856 }
10857 ppd->host_link_state = HLS_GOING_UP;
10858 break;
10859
10860 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
10861 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
10862 default:
10863 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10864 __func__, state);
10865 ret = -EINVAL;
10866 break;
10867 }
10868
10869 goto done;
10870
10871unexpected:
10872 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10873 __func__, link_state_name(ppd->host_link_state),
10874 link_state_name(state));
10875 ret = -EINVAL;
10876
10877done:
10878 mutex_unlock(&ppd->hls_lock);
10879
10880 if (event.device)
10881 ib_dispatch_event(&event);
10882
10883 return ret;
10884}
10885
10886int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10887{
10888 u64 reg;
10889 int ret = 0;
10890
10891 switch (which) {
10892 case HFI1_IB_CFG_LIDLMC:
10893 set_lidlmc(ppd);
10894 break;
10895 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10896 /*
10897 * The VL Arbitrator high limit is sent in units of 4k
10898 * bytes, while HFI stores it in units of 64 bytes.
10899 */
10900 val *= 4096 / 64;
10901 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10902 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10903 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10904 break;
10905 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10906 /* HFI only supports POLL as the default link down state */
10907 if (val != HLS_DN_POLL)
10908 ret = -EINVAL;
10909 break;
10910 case HFI1_IB_CFG_OP_VLS:
10911 if (ppd->vls_operational != val) {
10912 ppd->vls_operational = val;
10913 if (!ppd->port)
10914 ret = -EINVAL;
10915 }
10916 break;
10917 /*
10918 * For link width, link width downgrade, and speed enable, always AND
10919 * the setting with what is actually supported. This has two benefits.
10920 * First, enabled can't have unsupported values, no matter what the
10921 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10922 * "fill in with your supported value" have all the bits in the
10923 * field set, so simply ANDing with supported has the desired result.
10924 */
10925 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10926 ppd->link_width_enabled = val & ppd->link_width_supported;
10927 break;
10928 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10929 ppd->link_width_downgrade_enabled =
10930 val & ppd->link_width_downgrade_supported;
10931 break;
10932 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10933 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10934 break;
10935 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10936 /*
10937 * HFI does not follow IB specs, save this value
10938 * so we can report it, if asked.
10939 */
10940 ppd->overrun_threshold = val;
10941 break;
10942 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10943 /*
10944 * HFI does not follow IB specs, save this value
10945 * so we can report it, if asked.
10946 */
10947 ppd->phy_error_threshold = val;
10948 break;
10949
10950 case HFI1_IB_CFG_MTU:
10951 set_send_length(ppd);
10952 break;
10953
10954 case HFI1_IB_CFG_PKEYS:
10955 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10956 set_partition_keys(ppd);
10957 break;
10958
10959 default:
10960 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10961 dd_dev_info(ppd->dd,
10962 "%s: which %s, val 0x%x: not implemented\n",
10963 __func__, ib_cfg_name(which), val);
10964 break;
10965 }
10966 return ret;
10967}
10968
10969/* begin functions related to vl arbitration table caching */
10970static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10971{
10972 int i;
10973
10974 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10975 VL_ARB_LOW_PRIO_TABLE_SIZE);
10976 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10977 VL_ARB_HIGH_PRIO_TABLE_SIZE);
10978
10979 /*
10980 * Note that we always return values directly from the
10981 * 'vl_arb_cache' (and do no CSR reads) in response to a
10982 * 'Get(VLArbTable)'. This is obviously correct after a
10983 * 'Set(VLArbTable)', since the cache will then be up to
10984 * date. But it's also correct prior to any 'Set(VLArbTable)'
10985 * since then both the cache, and the relevant h/w registers
10986 * will be zeroed.
10987 */
10988
10989 for (i = 0; i < MAX_PRIO_TABLE; i++)
10990 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10991}
10992
10993/*
10994 * vl_arb_lock_cache
10995 *
10996 * All other vl_arb_* functions should be called only after locking
10997 * the cache.
10998 */
10999static inline struct vl_arb_cache *
11000vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11001{
11002 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11003 return NULL;
11004 spin_lock(&ppd->vl_arb_cache[idx].lock);
11005 return &ppd->vl_arb_cache[idx];
11006}
11007
11008static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11009{
11010 spin_unlock(&ppd->vl_arb_cache[idx].lock);
11011}
11012
11013static void vl_arb_get_cache(struct vl_arb_cache *cache,
11014 struct ib_vl_weight_elem *vl)
11015{
11016 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11017}
11018
11019static void vl_arb_set_cache(struct vl_arb_cache *cache,
11020 struct ib_vl_weight_elem *vl)
11021{
11022 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11023}
11024
11025static int vl_arb_match_cache(struct vl_arb_cache *cache,
11026 struct ib_vl_weight_elem *vl)
11027{
11028 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11029}
11030
11031/* end functions related to vl arbitration table caching */
11032
11033static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11034 u32 size, struct ib_vl_weight_elem *vl)
11035{
11036 struct hfi1_devdata *dd = ppd->dd;
11037 u64 reg;
11038 unsigned int i, is_up = 0;
11039 int drain, ret = 0;
11040
11041 mutex_lock(&ppd->hls_lock);
11042
11043 if (ppd->host_link_state & HLS_UP)
11044 is_up = 1;
11045
11046 drain = !is_ax(dd) && is_up;
11047
11048 if (drain)
11049 /*
11050 * Before adjusting VL arbitration weights, empty per-VL
11051 * FIFOs, otherwise a packet whose VL weight is being
11052 * set to 0 could get stuck in a FIFO with no chance to
11053 * egress.
11054 */
11055 ret = stop_drain_data_vls(dd);
11056
11057 if (ret) {
11058 dd_dev_err(
11059 dd,
11060 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11061 __func__);
11062 goto err;
11063 }
11064
11065 for (i = 0; i < size; i++, vl++) {
11066 /*
11067 * NOTE: The low priority shift and mask are used here, but
11068 * they are the same for both the low and high registers.
11069 */
11070 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11071 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11072 | (((u64)vl->weight
11073 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11074 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11075 write_csr(dd, target + (i * 8), reg);
11076 }
11077 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11078
11079 if (drain)
11080 open_fill_data_vls(dd); /* reopen all VLs */
11081
11082err:
11083 mutex_unlock(&ppd->hls_lock);
11084
11085 return ret;
11086}
11087
11088/*
11089 * Read one credit merge VL register.
11090 */
11091static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11092 struct vl_limit *vll)
11093{
11094 u64 reg = read_csr(dd, csr);
11095
11096 vll->dedicated = cpu_to_be16(
11097 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11098 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11099 vll->shared = cpu_to_be16(
11100 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11101 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11102}
11103
11104/*
11105 * Read the current credit merge limits.
11106 */
11107static int get_buffer_control(struct hfi1_devdata *dd,
11108 struct buffer_control *bc, u16 *overall_limit)
11109{
11110 u64 reg;
11111 int i;
11112
11113 /* not all entries are filled in */
11114 memset(bc, 0, sizeof(*bc));
11115
11116 /* OPA and HFI have a 1-1 mapping */
11117 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11118 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11119
11120 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11121 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11122
11123 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11124 bc->overall_shared_limit = cpu_to_be16(
11125 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11126 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11127 if (overall_limit)
11128 *overall_limit = (reg
11129 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11130 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11131 return sizeof(struct buffer_control);
11132}
11133
11134static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11135{
11136 u64 reg;
11137 int i;
11138
11139 /* each register contains 16 SC->VLnt mappings, 4 bits each */
11140 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11141 for (i = 0; i < sizeof(u64); i++) {
11142 u8 byte = *(((u8 *)&reg) + i);
11143
11144 dp->vlnt[2 * i] = byte & 0xf;
11145 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11146 }
11147
11148 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11149 for (i = 0; i < sizeof(u64); i++) {
11150 u8 byte = *(((u8 *)&reg) + i);
11151
11152 dp->vlnt[16 + (2 * i)] = byte & 0xf;
11153 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11154 }
11155 return sizeof(struct sc2vlnt);
11156}
11157
11158static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11159 struct ib_vl_weight_elem *vl)
11160{
11161 unsigned int i;
11162
11163 for (i = 0; i < nelems; i++, vl++) {
11164 vl->vl = 0xf;
11165 vl->weight = 0;
11166 }
11167}
11168
11169static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11170{
11171 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11172 DC_SC_VL_VAL(15_0,
11173 0, dp->vlnt[0] & 0xf,
11174 1, dp->vlnt[1] & 0xf,
11175 2, dp->vlnt[2] & 0xf,
11176 3, dp->vlnt[3] & 0xf,
11177 4, dp->vlnt[4] & 0xf,
11178 5, dp->vlnt[5] & 0xf,
11179 6, dp->vlnt[6] & 0xf,
11180 7, dp->vlnt[7] & 0xf,
11181 8, dp->vlnt[8] & 0xf,
11182 9, dp->vlnt[9] & 0xf,
11183 10, dp->vlnt[10] & 0xf,
11184 11, dp->vlnt[11] & 0xf,
11185 12, dp->vlnt[12] & 0xf,
11186 13, dp->vlnt[13] & 0xf,
11187 14, dp->vlnt[14] & 0xf,
11188 15, dp->vlnt[15] & 0xf));
11189 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11190 DC_SC_VL_VAL(31_16,
11191 16, dp->vlnt[16] & 0xf,
11192 17, dp->vlnt[17] & 0xf,
11193 18, dp->vlnt[18] & 0xf,
11194 19, dp->vlnt[19] & 0xf,
11195 20, dp->vlnt[20] & 0xf,
11196 21, dp->vlnt[21] & 0xf,
11197 22, dp->vlnt[22] & 0xf,
11198 23, dp->vlnt[23] & 0xf,
11199 24, dp->vlnt[24] & 0xf,
11200 25, dp->vlnt[25] & 0xf,
11201 26, dp->vlnt[26] & 0xf,
11202 27, dp->vlnt[27] & 0xf,
11203 28, dp->vlnt[28] & 0xf,
11204 29, dp->vlnt[29] & 0xf,
11205 30, dp->vlnt[30] & 0xf,
11206 31, dp->vlnt[31] & 0xf));
11207}
11208
11209static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11210 u16 limit)
11211{
11212 if (limit != 0)
11213 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11214 what, (int)limit, idx);
11215}
11216
11217/* change only the shared limit portion of SendCmGLobalCredit */
11218static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11219{
11220 u64 reg;
11221
11222 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11223 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11224 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11225 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11226}
11227
11228/* change only the total credit limit portion of SendCmGLobalCredit */
11229static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11230{
11231 u64 reg;
11232
11233 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11234 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11235 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11236 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11237}
11238
11239/* set the given per-VL shared limit */
11240static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11241{
11242 u64 reg;
11243 u32 addr;
11244
11245 if (vl < TXE_NUM_DATA_VL)
11246 addr = SEND_CM_CREDIT_VL + (8 * vl);
11247 else
11248 addr = SEND_CM_CREDIT_VL15;
11249
11250 reg = read_csr(dd, addr);
11251 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11252 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11253 write_csr(dd, addr, reg);
11254}
11255
11256/* set the given per-VL dedicated limit */
11257static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11258{
11259 u64 reg;
11260 u32 addr;
11261
11262 if (vl < TXE_NUM_DATA_VL)
11263 addr = SEND_CM_CREDIT_VL + (8 * vl);
11264 else
11265 addr = SEND_CM_CREDIT_VL15;
11266
11267 reg = read_csr(dd, addr);
11268 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11269 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11270 write_csr(dd, addr, reg);
11271}
11272
11273/* spin until the given per-VL status mask bits clear */
11274static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11275 const char *which)
11276{
11277 unsigned long timeout;
11278 u64 reg;
11279
11280 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11281 while (1) {
11282 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11283
11284 if (reg == 0)
11285 return; /* success */
11286 if (time_after(jiffies, timeout))
11287 break; /* timed out */
11288 udelay(1);
11289 }
11290
11291 dd_dev_err(dd,
11292 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11293 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11294 /*
11295 * If this occurs, it is likely there was a credit loss on the link.
11296 * The only recovery from that is a link bounce.
11297 */
11298 dd_dev_err(dd,
11299 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
11300}
11301
11302/*
11303 * The number of credits on the VLs may be changed while everything
11304 * is "live", but the following algorithm must be followed due to
11305 * how the hardware is actually implemented. In particular,
11306 * Return_Credit_Status[] is the only correct status check.
11307 *
11308 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11309 * set Global_Shared_Credit_Limit = 0
11310 * use_all_vl = 1
11311 * mask0 = all VLs that are changing either dedicated or shared limits
11312 * set Shared_Limit[mask0] = 0
11313 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11314 * if (changing any dedicated limit)
11315 * mask1 = all VLs that are lowering dedicated limits
11316 * lower Dedicated_Limit[mask1]
11317 * spin until Return_Credit_Status[mask1] == 0
11318 * raise Dedicated_Limits
11319 * raise Shared_Limits
11320 * raise Global_Shared_Credit_Limit
11321 *
11322 * lower = if the new limit is lower, set the limit to the new value
11323 * raise = if the new limit is higher than the current value (may be changed
11324 * earlier in the algorithm), set the new limit to the new value
11325 */
11326int set_buffer_control(struct hfi1_pportdata *ppd,
11327 struct buffer_control *new_bc)
11328{
11329 struct hfi1_devdata *dd = ppd->dd;
11330 u64 changing_mask, ld_mask, stat_mask;
11331 int change_count;
11332 int i, use_all_mask;
11333 int this_shared_changing;
11334 int vl_count = 0, ret;
11335 /*
11336 * A0: add the variable any_shared_limit_changing below and in the
11337 * algorithm above. If removing A0 support, it can be removed.
11338 */
11339 int any_shared_limit_changing;
11340 struct buffer_control cur_bc;
11341 u8 changing[OPA_MAX_VLS];
11342 u8 lowering_dedicated[OPA_MAX_VLS];
11343 u16 cur_total;
11344 u32 new_total = 0;
11345 const u64 all_mask =
11346 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11347 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11348 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11349 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11350 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11351 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11352 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11353 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11354 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11355
11356#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11357#define NUM_USABLE_VLS 16 /* look at VL15 and less */
11358
11359 /* find the new total credits, do sanity check on unused VLs */
11360 for (i = 0; i < OPA_MAX_VLS; i++) {
11361 if (valid_vl(i)) {
11362 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11363 continue;
11364 }
11365 nonzero_msg(dd, i, "dedicated",
11366 be16_to_cpu(new_bc->vl[i].dedicated));
11367 nonzero_msg(dd, i, "shared",
11368 be16_to_cpu(new_bc->vl[i].shared));
11369 new_bc->vl[i].dedicated = 0;
11370 new_bc->vl[i].shared = 0;
11371 }
11372 new_total += be16_to_cpu(new_bc->overall_shared_limit);
11373
11374 /* fetch the current values */
11375 get_buffer_control(dd, &cur_bc, &cur_total);
11376
11377 /*
11378 * Create the masks we will use.
11379 */
11380 memset(changing, 0, sizeof(changing));
11381 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11382 /*
11383 * NOTE: Assumes that the individual VL bits are adjacent and in
11384 * increasing order
11385 */
11386 stat_mask =
11387 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11388 changing_mask = 0;
11389 ld_mask = 0;
11390 change_count = 0;
11391 any_shared_limit_changing = 0;
11392 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11393 if (!valid_vl(i))
11394 continue;
11395 this_shared_changing = new_bc->vl[i].shared
11396 != cur_bc.vl[i].shared;
11397 if (this_shared_changing)
11398 any_shared_limit_changing = 1;
11399 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11400 this_shared_changing) {
11401 changing[i] = 1;
11402 changing_mask |= stat_mask;
11403 change_count++;
11404 }
11405 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11406 be16_to_cpu(cur_bc.vl[i].dedicated)) {
11407 lowering_dedicated[i] = 1;
11408 ld_mask |= stat_mask;
11409 }
11410 }
11411
11412 /* bracket the credit change with a total adjustment */
11413 if (new_total > cur_total)
11414 set_global_limit(dd, new_total);
11415
11416 /*
11417 * Start the credit change algorithm.
11418 */
11419 use_all_mask = 0;
11420 if ((be16_to_cpu(new_bc->overall_shared_limit) <
11421 be16_to_cpu(cur_bc.overall_shared_limit)) ||
11422 (is_ax(dd) && any_shared_limit_changing)) {
11423 set_global_shared(dd, 0);
11424 cur_bc.overall_shared_limit = 0;
11425 use_all_mask = 1;
11426 }
11427
11428 for (i = 0; i < NUM_USABLE_VLS; i++) {
11429 if (!valid_vl(i))
11430 continue;
11431
11432 if (changing[i]) {
11433 set_vl_shared(dd, i, 0);
11434 cur_bc.vl[i].shared = 0;
11435 }
11436 }
11437
11438 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11439 "shared");
11440
11441 if (change_count > 0) {
11442 for (i = 0; i < NUM_USABLE_VLS; i++) {
11443 if (!valid_vl(i))
11444 continue;
11445
11446 if (lowering_dedicated[i]) {
11447 set_vl_dedicated(dd, i,
11448 be16_to_cpu(new_bc->
11449 vl[i].dedicated));
11450 cur_bc.vl[i].dedicated =
11451 new_bc->vl[i].dedicated;
11452 }
11453 }
11454
11455 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11456
11457 /* now raise all dedicated that are going up */
11458 for (i = 0; i < NUM_USABLE_VLS; i++) {
11459 if (!valid_vl(i))
11460 continue;
11461
11462 if (be16_to_cpu(new_bc->vl[i].dedicated) >
11463 be16_to_cpu(cur_bc.vl[i].dedicated))
11464 set_vl_dedicated(dd, i,
11465 be16_to_cpu(new_bc->
11466 vl[i].dedicated));
11467 }
11468 }
11469
11470 /* next raise all shared that are going up */
11471 for (i = 0; i < NUM_USABLE_VLS; i++) {
11472 if (!valid_vl(i))
11473 continue;
11474
11475 if (be16_to_cpu(new_bc->vl[i].shared) >
11476 be16_to_cpu(cur_bc.vl[i].shared))
11477 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11478 }
11479
11480 /* finally raise the global shared */
11481 if (be16_to_cpu(new_bc->overall_shared_limit) >
11482 be16_to_cpu(cur_bc.overall_shared_limit))
11483 set_global_shared(dd,
11484 be16_to_cpu(new_bc->overall_shared_limit));
11485
11486 /* bracket the credit change with a total adjustment */
11487 if (new_total < cur_total)
11488 set_global_limit(dd, new_total);
11489
11490 /*
11491 * Determine the actual number of operational VLS using the number of
11492 * dedicated and shared credits for each VL.
11493 */
11494 if (change_count > 0) {
11495 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11496 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11497 be16_to_cpu(new_bc->vl[i].shared) > 0)
11498 vl_count++;
11499 ppd->actual_vls_operational = vl_count;
11500 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11501 ppd->actual_vls_operational :
11502 ppd->vls_operational,
11503 NULL);
11504 if (ret == 0)
11505 ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11506 ppd->actual_vls_operational :
11507 ppd->vls_operational, NULL);
11508 if (ret)
11509 return ret;
11510 }
11511 return 0;
11512}
11513
11514/*
11515 * Read the given fabric manager table. Return the size of the
11516 * table (in bytes) on success, and a negative error code on
11517 * failure.
11518 */
11519int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11520
11521{
11522 int size;
11523 struct vl_arb_cache *vlc;
11524
11525 switch (which) {
11526 case FM_TBL_VL_HIGH_ARB:
11527 size = 256;
11528 /*
11529 * OPA specifies 128 elements (of 2 bytes each), though
11530 * HFI supports only 16 elements in h/w.
11531 */
11532 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11533 vl_arb_get_cache(vlc, t);
11534 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11535 break;
11536 case FM_TBL_VL_LOW_ARB:
11537 size = 256;
11538 /*
11539 * OPA specifies 128 elements (of 2 bytes each), though
11540 * HFI supports only 16 elements in h/w.
11541 */
11542 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11543 vl_arb_get_cache(vlc, t);
11544 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11545 break;
11546 case FM_TBL_BUFFER_CONTROL:
11547 size = get_buffer_control(ppd->dd, t, NULL);
11548 break;
11549 case FM_TBL_SC2VLNT:
11550 size = get_sc2vlnt(ppd->dd, t);
11551 break;
11552 case FM_TBL_VL_PREEMPT_ELEMS:
11553 size = 256;
11554 /* OPA specifies 128 elements, of 2 bytes each */
11555 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11556 break;
11557 case FM_TBL_VL_PREEMPT_MATRIX:
11558 size = 256;
11559 /*
11560 * OPA specifies that this is the same size as the VL
11561 * arbitration tables (i.e., 256 bytes).
11562 */
11563 break;
11564 default:
11565 return -EINVAL;
11566 }
11567 return size;
11568}
11569
11570/*
11571 * Write the given fabric manager table.
11572 */
11573int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11574{
11575 int ret = 0;
11576 struct vl_arb_cache *vlc;
11577
11578 switch (which) {
11579 case FM_TBL_VL_HIGH_ARB:
11580 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11581 if (vl_arb_match_cache(vlc, t)) {
11582 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11583 break;
11584 }
11585 vl_arb_set_cache(vlc, t);
11586 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11587 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11588 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11589 break;
11590 case FM_TBL_VL_LOW_ARB:
11591 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11592 if (vl_arb_match_cache(vlc, t)) {
11593 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11594 break;
11595 }
11596 vl_arb_set_cache(vlc, t);
11597 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11598 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11599 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11600 break;
11601 case FM_TBL_BUFFER_CONTROL:
11602 ret = set_buffer_control(ppd, t);
11603 break;
11604 case FM_TBL_SC2VLNT:
11605 set_sc2vlnt(ppd->dd, t);
11606 break;
11607 default:
11608 ret = -EINVAL;
11609 }
11610 return ret;
11611}
11612
11613/*
11614 * Disable all data VLs.
11615 *
11616 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11617 */
11618static int disable_data_vls(struct hfi1_devdata *dd)
11619{
11620 if (is_ax(dd))
11621 return 1;
11622
11623 pio_send_control(dd, PSC_DATA_VL_DISABLE);
11624
11625 return 0;
11626}
11627
11628/*
11629 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11630 * Just re-enables all data VLs (the "fill" part happens
11631 * automatically - the name was chosen for symmetry with
11632 * stop_drain_data_vls()).
11633 *
11634 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11635 */
11636int open_fill_data_vls(struct hfi1_devdata *dd)
11637{
11638 if (is_ax(dd))
11639 return 1;
11640
11641 pio_send_control(dd, PSC_DATA_VL_ENABLE);
11642
11643 return 0;
11644}
11645
11646/*
11647 * drain_data_vls() - assumes that disable_data_vls() has been called,
11648 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11649 * engines to drop to 0.
11650 */
11651static void drain_data_vls(struct hfi1_devdata *dd)
11652{
11653 sc_wait(dd);
11654 sdma_wait(dd);
11655 pause_for_credit_return(dd);
11656}
11657
11658/*
11659 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11660 *
11661 * Use open_fill_data_vls() to resume using data VLs. This pair is
11662 * meant to be used like this:
11663 *
11664 * stop_drain_data_vls(dd);
11665 * // do things with per-VL resources
11666 * open_fill_data_vls(dd);
11667 */
11668int stop_drain_data_vls(struct hfi1_devdata *dd)
11669{
11670 int ret;
11671
11672 ret = disable_data_vls(dd);
11673 if (ret == 0)
11674 drain_data_vls(dd);
11675
11676 return ret;
11677}
11678
11679/*
11680 * Convert a nanosecond time to a cclock count. No matter how slow
11681 * the cclock, a non-zero ns will always have a non-zero result.
11682 */
11683u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11684{
11685 u32 cclocks;
11686
11687 if (dd->icode == ICODE_FPGA_EMULATION)
11688 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11689 else /* simulation pretends to be ASIC */
11690 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11691 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
11692 cclocks = 1;
11693 return cclocks;
11694}
11695
11696/*
11697 * Convert a cclock count to nanoseconds. Not matter how slow
11698 * the cclock, a non-zero cclocks will always have a non-zero result.
11699 */
11700u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11701{
11702 u32 ns;
11703
11704 if (dd->icode == ICODE_FPGA_EMULATION)
11705 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11706 else /* simulation pretends to be ASIC */
11707 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11708 if (cclocks && !ns)
11709 ns = 1;
11710 return ns;
11711}
11712
11713/*
11714 * Dynamically adjust the receive interrupt timeout for a context based on
11715 * incoming packet rate.
11716 *
11717 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11718 */
11719static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11720{
11721 struct hfi1_devdata *dd = rcd->dd;
11722 u32 timeout = rcd->rcvavail_timeout;
11723
11724 /*
11725 * This algorithm doubles or halves the timeout depending on whether
11726 * the number of packets received in this interrupt were less than or
11727 * greater equal the interrupt count.
11728 *
11729 * The calculations below do not allow a steady state to be achieved.
11730 * Only at the endpoints it is possible to have an unchanging
11731 * timeout.
11732 */
11733 if (npkts < rcv_intr_count) {
11734 /*
11735 * Not enough packets arrived before the timeout, adjust
11736 * timeout downward.
11737 */
11738 if (timeout < 2) /* already at minimum? */
11739 return;
11740 timeout >>= 1;
11741 } else {
11742 /*
11743 * More than enough packets arrived before the timeout, adjust
11744 * timeout upward.
11745 */
11746 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11747 return;
11748 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11749 }
11750
11751 rcd->rcvavail_timeout = timeout;
11752 /*
11753 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11754 * been verified to be in range
11755 */
11756 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11757 (u64)timeout <<
11758 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11759}
11760
11761void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11762 u32 intr_adjust, u32 npkts)
11763{
11764 struct hfi1_devdata *dd = rcd->dd;
11765 u64 reg;
11766 u32 ctxt = rcd->ctxt;
11767
11768 /*
11769 * Need to write timeout register before updating RcvHdrHead to ensure
11770 * that a new value is used when the HW decides to restart counting.
11771 */
11772 if (intr_adjust)
11773 adjust_rcv_timeout(rcd, npkts);
11774 if (updegr) {
11775 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11776 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11777 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11778 }
11779 mmiowb();
11780 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11781 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11782 << RCV_HDR_HEAD_HEAD_SHIFT);
11783 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11784 mmiowb();
11785}
11786
11787u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11788{
11789 u32 head, tail;
11790
11791 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11792 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11793
11794 if (rcd->rcvhdrtail_kvaddr)
11795 tail = get_rcvhdrtail(rcd);
11796 else
11797 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11798
11799 return head == tail;
11800}
11801
11802/*
11803 * Context Control and Receive Array encoding for buffer size:
11804 * 0x0 invalid
11805 * 0x1 4 KB
11806 * 0x2 8 KB
11807 * 0x3 16 KB
11808 * 0x4 32 KB
11809 * 0x5 64 KB
11810 * 0x6 128 KB
11811 * 0x7 256 KB
11812 * 0x8 512 KB (Receive Array only)
11813 * 0x9 1 MB (Receive Array only)
11814 * 0xa 2 MB (Receive Array only)
11815 *
11816 * 0xB-0xF - reserved (Receive Array only)
11817 *
11818 *
11819 * This routine assumes that the value has already been sanity checked.
11820 */
11821static u32 encoded_size(u32 size)
11822{
11823 switch (size) {
11824 case 4 * 1024: return 0x1;
11825 case 8 * 1024: return 0x2;
11826 case 16 * 1024: return 0x3;
11827 case 32 * 1024: return 0x4;
11828 case 64 * 1024: return 0x5;
11829 case 128 * 1024: return 0x6;
11830 case 256 * 1024: return 0x7;
11831 case 512 * 1024: return 0x8;
11832 case 1 * 1024 * 1024: return 0x9;
11833 case 2 * 1024 * 1024: return 0xa;
11834 }
11835 return 0x1; /* if invalid, go with the minimum size */
11836}
11837
11838void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11839 struct hfi1_ctxtdata *rcd)
11840{
11841 u64 rcvctrl, reg;
11842 int did_enable = 0;
11843 u16 ctxt;
11844
11845 if (!rcd)
11846 return;
11847
11848 ctxt = rcd->ctxt;
11849
11850 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11851
11852 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11853 /* if the context already enabled, don't do the extra steps */
11854 if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11855 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11856 /* reset the tail and hdr addresses, and sequence count */
11857 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11858 rcd->rcvhdrq_dma);
11859 if (rcd->rcvhdrtail_kvaddr)
11860 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11861 rcd->rcvhdrqtailaddr_dma);
11862 rcd->seq_cnt = 1;
11863
11864 /* reset the cached receive header queue head value */
11865 rcd->head = 0;
11866
11867 /*
11868 * Zero the receive header queue so we don't get false
11869 * positives when checking the sequence number. The
11870 * sequence numbers could land exactly on the same spot.
11871 * E.g. a rcd restart before the receive header wrapped.
11872 */
11873 memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
11874
11875 /* starting timeout */
11876 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11877
11878 /* enable the context */
11879 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11880
11881 /* clean the egr buffer size first */
11882 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11883 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11884 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11885 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11886
11887 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11888 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11889 did_enable = 1;
11890
11891 /* zero RcvEgrIndexHead */
11892 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11893
11894 /* set eager count and base index */
11895 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11896 & RCV_EGR_CTRL_EGR_CNT_MASK)
11897 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11898 (((rcd->eager_base >> RCV_SHIFT)
11899 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11900 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11901 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11902
11903 /*
11904 * Set TID (expected) count and base index.
11905 * rcd->expected_count is set to individual RcvArray entries,
11906 * not pairs, and the CSR takes a pair-count in groups of
11907 * four, so divide by 8.
11908 */
11909 reg = (((rcd->expected_count >> RCV_SHIFT)
11910 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11911 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11912 (((rcd->expected_base >> RCV_SHIFT)
11913 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11914 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11915 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11916 if (ctxt == HFI1_CTRL_CTXT)
11917 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11918 }
11919 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11920 write_csr(dd, RCV_VL15, 0);
11921 /*
11922 * When receive context is being disabled turn on tail
11923 * update with a dummy tail address and then disable
11924 * receive context.
11925 */
11926 if (dd->rcvhdrtail_dummy_dma) {
11927 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11928 dd->rcvhdrtail_dummy_dma);
11929 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11930 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11931 }
11932
11933 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11934 }
11935 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11936 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11937 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11938 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11939 if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && rcd->rcvhdrtail_kvaddr)
11940 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11941 if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11942 /* See comment on RcvCtxtCtrl.TailUpd above */
11943 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11944 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11945 }
11946 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11947 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11948 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11949 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11950 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11951 /*
11952 * In one-packet-per-eager mode, the size comes from
11953 * the RcvArray entry.
11954 */
11955 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11956 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11957 }
11958 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11959 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11960 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11961 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11962 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11963 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11964 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11965 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11966 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11967 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11968 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11969 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
11970
11971 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11972 if (did_enable &&
11973 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11974 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11975 if (reg != 0) {
11976 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11977 ctxt, reg);
11978 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11979 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11980 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11981 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11982 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11983 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11984 ctxt, reg, reg == 0 ? "not" : "still");
11985 }
11986 }
11987
11988 if (did_enable) {
11989 /*
11990 * The interrupt timeout and count must be set after
11991 * the context is enabled to take effect.
11992 */
11993 /* set interrupt timeout */
11994 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11995 (u64)rcd->rcvavail_timeout <<
11996 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11997
11998 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11999 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12000 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12001 }
12002
12003 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12004 /*
12005 * If the context has been disabled and the Tail Update has
12006 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12007 * so it doesn't contain an address that is invalid.
12008 */
12009 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12010 dd->rcvhdrtail_dummy_dma);
12011}
12012
12013u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12014{
12015 int ret;
12016 u64 val = 0;
12017
12018 if (namep) {
12019 ret = dd->cntrnameslen;
12020 *namep = dd->cntrnames;
12021 } else {
12022 const struct cntr_entry *entry;
12023 int i, j;
12024
12025 ret = (dd->ndevcntrs) * sizeof(u64);
12026
12027 /* Get the start of the block of counters */
12028 *cntrp = dd->cntrs;
12029
12030 /*
12031 * Now go and fill in each counter in the block.
12032 */
12033 for (i = 0; i < DEV_CNTR_LAST; i++) {
12034 entry = &dev_cntrs[i];
12035 hfi1_cdbg(CNTR, "reading %s", entry->name);
12036 if (entry->flags & CNTR_DISABLED) {
12037 /* Nothing */
12038 hfi1_cdbg(CNTR, "\tDisabled\n");
12039 } else {
12040 if (entry->flags & CNTR_VL) {
12041 hfi1_cdbg(CNTR, "\tPer VL\n");
12042 for (j = 0; j < C_VL_COUNT; j++) {
12043 val = entry->rw_cntr(entry,
12044 dd, j,
12045 CNTR_MODE_R,
12046 0);
12047 hfi1_cdbg(
12048 CNTR,
12049 "\t\tRead 0x%llx for %d\n",
12050 val, j);
12051 dd->cntrs[entry->offset + j] =
12052 val;
12053 }
12054 } else if (entry->flags & CNTR_SDMA) {
12055 hfi1_cdbg(CNTR,
12056 "\t Per SDMA Engine\n");
12057 for (j = 0; j < chip_sdma_engines(dd);
12058 j++) {
12059 val =
12060 entry->rw_cntr(entry, dd, j,
12061 CNTR_MODE_R, 0);
12062 hfi1_cdbg(CNTR,
12063 "\t\tRead 0x%llx for %d\n",
12064 val, j);
12065 dd->cntrs[entry->offset + j] =
12066 val;
12067 }
12068 } else {
12069 val = entry->rw_cntr(entry, dd,
12070 CNTR_INVALID_VL,
12071 CNTR_MODE_R, 0);
12072 dd->cntrs[entry->offset] = val;
12073 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12074 }
12075 }
12076 }
12077 }
12078 return ret;
12079}
12080
12081/*
12082 * Used by sysfs to create files for hfi stats to read
12083 */
12084u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12085{
12086 int ret;
12087 u64 val = 0;
12088
12089 if (namep) {
12090 ret = ppd->dd->portcntrnameslen;
12091 *namep = ppd->dd->portcntrnames;
12092 } else {
12093 const struct cntr_entry *entry;
12094 int i, j;
12095
12096 ret = ppd->dd->nportcntrs * sizeof(u64);
12097 *cntrp = ppd->cntrs;
12098
12099 for (i = 0; i < PORT_CNTR_LAST; i++) {
12100 entry = &port_cntrs[i];
12101 hfi1_cdbg(CNTR, "reading %s", entry->name);
12102 if (entry->flags & CNTR_DISABLED) {
12103 /* Nothing */
12104 hfi1_cdbg(CNTR, "\tDisabled\n");
12105 continue;
12106 }
12107
12108 if (entry->flags & CNTR_VL) {
12109 hfi1_cdbg(CNTR, "\tPer VL");
12110 for (j = 0; j < C_VL_COUNT; j++) {
12111 val = entry->rw_cntr(entry, ppd, j,
12112 CNTR_MODE_R,
12113 0);
12114 hfi1_cdbg(
12115 CNTR,
12116 "\t\tRead 0x%llx for %d",
12117 val, j);
12118 ppd->cntrs[entry->offset + j] = val;
12119 }
12120 } else {
12121 val = entry->rw_cntr(entry, ppd,
12122 CNTR_INVALID_VL,
12123 CNTR_MODE_R,
12124 0);
12125 ppd->cntrs[entry->offset] = val;
12126 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12127 }
12128 }
12129 }
12130 return ret;
12131}
12132
12133static void free_cntrs(struct hfi1_devdata *dd)
12134{
12135 struct hfi1_pportdata *ppd;
12136 int i;
12137
12138 if (dd->synth_stats_timer.function)
12139 del_timer_sync(&dd->synth_stats_timer);
12140 ppd = (struct hfi1_pportdata *)(dd + 1);
12141 for (i = 0; i < dd->num_pports; i++, ppd++) {
12142 kfree(ppd->cntrs);
12143 kfree(ppd->scntrs);
12144 free_percpu(ppd->ibport_data.rvp.rc_acks);
12145 free_percpu(ppd->ibport_data.rvp.rc_qacks);
12146 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12147 ppd->cntrs = NULL;
12148 ppd->scntrs = NULL;
12149 ppd->ibport_data.rvp.rc_acks = NULL;
12150 ppd->ibport_data.rvp.rc_qacks = NULL;
12151 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12152 }
12153 kfree(dd->portcntrnames);
12154 dd->portcntrnames = NULL;
12155 kfree(dd->cntrs);
12156 dd->cntrs = NULL;
12157 kfree(dd->scntrs);
12158 dd->scntrs = NULL;
12159 kfree(dd->cntrnames);
12160 dd->cntrnames = NULL;
12161 if (dd->update_cntr_wq) {
12162 destroy_workqueue(dd->update_cntr_wq);
12163 dd->update_cntr_wq = NULL;
12164 }
12165}
12166
12167static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12168 u64 *psval, void *context, int vl)
12169{
12170 u64 val;
12171 u64 sval = *psval;
12172
12173 if (entry->flags & CNTR_DISABLED) {
12174 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12175 return 0;
12176 }
12177
12178 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12179
12180 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12181
12182 /* If its a synthetic counter there is more work we need to do */
12183 if (entry->flags & CNTR_SYNTH) {
12184 if (sval == CNTR_MAX) {
12185 /* No need to read already saturated */
12186 return CNTR_MAX;
12187 }
12188
12189 if (entry->flags & CNTR_32BIT) {
12190 /* 32bit counters can wrap multiple times */
12191 u64 upper = sval >> 32;
12192 u64 lower = (sval << 32) >> 32;
12193
12194 if (lower > val) { /* hw wrapped */
12195 if (upper == CNTR_32BIT_MAX)
12196 val = CNTR_MAX;
12197 else
12198 upper++;
12199 }
12200
12201 if (val != CNTR_MAX)
12202 val = (upper << 32) | val;
12203
12204 } else {
12205 /* If we rolled we are saturated */
12206 if ((val < sval) || (val > CNTR_MAX))
12207 val = CNTR_MAX;
12208 }
12209 }
12210
12211 *psval = val;
12212
12213 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12214
12215 return val;
12216}
12217
12218static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12219 struct cntr_entry *entry,
12220 u64 *psval, void *context, int vl, u64 data)
12221{
12222 u64 val;
12223
12224 if (entry->flags & CNTR_DISABLED) {
12225 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12226 return 0;
12227 }
12228
12229 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12230
12231 if (entry->flags & CNTR_SYNTH) {
12232 *psval = data;
12233 if (entry->flags & CNTR_32BIT) {
12234 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12235 (data << 32) >> 32);
12236 val = data; /* return the full 64bit value */
12237 } else {
12238 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12239 data);
12240 }
12241 } else {
12242 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12243 }
12244
12245 *psval = val;
12246
12247 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12248
12249 return val;
12250}
12251
12252u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12253{
12254 struct cntr_entry *entry;
12255 u64 *sval;
12256
12257 entry = &dev_cntrs[index];
12258 sval = dd->scntrs + entry->offset;
12259
12260 if (vl != CNTR_INVALID_VL)
12261 sval += vl;
12262
12263 return read_dev_port_cntr(dd, entry, sval, dd, vl);
12264}
12265
12266u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12267{
12268 struct cntr_entry *entry;
12269 u64 *sval;
12270
12271 entry = &dev_cntrs[index];
12272 sval = dd->scntrs + entry->offset;
12273
12274 if (vl != CNTR_INVALID_VL)
12275 sval += vl;
12276
12277 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12278}
12279
12280u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12281{
12282 struct cntr_entry *entry;
12283 u64 *sval;
12284
12285 entry = &port_cntrs[index];
12286 sval = ppd->scntrs + entry->offset;
12287
12288 if (vl != CNTR_INVALID_VL)
12289 sval += vl;
12290
12291 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12292 (index <= C_RCV_HDR_OVF_LAST)) {
12293 /* We do not want to bother for disabled contexts */
12294 return 0;
12295 }
12296
12297 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12298}
12299
12300u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12301{
12302 struct cntr_entry *entry;
12303 u64 *sval;
12304
12305 entry = &port_cntrs[index];
12306 sval = ppd->scntrs + entry->offset;
12307
12308 if (vl != CNTR_INVALID_VL)
12309 sval += vl;
12310
12311 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12312 (index <= C_RCV_HDR_OVF_LAST)) {
12313 /* We do not want to bother for disabled contexts */
12314 return 0;
12315 }
12316
12317 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12318}
12319
12320static void do_update_synth_timer(struct work_struct *work)
12321{
12322 u64 cur_tx;
12323 u64 cur_rx;
12324 u64 total_flits;
12325 u8 update = 0;
12326 int i, j, vl;
12327 struct hfi1_pportdata *ppd;
12328 struct cntr_entry *entry;
12329 struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12330 update_cntr_work);
12331
12332 /*
12333 * Rather than keep beating on the CSRs pick a minimal set that we can
12334 * check to watch for potential roll over. We can do this by looking at
12335 * the number of flits sent/recv. If the total flits exceeds 32bits then
12336 * we have to iterate all the counters and update.
12337 */
12338 entry = &dev_cntrs[C_DC_RCV_FLITS];
12339 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12340
12341 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12342 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12343
12344 hfi1_cdbg(
12345 CNTR,
12346 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12347 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12348
12349 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12350 /*
12351 * May not be strictly necessary to update but it won't hurt and
12352 * simplifies the logic here.
12353 */
12354 update = 1;
12355 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12356 dd->unit);
12357 } else {
12358 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12359 hfi1_cdbg(CNTR,
12360 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12361 total_flits, (u64)CNTR_32BIT_MAX);
12362 if (total_flits >= CNTR_32BIT_MAX) {
12363 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12364 dd->unit);
12365 update = 1;
12366 }
12367 }
12368
12369 if (update) {
12370 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12371 for (i = 0; i < DEV_CNTR_LAST; i++) {
12372 entry = &dev_cntrs[i];
12373 if (entry->flags & CNTR_VL) {
12374 for (vl = 0; vl < C_VL_COUNT; vl++)
12375 read_dev_cntr(dd, i, vl);
12376 } else {
12377 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12378 }
12379 }
12380 ppd = (struct hfi1_pportdata *)(dd + 1);
12381 for (i = 0; i < dd->num_pports; i++, ppd++) {
12382 for (j = 0; j < PORT_CNTR_LAST; j++) {
12383 entry = &port_cntrs[j];
12384 if (entry->flags & CNTR_VL) {
12385 for (vl = 0; vl < C_VL_COUNT; vl++)
12386 read_port_cntr(ppd, j, vl);
12387 } else {
12388 read_port_cntr(ppd, j, CNTR_INVALID_VL);
12389 }
12390 }
12391 }
12392
12393 /*
12394 * We want the value in the register. The goal is to keep track
12395 * of the number of "ticks" not the counter value. In other
12396 * words if the register rolls we want to notice it and go ahead
12397 * and force an update.
12398 */
12399 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12400 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12401 CNTR_MODE_R, 0);
12402
12403 entry = &dev_cntrs[C_DC_RCV_FLITS];
12404 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12405 CNTR_MODE_R, 0);
12406
12407 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12408 dd->unit, dd->last_tx, dd->last_rx);
12409
12410 } else {
12411 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12412 }
12413}
12414
12415static void update_synth_timer(struct timer_list *t)
12416{
12417 struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12418
12419 queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12420 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12421}
12422
12423#define C_MAX_NAME 16 /* 15 chars + one for /0 */
12424static int init_cntrs(struct hfi1_devdata *dd)
12425{
12426 int i, rcv_ctxts, j;
12427 size_t sz;
12428 char *p;
12429 char name[C_MAX_NAME];
12430 struct hfi1_pportdata *ppd;
12431 const char *bit_type_32 = ",32";
12432 const int bit_type_32_sz = strlen(bit_type_32);
12433 u32 sdma_engines = chip_sdma_engines(dd);
12434
12435 /* set up the stats timer; the add_timer is done at the end */
12436 timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12437
12438 /***********************/
12439 /* per device counters */
12440 /***********************/
12441
12442 /* size names and determine how many we have*/
12443 dd->ndevcntrs = 0;
12444 sz = 0;
12445
12446 for (i = 0; i < DEV_CNTR_LAST; i++) {
12447 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12448 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12449 continue;
12450 }
12451
12452 if (dev_cntrs[i].flags & CNTR_VL) {
12453 dev_cntrs[i].offset = dd->ndevcntrs;
12454 for (j = 0; j < C_VL_COUNT; j++) {
12455 snprintf(name, C_MAX_NAME, "%s%d",
12456 dev_cntrs[i].name, vl_from_idx(j));
12457 sz += strlen(name);
12458 /* Add ",32" for 32-bit counters */
12459 if (dev_cntrs[i].flags & CNTR_32BIT)
12460 sz += bit_type_32_sz;
12461 sz++;
12462 dd->ndevcntrs++;
12463 }
12464 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12465 dev_cntrs[i].offset = dd->ndevcntrs;
12466 for (j = 0; j < sdma_engines; j++) {
12467 snprintf(name, C_MAX_NAME, "%s%d",
12468 dev_cntrs[i].name, j);
12469 sz += strlen(name);
12470 /* Add ",32" for 32-bit counters */
12471 if (dev_cntrs[i].flags & CNTR_32BIT)
12472 sz += bit_type_32_sz;
12473 sz++;
12474 dd->ndevcntrs++;
12475 }
12476 } else {
12477 /* +1 for newline. */
12478 sz += strlen(dev_cntrs[i].name) + 1;
12479 /* Add ",32" for 32-bit counters */
12480 if (dev_cntrs[i].flags & CNTR_32BIT)
12481 sz += bit_type_32_sz;
12482 dev_cntrs[i].offset = dd->ndevcntrs;
12483 dd->ndevcntrs++;
12484 }
12485 }
12486
12487 /* allocate space for the counter values */
12488 dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12489 GFP_KERNEL);
12490 if (!dd->cntrs)
12491 goto bail;
12492
12493 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12494 if (!dd->scntrs)
12495 goto bail;
12496
12497 /* allocate space for the counter names */
12498 dd->cntrnameslen = sz;
12499 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12500 if (!dd->cntrnames)
12501 goto bail;
12502
12503 /* fill in the names */
12504 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12505 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12506 /* Nothing */
12507 } else if (dev_cntrs[i].flags & CNTR_VL) {
12508 for (j = 0; j < C_VL_COUNT; j++) {
12509 snprintf(name, C_MAX_NAME, "%s%d",
12510 dev_cntrs[i].name,
12511 vl_from_idx(j));
12512 memcpy(p, name, strlen(name));
12513 p += strlen(name);
12514
12515 /* Counter is 32 bits */
12516 if (dev_cntrs[i].flags & CNTR_32BIT) {
12517 memcpy(p, bit_type_32, bit_type_32_sz);
12518 p += bit_type_32_sz;
12519 }
12520
12521 *p++ = '\n';
12522 }
12523 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12524 for (j = 0; j < sdma_engines; j++) {
12525 snprintf(name, C_MAX_NAME, "%s%d",
12526 dev_cntrs[i].name, j);
12527 memcpy(p, name, strlen(name));
12528 p += strlen(name);
12529
12530 /* Counter is 32 bits */
12531 if (dev_cntrs[i].flags & CNTR_32BIT) {
12532 memcpy(p, bit_type_32, bit_type_32_sz);
12533 p += bit_type_32_sz;
12534 }
12535
12536 *p++ = '\n';
12537 }
12538 } else {
12539 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12540 p += strlen(dev_cntrs[i].name);
12541
12542 /* Counter is 32 bits */
12543 if (dev_cntrs[i].flags & CNTR_32BIT) {
12544 memcpy(p, bit_type_32, bit_type_32_sz);
12545 p += bit_type_32_sz;
12546 }
12547
12548 *p++ = '\n';
12549 }
12550 }
12551
12552 /*********************/
12553 /* per port counters */
12554 /*********************/
12555
12556 /*
12557 * Go through the counters for the overflows and disable the ones we
12558 * don't need. This varies based on platform so we need to do it
12559 * dynamically here.
12560 */
12561 rcv_ctxts = dd->num_rcv_contexts;
12562 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12563 i <= C_RCV_HDR_OVF_LAST; i++) {
12564 port_cntrs[i].flags |= CNTR_DISABLED;
12565 }
12566
12567 /* size port counter names and determine how many we have*/
12568 sz = 0;
12569 dd->nportcntrs = 0;
12570 for (i = 0; i < PORT_CNTR_LAST; i++) {
12571 if (port_cntrs[i].flags & CNTR_DISABLED) {
12572 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12573 continue;
12574 }
12575
12576 if (port_cntrs[i].flags & CNTR_VL) {
12577 port_cntrs[i].offset = dd->nportcntrs;
12578 for (j = 0; j < C_VL_COUNT; j++) {
12579 snprintf(name, C_MAX_NAME, "%s%d",
12580 port_cntrs[i].name, vl_from_idx(j));
12581 sz += strlen(name);
12582 /* Add ",32" for 32-bit counters */
12583 if (port_cntrs[i].flags & CNTR_32BIT)
12584 sz += bit_type_32_sz;
12585 sz++;
12586 dd->nportcntrs++;
12587 }
12588 } else {
12589 /* +1 for newline */
12590 sz += strlen(port_cntrs[i].name) + 1;
12591 /* Add ",32" for 32-bit counters */
12592 if (port_cntrs[i].flags & CNTR_32BIT)
12593 sz += bit_type_32_sz;
12594 port_cntrs[i].offset = dd->nportcntrs;
12595 dd->nportcntrs++;
12596 }
12597 }
12598
12599 /* allocate space for the counter names */
12600 dd->portcntrnameslen = sz;
12601 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12602 if (!dd->portcntrnames)
12603 goto bail;
12604
12605 /* fill in port cntr names */
12606 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12607 if (port_cntrs[i].flags & CNTR_DISABLED)
12608 continue;
12609
12610 if (port_cntrs[i].flags & CNTR_VL) {
12611 for (j = 0; j < C_VL_COUNT; j++) {
12612 snprintf(name, C_MAX_NAME, "%s%d",
12613 port_cntrs[i].name, vl_from_idx(j));
12614 memcpy(p, name, strlen(name));
12615 p += strlen(name);
12616
12617 /* Counter is 32 bits */
12618 if (port_cntrs[i].flags & CNTR_32BIT) {
12619 memcpy(p, bit_type_32, bit_type_32_sz);
12620 p += bit_type_32_sz;
12621 }
12622
12623 *p++ = '\n';
12624 }
12625 } else {
12626 memcpy(p, port_cntrs[i].name,
12627 strlen(port_cntrs[i].name));
12628 p += strlen(port_cntrs[i].name);
12629
12630 /* Counter is 32 bits */
12631 if (port_cntrs[i].flags & CNTR_32BIT) {
12632 memcpy(p, bit_type_32, bit_type_32_sz);
12633 p += bit_type_32_sz;
12634 }
12635
12636 *p++ = '\n';
12637 }
12638 }
12639
12640 /* allocate per port storage for counter values */
12641 ppd = (struct hfi1_pportdata *)(dd + 1);
12642 for (i = 0; i < dd->num_pports; i++, ppd++) {
12643 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12644 if (!ppd->cntrs)
12645 goto bail;
12646
12647 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12648 if (!ppd->scntrs)
12649 goto bail;
12650 }
12651
12652 /* CPU counters need to be allocated and zeroed */
12653 if (init_cpu_counters(dd))
12654 goto bail;
12655
12656 dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12657 WQ_MEM_RECLAIM, dd->unit);
12658 if (!dd->update_cntr_wq)
12659 goto bail;
12660
12661 INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12662
12663 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12664 return 0;
12665bail:
12666 free_cntrs(dd);
12667 return -ENOMEM;
12668}
12669
12670static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12671{
12672 switch (chip_lstate) {
12673 default:
12674 dd_dev_err(dd,
12675 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12676 chip_lstate);
12677 /* fall through */
12678 case LSTATE_DOWN:
12679 return IB_PORT_DOWN;
12680 case LSTATE_INIT:
12681 return IB_PORT_INIT;
12682 case LSTATE_ARMED:
12683 return IB_PORT_ARMED;
12684 case LSTATE_ACTIVE:
12685 return IB_PORT_ACTIVE;
12686 }
12687}
12688
12689u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12690{
12691 /* look at the HFI meta-states only */
12692 switch (chip_pstate & 0xf0) {
12693 default:
12694 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12695 chip_pstate);
12696 /* fall through */
12697 case PLS_DISABLED:
12698 return IB_PORTPHYSSTATE_DISABLED;
12699 case PLS_OFFLINE:
12700 return OPA_PORTPHYSSTATE_OFFLINE;
12701 case PLS_POLLING:
12702 return IB_PORTPHYSSTATE_POLLING;
12703 case PLS_CONFIGPHY:
12704 return IB_PORTPHYSSTATE_TRAINING;
12705 case PLS_LINKUP:
12706 return IB_PORTPHYSSTATE_LINKUP;
12707 case PLS_PHYTEST:
12708 return IB_PORTPHYSSTATE_PHY_TEST;
12709 }
12710}
12711
12712/* return the OPA port logical state name */
12713const char *opa_lstate_name(u32 lstate)
12714{
12715 static const char * const port_logical_names[] = {
12716 "PORT_NOP",
12717 "PORT_DOWN",
12718 "PORT_INIT",
12719 "PORT_ARMED",
12720 "PORT_ACTIVE",
12721 "PORT_ACTIVE_DEFER",
12722 };
12723 if (lstate < ARRAY_SIZE(port_logical_names))
12724 return port_logical_names[lstate];
12725 return "unknown";
12726}
12727
12728/* return the OPA port physical state name */
12729const char *opa_pstate_name(u32 pstate)
12730{
12731 static const char * const port_physical_names[] = {
12732 "PHYS_NOP",
12733 "reserved1",
12734 "PHYS_POLL",
12735 "PHYS_DISABLED",
12736 "PHYS_TRAINING",
12737 "PHYS_LINKUP",
12738 "PHYS_LINK_ERR_RECOVER",
12739 "PHYS_PHY_TEST",
12740 "reserved8",
12741 "PHYS_OFFLINE",
12742 "PHYS_GANGED",
12743 "PHYS_TEST",
12744 };
12745 if (pstate < ARRAY_SIZE(port_physical_names))
12746 return port_physical_names[pstate];
12747 return "unknown";
12748}
12749
12750/**
12751 * update_statusp - Update userspace status flag
12752 * @ppd: Port data structure
12753 * @state: port state information
12754 *
12755 * Actual port status is determined by the host_link_state value
12756 * in the ppd.
12757 *
12758 * host_link_state MUST be updated before updating the user space
12759 * statusp.
12760 */
12761static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12762{
12763 /*
12764 * Set port status flags in the page mapped into userspace
12765 * memory. Do it here to ensure a reliable state - this is
12766 * the only function called by all state handling code.
12767 * Always set the flags due to the fact that the cache value
12768 * might have been changed explicitly outside of this
12769 * function.
12770 */
12771 if (ppd->statusp) {
12772 switch (state) {
12773 case IB_PORT_DOWN:
12774 case IB_PORT_INIT:
12775 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12776 HFI1_STATUS_IB_READY);
12777 break;
12778 case IB_PORT_ARMED:
12779 *ppd->statusp |= HFI1_STATUS_IB_CONF;
12780 break;
12781 case IB_PORT_ACTIVE:
12782 *ppd->statusp |= HFI1_STATUS_IB_READY;
12783 break;
12784 }
12785 }
12786 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12787 opa_lstate_name(state), state);
12788}
12789
12790/**
12791 * wait_logical_linkstate - wait for an IB link state change to occur
12792 * @ppd: port device
12793 * @state: the state to wait for
12794 * @msecs: the number of milliseconds to wait
12795 *
12796 * Wait up to msecs milliseconds for IB link state change to occur.
12797 * For now, take the easy polling route.
12798 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12799 */
12800static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12801 int msecs)
12802{
12803 unsigned long timeout;
12804 u32 new_state;
12805
12806 timeout = jiffies + msecs_to_jiffies(msecs);
12807 while (1) {
12808 new_state = chip_to_opa_lstate(ppd->dd,
12809 read_logical_state(ppd->dd));
12810 if (new_state == state)
12811 break;
12812 if (time_after(jiffies, timeout)) {
12813 dd_dev_err(ppd->dd,
12814 "timeout waiting for link state 0x%x\n",
12815 state);
12816 return -ETIMEDOUT;
12817 }
12818 msleep(20);
12819 }
12820
12821 return 0;
12822}
12823
12824static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12825{
12826 u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12827
12828 dd_dev_info(ppd->dd,
12829 "physical state changed to %s (0x%x), phy 0x%x\n",
12830 opa_pstate_name(ib_pstate), ib_pstate, state);
12831}
12832
12833/*
12834 * Read the physical hardware link state and check if it matches host
12835 * drivers anticipated state.
12836 */
12837static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12838{
12839 u32 read_state = read_physical_state(ppd->dd);
12840
12841 if (read_state == state) {
12842 log_state_transition(ppd, state);
12843 } else {
12844 dd_dev_err(ppd->dd,
12845 "anticipated phy link state 0x%x, read 0x%x\n",
12846 state, read_state);
12847 }
12848}
12849
12850/*
12851 * wait_physical_linkstate - wait for an physical link state change to occur
12852 * @ppd: port device
12853 * @state: the state to wait for
12854 * @msecs: the number of milliseconds to wait
12855 *
12856 * Wait up to msecs milliseconds for physical link state change to occur.
12857 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12858 */
12859static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12860 int msecs)
12861{
12862 u32 read_state;
12863 unsigned long timeout;
12864
12865 timeout = jiffies + msecs_to_jiffies(msecs);
12866 while (1) {
12867 read_state = read_physical_state(ppd->dd);
12868 if (read_state == state)
12869 break;
12870 if (time_after(jiffies, timeout)) {
12871 dd_dev_err(ppd->dd,
12872 "timeout waiting for phy link state 0x%x\n",
12873 state);
12874 return -ETIMEDOUT;
12875 }
12876 usleep_range(1950, 2050); /* sleep 2ms-ish */
12877 }
12878
12879 log_state_transition(ppd, state);
12880 return 0;
12881}
12882
12883/*
12884 * wait_phys_link_offline_quiet_substates - wait for any offline substate
12885 * @ppd: port device
12886 * @msecs: the number of milliseconds to wait
12887 *
12888 * Wait up to msecs milliseconds for any offline physical link
12889 * state change to occur.
12890 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12891 */
12892static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12893 int msecs)
12894{
12895 u32 read_state;
12896 unsigned long timeout;
12897
12898 timeout = jiffies + msecs_to_jiffies(msecs);
12899 while (1) {
12900 read_state = read_physical_state(ppd->dd);
12901 if ((read_state & 0xF0) == PLS_OFFLINE)
12902 break;
12903 if (time_after(jiffies, timeout)) {
12904 dd_dev_err(ppd->dd,
12905 "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12906 read_state, msecs);
12907 return -ETIMEDOUT;
12908 }
12909 usleep_range(1950, 2050); /* sleep 2ms-ish */
12910 }
12911
12912 log_state_transition(ppd, read_state);
12913 return read_state;
12914}
12915
12916#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12917(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12918
12919#define SET_STATIC_RATE_CONTROL_SMASK(r) \
12920(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12921
12922void hfi1_init_ctxt(struct send_context *sc)
12923{
12924 if (sc) {
12925 struct hfi1_devdata *dd = sc->dd;
12926 u64 reg;
12927 u8 set = (sc->type == SC_USER ?
12928 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12929 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12930 reg = read_kctxt_csr(dd, sc->hw_context,
12931 SEND_CTXT_CHECK_ENABLE);
12932 if (set)
12933 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12934 else
12935 SET_STATIC_RATE_CONTROL_SMASK(reg);
12936 write_kctxt_csr(dd, sc->hw_context,
12937 SEND_CTXT_CHECK_ENABLE, reg);
12938 }
12939}
12940
12941int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12942{
12943 int ret = 0;
12944 u64 reg;
12945
12946 if (dd->icode != ICODE_RTL_SILICON) {
12947 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12948 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12949 __func__);
12950 return -EINVAL;
12951 }
12952 reg = read_csr(dd, ASIC_STS_THERM);
12953 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12954 ASIC_STS_THERM_CURR_TEMP_MASK);
12955 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12956 ASIC_STS_THERM_LO_TEMP_MASK);
12957 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12958 ASIC_STS_THERM_HI_TEMP_MASK);
12959 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12960 ASIC_STS_THERM_CRIT_TEMP_MASK);
12961 /* triggers is a 3-bit value - 1 bit per trigger. */
12962 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12963
12964 return ret;
12965}
12966
12967/**
12968 * get_int_mask - get 64 bit int mask
12969 * @dd - the devdata
12970 * @i - the csr (relative to CCE_INT_MASK)
12971 *
12972 * Returns the mask with the urgent interrupt mask
12973 * bit clear for kernel receive contexts.
12974 */
12975static u64 get_int_mask(struct hfi1_devdata *dd, u32 i)
12976{
12977 u64 mask = U64_MAX; /* default to no change */
12978
12979 if (i >= (IS_RCVURGENT_START / 64) && i < (IS_RCVURGENT_END / 64)) {
12980 int j = (i - (IS_RCVURGENT_START / 64)) * 64;
12981 int k = !j ? IS_RCVURGENT_START % 64 : 0;
12982
12983 if (j)
12984 j -= IS_RCVURGENT_START % 64;
12985 /* j = 0..dd->first_dyn_alloc_ctxt - 1,k = 0..63 */
12986 for (; j < dd->first_dyn_alloc_ctxt && k < 64; j++, k++)
12987 /* convert to bit in mask and clear */
12988 mask &= ~BIT_ULL(k);
12989 }
12990 return mask;
12991}
12992
12993/* ========================================================================= */
12994
12995/*
12996 * Enable/disable chip from delivering interrupts.
12997 */
12998void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12999{
13000 int i;
13001
13002 /*
13003 * In HFI, the mask needs to be 1 to allow interrupts.
13004 */
13005 if (enable) {
13006 /* enable all interrupts but urgent on kernel contexts */
13007 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13008 u64 mask = get_int_mask(dd, i);
13009
13010 write_csr(dd, CCE_INT_MASK + (8 * i), mask);
13011 }
13012
13013 init_qsfp_int(dd);
13014 } else {
13015 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13016 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13017 }
13018}
13019
13020/*
13021 * Clear all interrupt sources on the chip.
13022 */
13023static void clear_all_interrupts(struct hfi1_devdata *dd)
13024{
13025 int i;
13026
13027 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13028 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13029
13030 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13031 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13032 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13033 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13034 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13035 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13036 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13037 for (i = 0; i < chip_send_contexts(dd); i++)
13038 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13039 for (i = 0; i < chip_sdma_engines(dd); i++)
13040 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13041
13042 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13043 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13044 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13045}
13046
13047/**
13048 * hfi1_clean_up_interrupts() - Free all IRQ resources
13049 * @dd: valid device data data structure
13050 *
13051 * Free the MSIx and assoicated PCI resources, if they have been allocated.
13052 */
13053void hfi1_clean_up_interrupts(struct hfi1_devdata *dd)
13054{
13055 int i;
13056 struct hfi1_msix_entry *me = dd->msix_entries;
13057
13058 /* remove irqs - must happen before disabling/turning off */
13059 for (i = 0; i < dd->num_msix_entries; i++, me++) {
13060 if (!me->arg) /* => no irq, no affinity */
13061 continue;
13062 hfi1_put_irq_affinity(dd, me);
13063 pci_free_irq(dd->pcidev, i, me->arg);
13064 }
13065
13066 /* clean structures */
13067 kfree(dd->msix_entries);
13068 dd->msix_entries = NULL;
13069 dd->num_msix_entries = 0;
13070
13071 pci_free_irq_vectors(dd->pcidev);
13072}
13073
13074/*
13075 * Remap the interrupt source from the general handler to the given MSI-X
13076 * interrupt.
13077 */
13078static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13079{
13080 u64 reg;
13081 int m, n;
13082
13083 /* clear from the handled mask of the general interrupt */
13084 m = isrc / 64;
13085 n = isrc % 64;
13086 if (likely(m < CCE_NUM_INT_CSRS)) {
13087 dd->gi_mask[m] &= ~((u64)1 << n);
13088 } else {
13089 dd_dev_err(dd, "remap interrupt err\n");
13090 return;
13091 }
13092
13093 /* direct the chip source to the given MSI-X interrupt */
13094 m = isrc / 8;
13095 n = isrc % 8;
13096 reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13097 reg &= ~((u64)0xff << (8 * n));
13098 reg |= ((u64)msix_intr & 0xff) << (8 * n);
13099 write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13100}
13101
13102static void remap_sdma_interrupts(struct hfi1_devdata *dd,
13103 int engine, int msix_intr)
13104{
13105 /*
13106 * SDMA engine interrupt sources grouped by type, rather than
13107 * engine. Per-engine interrupts are as follows:
13108 * SDMA
13109 * SDMAProgress
13110 * SDMAIdle
13111 */
13112 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
13113 msix_intr);
13114 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
13115 msix_intr);
13116 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
13117 msix_intr);
13118}
13119
13120static int request_msix_irqs(struct hfi1_devdata *dd)
13121{
13122 int first_general, last_general;
13123 int first_sdma, last_sdma;
13124 int first_rx, last_rx;
13125 int i, ret = 0;
13126
13127 /* calculate the ranges we are going to use */
13128 first_general = 0;
13129 last_general = first_general + 1;
13130 first_sdma = last_general;
13131 last_sdma = first_sdma + dd->num_sdma;
13132 first_rx = last_sdma;
13133 last_rx = first_rx + dd->n_krcv_queues + dd->num_vnic_contexts;
13134
13135 /* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13136 dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
13137
13138 /*
13139 * Sanity check - the code expects all SDMA chip source
13140 * interrupts to be in the same CSR, starting at bit 0. Verify
13141 * that this is true by checking the bit location of the start.
13142 */
13143 BUILD_BUG_ON(IS_SDMA_START % 64);
13144
13145 for (i = 0; i < dd->num_msix_entries; i++) {
13146 struct hfi1_msix_entry *me = &dd->msix_entries[i];
13147 const char *err_info;
13148 irq_handler_t handler;
13149 irq_handler_t thread = NULL;
13150 void *arg = NULL;
13151 int idx;
13152 struct hfi1_ctxtdata *rcd = NULL;
13153 struct sdma_engine *sde = NULL;
13154 char name[MAX_NAME_SIZE];
13155
13156 /* obtain the arguments to pci_request_irq */
13157 if (first_general <= i && i < last_general) {
13158 idx = i - first_general;
13159 handler = general_interrupt;
13160 arg = dd;
13161 snprintf(name, sizeof(name),
13162 DRIVER_NAME "_%d", dd->unit);
13163 err_info = "general";
13164 me->type = IRQ_GENERAL;
13165 } else if (first_sdma <= i && i < last_sdma) {
13166 idx = i - first_sdma;
13167 sde = &dd->per_sdma[idx];
13168 handler = sdma_interrupt;
13169 arg = sde;
13170 snprintf(name, sizeof(name),
13171 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
13172 err_info = "sdma";
13173 remap_sdma_interrupts(dd, idx, i);
13174 me->type = IRQ_SDMA;
13175 } else if (first_rx <= i && i < last_rx) {
13176 idx = i - first_rx;
13177 rcd = hfi1_rcd_get_by_index_safe(dd, idx);
13178 if (rcd) {
13179 /*
13180 * Set the interrupt register and mask for this
13181 * context's interrupt.
13182 */
13183 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13184 rcd->imask = ((u64)1) <<
13185 ((IS_RCVAVAIL_START + idx) % 64);
13186 handler = receive_context_interrupt;
13187 thread = receive_context_thread;
13188 arg = rcd;
13189 snprintf(name, sizeof(name),
13190 DRIVER_NAME "_%d kctxt%d",
13191 dd->unit, idx);
13192 err_info = "receive context";
13193 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13194 me->type = IRQ_RCVCTXT;
13195 rcd->msix_intr = i;
13196 hfi1_rcd_put(rcd);
13197 }
13198 } else {
13199 /* not in our expected range - complain, then
13200 * ignore it
13201 */
13202 dd_dev_err(dd,
13203 "Unexpected extra MSI-X interrupt %d\n", i);
13204 continue;
13205 }
13206 /* no argument, no interrupt */
13207 if (!arg)
13208 continue;
13209 /* make sure the name is terminated */
13210 name[sizeof(name) - 1] = 0;
13211 me->irq = pci_irq_vector(dd->pcidev, i);
13212 ret = pci_request_irq(dd->pcidev, i, handler, thread, arg,
13213 name);
13214 if (ret) {
13215 dd_dev_err(dd,
13216 "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13217 err_info, me->irq, idx, ret);
13218 return ret;
13219 }
13220 /*
13221 * assign arg after pci_request_irq call, so it will be
13222 * cleaned up
13223 */
13224 me->arg = arg;
13225
13226 ret = hfi1_get_irq_affinity(dd, me);
13227 if (ret)
13228 dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13229 }
13230
13231 return ret;
13232}
13233
13234void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13235{
13236 int i;
13237
13238 for (i = 0; i < dd->vnic.num_ctxt; i++) {
13239 struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13240 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13241
13242 synchronize_irq(me->irq);
13243 }
13244}
13245
13246void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13247{
13248 struct hfi1_devdata *dd = rcd->dd;
13249 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13250
13251 if (!me->arg) /* => no irq, no affinity */
13252 return;
13253
13254 hfi1_put_irq_affinity(dd, me);
13255 pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13256
13257 me->arg = NULL;
13258}
13259
13260void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13261{
13262 struct hfi1_devdata *dd = rcd->dd;
13263 struct hfi1_msix_entry *me;
13264 int idx = rcd->ctxt;
13265 void *arg = rcd;
13266 int ret;
13267
13268 rcd->msix_intr = dd->vnic.msix_idx++;
13269 me = &dd->msix_entries[rcd->msix_intr];
13270
13271 /*
13272 * Set the interrupt register and mask for this
13273 * context's interrupt.
13274 */
13275 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13276 rcd->imask = ((u64)1) <<
13277 ((IS_RCVAVAIL_START + idx) % 64);
13278 me->type = IRQ_RCVCTXT;
13279 me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13280 remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13281
13282 ret = pci_request_irq(dd->pcidev, rcd->msix_intr,
13283 receive_context_interrupt,
13284 receive_context_thread, arg,
13285 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13286 if (ret) {
13287 dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13288 me->irq, idx, ret);
13289 return;
13290 }
13291 /*
13292 * assign arg after pci_request_irq call, so it will be
13293 * cleaned up
13294 */
13295 me->arg = arg;
13296
13297 ret = hfi1_get_irq_affinity(dd, me);
13298 if (ret) {
13299 dd_dev_err(dd,
13300 "unable to pin IRQ %d\n", ret);
13301 pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13302 }
13303}
13304
13305/*
13306 * Set the general handler to accept all interrupts, remap all
13307 * chip interrupts back to MSI-X 0.
13308 */
13309static void reset_interrupts(struct hfi1_devdata *dd)
13310{
13311 int i;
13312
13313 /* all interrupts handled by the general handler */
13314 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13315 dd->gi_mask[i] = ~(u64)0;
13316
13317 /* all chip interrupts map to MSI-X 0 */
13318 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13319 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13320}
13321
13322static int set_up_interrupts(struct hfi1_devdata *dd)
13323{
13324 u32 total;
13325 int ret, request;
13326
13327 /*
13328 * Interrupt count:
13329 * 1 general, "slow path" interrupt (includes the SDMA engines
13330 * slow source, SDMACleanupDone)
13331 * N interrupts - one per used SDMA engine
13332 * M interrupt - one per kernel receive context
13333 * V interrupt - one for each VNIC context
13334 */
13335 total = 1 + dd->num_sdma + dd->n_krcv_queues + dd->num_vnic_contexts;
13336
13337 /* ask for MSI-X interrupts */
13338 request = request_msix(dd, total);
13339 if (request < 0) {
13340 ret = request;
13341 goto fail;
13342 } else {
13343 dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13344 GFP_KERNEL);
13345 if (!dd->msix_entries) {
13346 ret = -ENOMEM;
13347 goto fail;
13348 }
13349 /* using MSI-X */
13350 dd->num_msix_entries = total;
13351 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13352 }
13353
13354 /* mask all interrupts */
13355 set_intr_state(dd, 0);
13356 /* clear all pending interrupts */
13357 clear_all_interrupts(dd);
13358
13359 /* reset general handler mask, chip MSI-X mappings */
13360 reset_interrupts(dd);
13361
13362 ret = request_msix_irqs(dd);
13363 if (ret)
13364 goto fail;
13365
13366 return 0;
13367
13368fail:
13369 hfi1_clean_up_interrupts(dd);
13370 return ret;
13371}
13372
13373/*
13374 * Set up context values in dd. Sets:
13375 *
13376 * num_rcv_contexts - number of contexts being used
13377 * n_krcv_queues - number of kernel contexts
13378 * first_dyn_alloc_ctxt - first dynamically allocated context
13379 * in array of contexts
13380 * freectxts - number of free user contexts
13381 * num_send_contexts - number of PIO send contexts being used
13382 * num_vnic_contexts - number of contexts reserved for VNIC
13383 */
13384static int set_up_context_variables(struct hfi1_devdata *dd)
13385{
13386 unsigned long num_kernel_contexts;
13387 u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13388 int total_contexts;
13389 int ret;
13390 unsigned ngroups;
13391 int qos_rmt_count;
13392 int user_rmt_reduced;
13393 u32 n_usr_ctxts;
13394 u32 send_contexts = chip_send_contexts(dd);
13395 u32 rcv_contexts = chip_rcv_contexts(dd);
13396
13397 /*
13398 * Kernel receive contexts:
13399 * - Context 0 - control context (VL15/multicast/error)
13400 * - Context 1 - first kernel context
13401 * - Context 2 - second kernel context
13402 * ...
13403 */
13404 if (n_krcvqs)
13405 /*
13406 * n_krcvqs is the sum of module parameter kernel receive
13407 * contexts, krcvqs[]. It does not include the control
13408 * context, so add that.
13409 */
13410 num_kernel_contexts = n_krcvqs + 1;
13411 else
13412 num_kernel_contexts = DEFAULT_KRCVQS + 1;
13413 /*
13414 * Every kernel receive context needs an ACK send context.
13415 * one send context is allocated for each VL{0-7} and VL15
13416 */
13417 if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13418 dd_dev_err(dd,
13419 "Reducing # kernel rcv contexts to: %d, from %lu\n",
13420 send_contexts - num_vls - 1,
13421 num_kernel_contexts);
13422 num_kernel_contexts = send_contexts - num_vls - 1;
13423 }
13424
13425 /* Accommodate VNIC contexts if possible */
13426 if ((num_kernel_contexts + num_vnic_contexts) > rcv_contexts) {
13427 dd_dev_err(dd, "No receive contexts available for VNIC\n");
13428 num_vnic_contexts = 0;
13429 }
13430 total_contexts = num_kernel_contexts + num_vnic_contexts;
13431
13432 /*
13433 * User contexts:
13434 * - default to 1 user context per real (non-HT) CPU core if
13435 * num_user_contexts is negative
13436 */
13437 if (num_user_contexts < 0)
13438 n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13439 else
13440 n_usr_ctxts = num_user_contexts;
13441 /*
13442 * Adjust the counts given a global max.
13443 */
13444 if (total_contexts + n_usr_ctxts > rcv_contexts) {
13445 dd_dev_err(dd,
13446 "Reducing # user receive contexts to: %d, from %u\n",
13447 rcv_contexts - total_contexts,
13448 n_usr_ctxts);
13449 /* recalculate */
13450 n_usr_ctxts = rcv_contexts - total_contexts;
13451 }
13452
13453 /* each user context requires an entry in the RMT */
13454 qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13455 if (qos_rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13456 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13457 dd_dev_err(dd,
13458 "RMT size is reducing the number of user receive contexts from %u to %d\n",
13459 n_usr_ctxts,
13460 user_rmt_reduced);
13461 /* recalculate */
13462 n_usr_ctxts = user_rmt_reduced;
13463 }
13464
13465 total_contexts += n_usr_ctxts;
13466
13467 /* the first N are kernel contexts, the rest are user/vnic contexts */
13468 dd->num_rcv_contexts = total_contexts;
13469 dd->n_krcv_queues = num_kernel_contexts;
13470 dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13471 dd->num_vnic_contexts = num_vnic_contexts;
13472 dd->num_user_contexts = n_usr_ctxts;
13473 dd->freectxts = n_usr_ctxts;
13474 dd_dev_info(dd,
13475 "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13476 rcv_contexts,
13477 (int)dd->num_rcv_contexts,
13478 (int)dd->n_krcv_queues,
13479 dd->num_vnic_contexts,
13480 dd->num_user_contexts);
13481
13482 /*
13483 * Receive array allocation:
13484 * All RcvArray entries are divided into groups of 8. This
13485 * is required by the hardware and will speed up writes to
13486 * consecutive entries by using write-combining of the entire
13487 * cacheline.
13488 *
13489 * The number of groups are evenly divided among all contexts.
13490 * any left over groups will be given to the first N user
13491 * contexts.
13492 */
13493 dd->rcv_entries.group_size = RCV_INCREMENT;
13494 ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13495 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13496 dd->rcv_entries.nctxt_extra = ngroups -
13497 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13498 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13499 dd->rcv_entries.ngroups,
13500 dd->rcv_entries.nctxt_extra);
13501 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13502 MAX_EAGER_ENTRIES * 2) {
13503 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13504 dd->rcv_entries.group_size;
13505 dd_dev_info(dd,
13506 "RcvArray group count too high, change to %u\n",
13507 dd->rcv_entries.ngroups);
13508 dd->rcv_entries.nctxt_extra = 0;
13509 }
13510 /*
13511 * PIO send contexts
13512 */
13513 ret = init_sc_pools_and_sizes(dd);
13514 if (ret >= 0) { /* success */
13515 dd->num_send_contexts = ret;
13516 dd_dev_info(
13517 dd,
13518 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13519 send_contexts,
13520 dd->num_send_contexts,
13521 dd->sc_sizes[SC_KERNEL].count,
13522 dd->sc_sizes[SC_ACK].count,
13523 dd->sc_sizes[SC_USER].count,
13524 dd->sc_sizes[SC_VL15].count);
13525 ret = 0; /* success */
13526 }
13527
13528 return ret;
13529}
13530
13531/*
13532 * Set the device/port partition key table. The MAD code
13533 * will ensure that, at least, the partial management
13534 * partition key is present in the table.
13535 */
13536static void set_partition_keys(struct hfi1_pportdata *ppd)
13537{
13538 struct hfi1_devdata *dd = ppd->dd;
13539 u64 reg = 0;
13540 int i;
13541
13542 dd_dev_info(dd, "Setting partition keys\n");
13543 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13544 reg |= (ppd->pkeys[i] &
13545 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13546 ((i % 4) *
13547 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13548 /* Each register holds 4 PKey values. */
13549 if ((i % 4) == 3) {
13550 write_csr(dd, RCV_PARTITION_KEY +
13551 ((i - 3) * 2), reg);
13552 reg = 0;
13553 }
13554 }
13555
13556 /* Always enable HW pkeys check when pkeys table is set */
13557 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13558}
13559
13560/*
13561 * These CSRs and memories are uninitialized on reset and must be
13562 * written before reading to set the ECC/parity bits.
13563 *
13564 * NOTE: All user context CSRs that are not mmaped write-only
13565 * (e.g. the TID flows) must be initialized even if the driver never
13566 * reads them.
13567 */
13568static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13569{
13570 int i, j;
13571
13572 /* CceIntMap */
13573 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13574 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13575
13576 /* SendCtxtCreditReturnAddr */
13577 for (i = 0; i < chip_send_contexts(dd); i++)
13578 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13579
13580 /* PIO Send buffers */
13581 /* SDMA Send buffers */
13582 /*
13583 * These are not normally read, and (presently) have no method
13584 * to be read, so are not pre-initialized
13585 */
13586
13587 /* RcvHdrAddr */
13588 /* RcvHdrTailAddr */
13589 /* RcvTidFlowTable */
13590 for (i = 0; i < chip_rcv_contexts(dd); i++) {
13591 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13592 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13593 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13594 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13595 }
13596
13597 /* RcvArray */
13598 for (i = 0; i < chip_rcv_array_count(dd); i++)
13599 hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13600
13601 /* RcvQPMapTable */
13602 for (i = 0; i < 32; i++)
13603 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13604}
13605
13606/*
13607 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13608 */
13609static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13610 u64 ctrl_bits)
13611{
13612 unsigned long timeout;
13613 u64 reg;
13614
13615 /* is the condition present? */
13616 reg = read_csr(dd, CCE_STATUS);
13617 if ((reg & status_bits) == 0)
13618 return;
13619
13620 /* clear the condition */
13621 write_csr(dd, CCE_CTRL, ctrl_bits);
13622
13623 /* wait for the condition to clear */
13624 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13625 while (1) {
13626 reg = read_csr(dd, CCE_STATUS);
13627 if ((reg & status_bits) == 0)
13628 return;
13629 if (time_after(jiffies, timeout)) {
13630 dd_dev_err(dd,
13631 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13632 status_bits, reg & status_bits);
13633 return;
13634 }
13635 udelay(1);
13636 }
13637}
13638
13639/* set CCE CSRs to chip reset defaults */
13640static void reset_cce_csrs(struct hfi1_devdata *dd)
13641{
13642 int i;
13643
13644 /* CCE_REVISION read-only */
13645 /* CCE_REVISION2 read-only */
13646 /* CCE_CTRL - bits clear automatically */
13647 /* CCE_STATUS read-only, use CceCtrl to clear */
13648 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13649 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13650 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13651 for (i = 0; i < CCE_NUM_SCRATCH; i++)
13652 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13653 /* CCE_ERR_STATUS read-only */
13654 write_csr(dd, CCE_ERR_MASK, 0);
13655 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13656 /* CCE_ERR_FORCE leave alone */
13657 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13658 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13659 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13660 /* CCE_PCIE_CTRL leave alone */
13661 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13662 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13663 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13664 CCE_MSIX_TABLE_UPPER_RESETCSR);
13665 }
13666 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13667 /* CCE_MSIX_PBA read-only */
13668 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13669 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13670 }
13671 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13672 write_csr(dd, CCE_INT_MAP, 0);
13673 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13674 /* CCE_INT_STATUS read-only */
13675 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13676 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13677 /* CCE_INT_FORCE leave alone */
13678 /* CCE_INT_BLOCKED read-only */
13679 }
13680 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13681 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13682}
13683
13684/* set MISC CSRs to chip reset defaults */
13685static void reset_misc_csrs(struct hfi1_devdata *dd)
13686{
13687 int i;
13688
13689 for (i = 0; i < 32; i++) {
13690 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13691 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13692 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13693 }
13694 /*
13695 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13696 * only be written 128-byte chunks
13697 */
13698 /* init RSA engine to clear lingering errors */
13699 write_csr(dd, MISC_CFG_RSA_CMD, 1);
13700 write_csr(dd, MISC_CFG_RSA_MU, 0);
13701 write_csr(dd, MISC_CFG_FW_CTRL, 0);
13702 /* MISC_STS_8051_DIGEST read-only */
13703 /* MISC_STS_SBM_DIGEST read-only */
13704 /* MISC_STS_PCIE_DIGEST read-only */
13705 /* MISC_STS_FAB_DIGEST read-only */
13706 /* MISC_ERR_STATUS read-only */
13707 write_csr(dd, MISC_ERR_MASK, 0);
13708 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13709 /* MISC_ERR_FORCE leave alone */
13710}
13711
13712/* set TXE CSRs to chip reset defaults */
13713static void reset_txe_csrs(struct hfi1_devdata *dd)
13714{
13715 int i;
13716
13717 /*
13718 * TXE Kernel CSRs
13719 */
13720 write_csr(dd, SEND_CTRL, 0);
13721 __cm_reset(dd, 0); /* reset CM internal state */
13722 /* SEND_CONTEXTS read-only */
13723 /* SEND_DMA_ENGINES read-only */
13724 /* SEND_PIO_MEM_SIZE read-only */
13725 /* SEND_DMA_MEM_SIZE read-only */
13726 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13727 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
13728 /* SEND_PIO_ERR_STATUS read-only */
13729 write_csr(dd, SEND_PIO_ERR_MASK, 0);
13730 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13731 /* SEND_PIO_ERR_FORCE leave alone */
13732 /* SEND_DMA_ERR_STATUS read-only */
13733 write_csr(dd, SEND_DMA_ERR_MASK, 0);
13734 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13735 /* SEND_DMA_ERR_FORCE leave alone */
13736 /* SEND_EGRESS_ERR_STATUS read-only */
13737 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13738 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13739 /* SEND_EGRESS_ERR_FORCE leave alone */
13740 write_csr(dd, SEND_BTH_QP, 0);
13741 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13742 write_csr(dd, SEND_SC2VLT0, 0);
13743 write_csr(dd, SEND_SC2VLT1, 0);
13744 write_csr(dd, SEND_SC2VLT2, 0);
13745 write_csr(dd, SEND_SC2VLT3, 0);
13746 write_csr(dd, SEND_LEN_CHECK0, 0);
13747 write_csr(dd, SEND_LEN_CHECK1, 0);
13748 /* SEND_ERR_STATUS read-only */
13749 write_csr(dd, SEND_ERR_MASK, 0);
13750 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13751 /* SEND_ERR_FORCE read-only */
13752 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13753 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13754 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13755 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13756 for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13757 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13758 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13759 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13760 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13761 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13762 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13763 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13764 /* SEND_CM_CREDIT_USED_STATUS read-only */
13765 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13766 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13767 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13768 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13769 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13770 for (i = 0; i < TXE_NUM_DATA_VL; i++)
13771 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13772 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13773 /* SEND_CM_CREDIT_USED_VL read-only */
13774 /* SEND_CM_CREDIT_USED_VL15 read-only */
13775 /* SEND_EGRESS_CTXT_STATUS read-only */
13776 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13777 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13778 /* SEND_EGRESS_ERR_INFO read-only */
13779 /* SEND_EGRESS_ERR_SOURCE read-only */
13780
13781 /*
13782 * TXE Per-Context CSRs
13783 */
13784 for (i = 0; i < chip_send_contexts(dd); i++) {
13785 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13786 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13787 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13788 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13789 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13790 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13791 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13792 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13793 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13794 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13795 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13796 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13797 }
13798
13799 /*
13800 * TXE Per-SDMA CSRs
13801 */
13802 for (i = 0; i < chip_sdma_engines(dd); i++) {
13803 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13804 /* SEND_DMA_STATUS read-only */
13805 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13806 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13807 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13808 /* SEND_DMA_HEAD read-only */
13809 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13810 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13811 /* SEND_DMA_IDLE_CNT read-only */
13812 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13813 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13814 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13815 /* SEND_DMA_ENG_ERR_STATUS read-only */
13816 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13817 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13818 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13819 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13820 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13821 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13822 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13823 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13824 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13825 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13826 }
13827}
13828
13829/*
13830 * Expect on entry:
13831 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13832 */
13833static void init_rbufs(struct hfi1_devdata *dd)
13834{
13835 u64 reg;
13836 int count;
13837
13838 /*
13839 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13840 * clear.
13841 */
13842 count = 0;
13843 while (1) {
13844 reg = read_csr(dd, RCV_STATUS);
13845 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13846 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13847 break;
13848 /*
13849 * Give up after 1ms - maximum wait time.
13850 *
13851 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at
13852 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
13853 * 136 KB / (66% * 250MB/s) = 844us
13854 */
13855 if (count++ > 500) {
13856 dd_dev_err(dd,
13857 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13858 __func__, reg);
13859 break;
13860 }
13861 udelay(2); /* do not busy-wait the CSR */
13862 }
13863
13864 /* start the init - expect RcvCtrl to be 0 */
13865 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13866
13867 /*
13868 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13869 * period after the write before RcvStatus.RxRbufInitDone is valid.
13870 * The delay in the first run through the loop below is sufficient and
13871 * required before the first read of RcvStatus.RxRbufInintDone.
13872 */
13873 read_csr(dd, RCV_CTRL);
13874
13875 /* wait for the init to finish */
13876 count = 0;
13877 while (1) {
13878 /* delay is required first time through - see above */
13879 udelay(2); /* do not busy-wait the CSR */
13880 reg = read_csr(dd, RCV_STATUS);
13881 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13882 break;
13883
13884 /* give up after 100us - slowest possible at 33MHz is 73us */
13885 if (count++ > 50) {
13886 dd_dev_err(dd,
13887 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13888 __func__);
13889 break;
13890 }
13891 }
13892}
13893
13894/* set RXE CSRs to chip reset defaults */
13895static void reset_rxe_csrs(struct hfi1_devdata *dd)
13896{
13897 int i, j;
13898
13899 /*
13900 * RXE Kernel CSRs
13901 */
13902 write_csr(dd, RCV_CTRL, 0);
13903 init_rbufs(dd);
13904 /* RCV_STATUS read-only */
13905 /* RCV_CONTEXTS read-only */
13906 /* RCV_ARRAY_CNT read-only */
13907 /* RCV_BUF_SIZE read-only */
13908 write_csr(dd, RCV_BTH_QP, 0);
13909 write_csr(dd, RCV_MULTICAST, 0);
13910 write_csr(dd, RCV_BYPASS, 0);
13911 write_csr(dd, RCV_VL15, 0);
13912 /* this is a clear-down */
13913 write_csr(dd, RCV_ERR_INFO,
13914 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13915 /* RCV_ERR_STATUS read-only */
13916 write_csr(dd, RCV_ERR_MASK, 0);
13917 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13918 /* RCV_ERR_FORCE leave alone */
13919 for (i = 0; i < 32; i++)
13920 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13921 for (i = 0; i < 4; i++)
13922 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13923 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13924 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13925 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13926 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13927 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13928 clear_rsm_rule(dd, i);
13929 for (i = 0; i < 32; i++)
13930 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13931
13932 /*
13933 * RXE Kernel and User Per-Context CSRs
13934 */
13935 for (i = 0; i < chip_rcv_contexts(dd); i++) {
13936 /* kernel */
13937 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13938 /* RCV_CTXT_STATUS read-only */
13939 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13940 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13941 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13942 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13943 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13944 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13945 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13946 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13947 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13948 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13949
13950 /* user */
13951 /* RCV_HDR_TAIL read-only */
13952 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13953 /* RCV_EGR_INDEX_TAIL read-only */
13954 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13955 /* RCV_EGR_OFFSET_TAIL read-only */
13956 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13957 write_uctxt_csr(dd, i,
13958 RCV_TID_FLOW_TABLE + (8 * j), 0);
13959 }
13960 }
13961}
13962
13963/*
13964 * Set sc2vl tables.
13965 *
13966 * They power on to zeros, so to avoid send context errors
13967 * they need to be set:
13968 *
13969 * SC 0-7 -> VL 0-7 (respectively)
13970 * SC 15 -> VL 15
13971 * otherwise
13972 * -> VL 0
13973 */
13974static void init_sc2vl_tables(struct hfi1_devdata *dd)
13975{
13976 int i;
13977 /* init per architecture spec, constrained by hardware capability */
13978
13979 /* HFI maps sent packets */
13980 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13981 0,
13982 0, 0, 1, 1,
13983 2, 2, 3, 3,
13984 4, 4, 5, 5,
13985 6, 6, 7, 7));
13986 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13987 1,
13988 8, 0, 9, 0,
13989 10, 0, 11, 0,
13990 12, 0, 13, 0,
13991 14, 0, 15, 15));
13992 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13993 2,
13994 16, 0, 17, 0,
13995 18, 0, 19, 0,
13996 20, 0, 21, 0,
13997 22, 0, 23, 0));
13998 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13999 3,
14000 24, 0, 25, 0,
14001 26, 0, 27, 0,
14002 28, 0, 29, 0,
14003 30, 0, 31, 0));
14004
14005 /* DC maps received packets */
14006 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
14007 15_0,
14008 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
14009 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14010 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14011 31_16,
14012 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14013 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14014
14015 /* initialize the cached sc2vl values consistently with h/w */
14016 for (i = 0; i < 32; i++) {
14017 if (i < 8 || i == 15)
14018 *((u8 *)(dd->sc2vl) + i) = (u8)i;
14019 else
14020 *((u8 *)(dd->sc2vl) + i) = 0;
14021 }
14022}
14023
14024/*
14025 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
14026 * depend on the chip going through a power-on reset - a driver may be loaded
14027 * and unloaded many times.
14028 *
14029 * Do not write any CSR values to the chip in this routine - there may be
14030 * a reset following the (possible) FLR in this routine.
14031 *
14032 */
14033static int init_chip(struct hfi1_devdata *dd)
14034{
14035 int i;
14036 int ret = 0;
14037
14038 /*
14039 * Put the HFI CSRs in a known state.
14040 * Combine this with a DC reset.
14041 *
14042 * Stop the device from doing anything while we do a
14043 * reset. We know there are no other active users of
14044 * the device since we are now in charge. Turn off
14045 * off all outbound and inbound traffic and make sure
14046 * the device does not generate any interrupts.
14047 */
14048
14049 /* disable send contexts and SDMA engines */
14050 write_csr(dd, SEND_CTRL, 0);
14051 for (i = 0; i < chip_send_contexts(dd); i++)
14052 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14053 for (i = 0; i < chip_sdma_engines(dd); i++)
14054 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14055 /* disable port (turn off RXE inbound traffic) and contexts */
14056 write_csr(dd, RCV_CTRL, 0);
14057 for (i = 0; i < chip_rcv_contexts(dd); i++)
14058 write_csr(dd, RCV_CTXT_CTRL, 0);
14059 /* mask all interrupt sources */
14060 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14061 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14062
14063 /*
14064 * DC Reset: do a full DC reset before the register clear.
14065 * A recommended length of time to hold is one CSR read,
14066 * so reread the CceDcCtrl. Then, hold the DC in reset
14067 * across the clear.
14068 */
14069 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14070 (void)read_csr(dd, CCE_DC_CTRL);
14071
14072 if (use_flr) {
14073 /*
14074 * A FLR will reset the SPC core and part of the PCIe.
14075 * The parts that need to be restored have already been
14076 * saved.
14077 */
14078 dd_dev_info(dd, "Resetting CSRs with FLR\n");
14079
14080 /* do the FLR, the DC reset will remain */
14081 pcie_flr(dd->pcidev);
14082
14083 /* restore command and BARs */
14084 ret = restore_pci_variables(dd);
14085 if (ret) {
14086 dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14087 __func__);
14088 return ret;
14089 }
14090
14091 if (is_ax(dd)) {
14092 dd_dev_info(dd, "Resetting CSRs with FLR\n");
14093 pcie_flr(dd->pcidev);
14094 ret = restore_pci_variables(dd);
14095 if (ret) {
14096 dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14097 __func__);
14098 return ret;
14099 }
14100 }
14101 } else {
14102 dd_dev_info(dd, "Resetting CSRs with writes\n");
14103 reset_cce_csrs(dd);
14104 reset_txe_csrs(dd);
14105 reset_rxe_csrs(dd);
14106 reset_misc_csrs(dd);
14107 }
14108 /* clear the DC reset */
14109 write_csr(dd, CCE_DC_CTRL, 0);
14110
14111 /* Set the LED off */
14112 setextled(dd, 0);
14113
14114 /*
14115 * Clear the QSFP reset.
14116 * An FLR enforces a 0 on all out pins. The driver does not touch
14117 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
14118 * anything plugged constantly in reset, if it pays attention
14119 * to RESET_N.
14120 * Prime examples of this are optical cables. Set all pins high.
14121 * I2CCLK and I2CDAT will change per direction, and INT_N and
14122 * MODPRS_N are input only and their value is ignored.
14123 */
14124 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14125 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14126 init_chip_resources(dd);
14127 return ret;
14128}
14129
14130static void init_early_variables(struct hfi1_devdata *dd)
14131{
14132 int i;
14133
14134 /* assign link credit variables */
14135 dd->vau = CM_VAU;
14136 dd->link_credits = CM_GLOBAL_CREDITS;
14137 if (is_ax(dd))
14138 dd->link_credits--;
14139 dd->vcu = cu_to_vcu(hfi1_cu);
14140 /* enough room for 8 MAD packets plus header - 17K */
14141 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14142 if (dd->vl15_init > dd->link_credits)
14143 dd->vl15_init = dd->link_credits;
14144
14145 write_uninitialized_csrs_and_memories(dd);
14146
14147 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14148 for (i = 0; i < dd->num_pports; i++) {
14149 struct hfi1_pportdata *ppd = &dd->pport[i];
14150
14151 set_partition_keys(ppd);
14152 }
14153 init_sc2vl_tables(dd);
14154}
14155
14156static void init_kdeth_qp(struct hfi1_devdata *dd)
14157{
14158 /* user changed the KDETH_QP */
14159 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14160 /* out of range or illegal value */
14161 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14162 kdeth_qp = 0;
14163 }
14164 if (kdeth_qp == 0) /* not set, or failed range check */
14165 kdeth_qp = DEFAULT_KDETH_QP;
14166
14167 write_csr(dd, SEND_BTH_QP,
14168 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14169 SEND_BTH_QP_KDETH_QP_SHIFT);
14170
14171 write_csr(dd, RCV_BTH_QP,
14172 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14173 RCV_BTH_QP_KDETH_QP_SHIFT);
14174}
14175
14176/**
14177 * init_qpmap_table
14178 * @dd - device data
14179 * @first_ctxt - first context
14180 * @last_ctxt - first context
14181 *
14182 * This return sets the qpn mapping table that
14183 * is indexed by qpn[8:1].
14184 *
14185 * The routine will round robin the 256 settings
14186 * from first_ctxt to last_ctxt.
14187 *
14188 * The first/last looks ahead to having specialized
14189 * receive contexts for mgmt and bypass. Normal
14190 * verbs traffic will assumed to be on a range
14191 * of receive contexts.
14192 */
14193static void init_qpmap_table(struct hfi1_devdata *dd,
14194 u32 first_ctxt,
14195 u32 last_ctxt)
14196{
14197 u64 reg = 0;
14198 u64 regno = RCV_QP_MAP_TABLE;
14199 int i;
14200 u64 ctxt = first_ctxt;
14201
14202 for (i = 0; i < 256; i++) {
14203 reg |= ctxt << (8 * (i % 8));
14204 ctxt++;
14205 if (ctxt > last_ctxt)
14206 ctxt = first_ctxt;
14207 if (i % 8 == 7) {
14208 write_csr(dd, regno, reg);
14209 reg = 0;
14210 regno += 8;
14211 }
14212 }
14213
14214 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14215 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14216}
14217
14218struct rsm_map_table {
14219 u64 map[NUM_MAP_REGS];
14220 unsigned int used;
14221};
14222
14223struct rsm_rule_data {
14224 u8 offset;
14225 u8 pkt_type;
14226 u32 field1_off;
14227 u32 field2_off;
14228 u32 index1_off;
14229 u32 index1_width;
14230 u32 index2_off;
14231 u32 index2_width;
14232 u32 mask1;
14233 u32 value1;
14234 u32 mask2;
14235 u32 value2;
14236};
14237
14238/*
14239 * Return an initialized RMT map table for users to fill in. OK if it
14240 * returns NULL, indicating no table.
14241 */
14242static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14243{
14244 struct rsm_map_table *rmt;
14245 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
14246
14247 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14248 if (rmt) {
14249 memset(rmt->map, rxcontext, sizeof(rmt->map));
14250 rmt->used = 0;
14251 }
14252
14253 return rmt;
14254}
14255
14256/*
14257 * Write the final RMT map table to the chip and free the table. OK if
14258 * table is NULL.
14259 */
14260static void complete_rsm_map_table(struct hfi1_devdata *dd,
14261 struct rsm_map_table *rmt)
14262{
14263 int i;
14264
14265 if (rmt) {
14266 /* write table to chip */
14267 for (i = 0; i < NUM_MAP_REGS; i++)
14268 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14269
14270 /* enable RSM */
14271 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14272 }
14273}
14274
14275/*
14276 * Add a receive side mapping rule.
14277 */
14278static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14279 struct rsm_rule_data *rrd)
14280{
14281 write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14282 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14283 1ull << rule_index | /* enable bit */
14284 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14285 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14286 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14287 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14288 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14289 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14290 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14291 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14292 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14293 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14294 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14295 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14296 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14297}
14298
14299/*
14300 * Clear a receive side mapping rule.
14301 */
14302static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14303{
14304 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14305 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14306 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14307}
14308
14309/* return the number of RSM map table entries that will be used for QOS */
14310static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14311 unsigned int *np)
14312{
14313 int i;
14314 unsigned int m, n;
14315 u8 max_by_vl = 0;
14316
14317 /* is QOS active at all? */
14318 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14319 num_vls == 1 ||
14320 krcvqsset <= 1)
14321 goto no_qos;
14322
14323 /* determine bits for qpn */
14324 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14325 if (krcvqs[i] > max_by_vl)
14326 max_by_vl = krcvqs[i];
14327 if (max_by_vl > 32)
14328 goto no_qos;
14329 m = ilog2(__roundup_pow_of_two(max_by_vl));
14330
14331 /* determine bits for vl */
14332 n = ilog2(__roundup_pow_of_two(num_vls));
14333
14334 /* reject if too much is used */
14335 if ((m + n) > 7)
14336 goto no_qos;
14337
14338 if (mp)
14339 *mp = m;
14340 if (np)
14341 *np = n;
14342
14343 return 1 << (m + n);
14344
14345no_qos:
14346 if (mp)
14347 *mp = 0;
14348 if (np)
14349 *np = 0;
14350 return 0;
14351}
14352
14353/**
14354 * init_qos - init RX qos
14355 * @dd - device data
14356 * @rmt - RSM map table
14357 *
14358 * This routine initializes Rule 0 and the RSM map table to implement
14359 * quality of service (qos).
14360 *
14361 * If all of the limit tests succeed, qos is applied based on the array
14362 * interpretation of krcvqs where entry 0 is VL0.
14363 *
14364 * The number of vl bits (n) and the number of qpn bits (m) are computed to
14365 * feed both the RSM map table and the single rule.
14366 */
14367static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14368{
14369 struct rsm_rule_data rrd;
14370 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14371 unsigned int rmt_entries;
14372 u64 reg;
14373
14374 if (!rmt)
14375 goto bail;
14376 rmt_entries = qos_rmt_entries(dd, &m, &n);
14377 if (rmt_entries == 0)
14378 goto bail;
14379 qpns_per_vl = 1 << m;
14380
14381 /* enough room in the map table? */
14382 rmt_entries = 1 << (m + n);
14383 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14384 goto bail;
14385
14386 /* add qos entries to the the RSM map table */
14387 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14388 unsigned tctxt;
14389
14390 for (qpn = 0, tctxt = ctxt;
14391 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14392 unsigned idx, regoff, regidx;
14393
14394 /* generate the index the hardware will produce */
14395 idx = rmt->used + ((qpn << n) ^ i);
14396 regoff = (idx % 8) * 8;
14397 regidx = idx / 8;
14398 /* replace default with context number */
14399 reg = rmt->map[regidx];
14400 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14401 << regoff);
14402 reg |= (u64)(tctxt++) << regoff;
14403 rmt->map[regidx] = reg;
14404 if (tctxt == ctxt + krcvqs[i])
14405 tctxt = ctxt;
14406 }
14407 ctxt += krcvqs[i];
14408 }
14409
14410 rrd.offset = rmt->used;
14411 rrd.pkt_type = 2;
14412 rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14413 rrd.field2_off = LRH_SC_MATCH_OFFSET;
14414 rrd.index1_off = LRH_SC_SELECT_OFFSET;
14415 rrd.index1_width = n;
14416 rrd.index2_off = QPN_SELECT_OFFSET;
14417 rrd.index2_width = m + n;
14418 rrd.mask1 = LRH_BTH_MASK;
14419 rrd.value1 = LRH_BTH_VALUE;
14420 rrd.mask2 = LRH_SC_MASK;
14421 rrd.value2 = LRH_SC_VALUE;
14422
14423 /* add rule 0 */
14424 add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14425
14426 /* mark RSM map entries as used */
14427 rmt->used += rmt_entries;
14428 /* map everything else to the mcast/err/vl15 context */
14429 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14430 dd->qos_shift = n + 1;
14431 return;
14432bail:
14433 dd->qos_shift = 1;
14434 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14435}
14436
14437static void init_user_fecn_handling(struct hfi1_devdata *dd,
14438 struct rsm_map_table *rmt)
14439{
14440 struct rsm_rule_data rrd;
14441 u64 reg;
14442 int i, idx, regoff, regidx;
14443 u8 offset;
14444
14445 /* there needs to be enough room in the map table */
14446 if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14447 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14448 return;
14449 }
14450
14451 /*
14452 * RSM will extract the destination context as an index into the
14453 * map table. The destination contexts are a sequential block
14454 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14455 * Map entries are accessed as offset + extracted value. Adjust
14456 * the added offset so this sequence can be placed anywhere in
14457 * the table - as long as the entries themselves do not wrap.
14458 * There are only enough bits in offset for the table size, so
14459 * start with that to allow for a "negative" offset.
14460 */
14461 offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14462 (int)dd->first_dyn_alloc_ctxt);
14463
14464 for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14465 i < dd->num_rcv_contexts; i++, idx++) {
14466 /* replace with identity mapping */
14467 regoff = (idx % 8) * 8;
14468 regidx = idx / 8;
14469 reg = rmt->map[regidx];
14470 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14471 reg |= (u64)i << regoff;
14472 rmt->map[regidx] = reg;
14473 }
14474
14475 /*
14476 * For RSM intercept of Expected FECN packets:
14477 * o packet type 0 - expected
14478 * o match on F (bit 95), using select/match 1, and
14479 * o match on SH (bit 133), using select/match 2.
14480 *
14481 * Use index 1 to extract the 8-bit receive context from DestQP
14482 * (start at bit 64). Use that as the RSM map table index.
14483 */
14484 rrd.offset = offset;
14485 rrd.pkt_type = 0;
14486 rrd.field1_off = 95;
14487 rrd.field2_off = 133;
14488 rrd.index1_off = 64;
14489 rrd.index1_width = 8;
14490 rrd.index2_off = 0;
14491 rrd.index2_width = 0;
14492 rrd.mask1 = 1;
14493 rrd.value1 = 1;
14494 rrd.mask2 = 1;
14495 rrd.value2 = 1;
14496
14497 /* add rule 1 */
14498 add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14499
14500 rmt->used += dd->num_user_contexts;
14501}
14502
14503/* Initialize RSM for VNIC */
14504void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14505{
14506 u8 i, j;
14507 u8 ctx_id = 0;
14508 u64 reg;
14509 u32 regoff;
14510 struct rsm_rule_data rrd;
14511
14512 if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14513 dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14514 dd->vnic.rmt_start);
14515 return;
14516 }
14517
14518 dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14519 dd->vnic.rmt_start,
14520 dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14521
14522 /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14523 regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14524 reg = read_csr(dd, regoff);
14525 for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14526 /* Update map register with vnic context */
14527 j = (dd->vnic.rmt_start + i) % 8;
14528 reg &= ~(0xffllu << (j * 8));
14529 reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14530 /* Wrap up vnic ctx index */
14531 ctx_id %= dd->vnic.num_ctxt;
14532 /* Write back map register */
14533 if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14534 dev_dbg(&(dd)->pcidev->dev,
14535 "Vnic rsm map reg[%d] =0x%llx\n",
14536 regoff - RCV_RSM_MAP_TABLE, reg);
14537
14538 write_csr(dd, regoff, reg);
14539 regoff += 8;
14540 if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14541 reg = read_csr(dd, regoff);
14542 }
14543 }
14544
14545 /* Add rule for vnic */
14546 rrd.offset = dd->vnic.rmt_start;
14547 rrd.pkt_type = 4;
14548 /* Match 16B packets */
14549 rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14550 rrd.mask1 = L2_TYPE_MASK;
14551 rrd.value1 = L2_16B_VALUE;
14552 /* Match ETH L4 packets */
14553 rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14554 rrd.mask2 = L4_16B_TYPE_MASK;
14555 rrd.value2 = L4_16B_ETH_VALUE;
14556 /* Calc context from veswid and entropy */
14557 rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14558 rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14559 rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14560 rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14561 add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14562
14563 /* Enable RSM if not already enabled */
14564 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14565}
14566
14567void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14568{
14569 clear_rsm_rule(dd, RSM_INS_VNIC);
14570
14571 /* Disable RSM if used only by vnic */
14572 if (dd->vnic.rmt_start == 0)
14573 clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14574}
14575
14576static void init_rxe(struct hfi1_devdata *dd)
14577{
14578 struct rsm_map_table *rmt;
14579 u64 val;
14580
14581 /* enable all receive errors */
14582 write_csr(dd, RCV_ERR_MASK, ~0ull);
14583
14584 rmt = alloc_rsm_map_table(dd);
14585 /* set up QOS, including the QPN map table */
14586 init_qos(dd, rmt);
14587 init_user_fecn_handling(dd, rmt);
14588 complete_rsm_map_table(dd, rmt);
14589 /* record number of used rsm map entries for vnic */
14590 dd->vnic.rmt_start = rmt->used;
14591 kfree(rmt);
14592
14593 /*
14594 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14595 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14596 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
14597 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14598 * Max_PayLoad_Size set to its minimum of 128.
14599 *
14600 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14601 * (64 bytes). Max_Payload_Size is possibly modified upward in
14602 * tune_pcie_caps() which is called after this routine.
14603 */
14604
14605 /* Have 16 bytes (4DW) of bypass header available in header queue */
14606 val = read_csr(dd, RCV_BYPASS);
14607 val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14608 val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14609 RCV_BYPASS_HDR_SIZE_SHIFT);
14610 write_csr(dd, RCV_BYPASS, val);
14611}
14612
14613static void init_other(struct hfi1_devdata *dd)
14614{
14615 /* enable all CCE errors */
14616 write_csr(dd, CCE_ERR_MASK, ~0ull);
14617 /* enable *some* Misc errors */
14618 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14619 /* enable all DC errors, except LCB */
14620 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14621 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14622}
14623
14624/*
14625 * Fill out the given AU table using the given CU. A CU is defined in terms
14626 * AUs. The table is a an encoding: given the index, how many AUs does that
14627 * represent?
14628 *
14629 * NOTE: Assumes that the register layout is the same for the
14630 * local and remote tables.
14631 */
14632static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14633 u32 csr0to3, u32 csr4to7)
14634{
14635 write_csr(dd, csr0to3,
14636 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14637 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14638 2ull * cu <<
14639 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14640 4ull * cu <<
14641 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14642 write_csr(dd, csr4to7,
14643 8ull * cu <<
14644 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14645 16ull * cu <<
14646 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14647 32ull * cu <<
14648 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14649 64ull * cu <<
14650 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14651}
14652
14653static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14654{
14655 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14656 SEND_CM_LOCAL_AU_TABLE4_TO7);
14657}
14658
14659void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14660{
14661 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14662 SEND_CM_REMOTE_AU_TABLE4_TO7);
14663}
14664
14665static void init_txe(struct hfi1_devdata *dd)
14666{
14667 int i;
14668
14669 /* enable all PIO, SDMA, general, and Egress errors */
14670 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14671 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14672 write_csr(dd, SEND_ERR_MASK, ~0ull);
14673 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14674
14675 /* enable all per-context and per-SDMA engine errors */
14676 for (i = 0; i < chip_send_contexts(dd); i++)
14677 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14678 for (i = 0; i < chip_sdma_engines(dd); i++)
14679 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14680
14681 /* set the local CU to AU mapping */
14682 assign_local_cm_au_table(dd, dd->vcu);
14683
14684 /*
14685 * Set reasonable default for Credit Return Timer
14686 * Don't set on Simulator - causes it to choke.
14687 */
14688 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14689 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14690}
14691
14692int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14693 u16 jkey)
14694{
14695 u8 hw_ctxt;
14696 u64 reg;
14697
14698 if (!rcd || !rcd->sc)
14699 return -EINVAL;
14700
14701 hw_ctxt = rcd->sc->hw_context;
14702 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14703 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14704 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14705 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14706 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14707 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14708 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14709 /*
14710 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14711 */
14712 if (!is_ax(dd)) {
14713 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14714 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14715 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14716 }
14717
14718 /* Enable J_KEY check on receive context. */
14719 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14720 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14721 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14722 write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14723
14724 return 0;
14725}
14726
14727int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14728{
14729 u8 hw_ctxt;
14730 u64 reg;
14731
14732 if (!rcd || !rcd->sc)
14733 return -EINVAL;
14734
14735 hw_ctxt = rcd->sc->hw_context;
14736 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14737 /*
14738 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14739 * This check would not have been enabled for A0 h/w, see
14740 * set_ctxt_jkey().
14741 */
14742 if (!is_ax(dd)) {
14743 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14744 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14745 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14746 }
14747 /* Turn off the J_KEY on the receive side */
14748 write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14749
14750 return 0;
14751}
14752
14753int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14754 u16 pkey)
14755{
14756 u8 hw_ctxt;
14757 u64 reg;
14758
14759 if (!rcd || !rcd->sc)
14760 return -EINVAL;
14761
14762 hw_ctxt = rcd->sc->hw_context;
14763 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14764 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14765 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14766 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14767 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14768 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14769 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14770
14771 return 0;
14772}
14773
14774int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14775{
14776 u8 hw_ctxt;
14777 u64 reg;
14778
14779 if (!ctxt || !ctxt->sc)
14780 return -EINVAL;
14781
14782 hw_ctxt = ctxt->sc->hw_context;
14783 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14784 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14785 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14786 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14787
14788 return 0;
14789}
14790
14791/*
14792 * Start doing the clean up the the chip. Our clean up happens in multiple
14793 * stages and this is just the first.
14794 */
14795void hfi1_start_cleanup(struct hfi1_devdata *dd)
14796{
14797 aspm_exit(dd);
14798 free_cntrs(dd);
14799 free_rcverr(dd);
14800 finish_chip_resources(dd);
14801}
14802
14803#define HFI_BASE_GUID(dev) \
14804 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14805
14806/*
14807 * Information can be shared between the two HFIs on the same ASIC
14808 * in the same OS. This function finds the peer device and sets
14809 * up a shared structure.
14810 */
14811static int init_asic_data(struct hfi1_devdata *dd)
14812{
14813 unsigned long flags;
14814 struct hfi1_devdata *tmp, *peer = NULL;
14815 struct hfi1_asic_data *asic_data;
14816 int ret = 0;
14817
14818 /* pre-allocate the asic structure in case we are the first device */
14819 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14820 if (!asic_data)
14821 return -ENOMEM;
14822
14823 spin_lock_irqsave(&hfi1_devs_lock, flags);
14824 /* Find our peer device */
14825 list_for_each_entry(tmp, &hfi1_dev_list, list) {
14826 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14827 dd->unit != tmp->unit) {
14828 peer = tmp;
14829 break;
14830 }
14831 }
14832
14833 if (peer) {
14834 /* use already allocated structure */
14835 dd->asic_data = peer->asic_data;
14836 kfree(asic_data);
14837 } else {
14838 dd->asic_data = asic_data;
14839 mutex_init(&dd->asic_data->asic_resource_mutex);
14840 }
14841 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14842 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14843
14844 /* first one through - set up i2c devices */
14845 if (!peer)
14846 ret = set_up_i2c(dd, dd->asic_data);
14847
14848 return ret;
14849}
14850
14851/*
14852 * Set dd->boardname. Use a generic name if a name is not returned from
14853 * EFI variable space.
14854 *
14855 * Return 0 on success, -ENOMEM if space could not be allocated.
14856 */
14857static int obtain_boardname(struct hfi1_devdata *dd)
14858{
14859 /* generic board description */
14860 const char generic[] =
14861 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14862 unsigned long size;
14863 int ret;
14864
14865 ret = read_hfi1_efi_var(dd, "description", &size,
14866 (void **)&dd->boardname);
14867 if (ret) {
14868 dd_dev_info(dd, "Board description not found\n");
14869 /* use generic description */
14870 dd->boardname = kstrdup(generic, GFP_KERNEL);
14871 if (!dd->boardname)
14872 return -ENOMEM;
14873 }
14874 return 0;
14875}
14876
14877/*
14878 * Check the interrupt registers to make sure that they are mapped correctly.
14879 * It is intended to help user identify any mismapping by VMM when the driver
14880 * is running in a VM. This function should only be called before interrupt
14881 * is set up properly.
14882 *
14883 * Return 0 on success, -EINVAL on failure.
14884 */
14885static int check_int_registers(struct hfi1_devdata *dd)
14886{
14887 u64 reg;
14888 u64 all_bits = ~(u64)0;
14889 u64 mask;
14890
14891 /* Clear CceIntMask[0] to avoid raising any interrupts */
14892 mask = read_csr(dd, CCE_INT_MASK);
14893 write_csr(dd, CCE_INT_MASK, 0ull);
14894 reg = read_csr(dd, CCE_INT_MASK);
14895 if (reg)
14896 goto err_exit;
14897
14898 /* Clear all interrupt status bits */
14899 write_csr(dd, CCE_INT_CLEAR, all_bits);
14900 reg = read_csr(dd, CCE_INT_STATUS);
14901 if (reg)
14902 goto err_exit;
14903
14904 /* Set all interrupt status bits */
14905 write_csr(dd, CCE_INT_FORCE, all_bits);
14906 reg = read_csr(dd, CCE_INT_STATUS);
14907 if (reg != all_bits)
14908 goto err_exit;
14909
14910 /* Restore the interrupt mask */
14911 write_csr(dd, CCE_INT_CLEAR, all_bits);
14912 write_csr(dd, CCE_INT_MASK, mask);
14913
14914 return 0;
14915err_exit:
14916 write_csr(dd, CCE_INT_MASK, mask);
14917 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14918 return -EINVAL;
14919}
14920
14921/**
14922 * Allocate and initialize the device structure for the hfi.
14923 * @dev: the pci_dev for hfi1_ib device
14924 * @ent: pci_device_id struct for this dev
14925 *
14926 * Also allocates, initializes, and returns the devdata struct for this
14927 * device instance
14928 *
14929 * This is global, and is called directly at init to set up the
14930 * chip-specific function pointers for later use.
14931 */
14932struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14933 const struct pci_device_id *ent)
14934{
14935 struct hfi1_devdata *dd;
14936 struct hfi1_pportdata *ppd;
14937 u64 reg;
14938 int i, ret;
14939 static const char * const inames[] = { /* implementation names */
14940 "RTL silicon",
14941 "RTL VCS simulation",
14942 "RTL FPGA emulation",
14943 "Functional simulator"
14944 };
14945 struct pci_dev *parent = pdev->bus->self;
14946 u32 sdma_engines;
14947
14948 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14949 sizeof(struct hfi1_pportdata));
14950 if (IS_ERR(dd))
14951 goto bail;
14952 sdma_engines = chip_sdma_engines(dd);
14953 ppd = dd->pport;
14954 for (i = 0; i < dd->num_pports; i++, ppd++) {
14955 int vl;
14956 /* init common fields */
14957 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14958 /* DC supports 4 link widths */
14959 ppd->link_width_supported =
14960 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14961 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14962 ppd->link_width_downgrade_supported =
14963 ppd->link_width_supported;
14964 /* start out enabling only 4X */
14965 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14966 ppd->link_width_downgrade_enabled =
14967 ppd->link_width_downgrade_supported;
14968 /* link width active is 0 when link is down */
14969 /* link width downgrade active is 0 when link is down */
14970
14971 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14972 num_vls > HFI1_MAX_VLS_SUPPORTED) {
14973 dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
14974 num_vls, HFI1_MAX_VLS_SUPPORTED);
14975 num_vls = HFI1_MAX_VLS_SUPPORTED;
14976 }
14977 ppd->vls_supported = num_vls;
14978 ppd->vls_operational = ppd->vls_supported;
14979 /* Set the default MTU. */
14980 for (vl = 0; vl < num_vls; vl++)
14981 dd->vld[vl].mtu = hfi1_max_mtu;
14982 dd->vld[15].mtu = MAX_MAD_PACKET;
14983 /*
14984 * Set the initial values to reasonable default, will be set
14985 * for real when link is up.
14986 */
14987 ppd->overrun_threshold = 0x4;
14988 ppd->phy_error_threshold = 0xf;
14989 ppd->port_crc_mode_enabled = link_crc_mask;
14990 /* initialize supported LTP CRC mode */
14991 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14992 /* initialize enabled LTP CRC mode */
14993 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14994 /* start in offline */
14995 ppd->host_link_state = HLS_DN_OFFLINE;
14996 init_vl_arb_caches(ppd);
14997 }
14998
14999 /*
15000 * Do remaining PCIe setup and save PCIe values in dd.
15001 * Any error printing is already done by the init code.
15002 * On return, we have the chip mapped.
15003 */
15004 ret = hfi1_pcie_ddinit(dd, pdev);
15005 if (ret < 0)
15006 goto bail_free;
15007
15008 /* Save PCI space registers to rewrite after device reset */
15009 ret = save_pci_variables(dd);
15010 if (ret < 0)
15011 goto bail_cleanup;
15012
15013 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15014 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
15015 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15016 & CCE_REVISION_CHIP_REV_MINOR_MASK;
15017
15018 /*
15019 * Check interrupt registers mapping if the driver has no access to
15020 * the upstream component. In this case, it is likely that the driver
15021 * is running in a VM.
15022 */
15023 if (!parent) {
15024 ret = check_int_registers(dd);
15025 if (ret)
15026 goto bail_cleanup;
15027 }
15028
15029 /*
15030 * obtain the hardware ID - NOT related to unit, which is a
15031 * software enumeration
15032 */
15033 reg = read_csr(dd, CCE_REVISION2);
15034 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15035 & CCE_REVISION2_HFI_ID_MASK;
15036 /* the variable size will remove unwanted bits */
15037 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15038 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15039 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15040 dd->icode < ARRAY_SIZE(inames) ?
15041 inames[dd->icode] : "unknown", (int)dd->irev);
15042
15043 /* speeds the hardware can support */
15044 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15045 /* speeds allowed to run at */
15046 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15047 /* give a reasonable active value, will be set on link up */
15048 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15049
15050 /* fix up link widths for emulation _p */
15051 ppd = dd->pport;
15052 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15053 ppd->link_width_supported =
15054 ppd->link_width_enabled =
15055 ppd->link_width_downgrade_supported =
15056 ppd->link_width_downgrade_enabled =
15057 OPA_LINK_WIDTH_1X;
15058 }
15059 /* insure num_vls isn't larger than number of sdma engines */
15060 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15061 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15062 num_vls, sdma_engines);
15063 num_vls = sdma_engines;
15064 ppd->vls_supported = sdma_engines;
15065 ppd->vls_operational = ppd->vls_supported;
15066 }
15067
15068 /*
15069 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15070 * Limit the max if larger than the field holds. If timeout is
15071 * non-zero, then the calculated field will be at least 1.
15072 *
15073 * Must be after icode is set up - the cclock rate depends
15074 * on knowing the hardware being used.
15075 */
15076 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15077 if (dd->rcv_intr_timeout_csr >
15078 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15079 dd->rcv_intr_timeout_csr =
15080 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15081 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15082 dd->rcv_intr_timeout_csr = 1;
15083
15084 /* needs to be done before we look for the peer device */
15085 read_guid(dd);
15086
15087 /* set up shared ASIC data with peer device */
15088 ret = init_asic_data(dd);
15089 if (ret)
15090 goto bail_cleanup;
15091
15092 /* obtain chip sizes, reset chip CSRs */
15093 ret = init_chip(dd);
15094 if (ret)
15095 goto bail_cleanup;
15096
15097 /* read in the PCIe link speed information */
15098 ret = pcie_speeds(dd);
15099 if (ret)
15100 goto bail_cleanup;
15101
15102 /* call before get_platform_config(), after init_chip_resources() */
15103 ret = eprom_init(dd);
15104 if (ret)
15105 goto bail_free_rcverr;
15106
15107 /* Needs to be called before hfi1_firmware_init */
15108 get_platform_config(dd);
15109
15110 /* read in firmware */
15111 ret = hfi1_firmware_init(dd);
15112 if (ret)
15113 goto bail_cleanup;
15114
15115 /*
15116 * In general, the PCIe Gen3 transition must occur after the
15117 * chip has been idled (so it won't initiate any PCIe transactions
15118 * e.g. an interrupt) and before the driver changes any registers
15119 * (the transition will reset the registers).
15120 *
15121 * In particular, place this call after:
15122 * - init_chip() - the chip will not initiate any PCIe transactions
15123 * - pcie_speeds() - reads the current link speed
15124 * - hfi1_firmware_init() - the needed firmware is ready to be
15125 * downloaded
15126 */
15127 ret = do_pcie_gen3_transition(dd);
15128 if (ret)
15129 goto bail_cleanup;
15130
15131 /* start setting dd values and adjusting CSRs */
15132 init_early_variables(dd);
15133
15134 parse_platform_config(dd);
15135
15136 ret = obtain_boardname(dd);
15137 if (ret)
15138 goto bail_cleanup;
15139
15140 snprintf(dd->boardversion, BOARD_VERS_MAX,
15141 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15142 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15143 (u32)dd->majrev,
15144 (u32)dd->minrev,
15145 (dd->revision >> CCE_REVISION_SW_SHIFT)
15146 & CCE_REVISION_SW_MASK);
15147
15148 ret = set_up_context_variables(dd);
15149 if (ret)
15150 goto bail_cleanup;
15151
15152 /* set initial RXE CSRs */
15153 init_rxe(dd);
15154 /* set initial TXE CSRs */
15155 init_txe(dd);
15156 /* set initial non-RXE, non-TXE CSRs */
15157 init_other(dd);
15158 /* set up KDETH QP prefix in both RX and TX CSRs */
15159 init_kdeth_qp(dd);
15160
15161 ret = hfi1_dev_affinity_init(dd);
15162 if (ret)
15163 goto bail_cleanup;
15164
15165 /* send contexts must be set up before receive contexts */
15166 ret = init_send_contexts(dd);
15167 if (ret)
15168 goto bail_cleanup;
15169
15170 ret = hfi1_create_kctxts(dd);
15171 if (ret)
15172 goto bail_cleanup;
15173
15174 /*
15175 * Initialize aspm, to be done after gen3 transition and setting up
15176 * contexts and before enabling interrupts
15177 */
15178 aspm_init(dd);
15179
15180 ret = init_pervl_scs(dd);
15181 if (ret)
15182 goto bail_cleanup;
15183
15184 /* sdma init */
15185 for (i = 0; i < dd->num_pports; ++i) {
15186 ret = sdma_init(dd, i);
15187 if (ret)
15188 goto bail_cleanup;
15189 }
15190
15191 /* use contexts created by hfi1_create_kctxts */
15192 ret = set_up_interrupts(dd);
15193 if (ret)
15194 goto bail_cleanup;
15195
15196 ret = hfi1_comp_vectors_set_up(dd);
15197 if (ret)
15198 goto bail_clear_intr;
15199
15200 /* set up LCB access - must be after set_up_interrupts() */
15201 init_lcb_access(dd);
15202
15203 /*
15204 * Serial number is created from the base guid:
15205 * [27:24] = base guid [38:35]
15206 * [23: 0] = base guid [23: 0]
15207 */
15208 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15209 (dd->base_guid & 0xFFFFFF) |
15210 ((dd->base_guid >> 11) & 0xF000000));
15211
15212 dd->oui1 = dd->base_guid >> 56 & 0xFF;
15213 dd->oui2 = dd->base_guid >> 48 & 0xFF;
15214 dd->oui3 = dd->base_guid >> 40 & 0xFF;
15215
15216 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15217 if (ret)
15218 goto bail_clear_intr;
15219
15220 thermal_init(dd);
15221
15222 ret = init_cntrs(dd);
15223 if (ret)
15224 goto bail_clear_intr;
15225
15226 ret = init_rcverr(dd);
15227 if (ret)
15228 goto bail_free_cntrs;
15229
15230 init_completion(&dd->user_comp);
15231
15232 /* The user refcount starts with one to inidicate an active device */
15233 atomic_set(&dd->user_refcount, 1);
15234
15235 goto bail;
15236
15237bail_free_rcverr:
15238 free_rcverr(dd);
15239bail_free_cntrs:
15240 free_cntrs(dd);
15241bail_clear_intr:
15242 hfi1_comp_vectors_clean_up(dd);
15243 hfi1_clean_up_interrupts(dd);
15244bail_cleanup:
15245 hfi1_pcie_ddcleanup(dd);
15246bail_free:
15247 hfi1_free_devdata(dd);
15248 dd = ERR_PTR(ret);
15249bail:
15250 return dd;
15251}
15252
15253static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15254 u32 dw_len)
15255{
15256 u32 delta_cycles;
15257 u32 current_egress_rate = ppd->current_egress_rate;
15258 /* rates here are in units of 10^6 bits/sec */
15259
15260 if (desired_egress_rate == -1)
15261 return 0; /* shouldn't happen */
15262
15263 if (desired_egress_rate >= current_egress_rate)
15264 return 0; /* we can't help go faster, only slower */
15265
15266 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15267 egress_cycles(dw_len * 4, current_egress_rate);
15268
15269 return (u16)delta_cycles;
15270}
15271
15272/**
15273 * create_pbc - build a pbc for transmission
15274 * @flags: special case flags or-ed in built pbc
15275 * @srate: static rate
15276 * @vl: vl
15277 * @dwlen: dword length (header words + data words + pbc words)
15278 *
15279 * Create a PBC with the given flags, rate, VL, and length.
15280 *
15281 * NOTE: The PBC created will not insert any HCRC - all callers but one are
15282 * for verbs, which does not use this PSM feature. The lone other caller
15283 * is for the diagnostic interface which calls this if the user does not
15284 * supply their own PBC.
15285 */
15286u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15287 u32 dw_len)
15288{
15289 u64 pbc, delay = 0;
15290
15291 if (unlikely(srate_mbs))
15292 delay = delay_cycles(ppd, srate_mbs, dw_len);
15293
15294 pbc = flags
15295 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15296 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15297 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15298 | (dw_len & PBC_LENGTH_DWS_MASK)
15299 << PBC_LENGTH_DWS_SHIFT;
15300
15301 return pbc;
15302}
15303
15304#define SBUS_THERMAL 0x4f
15305#define SBUS_THERM_MONITOR_MODE 0x1
15306
15307#define THERM_FAILURE(dev, ret, reason) \
15308 dd_dev_err((dd), \
15309 "Thermal sensor initialization failed: %s (%d)\n", \
15310 (reason), (ret))
15311
15312/*
15313 * Initialize the thermal sensor.
15314 *
15315 * After initialization, enable polling of thermal sensor through
15316 * SBus interface. In order for this to work, the SBus Master
15317 * firmware has to be loaded due to the fact that the HW polling
15318 * logic uses SBus interrupts, which are not supported with
15319 * default firmware. Otherwise, no data will be returned through
15320 * the ASIC_STS_THERM CSR.
15321 */
15322static int thermal_init(struct hfi1_devdata *dd)
15323{
15324 int ret = 0;
15325
15326 if (dd->icode != ICODE_RTL_SILICON ||
15327 check_chip_resource(dd, CR_THERM_INIT, NULL))
15328 return ret;
15329
15330 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15331 if (ret) {
15332 THERM_FAILURE(dd, ret, "Acquire SBus");
15333 return ret;
15334 }
15335
15336 dd_dev_info(dd, "Initializing thermal sensor\n");
15337 /* Disable polling of thermal readings */
15338 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15339 msleep(100);
15340 /* Thermal Sensor Initialization */
15341 /* Step 1: Reset the Thermal SBus Receiver */
15342 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15343 RESET_SBUS_RECEIVER, 0);
15344 if (ret) {
15345 THERM_FAILURE(dd, ret, "Bus Reset");
15346 goto done;
15347 }
15348 /* Step 2: Set Reset bit in Thermal block */
15349 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15350 WRITE_SBUS_RECEIVER, 0x1);
15351 if (ret) {
15352 THERM_FAILURE(dd, ret, "Therm Block Reset");
15353 goto done;
15354 }
15355 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
15356 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15357 WRITE_SBUS_RECEIVER, 0x32);
15358 if (ret) {
15359 THERM_FAILURE(dd, ret, "Write Clock Div");
15360 goto done;
15361 }
15362 /* Step 4: Select temperature mode */
15363 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15364 WRITE_SBUS_RECEIVER,
15365 SBUS_THERM_MONITOR_MODE);
15366 if (ret) {
15367 THERM_FAILURE(dd, ret, "Write Mode Sel");
15368 goto done;
15369 }
15370 /* Step 5: De-assert block reset and start conversion */
15371 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15372 WRITE_SBUS_RECEIVER, 0x2);
15373 if (ret) {
15374 THERM_FAILURE(dd, ret, "Write Reset Deassert");
15375 goto done;
15376 }
15377 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
15378 msleep(22);
15379
15380 /* Enable polling of thermal readings */
15381 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15382
15383 /* Set initialized flag */
15384 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15385 if (ret)
15386 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15387
15388done:
15389 release_chip_resource(dd, CR_SBUS);
15390 return ret;
15391}
15392
15393static void handle_temp_err(struct hfi1_devdata *dd)
15394{
15395 struct hfi1_pportdata *ppd = &dd->pport[0];
15396 /*
15397 * Thermal Critical Interrupt
15398 * Put the device into forced freeze mode, take link down to
15399 * offline, and put DC into reset.
15400 */
15401 dd_dev_emerg(dd,
15402 "Critical temperature reached! Forcing device into freeze mode!\n");
15403 dd->flags |= HFI1_FORCED_FREEZE;
15404 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15405 /*
15406 * Shut DC down as much and as quickly as possible.
15407 *
15408 * Step 1: Take the link down to OFFLINE. This will cause the
15409 * 8051 to put the Serdes in reset. However, we don't want to
15410 * go through the entire link state machine since we want to
15411 * shutdown ASAP. Furthermore, this is not a graceful shutdown
15412 * but rather an attempt to save the chip.
15413 * Code below is almost the same as quiet_serdes() but avoids
15414 * all the extra work and the sleeps.
15415 */
15416 ppd->driver_link_ready = 0;
15417 ppd->link_enabled = 0;
15418 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15419 PLS_OFFLINE);
15420 /*
15421 * Step 2: Shutdown LCB and 8051
15422 * After shutdown, do not restore DC_CFG_RESET value.
15423 */
15424 dc_shutdown(dd);
15425}