Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Machine specific setup for xen |
| 4 | * |
| 5 | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 |
| 6 | */ |
| 7 | |
| 8 | #include <linux/init.h> |
| 9 | #include <linux/sched.h> |
| 10 | #include <linux/mm.h> |
| 11 | #include <linux/pm.h> |
| 12 | #include <linux/memblock.h> |
| 13 | #include <linux/cpuidle.h> |
| 14 | #include <linux/cpufreq.h> |
| 15 | |
| 16 | #include <asm/elf.h> |
| 17 | #include <asm/vdso.h> |
| 18 | #include <asm/e820/api.h> |
| 19 | #include <asm/setup.h> |
| 20 | #include <asm/acpi.h> |
| 21 | #include <asm/numa.h> |
| 22 | #include <asm/xen/hypervisor.h> |
| 23 | #include <asm/xen/hypercall.h> |
| 24 | |
| 25 | #include <xen/xen.h> |
| 26 | #include <xen/page.h> |
| 27 | #include <xen/interface/callback.h> |
| 28 | #include <xen/interface/memory.h> |
| 29 | #include <xen/interface/physdev.h> |
| 30 | #include <xen/features.h> |
| 31 | #include <xen/hvc-console.h> |
| 32 | #include "xen-ops.h" |
| 33 | #include "vdso.h" |
| 34 | #include "mmu.h" |
| 35 | |
| 36 | #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024) |
| 37 | |
| 38 | /* Amount of extra memory space we add to the e820 ranges */ |
| 39 | struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata; |
| 40 | |
| 41 | /* Number of pages released from the initial allocation. */ |
| 42 | unsigned long xen_released_pages; |
| 43 | |
| 44 | /* E820 map used during setting up memory. */ |
| 45 | static struct e820_table xen_e820_table __initdata; |
| 46 | |
| 47 | /* |
| 48 | * Buffer used to remap identity mapped pages. We only need the virtual space. |
| 49 | * The physical page behind this address is remapped as needed to different |
| 50 | * buffer pages. |
| 51 | */ |
| 52 | #define REMAP_SIZE (P2M_PER_PAGE - 3) |
| 53 | static struct { |
| 54 | unsigned long next_area_mfn; |
| 55 | unsigned long target_pfn; |
| 56 | unsigned long size; |
| 57 | unsigned long mfns[REMAP_SIZE]; |
| 58 | } xen_remap_buf __initdata __aligned(PAGE_SIZE); |
| 59 | static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY; |
| 60 | |
| 61 | /* |
| 62 | * The maximum amount of extra memory compared to the base size. The |
| 63 | * main scaling factor is the size of struct page. At extreme ratios |
| 64 | * of base:extra, all the base memory can be filled with page |
| 65 | * structures for the extra memory, leaving no space for anything |
| 66 | * else. |
| 67 | * |
| 68 | * 10x seems like a reasonable balance between scaling flexibility and |
| 69 | * leaving a practically usable system. |
| 70 | */ |
| 71 | #define EXTRA_MEM_RATIO (10) |
| 72 | |
| 73 | static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB); |
| 74 | |
| 75 | static void __init xen_parse_512gb(void) |
| 76 | { |
| 77 | bool val = false; |
| 78 | char *arg; |
| 79 | |
| 80 | arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit"); |
| 81 | if (!arg) |
| 82 | return; |
| 83 | |
| 84 | arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit="); |
| 85 | if (!arg) |
| 86 | val = true; |
| 87 | else if (strtobool(arg + strlen("xen_512gb_limit="), &val)) |
| 88 | return; |
| 89 | |
| 90 | xen_512gb_limit = val; |
| 91 | } |
| 92 | |
| 93 | static void __init xen_add_extra_mem(unsigned long start_pfn, |
| 94 | unsigned long n_pfns) |
| 95 | { |
| 96 | int i; |
| 97 | |
| 98 | /* |
| 99 | * No need to check for zero size, should happen rarely and will only |
| 100 | * write a new entry regarded to be unused due to zero size. |
| 101 | */ |
| 102 | for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { |
| 103 | /* Add new region. */ |
| 104 | if (xen_extra_mem[i].n_pfns == 0) { |
| 105 | xen_extra_mem[i].start_pfn = start_pfn; |
| 106 | xen_extra_mem[i].n_pfns = n_pfns; |
| 107 | break; |
| 108 | } |
| 109 | /* Append to existing region. */ |
| 110 | if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns == |
| 111 | start_pfn) { |
| 112 | xen_extra_mem[i].n_pfns += n_pfns; |
| 113 | break; |
| 114 | } |
| 115 | } |
| 116 | if (i == XEN_EXTRA_MEM_MAX_REGIONS) |
| 117 | printk(KERN_WARNING "Warning: not enough extra memory regions\n"); |
| 118 | |
| 119 | memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns)); |
| 120 | } |
| 121 | |
| 122 | static void __init xen_del_extra_mem(unsigned long start_pfn, |
| 123 | unsigned long n_pfns) |
| 124 | { |
| 125 | int i; |
| 126 | unsigned long start_r, size_r; |
| 127 | |
| 128 | for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { |
| 129 | start_r = xen_extra_mem[i].start_pfn; |
| 130 | size_r = xen_extra_mem[i].n_pfns; |
| 131 | |
| 132 | /* Start of region. */ |
| 133 | if (start_r == start_pfn) { |
| 134 | BUG_ON(n_pfns > size_r); |
| 135 | xen_extra_mem[i].start_pfn += n_pfns; |
| 136 | xen_extra_mem[i].n_pfns -= n_pfns; |
| 137 | break; |
| 138 | } |
| 139 | /* End of region. */ |
| 140 | if (start_r + size_r == start_pfn + n_pfns) { |
| 141 | BUG_ON(n_pfns > size_r); |
| 142 | xen_extra_mem[i].n_pfns -= n_pfns; |
| 143 | break; |
| 144 | } |
| 145 | /* Mid of region. */ |
| 146 | if (start_pfn > start_r && start_pfn < start_r + size_r) { |
| 147 | BUG_ON(start_pfn + n_pfns > start_r + size_r); |
| 148 | xen_extra_mem[i].n_pfns = start_pfn - start_r; |
| 149 | /* Calling memblock_reserve() again is okay. */ |
| 150 | xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r - |
| 151 | (start_pfn + n_pfns)); |
| 152 | break; |
| 153 | } |
| 154 | } |
| 155 | memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns)); |
| 156 | } |
| 157 | |
| 158 | /* |
| 159 | * Called during boot before the p2m list can take entries beyond the |
| 160 | * hypervisor supplied p2m list. Entries in extra mem are to be regarded as |
| 161 | * invalid. |
| 162 | */ |
| 163 | unsigned long __ref xen_chk_extra_mem(unsigned long pfn) |
| 164 | { |
| 165 | int i; |
| 166 | |
| 167 | for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { |
| 168 | if (pfn >= xen_extra_mem[i].start_pfn && |
| 169 | pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns) |
| 170 | return INVALID_P2M_ENTRY; |
| 171 | } |
| 172 | |
| 173 | return IDENTITY_FRAME(pfn); |
| 174 | } |
| 175 | |
| 176 | /* |
| 177 | * Mark all pfns of extra mem as invalid in p2m list. |
| 178 | */ |
| 179 | void __init xen_inv_extra_mem(void) |
| 180 | { |
| 181 | unsigned long pfn, pfn_s, pfn_e; |
| 182 | int i; |
| 183 | |
| 184 | for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { |
| 185 | if (!xen_extra_mem[i].n_pfns) |
| 186 | continue; |
| 187 | pfn_s = xen_extra_mem[i].start_pfn; |
| 188 | pfn_e = pfn_s + xen_extra_mem[i].n_pfns; |
| 189 | for (pfn = pfn_s; pfn < pfn_e; pfn++) |
| 190 | set_phys_to_machine(pfn, INVALID_P2M_ENTRY); |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | /* |
| 195 | * Finds the next RAM pfn available in the E820 map after min_pfn. |
| 196 | * This function updates min_pfn with the pfn found and returns |
| 197 | * the size of that range or zero if not found. |
| 198 | */ |
| 199 | static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn) |
| 200 | { |
| 201 | const struct e820_entry *entry = xen_e820_table.entries; |
| 202 | unsigned int i; |
| 203 | unsigned long done = 0; |
| 204 | |
| 205 | for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { |
| 206 | unsigned long s_pfn; |
| 207 | unsigned long e_pfn; |
| 208 | |
| 209 | if (entry->type != E820_TYPE_RAM) |
| 210 | continue; |
| 211 | |
| 212 | e_pfn = PFN_DOWN(entry->addr + entry->size); |
| 213 | |
| 214 | /* We only care about E820 after this */ |
| 215 | if (e_pfn <= *min_pfn) |
| 216 | continue; |
| 217 | |
| 218 | s_pfn = PFN_UP(entry->addr); |
| 219 | |
| 220 | /* If min_pfn falls within the E820 entry, we want to start |
| 221 | * at the min_pfn PFN. |
| 222 | */ |
| 223 | if (s_pfn <= *min_pfn) { |
| 224 | done = e_pfn - *min_pfn; |
| 225 | } else { |
| 226 | done = e_pfn - s_pfn; |
| 227 | *min_pfn = s_pfn; |
| 228 | } |
| 229 | break; |
| 230 | } |
| 231 | |
| 232 | return done; |
| 233 | } |
| 234 | |
| 235 | static int __init xen_free_mfn(unsigned long mfn) |
| 236 | { |
| 237 | struct xen_memory_reservation reservation = { |
| 238 | .address_bits = 0, |
| 239 | .extent_order = 0, |
| 240 | .domid = DOMID_SELF |
| 241 | }; |
| 242 | |
| 243 | set_xen_guest_handle(reservation.extent_start, &mfn); |
| 244 | reservation.nr_extents = 1; |
| 245 | |
| 246 | return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation); |
| 247 | } |
| 248 | |
| 249 | /* |
| 250 | * This releases a chunk of memory and then does the identity map. It's used |
| 251 | * as a fallback if the remapping fails. |
| 252 | */ |
| 253 | static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn, |
| 254 | unsigned long end_pfn, unsigned long nr_pages) |
| 255 | { |
| 256 | unsigned long pfn, end; |
| 257 | int ret; |
| 258 | |
| 259 | WARN_ON(start_pfn > end_pfn); |
| 260 | |
| 261 | /* Release pages first. */ |
| 262 | end = min(end_pfn, nr_pages); |
| 263 | for (pfn = start_pfn; pfn < end; pfn++) { |
| 264 | unsigned long mfn = pfn_to_mfn(pfn); |
| 265 | |
| 266 | /* Make sure pfn exists to start with */ |
| 267 | if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn) |
| 268 | continue; |
| 269 | |
| 270 | ret = xen_free_mfn(mfn); |
| 271 | WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret); |
| 272 | |
| 273 | if (ret == 1) { |
| 274 | xen_released_pages++; |
| 275 | if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY)) |
| 276 | break; |
| 277 | } else |
| 278 | break; |
| 279 | } |
| 280 | |
| 281 | set_phys_range_identity(start_pfn, end_pfn); |
| 282 | } |
| 283 | |
| 284 | /* |
| 285 | * Helper function to update the p2m and m2p tables and kernel mapping. |
| 286 | */ |
| 287 | static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn) |
| 288 | { |
| 289 | struct mmu_update update = { |
| 290 | .ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE, |
| 291 | .val = pfn |
| 292 | }; |
| 293 | |
| 294 | /* Update p2m */ |
| 295 | if (!set_phys_to_machine(pfn, mfn)) { |
| 296 | WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n", |
| 297 | pfn, mfn); |
| 298 | BUG(); |
| 299 | } |
| 300 | |
| 301 | /* Update m2p */ |
| 302 | if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) { |
| 303 | WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n", |
| 304 | mfn, pfn); |
| 305 | BUG(); |
| 306 | } |
| 307 | |
| 308 | /* Update kernel mapping, but not for highmem. */ |
| 309 | if (pfn >= PFN_UP(__pa(high_memory - 1))) |
| 310 | return; |
| 311 | |
| 312 | if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT), |
| 313 | mfn_pte(mfn, PAGE_KERNEL), 0)) { |
| 314 | WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n", |
| 315 | mfn, pfn); |
| 316 | BUG(); |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * This function updates the p2m and m2p tables with an identity map from |
| 322 | * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the |
| 323 | * original allocation at remap_pfn. The information needed for remapping is |
| 324 | * saved in the memory itself to avoid the need for allocating buffers. The |
| 325 | * complete remap information is contained in a list of MFNs each containing |
| 326 | * up to REMAP_SIZE MFNs and the start target PFN for doing the remap. |
| 327 | * This enables us to preserve the original mfn sequence while doing the |
| 328 | * remapping at a time when the memory management is capable of allocating |
| 329 | * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and |
| 330 | * its callers. |
| 331 | */ |
| 332 | static void __init xen_do_set_identity_and_remap_chunk( |
| 333 | unsigned long start_pfn, unsigned long size, unsigned long remap_pfn) |
| 334 | { |
| 335 | unsigned long buf = (unsigned long)&xen_remap_buf; |
| 336 | unsigned long mfn_save, mfn; |
| 337 | unsigned long ident_pfn_iter, remap_pfn_iter; |
| 338 | unsigned long ident_end_pfn = start_pfn + size; |
| 339 | unsigned long left = size; |
| 340 | unsigned int i, chunk; |
| 341 | |
| 342 | WARN_ON(size == 0); |
| 343 | |
| 344 | mfn_save = virt_to_mfn(buf); |
| 345 | |
| 346 | for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn; |
| 347 | ident_pfn_iter < ident_end_pfn; |
| 348 | ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) { |
| 349 | chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE; |
| 350 | |
| 351 | /* Map first pfn to xen_remap_buf */ |
| 352 | mfn = pfn_to_mfn(ident_pfn_iter); |
| 353 | set_pte_mfn(buf, mfn, PAGE_KERNEL); |
| 354 | |
| 355 | /* Save mapping information in page */ |
| 356 | xen_remap_buf.next_area_mfn = xen_remap_mfn; |
| 357 | xen_remap_buf.target_pfn = remap_pfn_iter; |
| 358 | xen_remap_buf.size = chunk; |
| 359 | for (i = 0; i < chunk; i++) |
| 360 | xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i); |
| 361 | |
| 362 | /* Put remap buf into list. */ |
| 363 | xen_remap_mfn = mfn; |
| 364 | |
| 365 | /* Set identity map */ |
| 366 | set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk); |
| 367 | |
| 368 | left -= chunk; |
| 369 | } |
| 370 | |
| 371 | /* Restore old xen_remap_buf mapping */ |
| 372 | set_pte_mfn(buf, mfn_save, PAGE_KERNEL); |
| 373 | } |
| 374 | |
| 375 | /* |
| 376 | * This function takes a contiguous pfn range that needs to be identity mapped |
| 377 | * and: |
| 378 | * |
| 379 | * 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn. |
| 380 | * 2) Calls the do_ function to actually do the mapping/remapping work. |
| 381 | * |
| 382 | * The goal is to not allocate additional memory but to remap the existing |
| 383 | * pages. In the case of an error the underlying memory is simply released back |
| 384 | * to Xen and not remapped. |
| 385 | */ |
| 386 | static unsigned long __init xen_set_identity_and_remap_chunk( |
| 387 | unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, |
| 388 | unsigned long remap_pfn) |
| 389 | { |
| 390 | unsigned long pfn; |
| 391 | unsigned long i = 0; |
| 392 | unsigned long n = end_pfn - start_pfn; |
| 393 | |
| 394 | if (remap_pfn == 0) |
| 395 | remap_pfn = nr_pages; |
| 396 | |
| 397 | while (i < n) { |
| 398 | unsigned long cur_pfn = start_pfn + i; |
| 399 | unsigned long left = n - i; |
| 400 | unsigned long size = left; |
| 401 | unsigned long remap_range_size; |
| 402 | |
| 403 | /* Do not remap pages beyond the current allocation */ |
| 404 | if (cur_pfn >= nr_pages) { |
| 405 | /* Identity map remaining pages */ |
| 406 | set_phys_range_identity(cur_pfn, cur_pfn + size); |
| 407 | break; |
| 408 | } |
| 409 | if (cur_pfn + size > nr_pages) |
| 410 | size = nr_pages - cur_pfn; |
| 411 | |
| 412 | remap_range_size = xen_find_pfn_range(&remap_pfn); |
| 413 | if (!remap_range_size) { |
| 414 | pr_warning("Unable to find available pfn range, not remapping identity pages\n"); |
| 415 | xen_set_identity_and_release_chunk(cur_pfn, |
| 416 | cur_pfn + left, nr_pages); |
| 417 | break; |
| 418 | } |
| 419 | /* Adjust size to fit in current e820 RAM region */ |
| 420 | if (size > remap_range_size) |
| 421 | size = remap_range_size; |
| 422 | |
| 423 | xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn); |
| 424 | |
| 425 | /* Update variables to reflect new mappings. */ |
| 426 | i += size; |
| 427 | remap_pfn += size; |
| 428 | } |
| 429 | |
| 430 | /* |
| 431 | * If the PFNs are currently mapped, the VA mapping also needs |
| 432 | * to be updated to be 1:1. |
| 433 | */ |
| 434 | for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++) |
| 435 | (void)HYPERVISOR_update_va_mapping( |
| 436 | (unsigned long)__va(pfn << PAGE_SHIFT), |
| 437 | mfn_pte(pfn, PAGE_KERNEL_IO), 0); |
| 438 | |
| 439 | return remap_pfn; |
| 440 | } |
| 441 | |
| 442 | static unsigned long __init xen_count_remap_pages( |
| 443 | unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, |
| 444 | unsigned long remap_pages) |
| 445 | { |
| 446 | if (start_pfn >= nr_pages) |
| 447 | return remap_pages; |
| 448 | |
| 449 | return remap_pages + min(end_pfn, nr_pages) - start_pfn; |
| 450 | } |
| 451 | |
| 452 | static unsigned long __init xen_foreach_remap_area(unsigned long nr_pages, |
| 453 | unsigned long (*func)(unsigned long start_pfn, unsigned long end_pfn, |
| 454 | unsigned long nr_pages, unsigned long last_val)) |
| 455 | { |
| 456 | phys_addr_t start = 0; |
| 457 | unsigned long ret_val = 0; |
| 458 | const struct e820_entry *entry = xen_e820_table.entries; |
| 459 | int i; |
| 460 | |
| 461 | /* |
| 462 | * Combine non-RAM regions and gaps until a RAM region (or the |
| 463 | * end of the map) is reached, then call the provided function |
| 464 | * to perform its duty on the non-RAM region. |
| 465 | * |
| 466 | * The combined non-RAM regions are rounded to a whole number |
| 467 | * of pages so any partial pages are accessible via the 1:1 |
| 468 | * mapping. This is needed for some BIOSes that put (for |
| 469 | * example) the DMI tables in a reserved region that begins on |
| 470 | * a non-page boundary. |
| 471 | */ |
| 472 | for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { |
| 473 | phys_addr_t end = entry->addr + entry->size; |
| 474 | if (entry->type == E820_TYPE_RAM || i == xen_e820_table.nr_entries - 1) { |
| 475 | unsigned long start_pfn = PFN_DOWN(start); |
| 476 | unsigned long end_pfn = PFN_UP(end); |
| 477 | |
| 478 | if (entry->type == E820_TYPE_RAM) |
| 479 | end_pfn = PFN_UP(entry->addr); |
| 480 | |
| 481 | if (start_pfn < end_pfn) |
| 482 | ret_val = func(start_pfn, end_pfn, nr_pages, |
| 483 | ret_val); |
| 484 | start = end; |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | return ret_val; |
| 489 | } |
| 490 | |
| 491 | /* |
| 492 | * Remap the memory prepared in xen_do_set_identity_and_remap_chunk(). |
| 493 | * The remap information (which mfn remap to which pfn) is contained in the |
| 494 | * to be remapped memory itself in a linked list anchored at xen_remap_mfn. |
| 495 | * This scheme allows to remap the different chunks in arbitrary order while |
| 496 | * the resulting mapping will be independant from the order. |
| 497 | */ |
| 498 | void __init xen_remap_memory(void) |
| 499 | { |
| 500 | unsigned long buf = (unsigned long)&xen_remap_buf; |
| 501 | unsigned long mfn_save, pfn; |
| 502 | unsigned long remapped = 0; |
| 503 | unsigned int i; |
| 504 | unsigned long pfn_s = ~0UL; |
| 505 | unsigned long len = 0; |
| 506 | |
| 507 | mfn_save = virt_to_mfn(buf); |
| 508 | |
| 509 | while (xen_remap_mfn != INVALID_P2M_ENTRY) { |
| 510 | /* Map the remap information */ |
| 511 | set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL); |
| 512 | |
| 513 | BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]); |
| 514 | |
| 515 | pfn = xen_remap_buf.target_pfn; |
| 516 | for (i = 0; i < xen_remap_buf.size; i++) { |
| 517 | xen_update_mem_tables(pfn, xen_remap_buf.mfns[i]); |
| 518 | remapped++; |
| 519 | pfn++; |
| 520 | } |
| 521 | if (pfn_s == ~0UL || pfn == pfn_s) { |
| 522 | pfn_s = xen_remap_buf.target_pfn; |
| 523 | len += xen_remap_buf.size; |
| 524 | } else if (pfn_s + len == xen_remap_buf.target_pfn) { |
| 525 | len += xen_remap_buf.size; |
| 526 | } else { |
| 527 | xen_del_extra_mem(pfn_s, len); |
| 528 | pfn_s = xen_remap_buf.target_pfn; |
| 529 | len = xen_remap_buf.size; |
| 530 | } |
| 531 | xen_remap_mfn = xen_remap_buf.next_area_mfn; |
| 532 | } |
| 533 | |
| 534 | if (pfn_s != ~0UL && len) |
| 535 | xen_del_extra_mem(pfn_s, len); |
| 536 | |
| 537 | set_pte_mfn(buf, mfn_save, PAGE_KERNEL); |
| 538 | |
| 539 | pr_info("Remapped %ld page(s)\n", remapped); |
| 540 | } |
| 541 | |
| 542 | static unsigned long __init xen_get_pages_limit(void) |
| 543 | { |
| 544 | unsigned long limit; |
| 545 | |
| 546 | #ifdef CONFIG_X86_32 |
| 547 | limit = GB(64) / PAGE_SIZE; |
| 548 | #else |
| 549 | limit = MAXMEM / PAGE_SIZE; |
| 550 | if (!xen_initial_domain() && xen_512gb_limit) |
| 551 | limit = GB(512) / PAGE_SIZE; |
| 552 | #endif |
| 553 | return limit; |
| 554 | } |
| 555 | |
| 556 | static unsigned long __init xen_get_max_pages(void) |
| 557 | { |
| 558 | unsigned long max_pages, limit; |
| 559 | domid_t domid = DOMID_SELF; |
| 560 | long ret; |
| 561 | |
| 562 | limit = xen_get_pages_limit(); |
| 563 | max_pages = limit; |
| 564 | |
| 565 | /* |
| 566 | * For the initial domain we use the maximum reservation as |
| 567 | * the maximum page. |
| 568 | * |
| 569 | * For guest domains the current maximum reservation reflects |
| 570 | * the current maximum rather than the static maximum. In this |
| 571 | * case the e820 map provided to us will cover the static |
| 572 | * maximum region. |
| 573 | */ |
| 574 | if (xen_initial_domain()) { |
| 575 | ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid); |
| 576 | if (ret > 0) |
| 577 | max_pages = ret; |
| 578 | } |
| 579 | |
| 580 | return min(max_pages, limit); |
| 581 | } |
| 582 | |
| 583 | static void __init xen_align_and_add_e820_region(phys_addr_t start, |
| 584 | phys_addr_t size, int type) |
| 585 | { |
| 586 | phys_addr_t end = start + size; |
| 587 | |
| 588 | /* Align RAM regions to page boundaries. */ |
| 589 | if (type == E820_TYPE_RAM) { |
| 590 | start = PAGE_ALIGN(start); |
| 591 | end &= ~((phys_addr_t)PAGE_SIZE - 1); |
| 592 | } |
| 593 | |
| 594 | e820__range_add(start, end - start, type); |
| 595 | } |
| 596 | |
| 597 | static void __init xen_ignore_unusable(void) |
| 598 | { |
| 599 | struct e820_entry *entry = xen_e820_table.entries; |
| 600 | unsigned int i; |
| 601 | |
| 602 | for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { |
| 603 | if (entry->type == E820_TYPE_UNUSABLE) |
| 604 | entry->type = E820_TYPE_RAM; |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size) |
| 609 | { |
| 610 | struct e820_entry *entry; |
| 611 | unsigned mapcnt; |
| 612 | phys_addr_t end; |
| 613 | |
| 614 | if (!size) |
| 615 | return false; |
| 616 | |
| 617 | end = start + size; |
| 618 | entry = xen_e820_table.entries; |
| 619 | |
| 620 | for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++) { |
| 621 | if (entry->type == E820_TYPE_RAM && entry->addr <= start && |
| 622 | (entry->addr + entry->size) >= end) |
| 623 | return false; |
| 624 | |
| 625 | entry++; |
| 626 | } |
| 627 | |
| 628 | return true; |
| 629 | } |
| 630 | |
| 631 | /* |
| 632 | * Find a free area in physical memory not yet reserved and compliant with |
| 633 | * E820 map. |
| 634 | * Used to relocate pre-allocated areas like initrd or p2m list which are in |
| 635 | * conflict with the to be used E820 map. |
| 636 | * In case no area is found, return 0. Otherwise return the physical address |
| 637 | * of the area which is already reserved for convenience. |
| 638 | */ |
| 639 | phys_addr_t __init xen_find_free_area(phys_addr_t size) |
| 640 | { |
| 641 | unsigned mapcnt; |
| 642 | phys_addr_t addr, start; |
| 643 | struct e820_entry *entry = xen_e820_table.entries; |
| 644 | |
| 645 | for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++, entry++) { |
| 646 | if (entry->type != E820_TYPE_RAM || entry->size < size) |
| 647 | continue; |
| 648 | start = entry->addr; |
| 649 | for (addr = start; addr < start + size; addr += PAGE_SIZE) { |
| 650 | if (!memblock_is_reserved(addr)) |
| 651 | continue; |
| 652 | start = addr + PAGE_SIZE; |
| 653 | if (start + size > entry->addr + entry->size) |
| 654 | break; |
| 655 | } |
| 656 | if (addr >= start + size) { |
| 657 | memblock_reserve(start, size); |
| 658 | return start; |
| 659 | } |
| 660 | } |
| 661 | |
| 662 | return 0; |
| 663 | } |
| 664 | |
| 665 | /* |
| 666 | * Like memcpy, but with physical addresses for dest and src. |
| 667 | */ |
| 668 | static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src, |
| 669 | phys_addr_t n) |
| 670 | { |
| 671 | phys_addr_t dest_off, src_off, dest_len, src_len, len; |
| 672 | void *from, *to; |
| 673 | |
| 674 | while (n) { |
| 675 | dest_off = dest & ~PAGE_MASK; |
| 676 | src_off = src & ~PAGE_MASK; |
| 677 | dest_len = n; |
| 678 | if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off) |
| 679 | dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off; |
| 680 | src_len = n; |
| 681 | if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off) |
| 682 | src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off; |
| 683 | len = min(dest_len, src_len); |
| 684 | to = early_memremap(dest - dest_off, dest_len + dest_off); |
| 685 | from = early_memremap(src - src_off, src_len + src_off); |
| 686 | memcpy(to, from, len); |
| 687 | early_memunmap(to, dest_len + dest_off); |
| 688 | early_memunmap(from, src_len + src_off); |
| 689 | n -= len; |
| 690 | dest += len; |
| 691 | src += len; |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | /* |
| 696 | * Reserve Xen mfn_list. |
| 697 | */ |
| 698 | static void __init xen_reserve_xen_mfnlist(void) |
| 699 | { |
| 700 | phys_addr_t start, size; |
| 701 | |
| 702 | if (xen_start_info->mfn_list >= __START_KERNEL_map) { |
| 703 | start = __pa(xen_start_info->mfn_list); |
| 704 | size = PFN_ALIGN(xen_start_info->nr_pages * |
| 705 | sizeof(unsigned long)); |
| 706 | } else { |
| 707 | start = PFN_PHYS(xen_start_info->first_p2m_pfn); |
| 708 | size = PFN_PHYS(xen_start_info->nr_p2m_frames); |
| 709 | } |
| 710 | |
| 711 | memblock_reserve(start, size); |
| 712 | if (!xen_is_e820_reserved(start, size)) |
| 713 | return; |
| 714 | |
| 715 | #ifdef CONFIG_X86_32 |
| 716 | /* |
| 717 | * Relocating the p2m on 32 bit system to an arbitrary virtual address |
| 718 | * is not supported, so just give up. |
| 719 | */ |
| 720 | xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n"); |
| 721 | BUG(); |
| 722 | #else |
| 723 | xen_relocate_p2m(); |
| 724 | memblock_free(start, size); |
| 725 | #endif |
| 726 | } |
| 727 | |
| 728 | /** |
| 729 | * machine_specific_memory_setup - Hook for machine specific memory setup. |
| 730 | **/ |
| 731 | char * __init xen_memory_setup(void) |
| 732 | { |
| 733 | unsigned long max_pfn, pfn_s, n_pfns; |
| 734 | phys_addr_t mem_end, addr, size, chunk_size; |
| 735 | u32 type; |
| 736 | int rc; |
| 737 | struct xen_memory_map memmap; |
| 738 | unsigned long max_pages; |
| 739 | unsigned long extra_pages = 0; |
| 740 | int i; |
| 741 | int op; |
| 742 | |
| 743 | xen_parse_512gb(); |
| 744 | max_pfn = xen_get_pages_limit(); |
| 745 | max_pfn = min(max_pfn, xen_start_info->nr_pages); |
| 746 | mem_end = PFN_PHYS(max_pfn); |
| 747 | |
| 748 | memmap.nr_entries = ARRAY_SIZE(xen_e820_table.entries); |
| 749 | set_xen_guest_handle(memmap.buffer, xen_e820_table.entries); |
| 750 | |
| 751 | op = xen_initial_domain() ? |
| 752 | XENMEM_machine_memory_map : |
| 753 | XENMEM_memory_map; |
| 754 | rc = HYPERVISOR_memory_op(op, &memmap); |
| 755 | if (rc == -ENOSYS) { |
| 756 | BUG_ON(xen_initial_domain()); |
| 757 | memmap.nr_entries = 1; |
| 758 | xen_e820_table.entries[0].addr = 0ULL; |
| 759 | xen_e820_table.entries[0].size = mem_end; |
| 760 | /* 8MB slack (to balance backend allocations). */ |
| 761 | xen_e820_table.entries[0].size += 8ULL << 20; |
| 762 | xen_e820_table.entries[0].type = E820_TYPE_RAM; |
| 763 | rc = 0; |
| 764 | } |
| 765 | BUG_ON(rc); |
| 766 | BUG_ON(memmap.nr_entries == 0); |
| 767 | xen_e820_table.nr_entries = memmap.nr_entries; |
| 768 | |
| 769 | /* |
| 770 | * Xen won't allow a 1:1 mapping to be created to UNUSABLE |
| 771 | * regions, so if we're using the machine memory map leave the |
| 772 | * region as RAM as it is in the pseudo-physical map. |
| 773 | * |
| 774 | * UNUSABLE regions in domUs are not handled and will need |
| 775 | * a patch in the future. |
| 776 | */ |
| 777 | if (xen_initial_domain()) |
| 778 | xen_ignore_unusable(); |
| 779 | |
| 780 | /* Make sure the Xen-supplied memory map is well-ordered. */ |
| 781 | e820__update_table(&xen_e820_table); |
| 782 | |
| 783 | max_pages = xen_get_max_pages(); |
| 784 | |
| 785 | /* How many extra pages do we need due to remapping? */ |
| 786 | max_pages += xen_foreach_remap_area(max_pfn, xen_count_remap_pages); |
| 787 | |
| 788 | if (max_pages > max_pfn) |
| 789 | extra_pages += max_pages - max_pfn; |
| 790 | |
| 791 | /* |
| 792 | * Clamp the amount of extra memory to a EXTRA_MEM_RATIO |
| 793 | * factor the base size. On non-highmem systems, the base |
| 794 | * size is the full initial memory allocation; on highmem it |
| 795 | * is limited to the max size of lowmem, so that it doesn't |
| 796 | * get completely filled. |
| 797 | * |
| 798 | * Make sure we have no memory above max_pages, as this area |
| 799 | * isn't handled by the p2m management. |
| 800 | * |
| 801 | * In principle there could be a problem in lowmem systems if |
| 802 | * the initial memory is also very large with respect to |
| 803 | * lowmem, but we won't try to deal with that here. |
| 804 | */ |
| 805 | extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)), |
| 806 | extra_pages, max_pages - max_pfn); |
| 807 | i = 0; |
| 808 | addr = xen_e820_table.entries[0].addr; |
| 809 | size = xen_e820_table.entries[0].size; |
| 810 | while (i < xen_e820_table.nr_entries) { |
| 811 | bool discard = false; |
| 812 | |
| 813 | chunk_size = size; |
| 814 | type = xen_e820_table.entries[i].type; |
| 815 | |
| 816 | if (type == E820_TYPE_RAM) { |
| 817 | if (addr < mem_end) { |
| 818 | chunk_size = min(size, mem_end - addr); |
| 819 | } else if (extra_pages) { |
| 820 | chunk_size = min(size, PFN_PHYS(extra_pages)); |
| 821 | pfn_s = PFN_UP(addr); |
| 822 | n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s; |
| 823 | extra_pages -= n_pfns; |
| 824 | xen_add_extra_mem(pfn_s, n_pfns); |
| 825 | xen_max_p2m_pfn = pfn_s + n_pfns; |
| 826 | } else |
| 827 | discard = true; |
| 828 | } |
| 829 | |
| 830 | if (!discard) |
| 831 | xen_align_and_add_e820_region(addr, chunk_size, type); |
| 832 | |
| 833 | addr += chunk_size; |
| 834 | size -= chunk_size; |
| 835 | if (size == 0) { |
| 836 | i++; |
| 837 | if (i < xen_e820_table.nr_entries) { |
| 838 | addr = xen_e820_table.entries[i].addr; |
| 839 | size = xen_e820_table.entries[i].size; |
| 840 | } |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | /* |
| 845 | * Set the rest as identity mapped, in case PCI BARs are |
| 846 | * located here. |
| 847 | */ |
| 848 | set_phys_range_identity(addr / PAGE_SIZE, ~0ul); |
| 849 | |
| 850 | /* |
| 851 | * In domU, the ISA region is normal, usable memory, but we |
| 852 | * reserve ISA memory anyway because too many things poke |
| 853 | * about in there. |
| 854 | */ |
| 855 | e820__range_add(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, E820_TYPE_RESERVED); |
| 856 | |
| 857 | e820__update_table(e820_table); |
| 858 | |
| 859 | /* |
| 860 | * Check whether the kernel itself conflicts with the target E820 map. |
| 861 | * Failing now is better than running into weird problems later due |
| 862 | * to relocating (and even reusing) pages with kernel text or data. |
| 863 | */ |
| 864 | if (xen_is_e820_reserved(__pa_symbol(_text), |
| 865 | __pa_symbol(__bss_stop) - __pa_symbol(_text))) { |
| 866 | xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n"); |
| 867 | BUG(); |
| 868 | } |
| 869 | |
| 870 | /* |
| 871 | * Check for a conflict of the hypervisor supplied page tables with |
| 872 | * the target E820 map. |
| 873 | */ |
| 874 | xen_pt_check_e820(); |
| 875 | |
| 876 | xen_reserve_xen_mfnlist(); |
| 877 | |
| 878 | /* Check for a conflict of the initrd with the target E820 map. */ |
| 879 | if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image, |
| 880 | boot_params.hdr.ramdisk_size)) { |
| 881 | phys_addr_t new_area, start, size; |
| 882 | |
| 883 | new_area = xen_find_free_area(boot_params.hdr.ramdisk_size); |
| 884 | if (!new_area) { |
| 885 | xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n"); |
| 886 | BUG(); |
| 887 | } |
| 888 | |
| 889 | start = boot_params.hdr.ramdisk_image; |
| 890 | size = boot_params.hdr.ramdisk_size; |
| 891 | xen_phys_memcpy(new_area, start, size); |
| 892 | pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n", |
| 893 | start, start + size, new_area, new_area + size); |
| 894 | memblock_free(start, size); |
| 895 | boot_params.hdr.ramdisk_image = new_area; |
| 896 | boot_params.ext_ramdisk_image = new_area >> 32; |
| 897 | } |
| 898 | |
| 899 | /* |
| 900 | * Set identity map on non-RAM pages and prepare remapping the |
| 901 | * underlying RAM. |
| 902 | */ |
| 903 | xen_foreach_remap_area(max_pfn, xen_set_identity_and_remap_chunk); |
| 904 | |
| 905 | pr_info("Released %ld page(s)\n", xen_released_pages); |
| 906 | |
| 907 | return "Xen"; |
| 908 | } |
| 909 | |
| 910 | /* |
| 911 | * Set the bit indicating "nosegneg" library variants should be used. |
| 912 | * We only need to bother in pure 32-bit mode; compat 32-bit processes |
| 913 | * can have un-truncated segments, so wrapping around is allowed. |
| 914 | */ |
| 915 | static void __init fiddle_vdso(void) |
| 916 | { |
| 917 | #ifdef CONFIG_X86_32 |
| 918 | u32 *mask = vdso_image_32.data + |
| 919 | vdso_image_32.sym_VDSO32_NOTE_MASK; |
| 920 | *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT; |
| 921 | #endif |
| 922 | } |
| 923 | |
| 924 | static int register_callback(unsigned type, const void *func) |
| 925 | { |
| 926 | struct callback_register callback = { |
| 927 | .type = type, |
| 928 | .address = XEN_CALLBACK(__KERNEL_CS, func), |
| 929 | .flags = CALLBACKF_mask_events, |
| 930 | }; |
| 931 | |
| 932 | return HYPERVISOR_callback_op(CALLBACKOP_register, &callback); |
| 933 | } |
| 934 | |
| 935 | void xen_enable_sysenter(void) |
| 936 | { |
| 937 | int ret; |
| 938 | unsigned sysenter_feature; |
| 939 | |
| 940 | #ifdef CONFIG_X86_32 |
| 941 | sysenter_feature = X86_FEATURE_SEP; |
| 942 | #else |
| 943 | sysenter_feature = X86_FEATURE_SYSENTER32; |
| 944 | #endif |
| 945 | |
| 946 | if (!boot_cpu_has(sysenter_feature)) |
| 947 | return; |
| 948 | |
| 949 | ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target); |
| 950 | if(ret != 0) |
| 951 | setup_clear_cpu_cap(sysenter_feature); |
| 952 | } |
| 953 | |
| 954 | void xen_enable_syscall(void) |
| 955 | { |
| 956 | #ifdef CONFIG_X86_64 |
| 957 | int ret; |
| 958 | |
| 959 | ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target); |
| 960 | if (ret != 0) { |
| 961 | printk(KERN_ERR "Failed to set syscall callback: %d\n", ret); |
| 962 | /* Pretty fatal; 64-bit userspace has no other |
| 963 | mechanism for syscalls. */ |
| 964 | } |
| 965 | |
| 966 | if (boot_cpu_has(X86_FEATURE_SYSCALL32)) { |
| 967 | ret = register_callback(CALLBACKTYPE_syscall32, |
| 968 | xen_syscall32_target); |
| 969 | if (ret != 0) |
| 970 | setup_clear_cpu_cap(X86_FEATURE_SYSCALL32); |
| 971 | } |
| 972 | #endif /* CONFIG_X86_64 */ |
| 973 | } |
| 974 | |
| 975 | void __init xen_pvmmu_arch_setup(void) |
| 976 | { |
| 977 | HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments); |
| 978 | HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables); |
| 979 | |
| 980 | HYPERVISOR_vm_assist(VMASST_CMD_enable, |
| 981 | VMASST_TYPE_pae_extended_cr3); |
| 982 | |
| 983 | if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) || |
| 984 | register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback)) |
| 985 | BUG(); |
| 986 | |
| 987 | xen_enable_sysenter(); |
| 988 | xen_enable_syscall(); |
| 989 | } |
| 990 | |
| 991 | /* This function is not called for HVM domains */ |
| 992 | void __init xen_arch_setup(void) |
| 993 | { |
| 994 | xen_panic_handler_init(); |
| 995 | xen_pvmmu_arch_setup(); |
| 996 | |
| 997 | #ifdef CONFIG_ACPI |
| 998 | if (!(xen_start_info->flags & SIF_INITDOMAIN)) { |
| 999 | printk(KERN_INFO "ACPI in unprivileged domain disabled\n"); |
| 1000 | disable_acpi(); |
| 1001 | } |
| 1002 | #endif |
| 1003 | |
| 1004 | memcpy(boot_command_line, xen_start_info->cmd_line, |
| 1005 | MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ? |
| 1006 | COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE); |
| 1007 | |
| 1008 | /* Set up idle, making sure it calls safe_halt() pvop */ |
| 1009 | disable_cpuidle(); |
| 1010 | disable_cpufreq(); |
| 1011 | WARN_ON(xen_set_default_idle()); |
| 1012 | fiddle_vdso(); |
| 1013 | #ifdef CONFIG_NUMA |
| 1014 | numa_off = 1; |
| 1015 | #endif |
| 1016 | } |