Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * This file is the ADC part of the STM32 DFSDM driver |
| 4 | * |
| 5 | * Copyright (C) 2017, STMicroelectronics - All Rights Reserved |
| 6 | * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>. |
| 7 | */ |
| 8 | |
| 9 | #include <linux/dmaengine.h> |
| 10 | #include <linux/dma-mapping.h> |
| 11 | #include <linux/iio/adc/stm32-dfsdm-adc.h> |
| 12 | #include <linux/iio/buffer.h> |
| 13 | #include <linux/iio/hw-consumer.h> |
| 14 | #include <linux/iio/sysfs.h> |
| 15 | #include <linux/interrupt.h> |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/of_device.h> |
| 18 | #include <linux/platform_device.h> |
| 19 | #include <linux/regmap.h> |
| 20 | #include <linux/slab.h> |
| 21 | |
| 22 | #include "stm32-dfsdm.h" |
| 23 | |
| 24 | #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE) |
| 25 | |
| 26 | /* Conversion timeout */ |
| 27 | #define DFSDM_TIMEOUT_US 100000 |
| 28 | #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000)) |
| 29 | |
| 30 | /* Oversampling attribute default */ |
| 31 | #define DFSDM_DEFAULT_OVERSAMPLING 100 |
| 32 | |
| 33 | /* Oversampling max values */ |
| 34 | #define DFSDM_MAX_INT_OVERSAMPLING 256 |
| 35 | #define DFSDM_MAX_FL_OVERSAMPLING 1024 |
| 36 | |
| 37 | /* Max sample resolutions */ |
| 38 | #define DFSDM_MAX_RES BIT(31) |
| 39 | #define DFSDM_DATA_RES BIT(23) |
| 40 | |
| 41 | enum sd_converter_type { |
| 42 | DFSDM_AUDIO, |
| 43 | DFSDM_IIO, |
| 44 | }; |
| 45 | |
| 46 | struct stm32_dfsdm_dev_data { |
| 47 | int type; |
| 48 | int (*init)(struct iio_dev *indio_dev); |
| 49 | unsigned int num_channels; |
| 50 | const struct regmap_config *regmap_cfg; |
| 51 | }; |
| 52 | |
| 53 | struct stm32_dfsdm_adc { |
| 54 | struct stm32_dfsdm *dfsdm; |
| 55 | const struct stm32_dfsdm_dev_data *dev_data; |
| 56 | unsigned int fl_id; |
| 57 | |
| 58 | /* ADC specific */ |
| 59 | unsigned int oversamp; |
| 60 | struct iio_hw_consumer *hwc; |
| 61 | struct completion completion; |
| 62 | u32 *buffer; |
| 63 | |
| 64 | /* Audio specific */ |
| 65 | unsigned int spi_freq; /* SPI bus clock frequency */ |
| 66 | unsigned int sample_freq; /* Sample frequency after filter decimation */ |
| 67 | int (*cb)(const void *data, size_t size, void *cb_priv); |
| 68 | void *cb_priv; |
| 69 | |
| 70 | /* DMA */ |
| 71 | u8 *rx_buf; |
| 72 | unsigned int bufi; /* Buffer current position */ |
| 73 | unsigned int buf_sz; /* Buffer size */ |
| 74 | struct dma_chan *dma_chan; |
| 75 | dma_addr_t dma_buf; |
| 76 | }; |
| 77 | |
| 78 | struct stm32_dfsdm_str2field { |
| 79 | const char *name; |
| 80 | unsigned int val; |
| 81 | }; |
| 82 | |
| 83 | /* DFSDM channel serial interface type */ |
| 84 | static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = { |
| 85 | { "SPI_R", 0 }, /* SPI with data on rising edge */ |
| 86 | { "SPI_F", 1 }, /* SPI with data on falling edge */ |
| 87 | { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */ |
| 88 | { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */ |
| 89 | {}, |
| 90 | }; |
| 91 | |
| 92 | /* DFSDM channel clock source */ |
| 93 | static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = { |
| 94 | /* External SPI clock (CLKIN x) */ |
| 95 | { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL }, |
| 96 | /* Internal SPI clock (CLKOUT) */ |
| 97 | { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL }, |
| 98 | /* Internal SPI clock divided by 2 (falling edge) */ |
| 99 | { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING }, |
| 100 | /* Internal SPI clock divided by 2 (falling edge) */ |
| 101 | { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING }, |
| 102 | {}, |
| 103 | }; |
| 104 | |
| 105 | static int stm32_dfsdm_str2val(const char *str, |
| 106 | const struct stm32_dfsdm_str2field *list) |
| 107 | { |
| 108 | const struct stm32_dfsdm_str2field *p = list; |
| 109 | |
| 110 | for (p = list; p && p->name; p++) |
| 111 | if (!strcmp(p->name, str)) |
| 112 | return p->val; |
| 113 | |
| 114 | return -EINVAL; |
| 115 | } |
| 116 | |
| 117 | static int stm32_dfsdm_set_osrs(struct stm32_dfsdm_filter *fl, |
| 118 | unsigned int fast, unsigned int oversamp) |
| 119 | { |
| 120 | unsigned int i, d, fosr, iosr; |
| 121 | u64 res; |
| 122 | s64 delta; |
| 123 | unsigned int m = 1; /* multiplication factor */ |
| 124 | unsigned int p = fl->ford; /* filter order (ford) */ |
| 125 | |
| 126 | pr_debug("%s: Requested oversampling: %d\n", __func__, oversamp); |
| 127 | /* |
| 128 | * This function tries to compute filter oversampling and integrator |
| 129 | * oversampling, base on oversampling ratio requested by user. |
| 130 | * |
| 131 | * Decimation d depends on the filter order and the oversampling ratios. |
| 132 | * ford: filter order |
| 133 | * fosr: filter over sampling ratio |
| 134 | * iosr: integrator over sampling ratio |
| 135 | */ |
| 136 | if (fl->ford == DFSDM_FASTSINC_ORDER) { |
| 137 | m = 2; |
| 138 | p = 2; |
| 139 | } |
| 140 | |
| 141 | /* |
| 142 | * Look for filter and integrator oversampling ratios which allows |
| 143 | * to reach 24 bits data output resolution. |
| 144 | * Leave as soon as if exact resolution if reached. |
| 145 | * Otherwise the higher resolution below 32 bits is kept. |
| 146 | */ |
| 147 | fl->res = 0; |
| 148 | for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) { |
| 149 | for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) { |
| 150 | if (fast) |
| 151 | d = fosr * iosr; |
| 152 | else if (fl->ford == DFSDM_FASTSINC_ORDER) |
| 153 | d = fosr * (iosr + 3) + 2; |
| 154 | else |
| 155 | d = fosr * (iosr - 1 + p) + p; |
| 156 | |
| 157 | if (d > oversamp) |
| 158 | break; |
| 159 | else if (d != oversamp) |
| 160 | continue; |
| 161 | /* |
| 162 | * Check resolution (limited to signed 32 bits) |
| 163 | * res <= 2^31 |
| 164 | * Sincx filters: |
| 165 | * res = m * fosr^p x iosr (with m=1, p=ford) |
| 166 | * FastSinc filter |
| 167 | * res = m * fosr^p x iosr (with m=2, p=2) |
| 168 | */ |
| 169 | res = fosr; |
| 170 | for (i = p - 1; i > 0; i--) { |
| 171 | res = res * (u64)fosr; |
| 172 | if (res > DFSDM_MAX_RES) |
| 173 | break; |
| 174 | } |
| 175 | if (res > DFSDM_MAX_RES) |
| 176 | continue; |
| 177 | res = res * (u64)m * (u64)iosr; |
| 178 | if (res > DFSDM_MAX_RES) |
| 179 | continue; |
| 180 | |
| 181 | delta = res - DFSDM_DATA_RES; |
| 182 | |
| 183 | if (res >= fl->res) { |
| 184 | fl->res = res; |
| 185 | fl->fosr = fosr; |
| 186 | fl->iosr = iosr; |
| 187 | fl->fast = fast; |
| 188 | pr_debug("%s: fosr = %d, iosr = %d\n", |
| 189 | __func__, fl->fosr, fl->iosr); |
| 190 | } |
| 191 | |
| 192 | if (!delta) |
| 193 | return 0; |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | if (!fl->res) |
| 198 | return -EINVAL; |
| 199 | |
| 200 | return 0; |
| 201 | } |
| 202 | |
| 203 | static int stm32_dfsdm_start_channel(struct stm32_dfsdm *dfsdm, |
| 204 | unsigned int ch_id) |
| 205 | { |
| 206 | return regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id), |
| 207 | DFSDM_CHCFGR1_CHEN_MASK, |
| 208 | DFSDM_CHCFGR1_CHEN(1)); |
| 209 | } |
| 210 | |
| 211 | static void stm32_dfsdm_stop_channel(struct stm32_dfsdm *dfsdm, |
| 212 | unsigned int ch_id) |
| 213 | { |
| 214 | regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id), |
| 215 | DFSDM_CHCFGR1_CHEN_MASK, DFSDM_CHCFGR1_CHEN(0)); |
| 216 | } |
| 217 | |
| 218 | static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm, |
| 219 | struct stm32_dfsdm_channel *ch) |
| 220 | { |
| 221 | unsigned int id = ch->id; |
| 222 | struct regmap *regmap = dfsdm->regmap; |
| 223 | int ret; |
| 224 | |
| 225 | ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id), |
| 226 | DFSDM_CHCFGR1_SITP_MASK, |
| 227 | DFSDM_CHCFGR1_SITP(ch->type)); |
| 228 | if (ret < 0) |
| 229 | return ret; |
| 230 | ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id), |
| 231 | DFSDM_CHCFGR1_SPICKSEL_MASK, |
| 232 | DFSDM_CHCFGR1_SPICKSEL(ch->src)); |
| 233 | if (ret < 0) |
| 234 | return ret; |
| 235 | return regmap_update_bits(regmap, DFSDM_CHCFGR1(id), |
| 236 | DFSDM_CHCFGR1_CHINSEL_MASK, |
| 237 | DFSDM_CHCFGR1_CHINSEL(ch->alt_si)); |
| 238 | } |
| 239 | |
| 240 | static int stm32_dfsdm_start_filter(struct stm32_dfsdm *dfsdm, |
| 241 | unsigned int fl_id) |
| 242 | { |
| 243 | int ret; |
| 244 | |
| 245 | /* Enable filter */ |
| 246 | ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id), |
| 247 | DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1)); |
| 248 | if (ret < 0) |
| 249 | return ret; |
| 250 | |
| 251 | /* Start conversion */ |
| 252 | return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id), |
| 253 | DFSDM_CR1_RSWSTART_MASK, |
| 254 | DFSDM_CR1_RSWSTART(1)); |
| 255 | } |
| 256 | |
| 257 | static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm, |
| 258 | unsigned int fl_id) |
| 259 | { |
| 260 | /* Disable conversion */ |
| 261 | regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id), |
| 262 | DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0)); |
| 263 | } |
| 264 | |
| 265 | static int stm32_dfsdm_filter_configure(struct stm32_dfsdm *dfsdm, |
| 266 | unsigned int fl_id, unsigned int ch_id) |
| 267 | { |
| 268 | struct regmap *regmap = dfsdm->regmap; |
| 269 | struct stm32_dfsdm_filter *fl = &dfsdm->fl_list[fl_id]; |
| 270 | int ret; |
| 271 | |
| 272 | /* Average integrator oversampling */ |
| 273 | ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK, |
| 274 | DFSDM_FCR_IOSR(fl->iosr - 1)); |
| 275 | if (ret) |
| 276 | return ret; |
| 277 | |
| 278 | /* Filter order and Oversampling */ |
| 279 | ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK, |
| 280 | DFSDM_FCR_FOSR(fl->fosr - 1)); |
| 281 | if (ret) |
| 282 | return ret; |
| 283 | |
| 284 | ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK, |
| 285 | DFSDM_FCR_FORD(fl->ford)); |
| 286 | if (ret) |
| 287 | return ret; |
| 288 | |
| 289 | /* No scan mode supported for the moment */ |
| 290 | ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_RCH_MASK, |
| 291 | DFSDM_CR1_RCH(ch_id)); |
| 292 | if (ret) |
| 293 | return ret; |
| 294 | |
| 295 | return regmap_update_bits(regmap, DFSDM_CR1(fl_id), |
| 296 | DFSDM_CR1_RSYNC_MASK, |
| 297 | DFSDM_CR1_RSYNC(fl->sync_mode)); |
| 298 | } |
| 299 | |
| 300 | static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm, |
| 301 | struct iio_dev *indio_dev, |
| 302 | struct iio_chan_spec *ch) |
| 303 | { |
| 304 | struct stm32_dfsdm_channel *df_ch; |
| 305 | const char *of_str; |
| 306 | int chan_idx = ch->scan_index; |
| 307 | int ret, val; |
| 308 | |
| 309 | ret = of_property_read_u32_index(indio_dev->dev.of_node, |
| 310 | "st,adc-channels", chan_idx, |
| 311 | &ch->channel); |
| 312 | if (ret < 0) { |
| 313 | dev_err(&indio_dev->dev, |
| 314 | " Error parsing 'st,adc-channels' for idx %d\n", |
| 315 | chan_idx); |
| 316 | return ret; |
| 317 | } |
| 318 | if (ch->channel >= dfsdm->num_chs) { |
| 319 | dev_err(&indio_dev->dev, |
| 320 | " Error bad channel number %d (max = %d)\n", |
| 321 | ch->channel, dfsdm->num_chs); |
| 322 | return -EINVAL; |
| 323 | } |
| 324 | |
| 325 | ret = of_property_read_string_index(indio_dev->dev.of_node, |
| 326 | "st,adc-channel-names", chan_idx, |
| 327 | &ch->datasheet_name); |
| 328 | if (ret < 0) { |
| 329 | dev_err(&indio_dev->dev, |
| 330 | " Error parsing 'st,adc-channel-names' for idx %d\n", |
| 331 | chan_idx); |
| 332 | return ret; |
| 333 | } |
| 334 | |
| 335 | df_ch = &dfsdm->ch_list[ch->channel]; |
| 336 | df_ch->id = ch->channel; |
| 337 | |
| 338 | ret = of_property_read_string_index(indio_dev->dev.of_node, |
| 339 | "st,adc-channel-types", chan_idx, |
| 340 | &of_str); |
| 341 | if (!ret) { |
| 342 | val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type); |
| 343 | if (val < 0) |
| 344 | return val; |
| 345 | } else { |
| 346 | val = 0; |
| 347 | } |
| 348 | df_ch->type = val; |
| 349 | |
| 350 | ret = of_property_read_string_index(indio_dev->dev.of_node, |
| 351 | "st,adc-channel-clk-src", chan_idx, |
| 352 | &of_str); |
| 353 | if (!ret) { |
| 354 | val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src); |
| 355 | if (val < 0) |
| 356 | return val; |
| 357 | } else { |
| 358 | val = 0; |
| 359 | } |
| 360 | df_ch->src = val; |
| 361 | |
| 362 | ret = of_property_read_u32_index(indio_dev->dev.of_node, |
| 363 | "st,adc-alt-channel", chan_idx, |
| 364 | &df_ch->alt_si); |
| 365 | if (ret < 0) |
| 366 | df_ch->alt_si = 0; |
| 367 | |
| 368 | return 0; |
| 369 | } |
| 370 | |
| 371 | static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev, |
| 372 | uintptr_t priv, |
| 373 | const struct iio_chan_spec *chan, |
| 374 | char *buf) |
| 375 | { |
| 376 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 377 | |
| 378 | return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq); |
| 379 | } |
| 380 | |
| 381 | static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev, |
| 382 | uintptr_t priv, |
| 383 | const struct iio_chan_spec *chan, |
| 384 | const char *buf, size_t len) |
| 385 | { |
| 386 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 387 | struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id]; |
| 388 | struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel]; |
| 389 | unsigned int sample_freq = adc->sample_freq; |
| 390 | unsigned int spi_freq; |
| 391 | int ret; |
| 392 | |
| 393 | dev_err(&indio_dev->dev, "enter %s\n", __func__); |
| 394 | /* If DFSDM is master on SPI, SPI freq can not be updated */ |
| 395 | if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL) |
| 396 | return -EPERM; |
| 397 | |
| 398 | ret = kstrtoint(buf, 0, &spi_freq); |
| 399 | if (ret) |
| 400 | return ret; |
| 401 | |
| 402 | if (!spi_freq) |
| 403 | return -EINVAL; |
| 404 | |
| 405 | if (sample_freq) { |
| 406 | if (spi_freq % sample_freq) |
| 407 | dev_warn(&indio_dev->dev, |
| 408 | "Sampling rate not accurate (%d)\n", |
| 409 | spi_freq / (spi_freq / sample_freq)); |
| 410 | |
| 411 | ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / sample_freq)); |
| 412 | if (ret < 0) { |
| 413 | dev_err(&indio_dev->dev, |
| 414 | "No filter parameters that match!\n"); |
| 415 | return ret; |
| 416 | } |
| 417 | } |
| 418 | adc->spi_freq = spi_freq; |
| 419 | |
| 420 | return len; |
| 421 | } |
| 422 | |
| 423 | static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc, |
| 424 | const struct iio_chan_spec *chan, |
| 425 | bool dma) |
| 426 | { |
| 427 | struct regmap *regmap = adc->dfsdm->regmap; |
| 428 | int ret; |
| 429 | unsigned int dma_en = 0, cont_en = 0; |
| 430 | |
| 431 | ret = stm32_dfsdm_start_channel(adc->dfsdm, chan->channel); |
| 432 | if (ret < 0) |
| 433 | return ret; |
| 434 | |
| 435 | ret = stm32_dfsdm_filter_configure(adc->dfsdm, adc->fl_id, |
| 436 | chan->channel); |
| 437 | if (ret < 0) |
| 438 | goto stop_channels; |
| 439 | |
| 440 | if (dma) { |
| 441 | /* Enable DMA transfer*/ |
| 442 | dma_en = DFSDM_CR1_RDMAEN(1); |
| 443 | /* Enable conversion triggered by SPI clock*/ |
| 444 | cont_en = DFSDM_CR1_RCONT(1); |
| 445 | } |
| 446 | /* Enable DMA transfer*/ |
| 447 | ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id), |
| 448 | DFSDM_CR1_RDMAEN_MASK, dma_en); |
| 449 | if (ret < 0) |
| 450 | goto stop_channels; |
| 451 | |
| 452 | /* Enable conversion triggered by SPI clock*/ |
| 453 | ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id), |
| 454 | DFSDM_CR1_RCONT_MASK, cont_en); |
| 455 | if (ret < 0) |
| 456 | goto stop_channels; |
| 457 | |
| 458 | ret = stm32_dfsdm_start_filter(adc->dfsdm, adc->fl_id); |
| 459 | if (ret < 0) |
| 460 | goto stop_channels; |
| 461 | |
| 462 | return 0; |
| 463 | |
| 464 | stop_channels: |
| 465 | regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id), |
| 466 | DFSDM_CR1_RDMAEN_MASK, 0); |
| 467 | |
| 468 | regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id), |
| 469 | DFSDM_CR1_RCONT_MASK, 0); |
| 470 | stm32_dfsdm_stop_channel(adc->dfsdm, chan->channel); |
| 471 | |
| 472 | return ret; |
| 473 | } |
| 474 | |
| 475 | static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc, |
| 476 | const struct iio_chan_spec *chan) |
| 477 | { |
| 478 | struct regmap *regmap = adc->dfsdm->regmap; |
| 479 | |
| 480 | stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id); |
| 481 | |
| 482 | /* Clean conversion options */ |
| 483 | regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id), |
| 484 | DFSDM_CR1_RDMAEN_MASK, 0); |
| 485 | |
| 486 | regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id), |
| 487 | DFSDM_CR1_RCONT_MASK, 0); |
| 488 | |
| 489 | stm32_dfsdm_stop_channel(adc->dfsdm, chan->channel); |
| 490 | } |
| 491 | |
| 492 | static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev, |
| 493 | unsigned int val) |
| 494 | { |
| 495 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 496 | unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2; |
| 497 | |
| 498 | /* |
| 499 | * DMA cyclic transfers are used, buffer is split into two periods. |
| 500 | * There should be : |
| 501 | * - always one buffer (period) DMA is working on |
| 502 | * - one buffer (period) driver pushed to ASoC side. |
| 503 | */ |
| 504 | watermark = min(watermark, val * (unsigned int)(sizeof(u32))); |
| 505 | adc->buf_sz = watermark * 2; |
| 506 | |
| 507 | return 0; |
| 508 | } |
| 509 | |
| 510 | static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc) |
| 511 | { |
| 512 | struct dma_tx_state state; |
| 513 | enum dma_status status; |
| 514 | |
| 515 | status = dmaengine_tx_status(adc->dma_chan, |
| 516 | adc->dma_chan->cookie, |
| 517 | &state); |
| 518 | if (status == DMA_IN_PROGRESS) { |
| 519 | /* Residue is size in bytes from end of buffer */ |
| 520 | unsigned int i = adc->buf_sz - state.residue; |
| 521 | unsigned int size; |
| 522 | |
| 523 | /* Return available bytes */ |
| 524 | if (i >= adc->bufi) |
| 525 | size = i - adc->bufi; |
| 526 | else |
| 527 | size = adc->buf_sz + i - adc->bufi; |
| 528 | |
| 529 | return size; |
| 530 | } |
| 531 | |
| 532 | return 0; |
| 533 | } |
| 534 | |
| 535 | static void stm32_dfsdm_audio_dma_buffer_done(void *data) |
| 536 | { |
| 537 | struct iio_dev *indio_dev = data; |
| 538 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 539 | int available = stm32_dfsdm_adc_dma_residue(adc); |
| 540 | size_t old_pos; |
| 541 | |
| 542 | /* |
| 543 | * FIXME: In Kernel interface does not support cyclic DMA buffer,and |
| 544 | * offers only an interface to push data samples per samples. |
| 545 | * For this reason IIO buffer interface is not used and interface is |
| 546 | * bypassed using a private callback registered by ASoC. |
| 547 | * This should be a temporary solution waiting a cyclic DMA engine |
| 548 | * support in IIO. |
| 549 | */ |
| 550 | |
| 551 | dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__, |
| 552 | adc->bufi, available); |
| 553 | old_pos = adc->bufi; |
| 554 | |
| 555 | while (available >= indio_dev->scan_bytes) { |
| 556 | u32 *buffer = (u32 *)&adc->rx_buf[adc->bufi]; |
| 557 | |
| 558 | /* Mask 8 LSB that contains the channel ID */ |
| 559 | *buffer = (*buffer & 0xFFFFFF00) << 8; |
| 560 | available -= indio_dev->scan_bytes; |
| 561 | adc->bufi += indio_dev->scan_bytes; |
| 562 | if (adc->bufi >= adc->buf_sz) { |
| 563 | if (adc->cb) |
| 564 | adc->cb(&adc->rx_buf[old_pos], |
| 565 | adc->buf_sz - old_pos, adc->cb_priv); |
| 566 | adc->bufi = 0; |
| 567 | old_pos = 0; |
| 568 | } |
| 569 | } |
| 570 | if (adc->cb) |
| 571 | adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos, |
| 572 | adc->cb_priv); |
| 573 | } |
| 574 | |
| 575 | static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev) |
| 576 | { |
| 577 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 578 | struct dma_async_tx_descriptor *desc; |
| 579 | dma_cookie_t cookie; |
| 580 | int ret; |
| 581 | |
| 582 | if (!adc->dma_chan) |
| 583 | return -EINVAL; |
| 584 | |
| 585 | dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__, |
| 586 | adc->buf_sz, adc->buf_sz / 2); |
| 587 | |
| 588 | /* Prepare a DMA cyclic transaction */ |
| 589 | desc = dmaengine_prep_dma_cyclic(adc->dma_chan, |
| 590 | adc->dma_buf, |
| 591 | adc->buf_sz, adc->buf_sz / 2, |
| 592 | DMA_DEV_TO_MEM, |
| 593 | DMA_PREP_INTERRUPT); |
| 594 | if (!desc) |
| 595 | return -EBUSY; |
| 596 | |
| 597 | desc->callback = stm32_dfsdm_audio_dma_buffer_done; |
| 598 | desc->callback_param = indio_dev; |
| 599 | |
| 600 | cookie = dmaengine_submit(desc); |
| 601 | ret = dma_submit_error(cookie); |
| 602 | if (ret) { |
| 603 | dmaengine_terminate_all(adc->dma_chan); |
| 604 | return ret; |
| 605 | } |
| 606 | |
| 607 | /* Issue pending DMA requests */ |
| 608 | dma_async_issue_pending(adc->dma_chan); |
| 609 | |
| 610 | return 0; |
| 611 | } |
| 612 | |
| 613 | static int stm32_dfsdm_postenable(struct iio_dev *indio_dev) |
| 614 | { |
| 615 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 616 | const struct iio_chan_spec *chan = &indio_dev->channels[0]; |
| 617 | int ret; |
| 618 | |
| 619 | /* Reset adc buffer index */ |
| 620 | adc->bufi = 0; |
| 621 | |
| 622 | ret = stm32_dfsdm_start_dfsdm(adc->dfsdm); |
| 623 | if (ret < 0) |
| 624 | return ret; |
| 625 | |
| 626 | ret = stm32_dfsdm_start_conv(adc, chan, true); |
| 627 | if (ret) { |
| 628 | dev_err(&indio_dev->dev, "Can't start conversion\n"); |
| 629 | goto stop_dfsdm; |
| 630 | } |
| 631 | |
| 632 | if (adc->dma_chan) { |
| 633 | ret = stm32_dfsdm_adc_dma_start(indio_dev); |
| 634 | if (ret) { |
| 635 | dev_err(&indio_dev->dev, "Can't start DMA\n"); |
| 636 | goto err_stop_conv; |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | return 0; |
| 641 | |
| 642 | err_stop_conv: |
| 643 | stm32_dfsdm_stop_conv(adc, chan); |
| 644 | stop_dfsdm: |
| 645 | stm32_dfsdm_stop_dfsdm(adc->dfsdm); |
| 646 | |
| 647 | return ret; |
| 648 | } |
| 649 | |
| 650 | static int stm32_dfsdm_predisable(struct iio_dev *indio_dev) |
| 651 | { |
| 652 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 653 | const struct iio_chan_spec *chan = &indio_dev->channels[0]; |
| 654 | |
| 655 | if (adc->dma_chan) |
| 656 | dmaengine_terminate_all(adc->dma_chan); |
| 657 | |
| 658 | stm32_dfsdm_stop_conv(adc, chan); |
| 659 | |
| 660 | stm32_dfsdm_stop_dfsdm(adc->dfsdm); |
| 661 | |
| 662 | return 0; |
| 663 | } |
| 664 | |
| 665 | static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = { |
| 666 | .postenable = &stm32_dfsdm_postenable, |
| 667 | .predisable = &stm32_dfsdm_predisable, |
| 668 | }; |
| 669 | |
| 670 | /** |
| 671 | * stm32_dfsdm_get_buff_cb() - register a callback that will be called when |
| 672 | * DMA transfer period is achieved. |
| 673 | * |
| 674 | * @iio_dev: Handle to IIO device. |
| 675 | * @cb: Pointer to callback function: |
| 676 | * - data: pointer to data buffer |
| 677 | * - size: size in byte of the data buffer |
| 678 | * - private: pointer to consumer private structure. |
| 679 | * @private: Pointer to consumer private structure. |
| 680 | */ |
| 681 | int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev, |
| 682 | int (*cb)(const void *data, size_t size, |
| 683 | void *private), |
| 684 | void *private) |
| 685 | { |
| 686 | struct stm32_dfsdm_adc *adc; |
| 687 | |
| 688 | if (!iio_dev) |
| 689 | return -EINVAL; |
| 690 | adc = iio_priv(iio_dev); |
| 691 | |
| 692 | adc->cb = cb; |
| 693 | adc->cb_priv = private; |
| 694 | |
| 695 | return 0; |
| 696 | } |
| 697 | EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb); |
| 698 | |
| 699 | /** |
| 700 | * stm32_dfsdm_release_buff_cb - unregister buffer callback |
| 701 | * |
| 702 | * @iio_dev: Handle to IIO device. |
| 703 | */ |
| 704 | int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev) |
| 705 | { |
| 706 | struct stm32_dfsdm_adc *adc; |
| 707 | |
| 708 | if (!iio_dev) |
| 709 | return -EINVAL; |
| 710 | adc = iio_priv(iio_dev); |
| 711 | |
| 712 | adc->cb = NULL; |
| 713 | adc->cb_priv = NULL; |
| 714 | |
| 715 | return 0; |
| 716 | } |
| 717 | EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb); |
| 718 | |
| 719 | static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev, |
| 720 | const struct iio_chan_spec *chan, int *res) |
| 721 | { |
| 722 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 723 | long timeout; |
| 724 | int ret; |
| 725 | |
| 726 | reinit_completion(&adc->completion); |
| 727 | |
| 728 | adc->buffer = res; |
| 729 | |
| 730 | ret = stm32_dfsdm_start_dfsdm(adc->dfsdm); |
| 731 | if (ret < 0) |
| 732 | return ret; |
| 733 | |
| 734 | ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id), |
| 735 | DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1)); |
| 736 | if (ret < 0) |
| 737 | goto stop_dfsdm; |
| 738 | |
| 739 | ret = stm32_dfsdm_start_conv(adc, chan, false); |
| 740 | if (ret < 0) { |
| 741 | regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id), |
| 742 | DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0)); |
| 743 | goto stop_dfsdm; |
| 744 | } |
| 745 | |
| 746 | timeout = wait_for_completion_interruptible_timeout(&adc->completion, |
| 747 | DFSDM_TIMEOUT); |
| 748 | |
| 749 | /* Mask IRQ for regular conversion achievement*/ |
| 750 | regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id), |
| 751 | DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0)); |
| 752 | |
| 753 | if (timeout == 0) |
| 754 | ret = -ETIMEDOUT; |
| 755 | else if (timeout < 0) |
| 756 | ret = timeout; |
| 757 | else |
| 758 | ret = IIO_VAL_INT; |
| 759 | |
| 760 | stm32_dfsdm_stop_conv(adc, chan); |
| 761 | |
| 762 | stop_dfsdm: |
| 763 | stm32_dfsdm_stop_dfsdm(adc->dfsdm); |
| 764 | |
| 765 | return ret; |
| 766 | } |
| 767 | |
| 768 | static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev, |
| 769 | struct iio_chan_spec const *chan, |
| 770 | int val, int val2, long mask) |
| 771 | { |
| 772 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 773 | struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id]; |
| 774 | struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel]; |
| 775 | unsigned int spi_freq; |
| 776 | int ret = -EINVAL; |
| 777 | |
| 778 | switch (mask) { |
| 779 | case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
| 780 | ret = stm32_dfsdm_set_osrs(fl, 0, val); |
| 781 | if (!ret) |
| 782 | adc->oversamp = val; |
| 783 | |
| 784 | return ret; |
| 785 | |
| 786 | case IIO_CHAN_INFO_SAMP_FREQ: |
| 787 | if (!val) |
| 788 | return -EINVAL; |
| 789 | |
| 790 | switch (ch->src) { |
| 791 | case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL: |
| 792 | spi_freq = adc->dfsdm->spi_master_freq; |
| 793 | break; |
| 794 | case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING: |
| 795 | case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING: |
| 796 | spi_freq = adc->dfsdm->spi_master_freq / 2; |
| 797 | break; |
| 798 | default: |
| 799 | spi_freq = adc->spi_freq; |
| 800 | } |
| 801 | |
| 802 | if (spi_freq % val) |
| 803 | dev_warn(&indio_dev->dev, |
| 804 | "Sampling rate not accurate (%d)\n", |
| 805 | spi_freq / (spi_freq / val)); |
| 806 | |
| 807 | ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / val)); |
| 808 | if (ret < 0) { |
| 809 | dev_err(&indio_dev->dev, |
| 810 | "Not able to find parameter that match!\n"); |
| 811 | return ret; |
| 812 | } |
| 813 | adc->sample_freq = val; |
| 814 | |
| 815 | return 0; |
| 816 | } |
| 817 | |
| 818 | return -EINVAL; |
| 819 | } |
| 820 | |
| 821 | static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev, |
| 822 | struct iio_chan_spec const *chan, int *val, |
| 823 | int *val2, long mask) |
| 824 | { |
| 825 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 826 | int ret; |
| 827 | |
| 828 | switch (mask) { |
| 829 | case IIO_CHAN_INFO_RAW: |
| 830 | ret = iio_hw_consumer_enable(adc->hwc); |
| 831 | if (ret < 0) { |
| 832 | dev_err(&indio_dev->dev, |
| 833 | "%s: IIO enable failed (channel %d)\n", |
| 834 | __func__, chan->channel); |
| 835 | return ret; |
| 836 | } |
| 837 | ret = stm32_dfsdm_single_conv(indio_dev, chan, val); |
| 838 | iio_hw_consumer_disable(adc->hwc); |
| 839 | if (ret < 0) { |
| 840 | dev_err(&indio_dev->dev, |
| 841 | "%s: Conversion failed (channel %d)\n", |
| 842 | __func__, chan->channel); |
| 843 | return ret; |
| 844 | } |
| 845 | return IIO_VAL_INT; |
| 846 | |
| 847 | case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
| 848 | *val = adc->oversamp; |
| 849 | |
| 850 | return IIO_VAL_INT; |
| 851 | |
| 852 | case IIO_CHAN_INFO_SAMP_FREQ: |
| 853 | *val = adc->sample_freq; |
| 854 | |
| 855 | return IIO_VAL_INT; |
| 856 | } |
| 857 | |
| 858 | return -EINVAL; |
| 859 | } |
| 860 | |
| 861 | static const struct iio_info stm32_dfsdm_info_audio = { |
| 862 | .hwfifo_set_watermark = stm32_dfsdm_set_watermark, |
| 863 | .read_raw = stm32_dfsdm_read_raw, |
| 864 | .write_raw = stm32_dfsdm_write_raw, |
| 865 | }; |
| 866 | |
| 867 | static const struct iio_info stm32_dfsdm_info_adc = { |
| 868 | .read_raw = stm32_dfsdm_read_raw, |
| 869 | .write_raw = stm32_dfsdm_write_raw, |
| 870 | }; |
| 871 | |
| 872 | static irqreturn_t stm32_dfsdm_irq(int irq, void *arg) |
| 873 | { |
| 874 | struct stm32_dfsdm_adc *adc = arg; |
| 875 | struct iio_dev *indio_dev = iio_priv_to_dev(adc); |
| 876 | struct regmap *regmap = adc->dfsdm->regmap; |
| 877 | unsigned int status, int_en; |
| 878 | |
| 879 | regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status); |
| 880 | regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en); |
| 881 | |
| 882 | if (status & DFSDM_ISR_REOCF_MASK) { |
| 883 | /* Read the data register clean the IRQ status */ |
| 884 | regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer); |
| 885 | complete(&adc->completion); |
| 886 | } |
| 887 | |
| 888 | if (status & DFSDM_ISR_ROVRF_MASK) { |
| 889 | if (int_en & DFSDM_CR2_ROVRIE_MASK) |
| 890 | dev_warn(&indio_dev->dev, "Overrun detected\n"); |
| 891 | regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id), |
| 892 | DFSDM_ICR_CLRROVRF_MASK, |
| 893 | DFSDM_ICR_CLRROVRF_MASK); |
| 894 | } |
| 895 | |
| 896 | return IRQ_HANDLED; |
| 897 | } |
| 898 | |
| 899 | /* |
| 900 | * Define external info for SPI Frequency and audio sampling rate that can be |
| 901 | * configured by ASoC driver through consumer.h API |
| 902 | */ |
| 903 | static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = { |
| 904 | /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */ |
| 905 | { |
| 906 | .name = "spi_clk_freq", |
| 907 | .shared = IIO_SHARED_BY_TYPE, |
| 908 | .read = dfsdm_adc_audio_get_spiclk, |
| 909 | .write = dfsdm_adc_audio_set_spiclk, |
| 910 | }, |
| 911 | {}, |
| 912 | }; |
| 913 | |
| 914 | static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev) |
| 915 | { |
| 916 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 917 | |
| 918 | if (adc->dma_chan) { |
| 919 | dma_free_coherent(adc->dma_chan->device->dev, |
| 920 | DFSDM_DMA_BUFFER_SIZE, |
| 921 | adc->rx_buf, adc->dma_buf); |
| 922 | dma_release_channel(adc->dma_chan); |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | static int stm32_dfsdm_dma_request(struct iio_dev *indio_dev) |
| 927 | { |
| 928 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 929 | struct dma_slave_config config = { |
| 930 | .src_addr = (dma_addr_t)adc->dfsdm->phys_base + |
| 931 | DFSDM_RDATAR(adc->fl_id), |
| 932 | .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, |
| 933 | }; |
| 934 | int ret; |
| 935 | |
| 936 | adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx"); |
| 937 | if (!adc->dma_chan) |
| 938 | return -EINVAL; |
| 939 | |
| 940 | adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev, |
| 941 | DFSDM_DMA_BUFFER_SIZE, |
| 942 | &adc->dma_buf, GFP_KERNEL); |
| 943 | if (!adc->rx_buf) { |
| 944 | ret = -ENOMEM; |
| 945 | goto err_release; |
| 946 | } |
| 947 | |
| 948 | ret = dmaengine_slave_config(adc->dma_chan, &config); |
| 949 | if (ret) |
| 950 | goto err_free; |
| 951 | |
| 952 | return 0; |
| 953 | |
| 954 | err_free: |
| 955 | dma_free_coherent(adc->dma_chan->device->dev, DFSDM_DMA_BUFFER_SIZE, |
| 956 | adc->rx_buf, adc->dma_buf); |
| 957 | err_release: |
| 958 | dma_release_channel(adc->dma_chan); |
| 959 | |
| 960 | return ret; |
| 961 | } |
| 962 | |
| 963 | static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev, |
| 964 | struct iio_chan_spec *ch) |
| 965 | { |
| 966 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 967 | int ret; |
| 968 | |
| 969 | ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch); |
| 970 | if (ret < 0) |
| 971 | return ret; |
| 972 | |
| 973 | ch->type = IIO_VOLTAGE; |
| 974 | ch->indexed = 1; |
| 975 | |
| 976 | /* |
| 977 | * IIO_CHAN_INFO_RAW: used to compute regular conversion |
| 978 | * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling |
| 979 | */ |
| 980 | ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW); |
| 981 | ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO); |
| 982 | |
| 983 | if (adc->dev_data->type == DFSDM_AUDIO) { |
| 984 | ch->scan_type.sign = 's'; |
| 985 | ch->ext_info = dfsdm_adc_audio_ext_info; |
| 986 | } else { |
| 987 | ch->scan_type.sign = 'u'; |
| 988 | } |
| 989 | ch->scan_type.realbits = 24; |
| 990 | ch->scan_type.storagebits = 32; |
| 991 | |
| 992 | return stm32_dfsdm_chan_configure(adc->dfsdm, |
| 993 | &adc->dfsdm->ch_list[ch->channel]); |
| 994 | } |
| 995 | |
| 996 | static int stm32_dfsdm_audio_init(struct iio_dev *indio_dev) |
| 997 | { |
| 998 | struct iio_chan_spec *ch; |
| 999 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 1000 | struct stm32_dfsdm_channel *d_ch; |
| 1001 | int ret; |
| 1002 | |
| 1003 | indio_dev->modes |= INDIO_BUFFER_SOFTWARE; |
| 1004 | indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops; |
| 1005 | |
| 1006 | ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL); |
| 1007 | if (!ch) |
| 1008 | return -ENOMEM; |
| 1009 | |
| 1010 | ch->scan_index = 0; |
| 1011 | |
| 1012 | ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch); |
| 1013 | if (ret < 0) { |
| 1014 | dev_err(&indio_dev->dev, "Channels init failed\n"); |
| 1015 | return ret; |
| 1016 | } |
| 1017 | ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ); |
| 1018 | |
| 1019 | d_ch = &adc->dfsdm->ch_list[ch->channel]; |
| 1020 | if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL) |
| 1021 | adc->spi_freq = adc->dfsdm->spi_master_freq; |
| 1022 | |
| 1023 | indio_dev->num_channels = 1; |
| 1024 | indio_dev->channels = ch; |
| 1025 | |
| 1026 | return stm32_dfsdm_dma_request(indio_dev); |
| 1027 | } |
| 1028 | |
| 1029 | static int stm32_dfsdm_adc_init(struct iio_dev *indio_dev) |
| 1030 | { |
| 1031 | struct iio_chan_spec *ch; |
| 1032 | struct stm32_dfsdm_adc *adc = iio_priv(indio_dev); |
| 1033 | int num_ch; |
| 1034 | int ret, chan_idx; |
| 1035 | |
| 1036 | adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING; |
| 1037 | ret = stm32_dfsdm_set_osrs(&adc->dfsdm->fl_list[adc->fl_id], 0, |
| 1038 | adc->oversamp); |
| 1039 | if (ret < 0) |
| 1040 | return ret; |
| 1041 | |
| 1042 | num_ch = of_property_count_u32_elems(indio_dev->dev.of_node, |
| 1043 | "st,adc-channels"); |
| 1044 | if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) { |
| 1045 | dev_err(&indio_dev->dev, "Bad st,adc-channels\n"); |
| 1046 | return num_ch < 0 ? num_ch : -EINVAL; |
| 1047 | } |
| 1048 | |
| 1049 | /* Bind to SD modulator IIO device */ |
| 1050 | adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev); |
| 1051 | if (IS_ERR(adc->hwc)) |
| 1052 | return -EPROBE_DEFER; |
| 1053 | |
| 1054 | ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch), |
| 1055 | GFP_KERNEL); |
| 1056 | if (!ch) |
| 1057 | return -ENOMEM; |
| 1058 | |
| 1059 | for (chan_idx = 0; chan_idx < num_ch; chan_idx++) { |
| 1060 | ch[chan_idx].scan_index = chan_idx; |
| 1061 | ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]); |
| 1062 | if (ret < 0) { |
| 1063 | dev_err(&indio_dev->dev, "Channels init failed\n"); |
| 1064 | return ret; |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | indio_dev->num_channels = num_ch; |
| 1069 | indio_dev->channels = ch; |
| 1070 | |
| 1071 | init_completion(&adc->completion); |
| 1072 | |
| 1073 | return 0; |
| 1074 | } |
| 1075 | |
| 1076 | static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = { |
| 1077 | .type = DFSDM_IIO, |
| 1078 | .init = stm32_dfsdm_adc_init, |
| 1079 | }; |
| 1080 | |
| 1081 | static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = { |
| 1082 | .type = DFSDM_AUDIO, |
| 1083 | .init = stm32_dfsdm_audio_init, |
| 1084 | }; |
| 1085 | |
| 1086 | static const struct of_device_id stm32_dfsdm_adc_match[] = { |
| 1087 | { |
| 1088 | .compatible = "st,stm32-dfsdm-adc", |
| 1089 | .data = &stm32h7_dfsdm_adc_data, |
| 1090 | }, |
| 1091 | { |
| 1092 | .compatible = "st,stm32-dfsdm-dmic", |
| 1093 | .data = &stm32h7_dfsdm_audio_data, |
| 1094 | }, |
| 1095 | {} |
| 1096 | }; |
| 1097 | |
| 1098 | static int stm32_dfsdm_adc_probe(struct platform_device *pdev) |
| 1099 | { |
| 1100 | struct device *dev = &pdev->dev; |
| 1101 | struct stm32_dfsdm_adc *adc; |
| 1102 | struct device_node *np = dev->of_node; |
| 1103 | const struct stm32_dfsdm_dev_data *dev_data; |
| 1104 | struct iio_dev *iio; |
| 1105 | char *name; |
| 1106 | int ret, irq, val; |
| 1107 | |
| 1108 | dev_data = of_device_get_match_data(dev); |
| 1109 | iio = devm_iio_device_alloc(dev, sizeof(*adc)); |
| 1110 | if (!iio) { |
| 1111 | dev_err(dev, "%s: Failed to allocate IIO\n", __func__); |
| 1112 | return -ENOMEM; |
| 1113 | } |
| 1114 | |
| 1115 | adc = iio_priv(iio); |
| 1116 | adc->dfsdm = dev_get_drvdata(dev->parent); |
| 1117 | |
| 1118 | iio->dev.parent = dev; |
| 1119 | iio->dev.of_node = np; |
| 1120 | iio->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; |
| 1121 | |
| 1122 | platform_set_drvdata(pdev, adc); |
| 1123 | |
| 1124 | ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id); |
| 1125 | if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) { |
| 1126 | dev_err(dev, "Missing or bad reg property\n"); |
| 1127 | return -EINVAL; |
| 1128 | } |
| 1129 | |
| 1130 | name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL); |
| 1131 | if (!name) |
| 1132 | return -ENOMEM; |
| 1133 | if (dev_data->type == DFSDM_AUDIO) { |
| 1134 | iio->info = &stm32_dfsdm_info_audio; |
| 1135 | snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id); |
| 1136 | } else { |
| 1137 | iio->info = &stm32_dfsdm_info_adc; |
| 1138 | snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id); |
| 1139 | } |
| 1140 | iio->name = name; |
| 1141 | |
| 1142 | /* |
| 1143 | * In a first step IRQs generated for channels are not treated. |
| 1144 | * So IRQ associated to filter instance 0 is dedicated to the Filter 0. |
| 1145 | */ |
| 1146 | irq = platform_get_irq(pdev, 0); |
| 1147 | ret = devm_request_irq(dev, irq, stm32_dfsdm_irq, |
| 1148 | 0, pdev->name, adc); |
| 1149 | if (ret < 0) { |
| 1150 | dev_err(dev, "Failed to request IRQ\n"); |
| 1151 | return ret; |
| 1152 | } |
| 1153 | |
| 1154 | ret = of_property_read_u32(dev->of_node, "st,filter-order", &val); |
| 1155 | if (ret < 0) { |
| 1156 | dev_err(dev, "Failed to set filter order\n"); |
| 1157 | return ret; |
| 1158 | } |
| 1159 | |
| 1160 | adc->dfsdm->fl_list[adc->fl_id].ford = val; |
| 1161 | |
| 1162 | ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val); |
| 1163 | if (!ret) |
| 1164 | adc->dfsdm->fl_list[adc->fl_id].sync_mode = val; |
| 1165 | |
| 1166 | adc->dev_data = dev_data; |
| 1167 | ret = dev_data->init(iio); |
| 1168 | if (ret < 0) |
| 1169 | return ret; |
| 1170 | |
| 1171 | ret = iio_device_register(iio); |
| 1172 | if (ret < 0) |
| 1173 | goto err_cleanup; |
| 1174 | |
| 1175 | if (dev_data->type == DFSDM_AUDIO) { |
| 1176 | ret = of_platform_populate(np, NULL, NULL, dev); |
| 1177 | if (ret < 0) { |
| 1178 | dev_err(dev, "Failed to find an audio DAI\n"); |
| 1179 | goto err_unregister; |
| 1180 | } |
| 1181 | } |
| 1182 | |
| 1183 | return 0; |
| 1184 | |
| 1185 | err_unregister: |
| 1186 | iio_device_unregister(iio); |
| 1187 | err_cleanup: |
| 1188 | stm32_dfsdm_dma_release(iio); |
| 1189 | |
| 1190 | return ret; |
| 1191 | } |
| 1192 | |
| 1193 | static int stm32_dfsdm_adc_remove(struct platform_device *pdev) |
| 1194 | { |
| 1195 | struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev); |
| 1196 | struct iio_dev *indio_dev = iio_priv_to_dev(adc); |
| 1197 | |
| 1198 | if (adc->dev_data->type == DFSDM_AUDIO) |
| 1199 | of_platform_depopulate(&pdev->dev); |
| 1200 | iio_device_unregister(indio_dev); |
| 1201 | stm32_dfsdm_dma_release(indio_dev); |
| 1202 | |
| 1203 | return 0; |
| 1204 | } |
| 1205 | |
| 1206 | static struct platform_driver stm32_dfsdm_adc_driver = { |
| 1207 | .driver = { |
| 1208 | .name = "stm32-dfsdm-adc", |
| 1209 | .of_match_table = stm32_dfsdm_adc_match, |
| 1210 | }, |
| 1211 | .probe = stm32_dfsdm_adc_probe, |
| 1212 | .remove = stm32_dfsdm_adc_remove, |
| 1213 | }; |
| 1214 | module_platform_driver(stm32_dfsdm_adc_driver); |
| 1215 | |
| 1216 | MODULE_DESCRIPTION("STM32 sigma delta ADC"); |
| 1217 | MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>"); |
| 1218 | MODULE_LICENSE("GPL v2"); |