Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Helper functions used by the EFI stub on multiple |
| 3 | * architectures. This should be #included by the EFI stub |
| 4 | * implementation files. |
| 5 | * |
| 6 | * Copyright 2011 Intel Corporation; author Matt Fleming |
| 7 | * |
| 8 | * This file is part of the Linux kernel, and is made available |
| 9 | * under the terms of the GNU General Public License version 2. |
| 10 | * |
| 11 | */ |
| 12 | |
| 13 | #include <linux/efi.h> |
| 14 | #include <asm/efi.h> |
| 15 | |
| 16 | #include "efistub.h" |
| 17 | |
| 18 | /* |
| 19 | * Some firmware implementations have problems reading files in one go. |
| 20 | * A read chunk size of 1MB seems to work for most platforms. |
| 21 | * |
| 22 | * Unfortunately, reading files in chunks triggers *other* bugs on some |
| 23 | * platforms, so we provide a way to disable this workaround, which can |
| 24 | * be done by passing "efi=nochunk" on the EFI boot stub command line. |
| 25 | * |
| 26 | * If you experience issues with initrd images being corrupt it's worth |
| 27 | * trying efi=nochunk, but chunking is enabled by default because there |
| 28 | * are far more machines that require the workaround than those that |
| 29 | * break with it enabled. |
| 30 | */ |
| 31 | #define EFI_READ_CHUNK_SIZE (1024 * 1024) |
| 32 | |
| 33 | static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE; |
| 34 | |
| 35 | static int __section(.data) __nokaslr; |
| 36 | static int __section(.data) __quiet; |
| 37 | |
| 38 | int __pure nokaslr(void) |
| 39 | { |
| 40 | return __nokaslr; |
| 41 | } |
| 42 | int __pure is_quiet(void) |
| 43 | { |
| 44 | return __quiet; |
| 45 | } |
| 46 | |
| 47 | #define EFI_MMAP_NR_SLACK_SLOTS 8 |
| 48 | |
| 49 | struct file_info { |
| 50 | efi_file_handle_t *handle; |
| 51 | u64 size; |
| 52 | }; |
| 53 | |
| 54 | void efi_printk(efi_system_table_t *sys_table_arg, char *str) |
| 55 | { |
| 56 | char *s8; |
| 57 | |
| 58 | for (s8 = str; *s8; s8++) { |
| 59 | efi_char16_t ch[2] = { 0 }; |
| 60 | |
| 61 | ch[0] = *s8; |
| 62 | if (*s8 == '\n') { |
| 63 | efi_char16_t nl[2] = { '\r', 0 }; |
| 64 | efi_char16_printk(sys_table_arg, nl); |
| 65 | } |
| 66 | |
| 67 | efi_char16_printk(sys_table_arg, ch); |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | static inline bool mmap_has_headroom(unsigned long buff_size, |
| 72 | unsigned long map_size, |
| 73 | unsigned long desc_size) |
| 74 | { |
| 75 | unsigned long slack = buff_size - map_size; |
| 76 | |
| 77 | return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS; |
| 78 | } |
| 79 | |
| 80 | efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg, |
| 81 | struct efi_boot_memmap *map) |
| 82 | { |
| 83 | efi_memory_desc_t *m = NULL; |
| 84 | efi_status_t status; |
| 85 | unsigned long key; |
| 86 | u32 desc_version; |
| 87 | |
| 88 | *map->desc_size = sizeof(*m); |
| 89 | *map->map_size = *map->desc_size * 32; |
| 90 | *map->buff_size = *map->map_size; |
| 91 | again: |
| 92 | status = efi_call_early(allocate_pool, EFI_LOADER_DATA, |
| 93 | *map->map_size, (void **)&m); |
| 94 | if (status != EFI_SUCCESS) |
| 95 | goto fail; |
| 96 | |
| 97 | *map->desc_size = 0; |
| 98 | key = 0; |
| 99 | status = efi_call_early(get_memory_map, map->map_size, m, |
| 100 | &key, map->desc_size, &desc_version); |
| 101 | if (status == EFI_BUFFER_TOO_SMALL || |
| 102 | !mmap_has_headroom(*map->buff_size, *map->map_size, |
| 103 | *map->desc_size)) { |
| 104 | efi_call_early(free_pool, m); |
| 105 | /* |
| 106 | * Make sure there is some entries of headroom so that the |
| 107 | * buffer can be reused for a new map after allocations are |
| 108 | * no longer permitted. Its unlikely that the map will grow to |
| 109 | * exceed this headroom once we are ready to trigger |
| 110 | * ExitBootServices() |
| 111 | */ |
| 112 | *map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS; |
| 113 | *map->buff_size = *map->map_size; |
| 114 | goto again; |
| 115 | } |
| 116 | |
| 117 | if (status != EFI_SUCCESS) |
| 118 | efi_call_early(free_pool, m); |
| 119 | |
| 120 | if (map->key_ptr && status == EFI_SUCCESS) |
| 121 | *map->key_ptr = key; |
| 122 | if (map->desc_ver && status == EFI_SUCCESS) |
| 123 | *map->desc_ver = desc_version; |
| 124 | |
| 125 | fail: |
| 126 | *map->map = m; |
| 127 | return status; |
| 128 | } |
| 129 | |
| 130 | |
| 131 | unsigned long get_dram_base(efi_system_table_t *sys_table_arg) |
| 132 | { |
| 133 | efi_status_t status; |
| 134 | unsigned long map_size, buff_size; |
| 135 | unsigned long membase = EFI_ERROR; |
| 136 | struct efi_memory_map map; |
| 137 | efi_memory_desc_t *md; |
| 138 | struct efi_boot_memmap boot_map; |
| 139 | |
| 140 | boot_map.map = (efi_memory_desc_t **)&map.map; |
| 141 | boot_map.map_size = &map_size; |
| 142 | boot_map.desc_size = &map.desc_size; |
| 143 | boot_map.desc_ver = NULL; |
| 144 | boot_map.key_ptr = NULL; |
| 145 | boot_map.buff_size = &buff_size; |
| 146 | |
| 147 | status = efi_get_memory_map(sys_table_arg, &boot_map); |
| 148 | if (status != EFI_SUCCESS) |
| 149 | return membase; |
| 150 | |
| 151 | map.map_end = map.map + map_size; |
| 152 | |
| 153 | for_each_efi_memory_desc_in_map(&map, md) { |
| 154 | if (md->attribute & EFI_MEMORY_WB) { |
| 155 | if (membase > md->phys_addr) |
| 156 | membase = md->phys_addr; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | efi_call_early(free_pool, map.map); |
| 161 | |
| 162 | return membase; |
| 163 | } |
| 164 | |
| 165 | /* |
| 166 | * Allocate at the highest possible address that is not above 'max'. |
| 167 | */ |
| 168 | efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg, |
| 169 | unsigned long size, unsigned long align, |
| 170 | unsigned long *addr, unsigned long max) |
| 171 | { |
| 172 | unsigned long map_size, desc_size, buff_size; |
| 173 | efi_memory_desc_t *map; |
| 174 | efi_status_t status; |
| 175 | unsigned long nr_pages; |
| 176 | u64 max_addr = 0; |
| 177 | int i; |
| 178 | struct efi_boot_memmap boot_map; |
| 179 | |
| 180 | boot_map.map = ↦ |
| 181 | boot_map.map_size = &map_size; |
| 182 | boot_map.desc_size = &desc_size; |
| 183 | boot_map.desc_ver = NULL; |
| 184 | boot_map.key_ptr = NULL; |
| 185 | boot_map.buff_size = &buff_size; |
| 186 | |
| 187 | status = efi_get_memory_map(sys_table_arg, &boot_map); |
| 188 | if (status != EFI_SUCCESS) |
| 189 | goto fail; |
| 190 | |
| 191 | /* |
| 192 | * Enforce minimum alignment that EFI or Linux requires when |
| 193 | * requesting a specific address. We are doing page-based (or |
| 194 | * larger) allocations, and both the address and size must meet |
| 195 | * alignment constraints. |
| 196 | */ |
| 197 | if (align < EFI_ALLOC_ALIGN) |
| 198 | align = EFI_ALLOC_ALIGN; |
| 199 | |
| 200 | size = round_up(size, EFI_ALLOC_ALIGN); |
| 201 | nr_pages = size / EFI_PAGE_SIZE; |
| 202 | again: |
| 203 | for (i = 0; i < map_size / desc_size; i++) { |
| 204 | efi_memory_desc_t *desc; |
| 205 | unsigned long m = (unsigned long)map; |
| 206 | u64 start, end; |
| 207 | |
| 208 | desc = efi_early_memdesc_ptr(m, desc_size, i); |
| 209 | if (desc->type != EFI_CONVENTIONAL_MEMORY) |
| 210 | continue; |
| 211 | |
| 212 | if (desc->num_pages < nr_pages) |
| 213 | continue; |
| 214 | |
| 215 | start = desc->phys_addr; |
| 216 | end = start + desc->num_pages * EFI_PAGE_SIZE; |
| 217 | |
| 218 | if (end > max) |
| 219 | end = max; |
| 220 | |
| 221 | if ((start + size) > end) |
| 222 | continue; |
| 223 | |
| 224 | if (round_down(end - size, align) < start) |
| 225 | continue; |
| 226 | |
| 227 | start = round_down(end - size, align); |
| 228 | |
| 229 | /* |
| 230 | * Don't allocate at 0x0. It will confuse code that |
| 231 | * checks pointers against NULL. |
| 232 | */ |
| 233 | if (start == 0x0) |
| 234 | continue; |
| 235 | |
| 236 | if (start > max_addr) |
| 237 | max_addr = start; |
| 238 | } |
| 239 | |
| 240 | if (!max_addr) |
| 241 | status = EFI_NOT_FOUND; |
| 242 | else { |
| 243 | status = efi_call_early(allocate_pages, |
| 244 | EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, |
| 245 | nr_pages, &max_addr); |
| 246 | if (status != EFI_SUCCESS) { |
| 247 | max = max_addr; |
| 248 | max_addr = 0; |
| 249 | goto again; |
| 250 | } |
| 251 | |
| 252 | *addr = max_addr; |
| 253 | } |
| 254 | |
| 255 | efi_call_early(free_pool, map); |
| 256 | fail: |
| 257 | return status; |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | * Allocate at the lowest possible address. |
| 262 | */ |
| 263 | efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg, |
| 264 | unsigned long size, unsigned long align, |
| 265 | unsigned long *addr) |
| 266 | { |
| 267 | unsigned long map_size, desc_size, buff_size; |
| 268 | efi_memory_desc_t *map; |
| 269 | efi_status_t status; |
| 270 | unsigned long nr_pages; |
| 271 | int i; |
| 272 | struct efi_boot_memmap boot_map; |
| 273 | |
| 274 | boot_map.map = ↦ |
| 275 | boot_map.map_size = &map_size; |
| 276 | boot_map.desc_size = &desc_size; |
| 277 | boot_map.desc_ver = NULL; |
| 278 | boot_map.key_ptr = NULL; |
| 279 | boot_map.buff_size = &buff_size; |
| 280 | |
| 281 | status = efi_get_memory_map(sys_table_arg, &boot_map); |
| 282 | if (status != EFI_SUCCESS) |
| 283 | goto fail; |
| 284 | |
| 285 | /* |
| 286 | * Enforce minimum alignment that EFI or Linux requires when |
| 287 | * requesting a specific address. We are doing page-based (or |
| 288 | * larger) allocations, and both the address and size must meet |
| 289 | * alignment constraints. |
| 290 | */ |
| 291 | if (align < EFI_ALLOC_ALIGN) |
| 292 | align = EFI_ALLOC_ALIGN; |
| 293 | |
| 294 | size = round_up(size, EFI_ALLOC_ALIGN); |
| 295 | nr_pages = size / EFI_PAGE_SIZE; |
| 296 | for (i = 0; i < map_size / desc_size; i++) { |
| 297 | efi_memory_desc_t *desc; |
| 298 | unsigned long m = (unsigned long)map; |
| 299 | u64 start, end; |
| 300 | |
| 301 | desc = efi_early_memdesc_ptr(m, desc_size, i); |
| 302 | |
| 303 | if (desc->type != EFI_CONVENTIONAL_MEMORY) |
| 304 | continue; |
| 305 | |
| 306 | if (desc->num_pages < nr_pages) |
| 307 | continue; |
| 308 | |
| 309 | start = desc->phys_addr; |
| 310 | end = start + desc->num_pages * EFI_PAGE_SIZE; |
| 311 | |
| 312 | /* |
| 313 | * Don't allocate at 0x0. It will confuse code that |
| 314 | * checks pointers against NULL. Skip the first 8 |
| 315 | * bytes so we start at a nice even number. |
| 316 | */ |
| 317 | if (start == 0x0) |
| 318 | start += 8; |
| 319 | |
| 320 | start = round_up(start, align); |
| 321 | if ((start + size) > end) |
| 322 | continue; |
| 323 | |
| 324 | status = efi_call_early(allocate_pages, |
| 325 | EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, |
| 326 | nr_pages, &start); |
| 327 | if (status == EFI_SUCCESS) { |
| 328 | *addr = start; |
| 329 | break; |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | if (i == map_size / desc_size) |
| 334 | status = EFI_NOT_FOUND; |
| 335 | |
| 336 | efi_call_early(free_pool, map); |
| 337 | fail: |
| 338 | return status; |
| 339 | } |
| 340 | |
| 341 | void efi_free(efi_system_table_t *sys_table_arg, unsigned long size, |
| 342 | unsigned long addr) |
| 343 | { |
| 344 | unsigned long nr_pages; |
| 345 | |
| 346 | if (!size) |
| 347 | return; |
| 348 | |
| 349 | nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE; |
| 350 | efi_call_early(free_pages, addr, nr_pages); |
| 351 | } |
| 352 | |
| 353 | static efi_status_t efi_file_size(efi_system_table_t *sys_table_arg, void *__fh, |
| 354 | efi_char16_t *filename_16, void **handle, |
| 355 | u64 *file_sz) |
| 356 | { |
| 357 | efi_file_handle_t *h, *fh = __fh; |
| 358 | efi_file_info_t *info; |
| 359 | efi_status_t status; |
| 360 | efi_guid_t info_guid = EFI_FILE_INFO_ID; |
| 361 | unsigned long info_sz; |
| 362 | |
| 363 | status = efi_call_proto(efi_file_handle, open, fh, &h, filename_16, |
| 364 | EFI_FILE_MODE_READ, (u64)0); |
| 365 | if (status != EFI_SUCCESS) { |
| 366 | efi_printk(sys_table_arg, "Failed to open file: "); |
| 367 | efi_char16_printk(sys_table_arg, filename_16); |
| 368 | efi_printk(sys_table_arg, "\n"); |
| 369 | return status; |
| 370 | } |
| 371 | |
| 372 | *handle = h; |
| 373 | |
| 374 | info_sz = 0; |
| 375 | status = efi_call_proto(efi_file_handle, get_info, h, &info_guid, |
| 376 | &info_sz, NULL); |
| 377 | if (status != EFI_BUFFER_TOO_SMALL) { |
| 378 | efi_printk(sys_table_arg, "Failed to get file info size\n"); |
| 379 | return status; |
| 380 | } |
| 381 | |
| 382 | grow: |
| 383 | status = efi_call_early(allocate_pool, EFI_LOADER_DATA, |
| 384 | info_sz, (void **)&info); |
| 385 | if (status != EFI_SUCCESS) { |
| 386 | efi_printk(sys_table_arg, "Failed to alloc mem for file info\n"); |
| 387 | return status; |
| 388 | } |
| 389 | |
| 390 | status = efi_call_proto(efi_file_handle, get_info, h, &info_guid, |
| 391 | &info_sz, info); |
| 392 | if (status == EFI_BUFFER_TOO_SMALL) { |
| 393 | efi_call_early(free_pool, info); |
| 394 | goto grow; |
| 395 | } |
| 396 | |
| 397 | *file_sz = info->file_size; |
| 398 | efi_call_early(free_pool, info); |
| 399 | |
| 400 | if (status != EFI_SUCCESS) |
| 401 | efi_printk(sys_table_arg, "Failed to get initrd info\n"); |
| 402 | |
| 403 | return status; |
| 404 | } |
| 405 | |
| 406 | static efi_status_t efi_file_read(void *handle, unsigned long *size, void *addr) |
| 407 | { |
| 408 | return efi_call_proto(efi_file_handle, read, handle, size, addr); |
| 409 | } |
| 410 | |
| 411 | static efi_status_t efi_file_close(void *handle) |
| 412 | { |
| 413 | return efi_call_proto(efi_file_handle, close, handle); |
| 414 | } |
| 415 | |
| 416 | static efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg, |
| 417 | efi_loaded_image_t *image, |
| 418 | efi_file_handle_t **__fh) |
| 419 | { |
| 420 | efi_file_io_interface_t *io; |
| 421 | efi_file_handle_t *fh; |
| 422 | efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID; |
| 423 | efi_status_t status; |
| 424 | void *handle = (void *)(unsigned long)efi_table_attr(efi_loaded_image, |
| 425 | device_handle, |
| 426 | image); |
| 427 | |
| 428 | status = efi_call_early(handle_protocol, handle, |
| 429 | &fs_proto, (void **)&io); |
| 430 | if (status != EFI_SUCCESS) { |
| 431 | efi_printk(sys_table_arg, "Failed to handle fs_proto\n"); |
| 432 | return status; |
| 433 | } |
| 434 | |
| 435 | status = efi_call_proto(efi_file_io_interface, open_volume, io, &fh); |
| 436 | if (status != EFI_SUCCESS) |
| 437 | efi_printk(sys_table_arg, "Failed to open volume\n"); |
| 438 | else |
| 439 | *__fh = fh; |
| 440 | |
| 441 | return status; |
| 442 | } |
| 443 | |
| 444 | /* |
| 445 | * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi= |
| 446 | * option, e.g. efi=nochunk. |
| 447 | * |
| 448 | * It should be noted that efi= is parsed in two very different |
| 449 | * environments, first in the early boot environment of the EFI boot |
| 450 | * stub, and subsequently during the kernel boot. |
| 451 | */ |
| 452 | efi_status_t efi_parse_options(char const *cmdline) |
| 453 | { |
| 454 | char *str; |
| 455 | |
| 456 | str = strstr(cmdline, "nokaslr"); |
| 457 | if (str == cmdline || (str && str > cmdline && *(str - 1) == ' ')) |
| 458 | __nokaslr = 1; |
| 459 | |
| 460 | str = strstr(cmdline, "quiet"); |
| 461 | if (str == cmdline || (str && str > cmdline && *(str - 1) == ' ')) |
| 462 | __quiet = 1; |
| 463 | |
| 464 | /* |
| 465 | * If no EFI parameters were specified on the cmdline we've got |
| 466 | * nothing to do. |
| 467 | */ |
| 468 | str = strstr(cmdline, "efi="); |
| 469 | if (!str) |
| 470 | return EFI_SUCCESS; |
| 471 | |
| 472 | /* Skip ahead to first argument */ |
| 473 | str += strlen("efi="); |
| 474 | |
| 475 | /* |
| 476 | * Remember, because efi= is also used by the kernel we need to |
| 477 | * skip over arguments we don't understand. |
| 478 | */ |
| 479 | while (*str && *str != ' ') { |
| 480 | if (!strncmp(str, "nochunk", 7)) { |
| 481 | str += strlen("nochunk"); |
| 482 | __chunk_size = -1UL; |
| 483 | } |
| 484 | |
| 485 | /* Group words together, delimited by "," */ |
| 486 | while (*str && *str != ' ' && *str != ',') |
| 487 | str++; |
| 488 | |
| 489 | if (*str == ',') |
| 490 | str++; |
| 491 | } |
| 492 | |
| 493 | return EFI_SUCCESS; |
| 494 | } |
| 495 | |
| 496 | /* |
| 497 | * Check the cmdline for a LILO-style file= arguments. |
| 498 | * |
| 499 | * We only support loading a file from the same filesystem as |
| 500 | * the kernel image. |
| 501 | */ |
| 502 | efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg, |
| 503 | efi_loaded_image_t *image, |
| 504 | char *cmd_line, char *option_string, |
| 505 | unsigned long max_addr, |
| 506 | unsigned long *load_addr, |
| 507 | unsigned long *load_size) |
| 508 | { |
| 509 | struct file_info *files; |
| 510 | unsigned long file_addr; |
| 511 | u64 file_size_total; |
| 512 | efi_file_handle_t *fh = NULL; |
| 513 | efi_status_t status; |
| 514 | int nr_files; |
| 515 | char *str; |
| 516 | int i, j, k; |
| 517 | |
| 518 | file_addr = 0; |
| 519 | file_size_total = 0; |
| 520 | |
| 521 | str = cmd_line; |
| 522 | |
| 523 | j = 0; /* See close_handles */ |
| 524 | |
| 525 | if (!load_addr || !load_size) |
| 526 | return EFI_INVALID_PARAMETER; |
| 527 | |
| 528 | *load_addr = 0; |
| 529 | *load_size = 0; |
| 530 | |
| 531 | if (!str || !*str) |
| 532 | return EFI_SUCCESS; |
| 533 | |
| 534 | for (nr_files = 0; *str; nr_files++) { |
| 535 | str = strstr(str, option_string); |
| 536 | if (!str) |
| 537 | break; |
| 538 | |
| 539 | str += strlen(option_string); |
| 540 | |
| 541 | /* Skip any leading slashes */ |
| 542 | while (*str == '/' || *str == '\\') |
| 543 | str++; |
| 544 | |
| 545 | while (*str && *str != ' ' && *str != '\n') |
| 546 | str++; |
| 547 | } |
| 548 | |
| 549 | if (!nr_files) |
| 550 | return EFI_SUCCESS; |
| 551 | |
| 552 | status = efi_call_early(allocate_pool, EFI_LOADER_DATA, |
| 553 | nr_files * sizeof(*files), (void **)&files); |
| 554 | if (status != EFI_SUCCESS) { |
| 555 | pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n"); |
| 556 | goto fail; |
| 557 | } |
| 558 | |
| 559 | str = cmd_line; |
| 560 | for (i = 0; i < nr_files; i++) { |
| 561 | struct file_info *file; |
| 562 | efi_char16_t filename_16[256]; |
| 563 | efi_char16_t *p; |
| 564 | |
| 565 | str = strstr(str, option_string); |
| 566 | if (!str) |
| 567 | break; |
| 568 | |
| 569 | str += strlen(option_string); |
| 570 | |
| 571 | file = &files[i]; |
| 572 | p = filename_16; |
| 573 | |
| 574 | /* Skip any leading slashes */ |
| 575 | while (*str == '/' || *str == '\\') |
| 576 | str++; |
| 577 | |
| 578 | while (*str && *str != ' ' && *str != '\n') { |
| 579 | if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16)) |
| 580 | break; |
| 581 | |
| 582 | if (*str == '/') { |
| 583 | *p++ = '\\'; |
| 584 | str++; |
| 585 | } else { |
| 586 | *p++ = *str++; |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | *p = '\0'; |
| 591 | |
| 592 | /* Only open the volume once. */ |
| 593 | if (!i) { |
| 594 | status = efi_open_volume(sys_table_arg, image, &fh); |
| 595 | if (status != EFI_SUCCESS) |
| 596 | goto free_files; |
| 597 | } |
| 598 | |
| 599 | status = efi_file_size(sys_table_arg, fh, filename_16, |
| 600 | (void **)&file->handle, &file->size); |
| 601 | if (status != EFI_SUCCESS) |
| 602 | goto close_handles; |
| 603 | |
| 604 | file_size_total += file->size; |
| 605 | } |
| 606 | |
| 607 | if (file_size_total) { |
| 608 | unsigned long addr; |
| 609 | |
| 610 | /* |
| 611 | * Multiple files need to be at consecutive addresses in memory, |
| 612 | * so allocate enough memory for all the files. This is used |
| 613 | * for loading multiple files. |
| 614 | */ |
| 615 | status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000, |
| 616 | &file_addr, max_addr); |
| 617 | if (status != EFI_SUCCESS) { |
| 618 | pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n"); |
| 619 | goto close_handles; |
| 620 | } |
| 621 | |
| 622 | /* We've run out of free low memory. */ |
| 623 | if (file_addr > max_addr) { |
| 624 | pr_efi_err(sys_table_arg, "We've run out of free low memory\n"); |
| 625 | status = EFI_INVALID_PARAMETER; |
| 626 | goto free_file_total; |
| 627 | } |
| 628 | |
| 629 | addr = file_addr; |
| 630 | for (j = 0; j < nr_files; j++) { |
| 631 | unsigned long size; |
| 632 | |
| 633 | size = files[j].size; |
| 634 | while (size) { |
| 635 | unsigned long chunksize; |
| 636 | |
| 637 | if (IS_ENABLED(CONFIG_X86) && size > __chunk_size) |
| 638 | chunksize = __chunk_size; |
| 639 | else |
| 640 | chunksize = size; |
| 641 | |
| 642 | status = efi_file_read(files[j].handle, |
| 643 | &chunksize, |
| 644 | (void *)addr); |
| 645 | if (status != EFI_SUCCESS) { |
| 646 | pr_efi_err(sys_table_arg, "Failed to read file\n"); |
| 647 | goto free_file_total; |
| 648 | } |
| 649 | addr += chunksize; |
| 650 | size -= chunksize; |
| 651 | } |
| 652 | |
| 653 | efi_file_close(files[j].handle); |
| 654 | } |
| 655 | |
| 656 | } |
| 657 | |
| 658 | efi_call_early(free_pool, files); |
| 659 | |
| 660 | *load_addr = file_addr; |
| 661 | *load_size = file_size_total; |
| 662 | |
| 663 | return status; |
| 664 | |
| 665 | free_file_total: |
| 666 | efi_free(sys_table_arg, file_size_total, file_addr); |
| 667 | |
| 668 | close_handles: |
| 669 | for (k = j; k < i; k++) |
| 670 | efi_file_close(files[k].handle); |
| 671 | free_files: |
| 672 | efi_call_early(free_pool, files); |
| 673 | fail: |
| 674 | *load_addr = 0; |
| 675 | *load_size = 0; |
| 676 | |
| 677 | return status; |
| 678 | } |
| 679 | /* |
| 680 | * Relocate a kernel image, either compressed or uncompressed. |
| 681 | * In the ARM64 case, all kernel images are currently |
| 682 | * uncompressed, and as such when we relocate it we need to |
| 683 | * allocate additional space for the BSS segment. Any low |
| 684 | * memory that this function should avoid needs to be |
| 685 | * unavailable in the EFI memory map, as if the preferred |
| 686 | * address is not available the lowest available address will |
| 687 | * be used. |
| 688 | */ |
| 689 | efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg, |
| 690 | unsigned long *image_addr, |
| 691 | unsigned long image_size, |
| 692 | unsigned long alloc_size, |
| 693 | unsigned long preferred_addr, |
| 694 | unsigned long alignment) |
| 695 | { |
| 696 | unsigned long cur_image_addr; |
| 697 | unsigned long new_addr = 0; |
| 698 | efi_status_t status; |
| 699 | unsigned long nr_pages; |
| 700 | efi_physical_addr_t efi_addr = preferred_addr; |
| 701 | |
| 702 | if (!image_addr || !image_size || !alloc_size) |
| 703 | return EFI_INVALID_PARAMETER; |
| 704 | if (alloc_size < image_size) |
| 705 | return EFI_INVALID_PARAMETER; |
| 706 | |
| 707 | cur_image_addr = *image_addr; |
| 708 | |
| 709 | /* |
| 710 | * The EFI firmware loader could have placed the kernel image |
| 711 | * anywhere in memory, but the kernel has restrictions on the |
| 712 | * max physical address it can run at. Some architectures |
| 713 | * also have a prefered address, so first try to relocate |
| 714 | * to the preferred address. If that fails, allocate as low |
| 715 | * as possible while respecting the required alignment. |
| 716 | */ |
| 717 | nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE; |
| 718 | status = efi_call_early(allocate_pages, |
| 719 | EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, |
| 720 | nr_pages, &efi_addr); |
| 721 | new_addr = efi_addr; |
| 722 | /* |
| 723 | * If preferred address allocation failed allocate as low as |
| 724 | * possible. |
| 725 | */ |
| 726 | if (status != EFI_SUCCESS) { |
| 727 | status = efi_low_alloc(sys_table_arg, alloc_size, alignment, |
| 728 | &new_addr); |
| 729 | } |
| 730 | if (status != EFI_SUCCESS) { |
| 731 | pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n"); |
| 732 | return status; |
| 733 | } |
| 734 | |
| 735 | /* |
| 736 | * We know source/dest won't overlap since both memory ranges |
| 737 | * have been allocated by UEFI, so we can safely use memcpy. |
| 738 | */ |
| 739 | memcpy((void *)new_addr, (void *)cur_image_addr, image_size); |
| 740 | |
| 741 | /* Return the new address of the relocated image. */ |
| 742 | *image_addr = new_addr; |
| 743 | |
| 744 | return status; |
| 745 | } |
| 746 | |
| 747 | /* |
| 748 | * Get the number of UTF-8 bytes corresponding to an UTF-16 character. |
| 749 | * This overestimates for surrogates, but that is okay. |
| 750 | */ |
| 751 | static int efi_utf8_bytes(u16 c) |
| 752 | { |
| 753 | return 1 + (c >= 0x80) + (c >= 0x800); |
| 754 | } |
| 755 | |
| 756 | /* |
| 757 | * Convert an UTF-16 string, not necessarily null terminated, to UTF-8. |
| 758 | */ |
| 759 | static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n) |
| 760 | { |
| 761 | unsigned int c; |
| 762 | |
| 763 | while (n--) { |
| 764 | c = *src++; |
| 765 | if (n && c >= 0xd800 && c <= 0xdbff && |
| 766 | *src >= 0xdc00 && *src <= 0xdfff) { |
| 767 | c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff); |
| 768 | src++; |
| 769 | n--; |
| 770 | } |
| 771 | if (c >= 0xd800 && c <= 0xdfff) |
| 772 | c = 0xfffd; /* Unmatched surrogate */ |
| 773 | if (c < 0x80) { |
| 774 | *dst++ = c; |
| 775 | continue; |
| 776 | } |
| 777 | if (c < 0x800) { |
| 778 | *dst++ = 0xc0 + (c >> 6); |
| 779 | goto t1; |
| 780 | } |
| 781 | if (c < 0x10000) { |
| 782 | *dst++ = 0xe0 + (c >> 12); |
| 783 | goto t2; |
| 784 | } |
| 785 | *dst++ = 0xf0 + (c >> 18); |
| 786 | *dst++ = 0x80 + ((c >> 12) & 0x3f); |
| 787 | t2: |
| 788 | *dst++ = 0x80 + ((c >> 6) & 0x3f); |
| 789 | t1: |
| 790 | *dst++ = 0x80 + (c & 0x3f); |
| 791 | } |
| 792 | |
| 793 | return dst; |
| 794 | } |
| 795 | |
| 796 | #ifndef MAX_CMDLINE_ADDRESS |
| 797 | #define MAX_CMDLINE_ADDRESS ULONG_MAX |
| 798 | #endif |
| 799 | |
| 800 | /* |
| 801 | * Convert the unicode UEFI command line to ASCII to pass to kernel. |
| 802 | * Size of memory allocated return in *cmd_line_len. |
| 803 | * Returns NULL on error. |
| 804 | */ |
| 805 | char *efi_convert_cmdline(efi_system_table_t *sys_table_arg, |
| 806 | efi_loaded_image_t *image, |
| 807 | int *cmd_line_len) |
| 808 | { |
| 809 | const u16 *s2; |
| 810 | u8 *s1 = NULL; |
| 811 | unsigned long cmdline_addr = 0; |
| 812 | int load_options_chars = image->load_options_size / 2; /* UTF-16 */ |
| 813 | const u16 *options = image->load_options; |
| 814 | int options_bytes = 0; /* UTF-8 bytes */ |
| 815 | int options_chars = 0; /* UTF-16 chars */ |
| 816 | efi_status_t status; |
| 817 | u16 zero = 0; |
| 818 | |
| 819 | if (options) { |
| 820 | s2 = options; |
| 821 | while (*s2 && *s2 != '\n' |
| 822 | && options_chars < load_options_chars) { |
| 823 | options_bytes += efi_utf8_bytes(*s2++); |
| 824 | options_chars++; |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | if (!options_chars) { |
| 829 | /* No command line options, so return empty string*/ |
| 830 | options = &zero; |
| 831 | } |
| 832 | |
| 833 | options_bytes++; /* NUL termination */ |
| 834 | |
| 835 | status = efi_high_alloc(sys_table_arg, options_bytes, 0, |
| 836 | &cmdline_addr, MAX_CMDLINE_ADDRESS); |
| 837 | if (status != EFI_SUCCESS) |
| 838 | return NULL; |
| 839 | |
| 840 | s1 = (u8 *)cmdline_addr; |
| 841 | s2 = (const u16 *)options; |
| 842 | |
| 843 | s1 = efi_utf16_to_utf8(s1, s2, options_chars); |
| 844 | *s1 = '\0'; |
| 845 | |
| 846 | *cmd_line_len = options_bytes; |
| 847 | return (char *)cmdline_addr; |
| 848 | } |
| 849 | |
| 850 | /* |
| 851 | * Handle calling ExitBootServices according to the requirements set out by the |
| 852 | * spec. Obtains the current memory map, and returns that info after calling |
| 853 | * ExitBootServices. The client must specify a function to perform any |
| 854 | * processing of the memory map data prior to ExitBootServices. A client |
| 855 | * specific structure may be passed to the function via priv. The client |
| 856 | * function may be called multiple times. |
| 857 | */ |
| 858 | efi_status_t efi_exit_boot_services(efi_system_table_t *sys_table_arg, |
| 859 | void *handle, |
| 860 | struct efi_boot_memmap *map, |
| 861 | void *priv, |
| 862 | efi_exit_boot_map_processing priv_func) |
| 863 | { |
| 864 | efi_status_t status; |
| 865 | |
| 866 | status = efi_get_memory_map(sys_table_arg, map); |
| 867 | |
| 868 | if (status != EFI_SUCCESS) |
| 869 | goto fail; |
| 870 | |
| 871 | status = priv_func(sys_table_arg, map, priv); |
| 872 | if (status != EFI_SUCCESS) |
| 873 | goto free_map; |
| 874 | |
| 875 | status = efi_call_early(exit_boot_services, handle, *map->key_ptr); |
| 876 | |
| 877 | if (status == EFI_INVALID_PARAMETER) { |
| 878 | /* |
| 879 | * The memory map changed between efi_get_memory_map() and |
| 880 | * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4: |
| 881 | * EFI_BOOT_SERVICES.ExitBootServices we need to get the |
| 882 | * updated map, and try again. The spec implies one retry |
| 883 | * should be sufficent, which is confirmed against the EDK2 |
| 884 | * implementation. Per the spec, we can only invoke |
| 885 | * get_memory_map() and exit_boot_services() - we cannot alloc |
| 886 | * so efi_get_memory_map() cannot be used, and we must reuse |
| 887 | * the buffer. For all practical purposes, the headroom in the |
| 888 | * buffer should account for any changes in the map so the call |
| 889 | * to get_memory_map() is expected to succeed here. |
| 890 | */ |
| 891 | *map->map_size = *map->buff_size; |
| 892 | status = efi_call_early(get_memory_map, |
| 893 | map->map_size, |
| 894 | *map->map, |
| 895 | map->key_ptr, |
| 896 | map->desc_size, |
| 897 | map->desc_ver); |
| 898 | |
| 899 | /* exit_boot_services() was called, thus cannot free */ |
| 900 | if (status != EFI_SUCCESS) |
| 901 | goto fail; |
| 902 | |
| 903 | status = priv_func(sys_table_arg, map, priv); |
| 904 | /* exit_boot_services() was called, thus cannot free */ |
| 905 | if (status != EFI_SUCCESS) |
| 906 | goto fail; |
| 907 | |
| 908 | status = efi_call_early(exit_boot_services, handle, *map->key_ptr); |
| 909 | } |
| 910 | |
| 911 | /* exit_boot_services() was called, thus cannot free */ |
| 912 | if (status != EFI_SUCCESS) |
| 913 | goto fail; |
| 914 | |
| 915 | return EFI_SUCCESS; |
| 916 | |
| 917 | free_map: |
| 918 | efi_call_early(free_pool, *map->map); |
| 919 | fail: |
| 920 | return status; |
| 921 | } |