Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org> |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License version 2 as |
| 6 | * published by the Free Software Foundation. |
| 7 | * |
| 8 | */ |
| 9 | #include <linux/efi.h> |
| 10 | #include <asm/efi.h> |
| 11 | |
| 12 | #include "efistub.h" |
| 13 | |
| 14 | efi_status_t check_platform_features(efi_system_table_t *sys_table_arg) |
| 15 | { |
| 16 | int block; |
| 17 | |
| 18 | /* non-LPAE kernels can run anywhere */ |
| 19 | if (!IS_ENABLED(CONFIG_ARM_LPAE)) |
| 20 | return EFI_SUCCESS; |
| 21 | |
| 22 | /* LPAE kernels need compatible hardware */ |
| 23 | block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0); |
| 24 | if (block < 5) { |
| 25 | pr_efi_err(sys_table_arg, "This LPAE kernel is not supported by your CPU\n"); |
| 26 | return EFI_UNSUPPORTED; |
| 27 | } |
| 28 | return EFI_SUCCESS; |
| 29 | } |
| 30 | |
| 31 | static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID; |
| 32 | |
| 33 | struct screen_info *alloc_screen_info(efi_system_table_t *sys_table_arg) |
| 34 | { |
| 35 | struct screen_info *si; |
| 36 | efi_status_t status; |
| 37 | |
| 38 | /* |
| 39 | * Unlike on arm64, where we can directly fill out the screen_info |
| 40 | * structure from the stub, we need to allocate a buffer to hold |
| 41 | * its contents while we hand over to the kernel proper from the |
| 42 | * decompressor. |
| 43 | */ |
| 44 | status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA, |
| 45 | sizeof(*si), (void **)&si); |
| 46 | |
| 47 | if (status != EFI_SUCCESS) |
| 48 | return NULL; |
| 49 | |
| 50 | status = efi_call_early(install_configuration_table, |
| 51 | &screen_info_guid, si); |
| 52 | if (status == EFI_SUCCESS) |
| 53 | return si; |
| 54 | |
| 55 | efi_call_early(free_pool, si); |
| 56 | return NULL; |
| 57 | } |
| 58 | |
| 59 | void free_screen_info(efi_system_table_t *sys_table_arg, struct screen_info *si) |
| 60 | { |
| 61 | if (!si) |
| 62 | return; |
| 63 | |
| 64 | efi_call_early(install_configuration_table, &screen_info_guid, NULL); |
| 65 | efi_call_early(free_pool, si); |
| 66 | } |
| 67 | |
| 68 | static efi_status_t reserve_kernel_base(efi_system_table_t *sys_table_arg, |
| 69 | unsigned long dram_base, |
| 70 | unsigned long *reserve_addr, |
| 71 | unsigned long *reserve_size) |
| 72 | { |
| 73 | efi_physical_addr_t alloc_addr; |
| 74 | efi_memory_desc_t *memory_map; |
| 75 | unsigned long nr_pages, map_size, desc_size, buff_size; |
| 76 | efi_status_t status; |
| 77 | unsigned long l; |
| 78 | |
| 79 | struct efi_boot_memmap map = { |
| 80 | .map = &memory_map, |
| 81 | .map_size = &map_size, |
| 82 | .desc_size = &desc_size, |
| 83 | .desc_ver = NULL, |
| 84 | .key_ptr = NULL, |
| 85 | .buff_size = &buff_size, |
| 86 | }; |
| 87 | |
| 88 | /* |
| 89 | * Reserve memory for the uncompressed kernel image. This is |
| 90 | * all that prevents any future allocations from conflicting |
| 91 | * with the kernel. Since we can't tell from the compressed |
| 92 | * image how much DRAM the kernel actually uses (due to BSS |
| 93 | * size uncertainty) we allocate the maximum possible size. |
| 94 | * Do this very early, as prints can cause memory allocations |
| 95 | * that may conflict with this. |
| 96 | */ |
| 97 | alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE; |
| 98 | nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE; |
| 99 | status = efi_call_early(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS, |
| 100 | EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr); |
| 101 | if (status == EFI_SUCCESS) { |
| 102 | if (alloc_addr == dram_base) { |
| 103 | *reserve_addr = alloc_addr; |
| 104 | *reserve_size = MAX_UNCOMP_KERNEL_SIZE; |
| 105 | return EFI_SUCCESS; |
| 106 | } |
| 107 | /* |
| 108 | * If we end up here, the allocation succeeded but starts below |
| 109 | * dram_base. This can only occur if the real base of DRAM is |
| 110 | * not a multiple of 128 MB, in which case dram_base will have |
| 111 | * been rounded up. Since this implies that a part of the region |
| 112 | * was already occupied, we need to fall through to the code |
| 113 | * below to ensure that the existing allocations don't conflict. |
| 114 | * For this reason, we use EFI_BOOT_SERVICES_DATA above and not |
| 115 | * EFI_LOADER_DATA, which we wouldn't able to distinguish from |
| 116 | * allocations that we want to disallow. |
| 117 | */ |
| 118 | } |
| 119 | |
| 120 | /* |
| 121 | * If the allocation above failed, we may still be able to proceed: |
| 122 | * if the only allocations in the region are of types that will be |
| 123 | * released to the OS after ExitBootServices(), the decompressor can |
| 124 | * safely overwrite them. |
| 125 | */ |
| 126 | status = efi_get_memory_map(sys_table_arg, &map); |
| 127 | if (status != EFI_SUCCESS) { |
| 128 | pr_efi_err(sys_table_arg, |
| 129 | "reserve_kernel_base(): Unable to retrieve memory map.\n"); |
| 130 | return status; |
| 131 | } |
| 132 | |
| 133 | for (l = 0; l < map_size; l += desc_size) { |
| 134 | efi_memory_desc_t *desc; |
| 135 | u64 start, end; |
| 136 | |
| 137 | desc = (void *)memory_map + l; |
| 138 | start = desc->phys_addr; |
| 139 | end = start + desc->num_pages * EFI_PAGE_SIZE; |
| 140 | |
| 141 | /* Skip if entry does not intersect with region */ |
| 142 | if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE || |
| 143 | end <= dram_base) |
| 144 | continue; |
| 145 | |
| 146 | switch (desc->type) { |
| 147 | case EFI_BOOT_SERVICES_CODE: |
| 148 | case EFI_BOOT_SERVICES_DATA: |
| 149 | /* Ignore types that are released to the OS anyway */ |
| 150 | continue; |
| 151 | |
| 152 | case EFI_CONVENTIONAL_MEMORY: |
| 153 | /* |
| 154 | * Reserve the intersection between this entry and the |
| 155 | * region. |
| 156 | */ |
| 157 | start = max(start, (u64)dram_base); |
| 158 | end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE); |
| 159 | |
| 160 | status = efi_call_early(allocate_pages, |
| 161 | EFI_ALLOCATE_ADDRESS, |
| 162 | EFI_LOADER_DATA, |
| 163 | (end - start) / EFI_PAGE_SIZE, |
| 164 | &start); |
| 165 | if (status != EFI_SUCCESS) { |
| 166 | pr_efi_err(sys_table_arg, |
| 167 | "reserve_kernel_base(): alloc failed.\n"); |
| 168 | goto out; |
| 169 | } |
| 170 | break; |
| 171 | |
| 172 | case EFI_LOADER_CODE: |
| 173 | case EFI_LOADER_DATA: |
| 174 | /* |
| 175 | * These regions may be released and reallocated for |
| 176 | * another purpose (including EFI_RUNTIME_SERVICE_DATA) |
| 177 | * at any time during the execution of the OS loader, |
| 178 | * so we cannot consider them as safe. |
| 179 | */ |
| 180 | default: |
| 181 | /* |
| 182 | * Treat any other allocation in the region as unsafe */ |
| 183 | status = EFI_OUT_OF_RESOURCES; |
| 184 | goto out; |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | status = EFI_SUCCESS; |
| 189 | out: |
| 190 | efi_call_early(free_pool, memory_map); |
| 191 | return status; |
| 192 | } |
| 193 | |
| 194 | efi_status_t handle_kernel_image(efi_system_table_t *sys_table, |
| 195 | unsigned long *image_addr, |
| 196 | unsigned long *image_size, |
| 197 | unsigned long *reserve_addr, |
| 198 | unsigned long *reserve_size, |
| 199 | unsigned long dram_base, |
| 200 | efi_loaded_image_t *image) |
| 201 | { |
| 202 | efi_status_t status; |
| 203 | |
| 204 | /* |
| 205 | * Verify that the DRAM base address is compatible with the ARM |
| 206 | * boot protocol, which determines the base of DRAM by masking |
| 207 | * off the low 27 bits of the address at which the zImage is |
| 208 | * loaded. These assumptions are made by the decompressor, |
| 209 | * before any memory map is available. |
| 210 | */ |
| 211 | dram_base = round_up(dram_base, SZ_128M); |
| 212 | |
| 213 | status = reserve_kernel_base(sys_table, dram_base, reserve_addr, |
| 214 | reserve_size); |
| 215 | if (status != EFI_SUCCESS) { |
| 216 | pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n"); |
| 217 | return status; |
| 218 | } |
| 219 | |
| 220 | /* |
| 221 | * Relocate the zImage, so that it appears in the lowest 128 MB |
| 222 | * memory window. |
| 223 | */ |
| 224 | *image_size = image->image_size; |
| 225 | status = efi_relocate_kernel(sys_table, image_addr, *image_size, |
| 226 | *image_size, |
| 227 | dram_base + MAX_UNCOMP_KERNEL_SIZE, 0); |
| 228 | if (status != EFI_SUCCESS) { |
| 229 | pr_efi_err(sys_table, "Failed to relocate kernel.\n"); |
| 230 | efi_free(sys_table, *reserve_size, *reserve_addr); |
| 231 | *reserve_size = 0; |
| 232 | return status; |
| 233 | } |
| 234 | |
| 235 | /* |
| 236 | * Check to see if we were able to allocate memory low enough |
| 237 | * in memory. The kernel determines the base of DRAM from the |
| 238 | * address at which the zImage is loaded. |
| 239 | */ |
| 240 | if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) { |
| 241 | pr_efi_err(sys_table, "Failed to relocate kernel, no low memory available.\n"); |
| 242 | efi_free(sys_table, *reserve_size, *reserve_addr); |
| 243 | *reserve_size = 0; |
| 244 | efi_free(sys_table, *image_size, *image_addr); |
| 245 | *image_size = 0; |
| 246 | return EFI_LOAD_ERROR; |
| 247 | } |
| 248 | return EFI_SUCCESS; |
| 249 | } |