Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Kernel-based Virtual Machine driver for Linux |
| 3 | * |
| 4 | * AMD SVM support |
| 5 | * |
| 6 | * Copyright (C) 2006 Qumranet, Inc. |
| 7 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| 8 | * |
| 9 | * Authors: |
| 10 | * Yaniv Kamay <yaniv@qumranet.com> |
| 11 | * Avi Kivity <avi@qumranet.com> |
| 12 | * |
| 13 | * This work is licensed under the terms of the GNU GPL, version 2. See |
| 14 | * the COPYING file in the top-level directory. |
| 15 | * |
| 16 | */ |
| 17 | |
| 18 | #define pr_fmt(fmt) "SVM: " fmt |
| 19 | |
| 20 | #include <linux/kvm_host.h> |
| 21 | |
| 22 | #include "irq.h" |
| 23 | #include "mmu.h" |
| 24 | #include "kvm_cache_regs.h" |
| 25 | #include "x86.h" |
| 26 | #include "cpuid.h" |
| 27 | #include "pmu.h" |
| 28 | |
| 29 | #include <linux/module.h> |
| 30 | #include <linux/mod_devicetable.h> |
| 31 | #include <linux/kernel.h> |
| 32 | #include <linux/vmalloc.h> |
| 33 | #include <linux/highmem.h> |
| 34 | #include <linux/sched.h> |
| 35 | #include <linux/trace_events.h> |
| 36 | #include <linux/slab.h> |
| 37 | #include <linux/amd-iommu.h> |
| 38 | #include <linux/hashtable.h> |
| 39 | #include <linux/frame.h> |
| 40 | #include <linux/psp-sev.h> |
| 41 | #include <linux/file.h> |
| 42 | #include <linux/pagemap.h> |
| 43 | #include <linux/swap.h> |
| 44 | |
| 45 | #include <asm/apic.h> |
| 46 | #include <asm/perf_event.h> |
| 47 | #include <asm/tlbflush.h> |
| 48 | #include <asm/desc.h> |
| 49 | #include <asm/debugreg.h> |
| 50 | #include <asm/kvm_para.h> |
| 51 | #include <asm/irq_remapping.h> |
| 52 | #include <asm/spec-ctrl.h> |
| 53 | |
| 54 | #include <asm/virtext.h> |
| 55 | #include "trace.h" |
| 56 | |
| 57 | #define __ex(x) __kvm_handle_fault_on_reboot(x) |
| 58 | |
| 59 | MODULE_AUTHOR("Qumranet"); |
| 60 | MODULE_LICENSE("GPL"); |
| 61 | |
| 62 | static const struct x86_cpu_id svm_cpu_id[] = { |
| 63 | X86_FEATURE_MATCH(X86_FEATURE_SVM), |
| 64 | {} |
| 65 | }; |
| 66 | MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); |
| 67 | |
| 68 | #define IOPM_ALLOC_ORDER 2 |
| 69 | #define MSRPM_ALLOC_ORDER 1 |
| 70 | |
| 71 | #define SEG_TYPE_LDT 2 |
| 72 | #define SEG_TYPE_BUSY_TSS16 3 |
| 73 | |
| 74 | #define SVM_FEATURE_NPT (1 << 0) |
| 75 | #define SVM_FEATURE_LBRV (1 << 1) |
| 76 | #define SVM_FEATURE_SVML (1 << 2) |
| 77 | #define SVM_FEATURE_NRIP (1 << 3) |
| 78 | #define SVM_FEATURE_TSC_RATE (1 << 4) |
| 79 | #define SVM_FEATURE_VMCB_CLEAN (1 << 5) |
| 80 | #define SVM_FEATURE_FLUSH_ASID (1 << 6) |
| 81 | #define SVM_FEATURE_DECODE_ASSIST (1 << 7) |
| 82 | #define SVM_FEATURE_PAUSE_FILTER (1 << 10) |
| 83 | |
| 84 | #define SVM_AVIC_DOORBELL 0xc001011b |
| 85 | |
| 86 | #define NESTED_EXIT_HOST 0 /* Exit handled on host level */ |
| 87 | #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */ |
| 88 | #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */ |
| 89 | |
| 90 | #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) |
| 91 | |
| 92 | #define TSC_RATIO_RSVD 0xffffff0000000000ULL |
| 93 | #define TSC_RATIO_MIN 0x0000000000000001ULL |
| 94 | #define TSC_RATIO_MAX 0x000000ffffffffffULL |
| 95 | |
| 96 | #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF) |
| 97 | |
| 98 | /* |
| 99 | * 0xff is broadcast, so the max index allowed for physical APIC ID |
| 100 | * table is 0xfe. APIC IDs above 0xff are reserved. |
| 101 | */ |
| 102 | #define AVIC_MAX_PHYSICAL_ID_COUNT 255 |
| 103 | |
| 104 | #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1 |
| 105 | #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0 |
| 106 | #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF |
| 107 | |
| 108 | /* AVIC GATAG is encoded using VM and VCPU IDs */ |
| 109 | #define AVIC_VCPU_ID_BITS 8 |
| 110 | #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1) |
| 111 | |
| 112 | #define AVIC_VM_ID_BITS 24 |
| 113 | #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS) |
| 114 | #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1) |
| 115 | |
| 116 | #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \ |
| 117 | (y & AVIC_VCPU_ID_MASK)) |
| 118 | #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK) |
| 119 | #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK) |
| 120 | |
| 121 | static bool erratum_383_found __read_mostly; |
| 122 | |
| 123 | static const u32 host_save_user_msrs[] = { |
| 124 | #ifdef CONFIG_X86_64 |
| 125 | MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE, |
| 126 | MSR_FS_BASE, |
| 127 | #endif |
| 128 | MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, |
| 129 | MSR_TSC_AUX, |
| 130 | }; |
| 131 | |
| 132 | #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs) |
| 133 | |
| 134 | struct kvm_sev_info { |
| 135 | bool active; /* SEV enabled guest */ |
| 136 | unsigned int asid; /* ASID used for this guest */ |
| 137 | unsigned int handle; /* SEV firmware handle */ |
| 138 | int fd; /* SEV device fd */ |
| 139 | unsigned long pages_locked; /* Number of pages locked */ |
| 140 | struct list_head regions_list; /* List of registered regions */ |
| 141 | }; |
| 142 | |
| 143 | struct kvm_svm { |
| 144 | struct kvm kvm; |
| 145 | |
| 146 | /* Struct members for AVIC */ |
| 147 | u32 avic_vm_id; |
| 148 | u32 ldr_mode; |
| 149 | struct page *avic_logical_id_table_page; |
| 150 | struct page *avic_physical_id_table_page; |
| 151 | struct hlist_node hnode; |
| 152 | |
| 153 | struct kvm_sev_info sev_info; |
| 154 | }; |
| 155 | |
| 156 | struct kvm_vcpu; |
| 157 | |
| 158 | struct nested_state { |
| 159 | struct vmcb *hsave; |
| 160 | u64 hsave_msr; |
| 161 | u64 vm_cr_msr; |
| 162 | u64 vmcb; |
| 163 | |
| 164 | /* These are the merged vectors */ |
| 165 | u32 *msrpm; |
| 166 | |
| 167 | /* gpa pointers to the real vectors */ |
| 168 | u64 vmcb_msrpm; |
| 169 | u64 vmcb_iopm; |
| 170 | |
| 171 | /* A VMEXIT is required but not yet emulated */ |
| 172 | bool exit_required; |
| 173 | |
| 174 | /* cache for intercepts of the guest */ |
| 175 | u32 intercept_cr; |
| 176 | u32 intercept_dr; |
| 177 | u32 intercept_exceptions; |
| 178 | u64 intercept; |
| 179 | |
| 180 | /* Nested Paging related state */ |
| 181 | u64 nested_cr3; |
| 182 | }; |
| 183 | |
| 184 | #define MSRPM_OFFSETS 16 |
| 185 | static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; |
| 186 | |
| 187 | /* |
| 188 | * Set osvw_len to higher value when updated Revision Guides |
| 189 | * are published and we know what the new status bits are |
| 190 | */ |
| 191 | static uint64_t osvw_len = 4, osvw_status; |
| 192 | |
| 193 | struct vcpu_svm { |
| 194 | struct kvm_vcpu vcpu; |
| 195 | struct vmcb *vmcb; |
| 196 | unsigned long vmcb_pa; |
| 197 | struct svm_cpu_data *svm_data; |
| 198 | uint64_t asid_generation; |
| 199 | uint64_t sysenter_esp; |
| 200 | uint64_t sysenter_eip; |
| 201 | uint64_t tsc_aux; |
| 202 | |
| 203 | u64 msr_decfg; |
| 204 | |
| 205 | u64 next_rip; |
| 206 | |
| 207 | u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS]; |
| 208 | struct { |
| 209 | u16 fs; |
| 210 | u16 gs; |
| 211 | u16 ldt; |
| 212 | u64 gs_base; |
| 213 | } host; |
| 214 | |
| 215 | u64 spec_ctrl; |
| 216 | /* |
| 217 | * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be |
| 218 | * translated into the appropriate L2_CFG bits on the host to |
| 219 | * perform speculative control. |
| 220 | */ |
| 221 | u64 virt_spec_ctrl; |
| 222 | |
| 223 | u32 *msrpm; |
| 224 | |
| 225 | ulong nmi_iret_rip; |
| 226 | |
| 227 | struct nested_state nested; |
| 228 | |
| 229 | bool nmi_singlestep; |
| 230 | u64 nmi_singlestep_guest_rflags; |
| 231 | |
| 232 | unsigned int3_injected; |
| 233 | unsigned long int3_rip; |
| 234 | |
| 235 | /* cached guest cpuid flags for faster access */ |
| 236 | bool nrips_enabled : 1; |
| 237 | |
| 238 | u32 ldr_reg; |
| 239 | struct page *avic_backing_page; |
| 240 | u64 *avic_physical_id_cache; |
| 241 | bool avic_is_running; |
| 242 | |
| 243 | /* |
| 244 | * Per-vcpu list of struct amd_svm_iommu_ir: |
| 245 | * This is used mainly to store interrupt remapping information used |
| 246 | * when update the vcpu affinity. This avoids the need to scan for |
| 247 | * IRTE and try to match ga_tag in the IOMMU driver. |
| 248 | */ |
| 249 | struct list_head ir_list; |
| 250 | spinlock_t ir_list_lock; |
| 251 | |
| 252 | /* which host CPU was used for running this vcpu */ |
| 253 | unsigned int last_cpu; |
| 254 | }; |
| 255 | |
| 256 | /* |
| 257 | * This is a wrapper of struct amd_iommu_ir_data. |
| 258 | */ |
| 259 | struct amd_svm_iommu_ir { |
| 260 | struct list_head node; /* Used by SVM for per-vcpu ir_list */ |
| 261 | void *data; /* Storing pointer to struct amd_ir_data */ |
| 262 | }; |
| 263 | |
| 264 | #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF) |
| 265 | #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31) |
| 266 | |
| 267 | #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL) |
| 268 | #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12) |
| 269 | #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62) |
| 270 | #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63) |
| 271 | |
| 272 | static DEFINE_PER_CPU(u64, current_tsc_ratio); |
| 273 | #define TSC_RATIO_DEFAULT 0x0100000000ULL |
| 274 | |
| 275 | #define MSR_INVALID 0xffffffffU |
| 276 | |
| 277 | static const struct svm_direct_access_msrs { |
| 278 | u32 index; /* Index of the MSR */ |
| 279 | bool always; /* True if intercept is always on */ |
| 280 | } direct_access_msrs[] = { |
| 281 | { .index = MSR_STAR, .always = true }, |
| 282 | { .index = MSR_IA32_SYSENTER_CS, .always = true }, |
| 283 | #ifdef CONFIG_X86_64 |
| 284 | { .index = MSR_GS_BASE, .always = true }, |
| 285 | { .index = MSR_FS_BASE, .always = true }, |
| 286 | { .index = MSR_KERNEL_GS_BASE, .always = true }, |
| 287 | { .index = MSR_LSTAR, .always = true }, |
| 288 | { .index = MSR_CSTAR, .always = true }, |
| 289 | { .index = MSR_SYSCALL_MASK, .always = true }, |
| 290 | #endif |
| 291 | { .index = MSR_IA32_SPEC_CTRL, .always = false }, |
| 292 | { .index = MSR_IA32_PRED_CMD, .always = false }, |
| 293 | { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, |
| 294 | { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, |
| 295 | { .index = MSR_IA32_LASTINTFROMIP, .always = false }, |
| 296 | { .index = MSR_IA32_LASTINTTOIP, .always = false }, |
| 297 | { .index = MSR_INVALID, .always = false }, |
| 298 | }; |
| 299 | |
| 300 | /* enable NPT for AMD64 and X86 with PAE */ |
| 301 | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) |
| 302 | static bool npt_enabled = true; |
| 303 | #else |
| 304 | static bool npt_enabled; |
| 305 | #endif |
| 306 | |
| 307 | /* |
| 308 | * These 2 parameters are used to config the controls for Pause-Loop Exiting: |
| 309 | * pause_filter_count: On processors that support Pause filtering(indicated |
| 310 | * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter |
| 311 | * count value. On VMRUN this value is loaded into an internal counter. |
| 312 | * Each time a pause instruction is executed, this counter is decremented |
| 313 | * until it reaches zero at which time a #VMEXIT is generated if pause |
| 314 | * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause |
| 315 | * Intercept Filtering for more details. |
| 316 | * This also indicate if ple logic enabled. |
| 317 | * |
| 318 | * pause_filter_thresh: In addition, some processor families support advanced |
| 319 | * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on |
| 320 | * the amount of time a guest is allowed to execute in a pause loop. |
| 321 | * In this mode, a 16-bit pause filter threshold field is added in the |
| 322 | * VMCB. The threshold value is a cycle count that is used to reset the |
| 323 | * pause counter. As with simple pause filtering, VMRUN loads the pause |
| 324 | * count value from VMCB into an internal counter. Then, on each pause |
| 325 | * instruction the hardware checks the elapsed number of cycles since |
| 326 | * the most recent pause instruction against the pause filter threshold. |
| 327 | * If the elapsed cycle count is greater than the pause filter threshold, |
| 328 | * then the internal pause count is reloaded from the VMCB and execution |
| 329 | * continues. If the elapsed cycle count is less than the pause filter |
| 330 | * threshold, then the internal pause count is decremented. If the count |
| 331 | * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is |
| 332 | * triggered. If advanced pause filtering is supported and pause filter |
| 333 | * threshold field is set to zero, the filter will operate in the simpler, |
| 334 | * count only mode. |
| 335 | */ |
| 336 | |
| 337 | static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; |
| 338 | module_param(pause_filter_thresh, ushort, 0444); |
| 339 | |
| 340 | static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; |
| 341 | module_param(pause_filter_count, ushort, 0444); |
| 342 | |
| 343 | /* Default doubles per-vcpu window every exit. */ |
| 344 | static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; |
| 345 | module_param(pause_filter_count_grow, ushort, 0444); |
| 346 | |
| 347 | /* Default resets per-vcpu window every exit to pause_filter_count. */ |
| 348 | static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; |
| 349 | module_param(pause_filter_count_shrink, ushort, 0444); |
| 350 | |
| 351 | /* Default is to compute the maximum so we can never overflow. */ |
| 352 | static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; |
| 353 | module_param(pause_filter_count_max, ushort, 0444); |
| 354 | |
| 355 | /* allow nested paging (virtualized MMU) for all guests */ |
| 356 | static int npt = true; |
| 357 | module_param(npt, int, S_IRUGO); |
| 358 | |
| 359 | /* allow nested virtualization in KVM/SVM */ |
| 360 | static int nested = true; |
| 361 | module_param(nested, int, S_IRUGO); |
| 362 | |
| 363 | /* enable / disable AVIC */ |
| 364 | static int avic; |
| 365 | #ifdef CONFIG_X86_LOCAL_APIC |
| 366 | module_param(avic, int, S_IRUGO); |
| 367 | #endif |
| 368 | |
| 369 | /* enable/disable Virtual VMLOAD VMSAVE */ |
| 370 | static int vls = true; |
| 371 | module_param(vls, int, 0444); |
| 372 | |
| 373 | /* enable/disable Virtual GIF */ |
| 374 | static int vgif = true; |
| 375 | module_param(vgif, int, 0444); |
| 376 | |
| 377 | /* enable/disable SEV support */ |
| 378 | static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); |
| 379 | module_param(sev, int, 0444); |
| 380 | |
| 381 | static u8 rsm_ins_bytes[] = "\x0f\xaa"; |
| 382 | |
| 383 | static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); |
| 384 | static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa); |
| 385 | static void svm_complete_interrupts(struct vcpu_svm *svm); |
| 386 | |
| 387 | static int nested_svm_exit_handled(struct vcpu_svm *svm); |
| 388 | static int nested_svm_intercept(struct vcpu_svm *svm); |
| 389 | static int nested_svm_vmexit(struct vcpu_svm *svm); |
| 390 | static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, |
| 391 | bool has_error_code, u32 error_code); |
| 392 | |
| 393 | enum { |
| 394 | VMCB_INTERCEPTS, /* Intercept vectors, TSC offset, |
| 395 | pause filter count */ |
| 396 | VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */ |
| 397 | VMCB_ASID, /* ASID */ |
| 398 | VMCB_INTR, /* int_ctl, int_vector */ |
| 399 | VMCB_NPT, /* npt_en, nCR3, gPAT */ |
| 400 | VMCB_CR, /* CR0, CR3, CR4, EFER */ |
| 401 | VMCB_DR, /* DR6, DR7 */ |
| 402 | VMCB_DT, /* GDT, IDT */ |
| 403 | VMCB_SEG, /* CS, DS, SS, ES, CPL */ |
| 404 | VMCB_CR2, /* CR2 only */ |
| 405 | VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */ |
| 406 | VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE, |
| 407 | * AVIC PHYSICAL_TABLE pointer, |
| 408 | * AVIC LOGICAL_TABLE pointer |
| 409 | */ |
| 410 | VMCB_DIRTY_MAX, |
| 411 | }; |
| 412 | |
| 413 | /* TPR and CR2 are always written before VMRUN */ |
| 414 | #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2)) |
| 415 | |
| 416 | #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL |
| 417 | |
| 418 | static unsigned int max_sev_asid; |
| 419 | static unsigned int min_sev_asid; |
| 420 | static unsigned long *sev_asid_bitmap; |
| 421 | #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT) |
| 422 | |
| 423 | struct enc_region { |
| 424 | struct list_head list; |
| 425 | unsigned long npages; |
| 426 | struct page **pages; |
| 427 | unsigned long uaddr; |
| 428 | unsigned long size; |
| 429 | }; |
| 430 | |
| 431 | |
| 432 | static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm) |
| 433 | { |
| 434 | return container_of(kvm, struct kvm_svm, kvm); |
| 435 | } |
| 436 | |
| 437 | static inline bool svm_sev_enabled(void) |
| 438 | { |
| 439 | return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0; |
| 440 | } |
| 441 | |
| 442 | static inline bool sev_guest(struct kvm *kvm) |
| 443 | { |
| 444 | #ifdef CONFIG_KVM_AMD_SEV |
| 445 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 446 | |
| 447 | return sev->active; |
| 448 | #else |
| 449 | return false; |
| 450 | #endif |
| 451 | } |
| 452 | |
| 453 | static inline int sev_get_asid(struct kvm *kvm) |
| 454 | { |
| 455 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 456 | |
| 457 | return sev->asid; |
| 458 | } |
| 459 | |
| 460 | static inline void mark_all_dirty(struct vmcb *vmcb) |
| 461 | { |
| 462 | vmcb->control.clean = 0; |
| 463 | } |
| 464 | |
| 465 | static inline void mark_all_clean(struct vmcb *vmcb) |
| 466 | { |
| 467 | vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1) |
| 468 | & ~VMCB_ALWAYS_DIRTY_MASK; |
| 469 | } |
| 470 | |
| 471 | static inline void mark_dirty(struct vmcb *vmcb, int bit) |
| 472 | { |
| 473 | vmcb->control.clean &= ~(1 << bit); |
| 474 | } |
| 475 | |
| 476 | static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) |
| 477 | { |
| 478 | return container_of(vcpu, struct vcpu_svm, vcpu); |
| 479 | } |
| 480 | |
| 481 | static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data) |
| 482 | { |
| 483 | svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK; |
| 484 | mark_dirty(svm->vmcb, VMCB_AVIC); |
| 485 | } |
| 486 | |
| 487 | static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu) |
| 488 | { |
| 489 | struct vcpu_svm *svm = to_svm(vcpu); |
| 490 | u64 *entry = svm->avic_physical_id_cache; |
| 491 | |
| 492 | if (!entry) |
| 493 | return false; |
| 494 | |
| 495 | return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); |
| 496 | } |
| 497 | |
| 498 | static void recalc_intercepts(struct vcpu_svm *svm) |
| 499 | { |
| 500 | struct vmcb_control_area *c, *h; |
| 501 | struct nested_state *g; |
| 502 | |
| 503 | mark_dirty(svm->vmcb, VMCB_INTERCEPTS); |
| 504 | |
| 505 | if (!is_guest_mode(&svm->vcpu)) |
| 506 | return; |
| 507 | |
| 508 | c = &svm->vmcb->control; |
| 509 | h = &svm->nested.hsave->control; |
| 510 | g = &svm->nested; |
| 511 | |
| 512 | c->intercept_cr = h->intercept_cr | g->intercept_cr; |
| 513 | c->intercept_dr = h->intercept_dr | g->intercept_dr; |
| 514 | c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions; |
| 515 | c->intercept = h->intercept | g->intercept; |
| 516 | } |
| 517 | |
| 518 | static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm) |
| 519 | { |
| 520 | if (is_guest_mode(&svm->vcpu)) |
| 521 | return svm->nested.hsave; |
| 522 | else |
| 523 | return svm->vmcb; |
| 524 | } |
| 525 | |
| 526 | static inline void set_cr_intercept(struct vcpu_svm *svm, int bit) |
| 527 | { |
| 528 | struct vmcb *vmcb = get_host_vmcb(svm); |
| 529 | |
| 530 | vmcb->control.intercept_cr |= (1U << bit); |
| 531 | |
| 532 | recalc_intercepts(svm); |
| 533 | } |
| 534 | |
| 535 | static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit) |
| 536 | { |
| 537 | struct vmcb *vmcb = get_host_vmcb(svm); |
| 538 | |
| 539 | vmcb->control.intercept_cr &= ~(1U << bit); |
| 540 | |
| 541 | recalc_intercepts(svm); |
| 542 | } |
| 543 | |
| 544 | static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit) |
| 545 | { |
| 546 | struct vmcb *vmcb = get_host_vmcb(svm); |
| 547 | |
| 548 | return vmcb->control.intercept_cr & (1U << bit); |
| 549 | } |
| 550 | |
| 551 | static inline void set_dr_intercepts(struct vcpu_svm *svm) |
| 552 | { |
| 553 | struct vmcb *vmcb = get_host_vmcb(svm); |
| 554 | |
| 555 | vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ) |
| 556 | | (1 << INTERCEPT_DR1_READ) |
| 557 | | (1 << INTERCEPT_DR2_READ) |
| 558 | | (1 << INTERCEPT_DR3_READ) |
| 559 | | (1 << INTERCEPT_DR4_READ) |
| 560 | | (1 << INTERCEPT_DR5_READ) |
| 561 | | (1 << INTERCEPT_DR6_READ) |
| 562 | | (1 << INTERCEPT_DR7_READ) |
| 563 | | (1 << INTERCEPT_DR0_WRITE) |
| 564 | | (1 << INTERCEPT_DR1_WRITE) |
| 565 | | (1 << INTERCEPT_DR2_WRITE) |
| 566 | | (1 << INTERCEPT_DR3_WRITE) |
| 567 | | (1 << INTERCEPT_DR4_WRITE) |
| 568 | | (1 << INTERCEPT_DR5_WRITE) |
| 569 | | (1 << INTERCEPT_DR6_WRITE) |
| 570 | | (1 << INTERCEPT_DR7_WRITE); |
| 571 | |
| 572 | recalc_intercepts(svm); |
| 573 | } |
| 574 | |
| 575 | static inline void clr_dr_intercepts(struct vcpu_svm *svm) |
| 576 | { |
| 577 | struct vmcb *vmcb = get_host_vmcb(svm); |
| 578 | |
| 579 | vmcb->control.intercept_dr = 0; |
| 580 | |
| 581 | recalc_intercepts(svm); |
| 582 | } |
| 583 | |
| 584 | static inline void set_exception_intercept(struct vcpu_svm *svm, int bit) |
| 585 | { |
| 586 | struct vmcb *vmcb = get_host_vmcb(svm); |
| 587 | |
| 588 | vmcb->control.intercept_exceptions |= (1U << bit); |
| 589 | |
| 590 | recalc_intercepts(svm); |
| 591 | } |
| 592 | |
| 593 | static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit) |
| 594 | { |
| 595 | struct vmcb *vmcb = get_host_vmcb(svm); |
| 596 | |
| 597 | vmcb->control.intercept_exceptions &= ~(1U << bit); |
| 598 | |
| 599 | recalc_intercepts(svm); |
| 600 | } |
| 601 | |
| 602 | static inline void set_intercept(struct vcpu_svm *svm, int bit) |
| 603 | { |
| 604 | struct vmcb *vmcb = get_host_vmcb(svm); |
| 605 | |
| 606 | vmcb->control.intercept |= (1ULL << bit); |
| 607 | |
| 608 | recalc_intercepts(svm); |
| 609 | } |
| 610 | |
| 611 | static inline void clr_intercept(struct vcpu_svm *svm, int bit) |
| 612 | { |
| 613 | struct vmcb *vmcb = get_host_vmcb(svm); |
| 614 | |
| 615 | vmcb->control.intercept &= ~(1ULL << bit); |
| 616 | |
| 617 | recalc_intercepts(svm); |
| 618 | } |
| 619 | |
| 620 | static inline bool vgif_enabled(struct vcpu_svm *svm) |
| 621 | { |
| 622 | return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK); |
| 623 | } |
| 624 | |
| 625 | static inline void enable_gif(struct vcpu_svm *svm) |
| 626 | { |
| 627 | if (vgif_enabled(svm)) |
| 628 | svm->vmcb->control.int_ctl |= V_GIF_MASK; |
| 629 | else |
| 630 | svm->vcpu.arch.hflags |= HF_GIF_MASK; |
| 631 | } |
| 632 | |
| 633 | static inline void disable_gif(struct vcpu_svm *svm) |
| 634 | { |
| 635 | if (vgif_enabled(svm)) |
| 636 | svm->vmcb->control.int_ctl &= ~V_GIF_MASK; |
| 637 | else |
| 638 | svm->vcpu.arch.hflags &= ~HF_GIF_MASK; |
| 639 | } |
| 640 | |
| 641 | static inline bool gif_set(struct vcpu_svm *svm) |
| 642 | { |
| 643 | if (vgif_enabled(svm)) |
| 644 | return !!(svm->vmcb->control.int_ctl & V_GIF_MASK); |
| 645 | else |
| 646 | return !!(svm->vcpu.arch.hflags & HF_GIF_MASK); |
| 647 | } |
| 648 | |
| 649 | static unsigned long iopm_base; |
| 650 | |
| 651 | struct kvm_ldttss_desc { |
| 652 | u16 limit0; |
| 653 | u16 base0; |
| 654 | unsigned base1:8, type:5, dpl:2, p:1; |
| 655 | unsigned limit1:4, zero0:3, g:1, base2:8; |
| 656 | u32 base3; |
| 657 | u32 zero1; |
| 658 | } __attribute__((packed)); |
| 659 | |
| 660 | struct svm_cpu_data { |
| 661 | int cpu; |
| 662 | |
| 663 | u64 asid_generation; |
| 664 | u32 max_asid; |
| 665 | u32 next_asid; |
| 666 | u32 min_asid; |
| 667 | struct kvm_ldttss_desc *tss_desc; |
| 668 | |
| 669 | struct page *save_area; |
| 670 | struct vmcb *current_vmcb; |
| 671 | |
| 672 | /* index = sev_asid, value = vmcb pointer */ |
| 673 | struct vmcb **sev_vmcbs; |
| 674 | }; |
| 675 | |
| 676 | static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); |
| 677 | |
| 678 | struct svm_init_data { |
| 679 | int cpu; |
| 680 | int r; |
| 681 | }; |
| 682 | |
| 683 | static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; |
| 684 | |
| 685 | #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) |
| 686 | #define MSRS_RANGE_SIZE 2048 |
| 687 | #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) |
| 688 | |
| 689 | static u32 svm_msrpm_offset(u32 msr) |
| 690 | { |
| 691 | u32 offset; |
| 692 | int i; |
| 693 | |
| 694 | for (i = 0; i < NUM_MSR_MAPS; i++) { |
| 695 | if (msr < msrpm_ranges[i] || |
| 696 | msr >= msrpm_ranges[i] + MSRS_IN_RANGE) |
| 697 | continue; |
| 698 | |
| 699 | offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ |
| 700 | offset += (i * MSRS_RANGE_SIZE); /* add range offset */ |
| 701 | |
| 702 | /* Now we have the u8 offset - but need the u32 offset */ |
| 703 | return offset / 4; |
| 704 | } |
| 705 | |
| 706 | /* MSR not in any range */ |
| 707 | return MSR_INVALID; |
| 708 | } |
| 709 | |
| 710 | #define MAX_INST_SIZE 15 |
| 711 | |
| 712 | static inline void clgi(void) |
| 713 | { |
| 714 | asm volatile (__ex(SVM_CLGI)); |
| 715 | } |
| 716 | |
| 717 | static inline void stgi(void) |
| 718 | { |
| 719 | asm volatile (__ex(SVM_STGI)); |
| 720 | } |
| 721 | |
| 722 | static inline void invlpga(unsigned long addr, u32 asid) |
| 723 | { |
| 724 | asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid)); |
| 725 | } |
| 726 | |
| 727 | static int get_npt_level(struct kvm_vcpu *vcpu) |
| 728 | { |
| 729 | #ifdef CONFIG_X86_64 |
| 730 | return PT64_ROOT_4LEVEL; |
| 731 | #else |
| 732 | return PT32E_ROOT_LEVEL; |
| 733 | #endif |
| 734 | } |
| 735 | |
| 736 | static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) |
| 737 | { |
| 738 | vcpu->arch.efer = efer; |
| 739 | if (!npt_enabled && !(efer & EFER_LMA)) |
| 740 | efer &= ~EFER_LME; |
| 741 | |
| 742 | to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME; |
| 743 | mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); |
| 744 | } |
| 745 | |
| 746 | static int is_external_interrupt(u32 info) |
| 747 | { |
| 748 | info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; |
| 749 | return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); |
| 750 | } |
| 751 | |
| 752 | static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) |
| 753 | { |
| 754 | struct vcpu_svm *svm = to_svm(vcpu); |
| 755 | u32 ret = 0; |
| 756 | |
| 757 | if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) |
| 758 | ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; |
| 759 | return ret; |
| 760 | } |
| 761 | |
| 762 | static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) |
| 763 | { |
| 764 | struct vcpu_svm *svm = to_svm(vcpu); |
| 765 | |
| 766 | if (mask == 0) |
| 767 | svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; |
| 768 | else |
| 769 | svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; |
| 770 | |
| 771 | } |
| 772 | |
| 773 | static void skip_emulated_instruction(struct kvm_vcpu *vcpu) |
| 774 | { |
| 775 | struct vcpu_svm *svm = to_svm(vcpu); |
| 776 | |
| 777 | if (svm->vmcb->control.next_rip != 0) { |
| 778 | WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); |
| 779 | svm->next_rip = svm->vmcb->control.next_rip; |
| 780 | } |
| 781 | |
| 782 | if (!svm->next_rip) { |
| 783 | if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) != |
| 784 | EMULATE_DONE) |
| 785 | printk(KERN_DEBUG "%s: NOP\n", __func__); |
| 786 | return; |
| 787 | } |
| 788 | if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE) |
| 789 | printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n", |
| 790 | __func__, kvm_rip_read(vcpu), svm->next_rip); |
| 791 | |
| 792 | kvm_rip_write(vcpu, svm->next_rip); |
| 793 | svm_set_interrupt_shadow(vcpu, 0); |
| 794 | } |
| 795 | |
| 796 | static void svm_queue_exception(struct kvm_vcpu *vcpu) |
| 797 | { |
| 798 | struct vcpu_svm *svm = to_svm(vcpu); |
| 799 | unsigned nr = vcpu->arch.exception.nr; |
| 800 | bool has_error_code = vcpu->arch.exception.has_error_code; |
| 801 | bool reinject = vcpu->arch.exception.injected; |
| 802 | u32 error_code = vcpu->arch.exception.error_code; |
| 803 | |
| 804 | /* |
| 805 | * If we are within a nested VM we'd better #VMEXIT and let the guest |
| 806 | * handle the exception |
| 807 | */ |
| 808 | if (!reinject && |
| 809 | nested_svm_check_exception(svm, nr, has_error_code, error_code)) |
| 810 | return; |
| 811 | |
| 812 | if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) { |
| 813 | unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); |
| 814 | |
| 815 | /* |
| 816 | * For guest debugging where we have to reinject #BP if some |
| 817 | * INT3 is guest-owned: |
| 818 | * Emulate nRIP by moving RIP forward. Will fail if injection |
| 819 | * raises a fault that is not intercepted. Still better than |
| 820 | * failing in all cases. |
| 821 | */ |
| 822 | skip_emulated_instruction(&svm->vcpu); |
| 823 | rip = kvm_rip_read(&svm->vcpu); |
| 824 | svm->int3_rip = rip + svm->vmcb->save.cs.base; |
| 825 | svm->int3_injected = rip - old_rip; |
| 826 | } |
| 827 | |
| 828 | svm->vmcb->control.event_inj = nr |
| 829 | | SVM_EVTINJ_VALID |
| 830 | | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) |
| 831 | | SVM_EVTINJ_TYPE_EXEPT; |
| 832 | svm->vmcb->control.event_inj_err = error_code; |
| 833 | } |
| 834 | |
| 835 | static void svm_init_erratum_383(void) |
| 836 | { |
| 837 | u32 low, high; |
| 838 | int err; |
| 839 | u64 val; |
| 840 | |
| 841 | if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) |
| 842 | return; |
| 843 | |
| 844 | /* Use _safe variants to not break nested virtualization */ |
| 845 | val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); |
| 846 | if (err) |
| 847 | return; |
| 848 | |
| 849 | val |= (1ULL << 47); |
| 850 | |
| 851 | low = lower_32_bits(val); |
| 852 | high = upper_32_bits(val); |
| 853 | |
| 854 | native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); |
| 855 | |
| 856 | erratum_383_found = true; |
| 857 | } |
| 858 | |
| 859 | static void svm_init_osvw(struct kvm_vcpu *vcpu) |
| 860 | { |
| 861 | /* |
| 862 | * Guests should see errata 400 and 415 as fixed (assuming that |
| 863 | * HLT and IO instructions are intercepted). |
| 864 | */ |
| 865 | vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; |
| 866 | vcpu->arch.osvw.status = osvw_status & ~(6ULL); |
| 867 | |
| 868 | /* |
| 869 | * By increasing VCPU's osvw.length to 3 we are telling the guest that |
| 870 | * all osvw.status bits inside that length, including bit 0 (which is |
| 871 | * reserved for erratum 298), are valid. However, if host processor's |
| 872 | * osvw_len is 0 then osvw_status[0] carries no information. We need to |
| 873 | * be conservative here and therefore we tell the guest that erratum 298 |
| 874 | * is present (because we really don't know). |
| 875 | */ |
| 876 | if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) |
| 877 | vcpu->arch.osvw.status |= 1; |
| 878 | } |
| 879 | |
| 880 | static int has_svm(void) |
| 881 | { |
| 882 | const char *msg; |
| 883 | |
| 884 | if (!cpu_has_svm(&msg)) { |
| 885 | printk(KERN_INFO "has_svm: %s\n", msg); |
| 886 | return 0; |
| 887 | } |
| 888 | |
| 889 | return 1; |
| 890 | } |
| 891 | |
| 892 | static void svm_hardware_disable(void) |
| 893 | { |
| 894 | /* Make sure we clean up behind us */ |
| 895 | if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) |
| 896 | wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); |
| 897 | |
| 898 | cpu_svm_disable(); |
| 899 | |
| 900 | amd_pmu_disable_virt(); |
| 901 | } |
| 902 | |
| 903 | static int svm_hardware_enable(void) |
| 904 | { |
| 905 | |
| 906 | struct svm_cpu_data *sd; |
| 907 | uint64_t efer; |
| 908 | struct desc_struct *gdt; |
| 909 | int me = raw_smp_processor_id(); |
| 910 | |
| 911 | rdmsrl(MSR_EFER, efer); |
| 912 | if (efer & EFER_SVME) |
| 913 | return -EBUSY; |
| 914 | |
| 915 | if (!has_svm()) { |
| 916 | pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); |
| 917 | return -EINVAL; |
| 918 | } |
| 919 | sd = per_cpu(svm_data, me); |
| 920 | if (!sd) { |
| 921 | pr_err("%s: svm_data is NULL on %d\n", __func__, me); |
| 922 | return -EINVAL; |
| 923 | } |
| 924 | |
| 925 | sd->asid_generation = 1; |
| 926 | sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; |
| 927 | sd->next_asid = sd->max_asid + 1; |
| 928 | sd->min_asid = max_sev_asid + 1; |
| 929 | |
| 930 | gdt = get_current_gdt_rw(); |
| 931 | sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); |
| 932 | |
| 933 | wrmsrl(MSR_EFER, efer | EFER_SVME); |
| 934 | |
| 935 | wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT); |
| 936 | |
| 937 | if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { |
| 938 | wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); |
| 939 | __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); |
| 940 | } |
| 941 | |
| 942 | |
| 943 | /* |
| 944 | * Get OSVW bits. |
| 945 | * |
| 946 | * Note that it is possible to have a system with mixed processor |
| 947 | * revisions and therefore different OSVW bits. If bits are not the same |
| 948 | * on different processors then choose the worst case (i.e. if erratum |
| 949 | * is present on one processor and not on another then assume that the |
| 950 | * erratum is present everywhere). |
| 951 | */ |
| 952 | if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { |
| 953 | uint64_t len, status = 0; |
| 954 | int err; |
| 955 | |
| 956 | len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); |
| 957 | if (!err) |
| 958 | status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, |
| 959 | &err); |
| 960 | |
| 961 | if (err) |
| 962 | osvw_status = osvw_len = 0; |
| 963 | else { |
| 964 | if (len < osvw_len) |
| 965 | osvw_len = len; |
| 966 | osvw_status |= status; |
| 967 | osvw_status &= (1ULL << osvw_len) - 1; |
| 968 | } |
| 969 | } else |
| 970 | osvw_status = osvw_len = 0; |
| 971 | |
| 972 | svm_init_erratum_383(); |
| 973 | |
| 974 | amd_pmu_enable_virt(); |
| 975 | |
| 976 | return 0; |
| 977 | } |
| 978 | |
| 979 | static void svm_cpu_uninit(int cpu) |
| 980 | { |
| 981 | struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id()); |
| 982 | |
| 983 | if (!sd) |
| 984 | return; |
| 985 | |
| 986 | per_cpu(svm_data, raw_smp_processor_id()) = NULL; |
| 987 | kfree(sd->sev_vmcbs); |
| 988 | __free_page(sd->save_area); |
| 989 | kfree(sd); |
| 990 | } |
| 991 | |
| 992 | static int svm_cpu_init(int cpu) |
| 993 | { |
| 994 | struct svm_cpu_data *sd; |
| 995 | int r; |
| 996 | |
| 997 | sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); |
| 998 | if (!sd) |
| 999 | return -ENOMEM; |
| 1000 | sd->cpu = cpu; |
| 1001 | r = -ENOMEM; |
| 1002 | sd->save_area = alloc_page(GFP_KERNEL); |
| 1003 | if (!sd->save_area) |
| 1004 | goto err_1; |
| 1005 | |
| 1006 | if (svm_sev_enabled()) { |
| 1007 | r = -ENOMEM; |
| 1008 | sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1, |
| 1009 | sizeof(void *), |
| 1010 | GFP_KERNEL); |
| 1011 | if (!sd->sev_vmcbs) |
| 1012 | goto err_1; |
| 1013 | } |
| 1014 | |
| 1015 | per_cpu(svm_data, cpu) = sd; |
| 1016 | |
| 1017 | return 0; |
| 1018 | |
| 1019 | err_1: |
| 1020 | kfree(sd); |
| 1021 | return r; |
| 1022 | |
| 1023 | } |
| 1024 | |
| 1025 | static bool valid_msr_intercept(u32 index) |
| 1026 | { |
| 1027 | int i; |
| 1028 | |
| 1029 | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) |
| 1030 | if (direct_access_msrs[i].index == index) |
| 1031 | return true; |
| 1032 | |
| 1033 | return false; |
| 1034 | } |
| 1035 | |
| 1036 | static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr) |
| 1037 | { |
| 1038 | u8 bit_write; |
| 1039 | unsigned long tmp; |
| 1040 | u32 offset; |
| 1041 | u32 *msrpm; |
| 1042 | |
| 1043 | msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: |
| 1044 | to_svm(vcpu)->msrpm; |
| 1045 | |
| 1046 | offset = svm_msrpm_offset(msr); |
| 1047 | bit_write = 2 * (msr & 0x0f) + 1; |
| 1048 | tmp = msrpm[offset]; |
| 1049 | |
| 1050 | BUG_ON(offset == MSR_INVALID); |
| 1051 | |
| 1052 | return !!test_bit(bit_write, &tmp); |
| 1053 | } |
| 1054 | |
| 1055 | static void set_msr_interception(u32 *msrpm, unsigned msr, |
| 1056 | int read, int write) |
| 1057 | { |
| 1058 | u8 bit_read, bit_write; |
| 1059 | unsigned long tmp; |
| 1060 | u32 offset; |
| 1061 | |
| 1062 | /* |
| 1063 | * If this warning triggers extend the direct_access_msrs list at the |
| 1064 | * beginning of the file |
| 1065 | */ |
| 1066 | WARN_ON(!valid_msr_intercept(msr)); |
| 1067 | |
| 1068 | offset = svm_msrpm_offset(msr); |
| 1069 | bit_read = 2 * (msr & 0x0f); |
| 1070 | bit_write = 2 * (msr & 0x0f) + 1; |
| 1071 | tmp = msrpm[offset]; |
| 1072 | |
| 1073 | BUG_ON(offset == MSR_INVALID); |
| 1074 | |
| 1075 | read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); |
| 1076 | write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); |
| 1077 | |
| 1078 | msrpm[offset] = tmp; |
| 1079 | } |
| 1080 | |
| 1081 | static void svm_vcpu_init_msrpm(u32 *msrpm) |
| 1082 | { |
| 1083 | int i; |
| 1084 | |
| 1085 | memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); |
| 1086 | |
| 1087 | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { |
| 1088 | if (!direct_access_msrs[i].always) |
| 1089 | continue; |
| 1090 | |
| 1091 | set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1); |
| 1092 | } |
| 1093 | } |
| 1094 | |
| 1095 | static void add_msr_offset(u32 offset) |
| 1096 | { |
| 1097 | int i; |
| 1098 | |
| 1099 | for (i = 0; i < MSRPM_OFFSETS; ++i) { |
| 1100 | |
| 1101 | /* Offset already in list? */ |
| 1102 | if (msrpm_offsets[i] == offset) |
| 1103 | return; |
| 1104 | |
| 1105 | /* Slot used by another offset? */ |
| 1106 | if (msrpm_offsets[i] != MSR_INVALID) |
| 1107 | continue; |
| 1108 | |
| 1109 | /* Add offset to list */ |
| 1110 | msrpm_offsets[i] = offset; |
| 1111 | |
| 1112 | return; |
| 1113 | } |
| 1114 | |
| 1115 | /* |
| 1116 | * If this BUG triggers the msrpm_offsets table has an overflow. Just |
| 1117 | * increase MSRPM_OFFSETS in this case. |
| 1118 | */ |
| 1119 | BUG(); |
| 1120 | } |
| 1121 | |
| 1122 | static void init_msrpm_offsets(void) |
| 1123 | { |
| 1124 | int i; |
| 1125 | |
| 1126 | memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); |
| 1127 | |
| 1128 | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { |
| 1129 | u32 offset; |
| 1130 | |
| 1131 | offset = svm_msrpm_offset(direct_access_msrs[i].index); |
| 1132 | BUG_ON(offset == MSR_INVALID); |
| 1133 | |
| 1134 | add_msr_offset(offset); |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | static void svm_enable_lbrv(struct vcpu_svm *svm) |
| 1139 | { |
| 1140 | u32 *msrpm = svm->msrpm; |
| 1141 | |
| 1142 | svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; |
| 1143 | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); |
| 1144 | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); |
| 1145 | set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); |
| 1146 | set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1); |
| 1147 | } |
| 1148 | |
| 1149 | static void svm_disable_lbrv(struct vcpu_svm *svm) |
| 1150 | { |
| 1151 | u32 *msrpm = svm->msrpm; |
| 1152 | |
| 1153 | svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; |
| 1154 | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); |
| 1155 | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); |
| 1156 | set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); |
| 1157 | set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0); |
| 1158 | } |
| 1159 | |
| 1160 | static void disable_nmi_singlestep(struct vcpu_svm *svm) |
| 1161 | { |
| 1162 | svm->nmi_singlestep = false; |
| 1163 | |
| 1164 | if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { |
| 1165 | /* Clear our flags if they were not set by the guest */ |
| 1166 | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) |
| 1167 | svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; |
| 1168 | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) |
| 1169 | svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; |
| 1170 | } |
| 1171 | } |
| 1172 | |
| 1173 | /* Note: |
| 1174 | * This hash table is used to map VM_ID to a struct kvm_svm, |
| 1175 | * when handling AMD IOMMU GALOG notification to schedule in |
| 1176 | * a particular vCPU. |
| 1177 | */ |
| 1178 | #define SVM_VM_DATA_HASH_BITS 8 |
| 1179 | static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS); |
| 1180 | static u32 next_vm_id = 0; |
| 1181 | static bool next_vm_id_wrapped = 0; |
| 1182 | static DEFINE_SPINLOCK(svm_vm_data_hash_lock); |
| 1183 | |
| 1184 | /* Note: |
| 1185 | * This function is called from IOMMU driver to notify |
| 1186 | * SVM to schedule in a particular vCPU of a particular VM. |
| 1187 | */ |
| 1188 | static int avic_ga_log_notifier(u32 ga_tag) |
| 1189 | { |
| 1190 | unsigned long flags; |
| 1191 | struct kvm_svm *kvm_svm; |
| 1192 | struct kvm_vcpu *vcpu = NULL; |
| 1193 | u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag); |
| 1194 | u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag); |
| 1195 | |
| 1196 | pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id); |
| 1197 | |
| 1198 | spin_lock_irqsave(&svm_vm_data_hash_lock, flags); |
| 1199 | hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) { |
| 1200 | if (kvm_svm->avic_vm_id != vm_id) |
| 1201 | continue; |
| 1202 | vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id); |
| 1203 | break; |
| 1204 | } |
| 1205 | spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); |
| 1206 | |
| 1207 | /* Note: |
| 1208 | * At this point, the IOMMU should have already set the pending |
| 1209 | * bit in the vAPIC backing page. So, we just need to schedule |
| 1210 | * in the vcpu. |
| 1211 | */ |
| 1212 | if (vcpu) |
| 1213 | kvm_vcpu_wake_up(vcpu); |
| 1214 | |
| 1215 | return 0; |
| 1216 | } |
| 1217 | |
| 1218 | static __init int sev_hardware_setup(void) |
| 1219 | { |
| 1220 | struct sev_user_data_status *status; |
| 1221 | int rc; |
| 1222 | |
| 1223 | /* Maximum number of encrypted guests supported simultaneously */ |
| 1224 | max_sev_asid = cpuid_ecx(0x8000001F); |
| 1225 | |
| 1226 | if (!max_sev_asid) |
| 1227 | return 1; |
| 1228 | |
| 1229 | /* Minimum ASID value that should be used for SEV guest */ |
| 1230 | min_sev_asid = cpuid_edx(0x8000001F); |
| 1231 | |
| 1232 | /* Initialize SEV ASID bitmap */ |
| 1233 | sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); |
| 1234 | if (!sev_asid_bitmap) |
| 1235 | return 1; |
| 1236 | |
| 1237 | status = kmalloc(sizeof(*status), GFP_KERNEL); |
| 1238 | if (!status) |
| 1239 | return 1; |
| 1240 | |
| 1241 | /* |
| 1242 | * Check SEV platform status. |
| 1243 | * |
| 1244 | * PLATFORM_STATUS can be called in any state, if we failed to query |
| 1245 | * the PLATFORM status then either PSP firmware does not support SEV |
| 1246 | * feature or SEV firmware is dead. |
| 1247 | */ |
| 1248 | rc = sev_platform_status(status, NULL); |
| 1249 | if (rc) |
| 1250 | goto err; |
| 1251 | |
| 1252 | pr_info("SEV supported\n"); |
| 1253 | |
| 1254 | err: |
| 1255 | kfree(status); |
| 1256 | return rc; |
| 1257 | } |
| 1258 | |
| 1259 | static void grow_ple_window(struct kvm_vcpu *vcpu) |
| 1260 | { |
| 1261 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1262 | struct vmcb_control_area *control = &svm->vmcb->control; |
| 1263 | int old = control->pause_filter_count; |
| 1264 | |
| 1265 | control->pause_filter_count = __grow_ple_window(old, |
| 1266 | pause_filter_count, |
| 1267 | pause_filter_count_grow, |
| 1268 | pause_filter_count_max); |
| 1269 | |
| 1270 | if (control->pause_filter_count != old) |
| 1271 | mark_dirty(svm->vmcb, VMCB_INTERCEPTS); |
| 1272 | |
| 1273 | trace_kvm_ple_window_grow(vcpu->vcpu_id, |
| 1274 | control->pause_filter_count, old); |
| 1275 | } |
| 1276 | |
| 1277 | static void shrink_ple_window(struct kvm_vcpu *vcpu) |
| 1278 | { |
| 1279 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1280 | struct vmcb_control_area *control = &svm->vmcb->control; |
| 1281 | int old = control->pause_filter_count; |
| 1282 | |
| 1283 | control->pause_filter_count = |
| 1284 | __shrink_ple_window(old, |
| 1285 | pause_filter_count, |
| 1286 | pause_filter_count_shrink, |
| 1287 | pause_filter_count); |
| 1288 | if (control->pause_filter_count != old) |
| 1289 | mark_dirty(svm->vmcb, VMCB_INTERCEPTS); |
| 1290 | |
| 1291 | trace_kvm_ple_window_shrink(vcpu->vcpu_id, |
| 1292 | control->pause_filter_count, old); |
| 1293 | } |
| 1294 | |
| 1295 | static __init int svm_hardware_setup(void) |
| 1296 | { |
| 1297 | int cpu; |
| 1298 | struct page *iopm_pages; |
| 1299 | void *iopm_va; |
| 1300 | int r; |
| 1301 | |
| 1302 | iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); |
| 1303 | |
| 1304 | if (!iopm_pages) |
| 1305 | return -ENOMEM; |
| 1306 | |
| 1307 | iopm_va = page_address(iopm_pages); |
| 1308 | memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); |
| 1309 | iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; |
| 1310 | |
| 1311 | init_msrpm_offsets(); |
| 1312 | |
| 1313 | if (boot_cpu_has(X86_FEATURE_NX)) |
| 1314 | kvm_enable_efer_bits(EFER_NX); |
| 1315 | |
| 1316 | if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) |
| 1317 | kvm_enable_efer_bits(EFER_FFXSR); |
| 1318 | |
| 1319 | if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { |
| 1320 | kvm_has_tsc_control = true; |
| 1321 | kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; |
| 1322 | kvm_tsc_scaling_ratio_frac_bits = 32; |
| 1323 | } |
| 1324 | |
| 1325 | /* Check for pause filtering support */ |
| 1326 | if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { |
| 1327 | pause_filter_count = 0; |
| 1328 | pause_filter_thresh = 0; |
| 1329 | } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { |
| 1330 | pause_filter_thresh = 0; |
| 1331 | } |
| 1332 | |
| 1333 | if (nested) { |
| 1334 | printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); |
| 1335 | kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); |
| 1336 | } |
| 1337 | |
| 1338 | if (sev) { |
| 1339 | if (boot_cpu_has(X86_FEATURE_SEV) && |
| 1340 | IS_ENABLED(CONFIG_KVM_AMD_SEV)) { |
| 1341 | r = sev_hardware_setup(); |
| 1342 | if (r) |
| 1343 | sev = false; |
| 1344 | } else { |
| 1345 | sev = false; |
| 1346 | } |
| 1347 | } |
| 1348 | |
| 1349 | for_each_possible_cpu(cpu) { |
| 1350 | r = svm_cpu_init(cpu); |
| 1351 | if (r) |
| 1352 | goto err; |
| 1353 | } |
| 1354 | |
| 1355 | if (!boot_cpu_has(X86_FEATURE_NPT)) |
| 1356 | npt_enabled = false; |
| 1357 | |
| 1358 | if (npt_enabled && !npt) { |
| 1359 | printk(KERN_INFO "kvm: Nested Paging disabled\n"); |
| 1360 | npt_enabled = false; |
| 1361 | } |
| 1362 | |
| 1363 | if (npt_enabled) { |
| 1364 | printk(KERN_INFO "kvm: Nested Paging enabled\n"); |
| 1365 | kvm_enable_tdp(); |
| 1366 | } else |
| 1367 | kvm_disable_tdp(); |
| 1368 | |
| 1369 | if (avic) { |
| 1370 | if (!npt_enabled || |
| 1371 | !boot_cpu_has(X86_FEATURE_AVIC) || |
| 1372 | !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) { |
| 1373 | avic = false; |
| 1374 | } else { |
| 1375 | pr_info("AVIC enabled\n"); |
| 1376 | |
| 1377 | amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); |
| 1378 | } |
| 1379 | } |
| 1380 | |
| 1381 | if (vls) { |
| 1382 | if (!npt_enabled || |
| 1383 | !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || |
| 1384 | !IS_ENABLED(CONFIG_X86_64)) { |
| 1385 | vls = false; |
| 1386 | } else { |
| 1387 | pr_info("Virtual VMLOAD VMSAVE supported\n"); |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | if (vgif) { |
| 1392 | if (!boot_cpu_has(X86_FEATURE_VGIF)) |
| 1393 | vgif = false; |
| 1394 | else |
| 1395 | pr_info("Virtual GIF supported\n"); |
| 1396 | } |
| 1397 | |
| 1398 | return 0; |
| 1399 | |
| 1400 | err: |
| 1401 | __free_pages(iopm_pages, IOPM_ALLOC_ORDER); |
| 1402 | iopm_base = 0; |
| 1403 | return r; |
| 1404 | } |
| 1405 | |
| 1406 | static __exit void svm_hardware_unsetup(void) |
| 1407 | { |
| 1408 | int cpu; |
| 1409 | |
| 1410 | if (svm_sev_enabled()) |
| 1411 | bitmap_free(sev_asid_bitmap); |
| 1412 | |
| 1413 | for_each_possible_cpu(cpu) |
| 1414 | svm_cpu_uninit(cpu); |
| 1415 | |
| 1416 | __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); |
| 1417 | iopm_base = 0; |
| 1418 | } |
| 1419 | |
| 1420 | static void init_seg(struct vmcb_seg *seg) |
| 1421 | { |
| 1422 | seg->selector = 0; |
| 1423 | seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | |
| 1424 | SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ |
| 1425 | seg->limit = 0xffff; |
| 1426 | seg->base = 0; |
| 1427 | } |
| 1428 | |
| 1429 | static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) |
| 1430 | { |
| 1431 | seg->selector = 0; |
| 1432 | seg->attrib = SVM_SELECTOR_P_MASK | type; |
| 1433 | seg->limit = 0xffff; |
| 1434 | seg->base = 0; |
| 1435 | } |
| 1436 | |
| 1437 | static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu) |
| 1438 | { |
| 1439 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1440 | |
| 1441 | if (is_guest_mode(vcpu)) |
| 1442 | return svm->nested.hsave->control.tsc_offset; |
| 1443 | |
| 1444 | return vcpu->arch.tsc_offset; |
| 1445 | } |
| 1446 | |
| 1447 | static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) |
| 1448 | { |
| 1449 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1450 | u64 g_tsc_offset = 0; |
| 1451 | |
| 1452 | if (is_guest_mode(vcpu)) { |
| 1453 | /* Write L1's TSC offset. */ |
| 1454 | g_tsc_offset = svm->vmcb->control.tsc_offset - |
| 1455 | svm->nested.hsave->control.tsc_offset; |
| 1456 | svm->nested.hsave->control.tsc_offset = offset; |
| 1457 | } else |
| 1458 | trace_kvm_write_tsc_offset(vcpu->vcpu_id, |
| 1459 | svm->vmcb->control.tsc_offset, |
| 1460 | offset); |
| 1461 | |
| 1462 | svm->vmcb->control.tsc_offset = offset + g_tsc_offset; |
| 1463 | |
| 1464 | mark_dirty(svm->vmcb, VMCB_INTERCEPTS); |
| 1465 | return svm->vmcb->control.tsc_offset; |
| 1466 | } |
| 1467 | |
| 1468 | static void avic_init_vmcb(struct vcpu_svm *svm) |
| 1469 | { |
| 1470 | struct vmcb *vmcb = svm->vmcb; |
| 1471 | struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm); |
| 1472 | phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page)); |
| 1473 | phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page)); |
| 1474 | phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page)); |
| 1475 | |
| 1476 | vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK; |
| 1477 | vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK; |
| 1478 | vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK; |
| 1479 | vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT; |
| 1480 | vmcb->control.int_ctl |= AVIC_ENABLE_MASK; |
| 1481 | } |
| 1482 | |
| 1483 | static void init_vmcb(struct vcpu_svm *svm) |
| 1484 | { |
| 1485 | struct vmcb_control_area *control = &svm->vmcb->control; |
| 1486 | struct vmcb_save_area *save = &svm->vmcb->save; |
| 1487 | |
| 1488 | svm->vcpu.arch.hflags = 0; |
| 1489 | |
| 1490 | set_cr_intercept(svm, INTERCEPT_CR0_READ); |
| 1491 | set_cr_intercept(svm, INTERCEPT_CR3_READ); |
| 1492 | set_cr_intercept(svm, INTERCEPT_CR4_READ); |
| 1493 | set_cr_intercept(svm, INTERCEPT_CR0_WRITE); |
| 1494 | set_cr_intercept(svm, INTERCEPT_CR3_WRITE); |
| 1495 | set_cr_intercept(svm, INTERCEPT_CR4_WRITE); |
| 1496 | if (!kvm_vcpu_apicv_active(&svm->vcpu)) |
| 1497 | set_cr_intercept(svm, INTERCEPT_CR8_WRITE); |
| 1498 | |
| 1499 | set_dr_intercepts(svm); |
| 1500 | |
| 1501 | set_exception_intercept(svm, PF_VECTOR); |
| 1502 | set_exception_intercept(svm, UD_VECTOR); |
| 1503 | set_exception_intercept(svm, MC_VECTOR); |
| 1504 | set_exception_intercept(svm, AC_VECTOR); |
| 1505 | set_exception_intercept(svm, DB_VECTOR); |
| 1506 | /* |
| 1507 | * Guest access to VMware backdoor ports could legitimately |
| 1508 | * trigger #GP because of TSS I/O permission bitmap. |
| 1509 | * We intercept those #GP and allow access to them anyway |
| 1510 | * as VMware does. |
| 1511 | */ |
| 1512 | if (enable_vmware_backdoor) |
| 1513 | set_exception_intercept(svm, GP_VECTOR); |
| 1514 | |
| 1515 | set_intercept(svm, INTERCEPT_INTR); |
| 1516 | set_intercept(svm, INTERCEPT_NMI); |
| 1517 | set_intercept(svm, INTERCEPT_SMI); |
| 1518 | set_intercept(svm, INTERCEPT_SELECTIVE_CR0); |
| 1519 | set_intercept(svm, INTERCEPT_RDPMC); |
| 1520 | set_intercept(svm, INTERCEPT_CPUID); |
| 1521 | set_intercept(svm, INTERCEPT_INVD); |
| 1522 | set_intercept(svm, INTERCEPT_INVLPG); |
| 1523 | set_intercept(svm, INTERCEPT_INVLPGA); |
| 1524 | set_intercept(svm, INTERCEPT_IOIO_PROT); |
| 1525 | set_intercept(svm, INTERCEPT_MSR_PROT); |
| 1526 | set_intercept(svm, INTERCEPT_TASK_SWITCH); |
| 1527 | set_intercept(svm, INTERCEPT_SHUTDOWN); |
| 1528 | set_intercept(svm, INTERCEPT_VMRUN); |
| 1529 | set_intercept(svm, INTERCEPT_VMMCALL); |
| 1530 | set_intercept(svm, INTERCEPT_VMLOAD); |
| 1531 | set_intercept(svm, INTERCEPT_VMSAVE); |
| 1532 | set_intercept(svm, INTERCEPT_STGI); |
| 1533 | set_intercept(svm, INTERCEPT_CLGI); |
| 1534 | set_intercept(svm, INTERCEPT_SKINIT); |
| 1535 | set_intercept(svm, INTERCEPT_WBINVD); |
| 1536 | set_intercept(svm, INTERCEPT_XSETBV); |
| 1537 | set_intercept(svm, INTERCEPT_RSM); |
| 1538 | |
| 1539 | if (!kvm_mwait_in_guest(svm->vcpu.kvm)) { |
| 1540 | set_intercept(svm, INTERCEPT_MONITOR); |
| 1541 | set_intercept(svm, INTERCEPT_MWAIT); |
| 1542 | } |
| 1543 | |
| 1544 | if (!kvm_hlt_in_guest(svm->vcpu.kvm)) |
| 1545 | set_intercept(svm, INTERCEPT_HLT); |
| 1546 | |
| 1547 | control->iopm_base_pa = __sme_set(iopm_base); |
| 1548 | control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); |
| 1549 | control->int_ctl = V_INTR_MASKING_MASK; |
| 1550 | |
| 1551 | init_seg(&save->es); |
| 1552 | init_seg(&save->ss); |
| 1553 | init_seg(&save->ds); |
| 1554 | init_seg(&save->fs); |
| 1555 | init_seg(&save->gs); |
| 1556 | |
| 1557 | save->cs.selector = 0xf000; |
| 1558 | save->cs.base = 0xffff0000; |
| 1559 | /* Executable/Readable Code Segment */ |
| 1560 | save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | |
| 1561 | SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; |
| 1562 | save->cs.limit = 0xffff; |
| 1563 | |
| 1564 | save->gdtr.limit = 0xffff; |
| 1565 | save->idtr.limit = 0xffff; |
| 1566 | |
| 1567 | init_sys_seg(&save->ldtr, SEG_TYPE_LDT); |
| 1568 | init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); |
| 1569 | |
| 1570 | svm_set_efer(&svm->vcpu, 0); |
| 1571 | save->dr6 = 0xffff0ff0; |
| 1572 | kvm_set_rflags(&svm->vcpu, 2); |
| 1573 | save->rip = 0x0000fff0; |
| 1574 | svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; |
| 1575 | |
| 1576 | /* |
| 1577 | * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. |
| 1578 | * It also updates the guest-visible cr0 value. |
| 1579 | */ |
| 1580 | svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); |
| 1581 | kvm_mmu_reset_context(&svm->vcpu); |
| 1582 | |
| 1583 | save->cr4 = X86_CR4_PAE; |
| 1584 | /* rdx = ?? */ |
| 1585 | |
| 1586 | if (npt_enabled) { |
| 1587 | /* Setup VMCB for Nested Paging */ |
| 1588 | control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; |
| 1589 | clr_intercept(svm, INTERCEPT_INVLPG); |
| 1590 | clr_exception_intercept(svm, PF_VECTOR); |
| 1591 | clr_cr_intercept(svm, INTERCEPT_CR3_READ); |
| 1592 | clr_cr_intercept(svm, INTERCEPT_CR3_WRITE); |
| 1593 | save->g_pat = svm->vcpu.arch.pat; |
| 1594 | save->cr3 = 0; |
| 1595 | save->cr4 = 0; |
| 1596 | } |
| 1597 | svm->asid_generation = 0; |
| 1598 | |
| 1599 | svm->nested.vmcb = 0; |
| 1600 | svm->vcpu.arch.hflags = 0; |
| 1601 | |
| 1602 | if (pause_filter_count) { |
| 1603 | control->pause_filter_count = pause_filter_count; |
| 1604 | if (pause_filter_thresh) |
| 1605 | control->pause_filter_thresh = pause_filter_thresh; |
| 1606 | set_intercept(svm, INTERCEPT_PAUSE); |
| 1607 | } else { |
| 1608 | clr_intercept(svm, INTERCEPT_PAUSE); |
| 1609 | } |
| 1610 | |
| 1611 | if (kvm_vcpu_apicv_active(&svm->vcpu)) |
| 1612 | avic_init_vmcb(svm); |
| 1613 | |
| 1614 | /* |
| 1615 | * If hardware supports Virtual VMLOAD VMSAVE then enable it |
| 1616 | * in VMCB and clear intercepts to avoid #VMEXIT. |
| 1617 | */ |
| 1618 | if (vls) { |
| 1619 | clr_intercept(svm, INTERCEPT_VMLOAD); |
| 1620 | clr_intercept(svm, INTERCEPT_VMSAVE); |
| 1621 | svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; |
| 1622 | } |
| 1623 | |
| 1624 | if (vgif) { |
| 1625 | clr_intercept(svm, INTERCEPT_STGI); |
| 1626 | clr_intercept(svm, INTERCEPT_CLGI); |
| 1627 | svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; |
| 1628 | } |
| 1629 | |
| 1630 | if (sev_guest(svm->vcpu.kvm)) { |
| 1631 | svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; |
| 1632 | clr_exception_intercept(svm, UD_VECTOR); |
| 1633 | } |
| 1634 | |
| 1635 | mark_all_dirty(svm->vmcb); |
| 1636 | |
| 1637 | enable_gif(svm); |
| 1638 | |
| 1639 | } |
| 1640 | |
| 1641 | static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, |
| 1642 | unsigned int index) |
| 1643 | { |
| 1644 | u64 *avic_physical_id_table; |
| 1645 | struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); |
| 1646 | |
| 1647 | if (index >= AVIC_MAX_PHYSICAL_ID_COUNT) |
| 1648 | return NULL; |
| 1649 | |
| 1650 | avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page); |
| 1651 | |
| 1652 | return &avic_physical_id_table[index]; |
| 1653 | } |
| 1654 | |
| 1655 | /** |
| 1656 | * Note: |
| 1657 | * AVIC hardware walks the nested page table to check permissions, |
| 1658 | * but does not use the SPA address specified in the leaf page |
| 1659 | * table entry since it uses address in the AVIC_BACKING_PAGE pointer |
| 1660 | * field of the VMCB. Therefore, we set up the |
| 1661 | * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here. |
| 1662 | */ |
| 1663 | static int avic_init_access_page(struct kvm_vcpu *vcpu) |
| 1664 | { |
| 1665 | struct kvm *kvm = vcpu->kvm; |
| 1666 | int ret = 0; |
| 1667 | |
| 1668 | mutex_lock(&kvm->slots_lock); |
| 1669 | if (kvm->arch.apic_access_page_done) |
| 1670 | goto out; |
| 1671 | |
| 1672 | ret = __x86_set_memory_region(kvm, |
| 1673 | APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, |
| 1674 | APIC_DEFAULT_PHYS_BASE, |
| 1675 | PAGE_SIZE); |
| 1676 | if (ret) |
| 1677 | goto out; |
| 1678 | |
| 1679 | kvm->arch.apic_access_page_done = true; |
| 1680 | out: |
| 1681 | mutex_unlock(&kvm->slots_lock); |
| 1682 | return ret; |
| 1683 | } |
| 1684 | |
| 1685 | static int avic_init_backing_page(struct kvm_vcpu *vcpu) |
| 1686 | { |
| 1687 | int ret; |
| 1688 | u64 *entry, new_entry; |
| 1689 | int id = vcpu->vcpu_id; |
| 1690 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1691 | |
| 1692 | ret = avic_init_access_page(vcpu); |
| 1693 | if (ret) |
| 1694 | return ret; |
| 1695 | |
| 1696 | if (id >= AVIC_MAX_PHYSICAL_ID_COUNT) |
| 1697 | return -EINVAL; |
| 1698 | |
| 1699 | if (!svm->vcpu.arch.apic->regs) |
| 1700 | return -EINVAL; |
| 1701 | |
| 1702 | svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs); |
| 1703 | |
| 1704 | /* Setting AVIC backing page address in the phy APIC ID table */ |
| 1705 | entry = avic_get_physical_id_entry(vcpu, id); |
| 1706 | if (!entry) |
| 1707 | return -EINVAL; |
| 1708 | |
| 1709 | new_entry = READ_ONCE(*entry); |
| 1710 | new_entry = __sme_set((page_to_phys(svm->avic_backing_page) & |
| 1711 | AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) | |
| 1712 | AVIC_PHYSICAL_ID_ENTRY_VALID_MASK); |
| 1713 | WRITE_ONCE(*entry, new_entry); |
| 1714 | |
| 1715 | svm->avic_physical_id_cache = entry; |
| 1716 | |
| 1717 | return 0; |
| 1718 | } |
| 1719 | |
| 1720 | static void __sev_asid_free(int asid) |
| 1721 | { |
| 1722 | struct svm_cpu_data *sd; |
| 1723 | int cpu, pos; |
| 1724 | |
| 1725 | pos = asid - 1; |
| 1726 | clear_bit(pos, sev_asid_bitmap); |
| 1727 | |
| 1728 | for_each_possible_cpu(cpu) { |
| 1729 | sd = per_cpu(svm_data, cpu); |
| 1730 | sd->sev_vmcbs[pos] = NULL; |
| 1731 | } |
| 1732 | } |
| 1733 | |
| 1734 | static void sev_asid_free(struct kvm *kvm) |
| 1735 | { |
| 1736 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 1737 | |
| 1738 | __sev_asid_free(sev->asid); |
| 1739 | } |
| 1740 | |
| 1741 | static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) |
| 1742 | { |
| 1743 | struct sev_data_decommission *decommission; |
| 1744 | struct sev_data_deactivate *data; |
| 1745 | |
| 1746 | if (!handle) |
| 1747 | return; |
| 1748 | |
| 1749 | data = kzalloc(sizeof(*data), GFP_KERNEL); |
| 1750 | if (!data) |
| 1751 | return; |
| 1752 | |
| 1753 | /* deactivate handle */ |
| 1754 | data->handle = handle; |
| 1755 | sev_guest_deactivate(data, NULL); |
| 1756 | |
| 1757 | wbinvd_on_all_cpus(); |
| 1758 | sev_guest_df_flush(NULL); |
| 1759 | kfree(data); |
| 1760 | |
| 1761 | decommission = kzalloc(sizeof(*decommission), GFP_KERNEL); |
| 1762 | if (!decommission) |
| 1763 | return; |
| 1764 | |
| 1765 | /* decommission handle */ |
| 1766 | decommission->handle = handle; |
| 1767 | sev_guest_decommission(decommission, NULL); |
| 1768 | |
| 1769 | kfree(decommission); |
| 1770 | } |
| 1771 | |
| 1772 | static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, |
| 1773 | unsigned long ulen, unsigned long *n, |
| 1774 | int write) |
| 1775 | { |
| 1776 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 1777 | unsigned long npages, npinned, size; |
| 1778 | unsigned long locked, lock_limit; |
| 1779 | struct page **pages; |
| 1780 | unsigned long first, last; |
| 1781 | |
| 1782 | if (ulen == 0 || uaddr + ulen < uaddr) |
| 1783 | return NULL; |
| 1784 | |
| 1785 | /* Calculate number of pages. */ |
| 1786 | first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; |
| 1787 | last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; |
| 1788 | npages = (last - first + 1); |
| 1789 | |
| 1790 | locked = sev->pages_locked + npages; |
| 1791 | lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; |
| 1792 | if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { |
| 1793 | pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); |
| 1794 | return NULL; |
| 1795 | } |
| 1796 | |
| 1797 | /* Avoid using vmalloc for smaller buffers. */ |
| 1798 | size = npages * sizeof(struct page *); |
| 1799 | if (size > PAGE_SIZE) |
| 1800 | pages = vmalloc(size); |
| 1801 | else |
| 1802 | pages = kmalloc(size, GFP_KERNEL); |
| 1803 | |
| 1804 | if (!pages) |
| 1805 | return NULL; |
| 1806 | |
| 1807 | /* Pin the user virtual address. */ |
| 1808 | npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); |
| 1809 | if (npinned != npages) { |
| 1810 | pr_err("SEV: Failure locking %lu pages.\n", npages); |
| 1811 | goto err; |
| 1812 | } |
| 1813 | |
| 1814 | *n = npages; |
| 1815 | sev->pages_locked = locked; |
| 1816 | |
| 1817 | return pages; |
| 1818 | |
| 1819 | err: |
| 1820 | if (npinned > 0) |
| 1821 | release_pages(pages, npinned); |
| 1822 | |
| 1823 | kvfree(pages); |
| 1824 | return NULL; |
| 1825 | } |
| 1826 | |
| 1827 | static void sev_unpin_memory(struct kvm *kvm, struct page **pages, |
| 1828 | unsigned long npages) |
| 1829 | { |
| 1830 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 1831 | |
| 1832 | release_pages(pages, npages); |
| 1833 | kvfree(pages); |
| 1834 | sev->pages_locked -= npages; |
| 1835 | } |
| 1836 | |
| 1837 | static void sev_clflush_pages(struct page *pages[], unsigned long npages) |
| 1838 | { |
| 1839 | uint8_t *page_virtual; |
| 1840 | unsigned long i; |
| 1841 | |
| 1842 | if (npages == 0 || pages == NULL) |
| 1843 | return; |
| 1844 | |
| 1845 | for (i = 0; i < npages; i++) { |
| 1846 | page_virtual = kmap_atomic(pages[i]); |
| 1847 | clflush_cache_range(page_virtual, PAGE_SIZE); |
| 1848 | kunmap_atomic(page_virtual); |
| 1849 | } |
| 1850 | } |
| 1851 | |
| 1852 | static void __unregister_enc_region_locked(struct kvm *kvm, |
| 1853 | struct enc_region *region) |
| 1854 | { |
| 1855 | /* |
| 1856 | * The guest may change the memory encryption attribute from C=0 -> C=1 |
| 1857 | * or vice versa for this memory range. Lets make sure caches are |
| 1858 | * flushed to ensure that guest data gets written into memory with |
| 1859 | * correct C-bit. |
| 1860 | */ |
| 1861 | sev_clflush_pages(region->pages, region->npages); |
| 1862 | |
| 1863 | sev_unpin_memory(kvm, region->pages, region->npages); |
| 1864 | list_del(®ion->list); |
| 1865 | kfree(region); |
| 1866 | } |
| 1867 | |
| 1868 | static struct kvm *svm_vm_alloc(void) |
| 1869 | { |
| 1870 | struct kvm_svm *kvm_svm = vzalloc(sizeof(struct kvm_svm)); |
| 1871 | return &kvm_svm->kvm; |
| 1872 | } |
| 1873 | |
| 1874 | static void svm_vm_free(struct kvm *kvm) |
| 1875 | { |
| 1876 | vfree(to_kvm_svm(kvm)); |
| 1877 | } |
| 1878 | |
| 1879 | static void sev_vm_destroy(struct kvm *kvm) |
| 1880 | { |
| 1881 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 1882 | struct list_head *head = &sev->regions_list; |
| 1883 | struct list_head *pos, *q; |
| 1884 | |
| 1885 | if (!sev_guest(kvm)) |
| 1886 | return; |
| 1887 | |
| 1888 | mutex_lock(&kvm->lock); |
| 1889 | |
| 1890 | /* |
| 1891 | * if userspace was terminated before unregistering the memory regions |
| 1892 | * then lets unpin all the registered memory. |
| 1893 | */ |
| 1894 | if (!list_empty(head)) { |
| 1895 | list_for_each_safe(pos, q, head) { |
| 1896 | __unregister_enc_region_locked(kvm, |
| 1897 | list_entry(pos, struct enc_region, list)); |
| 1898 | } |
| 1899 | } |
| 1900 | |
| 1901 | mutex_unlock(&kvm->lock); |
| 1902 | |
| 1903 | sev_unbind_asid(kvm, sev->handle); |
| 1904 | sev_asid_free(kvm); |
| 1905 | } |
| 1906 | |
| 1907 | static void avic_vm_destroy(struct kvm *kvm) |
| 1908 | { |
| 1909 | unsigned long flags; |
| 1910 | struct kvm_svm *kvm_svm = to_kvm_svm(kvm); |
| 1911 | |
| 1912 | if (!avic) |
| 1913 | return; |
| 1914 | |
| 1915 | if (kvm_svm->avic_logical_id_table_page) |
| 1916 | __free_page(kvm_svm->avic_logical_id_table_page); |
| 1917 | if (kvm_svm->avic_physical_id_table_page) |
| 1918 | __free_page(kvm_svm->avic_physical_id_table_page); |
| 1919 | |
| 1920 | spin_lock_irqsave(&svm_vm_data_hash_lock, flags); |
| 1921 | hash_del(&kvm_svm->hnode); |
| 1922 | spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); |
| 1923 | } |
| 1924 | |
| 1925 | static void svm_vm_destroy(struct kvm *kvm) |
| 1926 | { |
| 1927 | avic_vm_destroy(kvm); |
| 1928 | sev_vm_destroy(kvm); |
| 1929 | } |
| 1930 | |
| 1931 | static int avic_vm_init(struct kvm *kvm) |
| 1932 | { |
| 1933 | unsigned long flags; |
| 1934 | int err = -ENOMEM; |
| 1935 | struct kvm_svm *kvm_svm = to_kvm_svm(kvm); |
| 1936 | struct kvm_svm *k2; |
| 1937 | struct page *p_page; |
| 1938 | struct page *l_page; |
| 1939 | u32 vm_id; |
| 1940 | |
| 1941 | if (!avic) |
| 1942 | return 0; |
| 1943 | |
| 1944 | /* Allocating physical APIC ID table (4KB) */ |
| 1945 | p_page = alloc_page(GFP_KERNEL); |
| 1946 | if (!p_page) |
| 1947 | goto free_avic; |
| 1948 | |
| 1949 | kvm_svm->avic_physical_id_table_page = p_page; |
| 1950 | clear_page(page_address(p_page)); |
| 1951 | |
| 1952 | /* Allocating logical APIC ID table (4KB) */ |
| 1953 | l_page = alloc_page(GFP_KERNEL); |
| 1954 | if (!l_page) |
| 1955 | goto free_avic; |
| 1956 | |
| 1957 | kvm_svm->avic_logical_id_table_page = l_page; |
| 1958 | clear_page(page_address(l_page)); |
| 1959 | |
| 1960 | spin_lock_irqsave(&svm_vm_data_hash_lock, flags); |
| 1961 | again: |
| 1962 | vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK; |
| 1963 | if (vm_id == 0) { /* id is 1-based, zero is not okay */ |
| 1964 | next_vm_id_wrapped = 1; |
| 1965 | goto again; |
| 1966 | } |
| 1967 | /* Is it still in use? Only possible if wrapped at least once */ |
| 1968 | if (next_vm_id_wrapped) { |
| 1969 | hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) { |
| 1970 | if (k2->avic_vm_id == vm_id) |
| 1971 | goto again; |
| 1972 | } |
| 1973 | } |
| 1974 | kvm_svm->avic_vm_id = vm_id; |
| 1975 | hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id); |
| 1976 | spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); |
| 1977 | |
| 1978 | return 0; |
| 1979 | |
| 1980 | free_avic: |
| 1981 | avic_vm_destroy(kvm); |
| 1982 | return err; |
| 1983 | } |
| 1984 | |
| 1985 | static inline int |
| 1986 | avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r) |
| 1987 | { |
| 1988 | int ret = 0; |
| 1989 | unsigned long flags; |
| 1990 | struct amd_svm_iommu_ir *ir; |
| 1991 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1992 | |
| 1993 | if (!kvm_arch_has_assigned_device(vcpu->kvm)) |
| 1994 | return 0; |
| 1995 | |
| 1996 | /* |
| 1997 | * Here, we go through the per-vcpu ir_list to update all existing |
| 1998 | * interrupt remapping table entry targeting this vcpu. |
| 1999 | */ |
| 2000 | spin_lock_irqsave(&svm->ir_list_lock, flags); |
| 2001 | |
| 2002 | if (list_empty(&svm->ir_list)) |
| 2003 | goto out; |
| 2004 | |
| 2005 | list_for_each_entry(ir, &svm->ir_list, node) { |
| 2006 | ret = amd_iommu_update_ga(cpu, r, ir->data); |
| 2007 | if (ret) |
| 2008 | break; |
| 2009 | } |
| 2010 | out: |
| 2011 | spin_unlock_irqrestore(&svm->ir_list_lock, flags); |
| 2012 | return ret; |
| 2013 | } |
| 2014 | |
| 2015 | static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| 2016 | { |
| 2017 | u64 entry; |
| 2018 | /* ID = 0xff (broadcast), ID > 0xff (reserved) */ |
| 2019 | int h_physical_id = kvm_cpu_get_apicid(cpu); |
| 2020 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2021 | |
| 2022 | if (!kvm_vcpu_apicv_active(vcpu)) |
| 2023 | return; |
| 2024 | |
| 2025 | if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT)) |
| 2026 | return; |
| 2027 | |
| 2028 | entry = READ_ONCE(*(svm->avic_physical_id_cache)); |
| 2029 | WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); |
| 2030 | |
| 2031 | entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK; |
| 2032 | entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK); |
| 2033 | |
| 2034 | entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; |
| 2035 | if (svm->avic_is_running) |
| 2036 | entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; |
| 2037 | |
| 2038 | WRITE_ONCE(*(svm->avic_physical_id_cache), entry); |
| 2039 | avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, |
| 2040 | svm->avic_is_running); |
| 2041 | } |
| 2042 | |
| 2043 | static void avic_vcpu_put(struct kvm_vcpu *vcpu) |
| 2044 | { |
| 2045 | u64 entry; |
| 2046 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2047 | |
| 2048 | if (!kvm_vcpu_apicv_active(vcpu)) |
| 2049 | return; |
| 2050 | |
| 2051 | entry = READ_ONCE(*(svm->avic_physical_id_cache)); |
| 2052 | if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK) |
| 2053 | avic_update_iommu_vcpu_affinity(vcpu, -1, 0); |
| 2054 | |
| 2055 | entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; |
| 2056 | WRITE_ONCE(*(svm->avic_physical_id_cache), entry); |
| 2057 | } |
| 2058 | |
| 2059 | /** |
| 2060 | * This function is called during VCPU halt/unhalt. |
| 2061 | */ |
| 2062 | static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run) |
| 2063 | { |
| 2064 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2065 | |
| 2066 | svm->avic_is_running = is_run; |
| 2067 | if (is_run) |
| 2068 | avic_vcpu_load(vcpu, vcpu->cpu); |
| 2069 | else |
| 2070 | avic_vcpu_put(vcpu); |
| 2071 | } |
| 2072 | |
| 2073 | static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) |
| 2074 | { |
| 2075 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2076 | u32 dummy; |
| 2077 | u32 eax = 1; |
| 2078 | |
| 2079 | vcpu->arch.microcode_version = 0x01000065; |
| 2080 | svm->spec_ctrl = 0; |
| 2081 | svm->virt_spec_ctrl = 0; |
| 2082 | |
| 2083 | if (!init_event) { |
| 2084 | svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE | |
| 2085 | MSR_IA32_APICBASE_ENABLE; |
| 2086 | if (kvm_vcpu_is_reset_bsp(&svm->vcpu)) |
| 2087 | svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; |
| 2088 | } |
| 2089 | init_vmcb(svm); |
| 2090 | |
| 2091 | kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true); |
| 2092 | kvm_register_write(vcpu, VCPU_REGS_RDX, eax); |
| 2093 | |
| 2094 | if (kvm_vcpu_apicv_active(vcpu) && !init_event) |
| 2095 | avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); |
| 2096 | } |
| 2097 | |
| 2098 | static int avic_init_vcpu(struct vcpu_svm *svm) |
| 2099 | { |
| 2100 | int ret; |
| 2101 | |
| 2102 | if (!kvm_vcpu_apicv_active(&svm->vcpu)) |
| 2103 | return 0; |
| 2104 | |
| 2105 | ret = avic_init_backing_page(&svm->vcpu); |
| 2106 | if (ret) |
| 2107 | return ret; |
| 2108 | |
| 2109 | INIT_LIST_HEAD(&svm->ir_list); |
| 2110 | spin_lock_init(&svm->ir_list_lock); |
| 2111 | |
| 2112 | return ret; |
| 2113 | } |
| 2114 | |
| 2115 | static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) |
| 2116 | { |
| 2117 | struct vcpu_svm *svm; |
| 2118 | struct page *page; |
| 2119 | struct page *msrpm_pages; |
| 2120 | struct page *hsave_page; |
| 2121 | struct page *nested_msrpm_pages; |
| 2122 | int err; |
| 2123 | |
| 2124 | svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); |
| 2125 | if (!svm) { |
| 2126 | err = -ENOMEM; |
| 2127 | goto out; |
| 2128 | } |
| 2129 | |
| 2130 | err = kvm_vcpu_init(&svm->vcpu, kvm, id); |
| 2131 | if (err) |
| 2132 | goto free_svm; |
| 2133 | |
| 2134 | err = -ENOMEM; |
| 2135 | page = alloc_page(GFP_KERNEL); |
| 2136 | if (!page) |
| 2137 | goto uninit; |
| 2138 | |
| 2139 | msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); |
| 2140 | if (!msrpm_pages) |
| 2141 | goto free_page1; |
| 2142 | |
| 2143 | nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); |
| 2144 | if (!nested_msrpm_pages) |
| 2145 | goto free_page2; |
| 2146 | |
| 2147 | hsave_page = alloc_page(GFP_KERNEL); |
| 2148 | if (!hsave_page) |
| 2149 | goto free_page3; |
| 2150 | |
| 2151 | err = avic_init_vcpu(svm); |
| 2152 | if (err) |
| 2153 | goto free_page4; |
| 2154 | |
| 2155 | /* We initialize this flag to true to make sure that the is_running |
| 2156 | * bit would be set the first time the vcpu is loaded. |
| 2157 | */ |
| 2158 | svm->avic_is_running = true; |
| 2159 | |
| 2160 | svm->nested.hsave = page_address(hsave_page); |
| 2161 | |
| 2162 | svm->msrpm = page_address(msrpm_pages); |
| 2163 | svm_vcpu_init_msrpm(svm->msrpm); |
| 2164 | |
| 2165 | svm->nested.msrpm = page_address(nested_msrpm_pages); |
| 2166 | svm_vcpu_init_msrpm(svm->nested.msrpm); |
| 2167 | |
| 2168 | svm->vmcb = page_address(page); |
| 2169 | clear_page(svm->vmcb); |
| 2170 | svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT); |
| 2171 | svm->asid_generation = 0; |
| 2172 | init_vmcb(svm); |
| 2173 | |
| 2174 | svm_init_osvw(&svm->vcpu); |
| 2175 | |
| 2176 | return &svm->vcpu; |
| 2177 | |
| 2178 | free_page4: |
| 2179 | __free_page(hsave_page); |
| 2180 | free_page3: |
| 2181 | __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER); |
| 2182 | free_page2: |
| 2183 | __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER); |
| 2184 | free_page1: |
| 2185 | __free_page(page); |
| 2186 | uninit: |
| 2187 | kvm_vcpu_uninit(&svm->vcpu); |
| 2188 | free_svm: |
| 2189 | kmem_cache_free(kvm_vcpu_cache, svm); |
| 2190 | out: |
| 2191 | return ERR_PTR(err); |
| 2192 | } |
| 2193 | |
| 2194 | static void svm_clear_current_vmcb(struct vmcb *vmcb) |
| 2195 | { |
| 2196 | int i; |
| 2197 | |
| 2198 | for_each_online_cpu(i) |
| 2199 | cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); |
| 2200 | } |
| 2201 | |
| 2202 | static void svm_free_vcpu(struct kvm_vcpu *vcpu) |
| 2203 | { |
| 2204 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2205 | |
| 2206 | /* |
| 2207 | * The vmcb page can be recycled, causing a false negative in |
| 2208 | * svm_vcpu_load(). So, ensure that no logical CPU has this |
| 2209 | * vmcb page recorded as its current vmcb. |
| 2210 | */ |
| 2211 | svm_clear_current_vmcb(svm->vmcb); |
| 2212 | |
| 2213 | __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT)); |
| 2214 | __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); |
| 2215 | __free_page(virt_to_page(svm->nested.hsave)); |
| 2216 | __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER); |
| 2217 | kvm_vcpu_uninit(vcpu); |
| 2218 | kmem_cache_free(kvm_vcpu_cache, svm); |
| 2219 | } |
| 2220 | |
| 2221 | static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| 2222 | { |
| 2223 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2224 | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); |
| 2225 | int i; |
| 2226 | |
| 2227 | if (unlikely(cpu != vcpu->cpu)) { |
| 2228 | svm->asid_generation = 0; |
| 2229 | mark_all_dirty(svm->vmcb); |
| 2230 | } |
| 2231 | |
| 2232 | #ifdef CONFIG_X86_64 |
| 2233 | rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base); |
| 2234 | #endif |
| 2235 | savesegment(fs, svm->host.fs); |
| 2236 | savesegment(gs, svm->host.gs); |
| 2237 | svm->host.ldt = kvm_read_ldt(); |
| 2238 | |
| 2239 | for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) |
| 2240 | rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); |
| 2241 | |
| 2242 | if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { |
| 2243 | u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; |
| 2244 | if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { |
| 2245 | __this_cpu_write(current_tsc_ratio, tsc_ratio); |
| 2246 | wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); |
| 2247 | } |
| 2248 | } |
| 2249 | /* This assumes that the kernel never uses MSR_TSC_AUX */ |
| 2250 | if (static_cpu_has(X86_FEATURE_RDTSCP)) |
| 2251 | wrmsrl(MSR_TSC_AUX, svm->tsc_aux); |
| 2252 | |
| 2253 | if (sd->current_vmcb != svm->vmcb) { |
| 2254 | sd->current_vmcb = svm->vmcb; |
| 2255 | indirect_branch_prediction_barrier(); |
| 2256 | } |
| 2257 | avic_vcpu_load(vcpu, cpu); |
| 2258 | } |
| 2259 | |
| 2260 | static void svm_vcpu_put(struct kvm_vcpu *vcpu) |
| 2261 | { |
| 2262 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2263 | int i; |
| 2264 | |
| 2265 | avic_vcpu_put(vcpu); |
| 2266 | |
| 2267 | ++vcpu->stat.host_state_reload; |
| 2268 | kvm_load_ldt(svm->host.ldt); |
| 2269 | #ifdef CONFIG_X86_64 |
| 2270 | loadsegment(fs, svm->host.fs); |
| 2271 | wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase); |
| 2272 | load_gs_index(svm->host.gs); |
| 2273 | #else |
| 2274 | #ifdef CONFIG_X86_32_LAZY_GS |
| 2275 | loadsegment(gs, svm->host.gs); |
| 2276 | #endif |
| 2277 | #endif |
| 2278 | for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) |
| 2279 | wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); |
| 2280 | } |
| 2281 | |
| 2282 | static void svm_vcpu_blocking(struct kvm_vcpu *vcpu) |
| 2283 | { |
| 2284 | avic_set_running(vcpu, false); |
| 2285 | } |
| 2286 | |
| 2287 | static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu) |
| 2288 | { |
| 2289 | avic_set_running(vcpu, true); |
| 2290 | } |
| 2291 | |
| 2292 | static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) |
| 2293 | { |
| 2294 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2295 | unsigned long rflags = svm->vmcb->save.rflags; |
| 2296 | |
| 2297 | if (svm->nmi_singlestep) { |
| 2298 | /* Hide our flags if they were not set by the guest */ |
| 2299 | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) |
| 2300 | rflags &= ~X86_EFLAGS_TF; |
| 2301 | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) |
| 2302 | rflags &= ~X86_EFLAGS_RF; |
| 2303 | } |
| 2304 | return rflags; |
| 2305 | } |
| 2306 | |
| 2307 | static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| 2308 | { |
| 2309 | if (to_svm(vcpu)->nmi_singlestep) |
| 2310 | rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); |
| 2311 | |
| 2312 | /* |
| 2313 | * Any change of EFLAGS.VM is accompanied by a reload of SS |
| 2314 | * (caused by either a task switch or an inter-privilege IRET), |
| 2315 | * so we do not need to update the CPL here. |
| 2316 | */ |
| 2317 | to_svm(vcpu)->vmcb->save.rflags = rflags; |
| 2318 | } |
| 2319 | |
| 2320 | static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) |
| 2321 | { |
| 2322 | switch (reg) { |
| 2323 | case VCPU_EXREG_PDPTR: |
| 2324 | BUG_ON(!npt_enabled); |
| 2325 | load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); |
| 2326 | break; |
| 2327 | default: |
| 2328 | BUG(); |
| 2329 | } |
| 2330 | } |
| 2331 | |
| 2332 | static void svm_set_vintr(struct vcpu_svm *svm) |
| 2333 | { |
| 2334 | set_intercept(svm, INTERCEPT_VINTR); |
| 2335 | } |
| 2336 | |
| 2337 | static void svm_clear_vintr(struct vcpu_svm *svm) |
| 2338 | { |
| 2339 | clr_intercept(svm, INTERCEPT_VINTR); |
| 2340 | } |
| 2341 | |
| 2342 | static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) |
| 2343 | { |
| 2344 | struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; |
| 2345 | |
| 2346 | switch (seg) { |
| 2347 | case VCPU_SREG_CS: return &save->cs; |
| 2348 | case VCPU_SREG_DS: return &save->ds; |
| 2349 | case VCPU_SREG_ES: return &save->es; |
| 2350 | case VCPU_SREG_FS: return &save->fs; |
| 2351 | case VCPU_SREG_GS: return &save->gs; |
| 2352 | case VCPU_SREG_SS: return &save->ss; |
| 2353 | case VCPU_SREG_TR: return &save->tr; |
| 2354 | case VCPU_SREG_LDTR: return &save->ldtr; |
| 2355 | } |
| 2356 | BUG(); |
| 2357 | return NULL; |
| 2358 | } |
| 2359 | |
| 2360 | static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| 2361 | { |
| 2362 | struct vmcb_seg *s = svm_seg(vcpu, seg); |
| 2363 | |
| 2364 | return s->base; |
| 2365 | } |
| 2366 | |
| 2367 | static void svm_get_segment(struct kvm_vcpu *vcpu, |
| 2368 | struct kvm_segment *var, int seg) |
| 2369 | { |
| 2370 | struct vmcb_seg *s = svm_seg(vcpu, seg); |
| 2371 | |
| 2372 | var->base = s->base; |
| 2373 | var->limit = s->limit; |
| 2374 | var->selector = s->selector; |
| 2375 | var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; |
| 2376 | var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; |
| 2377 | var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; |
| 2378 | var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; |
| 2379 | var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; |
| 2380 | var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; |
| 2381 | var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; |
| 2382 | |
| 2383 | /* |
| 2384 | * AMD CPUs circa 2014 track the G bit for all segments except CS. |
| 2385 | * However, the SVM spec states that the G bit is not observed by the |
| 2386 | * CPU, and some VMware virtual CPUs drop the G bit for all segments. |
| 2387 | * So let's synthesize a legal G bit for all segments, this helps |
| 2388 | * running KVM nested. It also helps cross-vendor migration, because |
| 2389 | * Intel's vmentry has a check on the 'G' bit. |
| 2390 | */ |
| 2391 | var->g = s->limit > 0xfffff; |
| 2392 | |
| 2393 | /* |
| 2394 | * AMD's VMCB does not have an explicit unusable field, so emulate it |
| 2395 | * for cross vendor migration purposes by "not present" |
| 2396 | */ |
| 2397 | var->unusable = !var->present; |
| 2398 | |
| 2399 | switch (seg) { |
| 2400 | case VCPU_SREG_TR: |
| 2401 | /* |
| 2402 | * Work around a bug where the busy flag in the tr selector |
| 2403 | * isn't exposed |
| 2404 | */ |
| 2405 | var->type |= 0x2; |
| 2406 | break; |
| 2407 | case VCPU_SREG_DS: |
| 2408 | case VCPU_SREG_ES: |
| 2409 | case VCPU_SREG_FS: |
| 2410 | case VCPU_SREG_GS: |
| 2411 | /* |
| 2412 | * The accessed bit must always be set in the segment |
| 2413 | * descriptor cache, although it can be cleared in the |
| 2414 | * descriptor, the cached bit always remains at 1. Since |
| 2415 | * Intel has a check on this, set it here to support |
| 2416 | * cross-vendor migration. |
| 2417 | */ |
| 2418 | if (!var->unusable) |
| 2419 | var->type |= 0x1; |
| 2420 | break; |
| 2421 | case VCPU_SREG_SS: |
| 2422 | /* |
| 2423 | * On AMD CPUs sometimes the DB bit in the segment |
| 2424 | * descriptor is left as 1, although the whole segment has |
| 2425 | * been made unusable. Clear it here to pass an Intel VMX |
| 2426 | * entry check when cross vendor migrating. |
| 2427 | */ |
| 2428 | if (var->unusable) |
| 2429 | var->db = 0; |
| 2430 | /* This is symmetric with svm_set_segment() */ |
| 2431 | var->dpl = to_svm(vcpu)->vmcb->save.cpl; |
| 2432 | break; |
| 2433 | } |
| 2434 | } |
| 2435 | |
| 2436 | static int svm_get_cpl(struct kvm_vcpu *vcpu) |
| 2437 | { |
| 2438 | struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; |
| 2439 | |
| 2440 | return save->cpl; |
| 2441 | } |
| 2442 | |
| 2443 | static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| 2444 | { |
| 2445 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2446 | |
| 2447 | dt->size = svm->vmcb->save.idtr.limit; |
| 2448 | dt->address = svm->vmcb->save.idtr.base; |
| 2449 | } |
| 2450 | |
| 2451 | static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| 2452 | { |
| 2453 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2454 | |
| 2455 | svm->vmcb->save.idtr.limit = dt->size; |
| 2456 | svm->vmcb->save.idtr.base = dt->address ; |
| 2457 | mark_dirty(svm->vmcb, VMCB_DT); |
| 2458 | } |
| 2459 | |
| 2460 | static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| 2461 | { |
| 2462 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2463 | |
| 2464 | dt->size = svm->vmcb->save.gdtr.limit; |
| 2465 | dt->address = svm->vmcb->save.gdtr.base; |
| 2466 | } |
| 2467 | |
| 2468 | static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| 2469 | { |
| 2470 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2471 | |
| 2472 | svm->vmcb->save.gdtr.limit = dt->size; |
| 2473 | svm->vmcb->save.gdtr.base = dt->address ; |
| 2474 | mark_dirty(svm->vmcb, VMCB_DT); |
| 2475 | } |
| 2476 | |
| 2477 | static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) |
| 2478 | { |
| 2479 | } |
| 2480 | |
| 2481 | static void svm_decache_cr3(struct kvm_vcpu *vcpu) |
| 2482 | { |
| 2483 | } |
| 2484 | |
| 2485 | static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) |
| 2486 | { |
| 2487 | } |
| 2488 | |
| 2489 | static void update_cr0_intercept(struct vcpu_svm *svm) |
| 2490 | { |
| 2491 | ulong gcr0 = svm->vcpu.arch.cr0; |
| 2492 | u64 *hcr0 = &svm->vmcb->save.cr0; |
| 2493 | |
| 2494 | *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) |
| 2495 | | (gcr0 & SVM_CR0_SELECTIVE_MASK); |
| 2496 | |
| 2497 | mark_dirty(svm->vmcb, VMCB_CR); |
| 2498 | |
| 2499 | if (gcr0 == *hcr0) { |
| 2500 | clr_cr_intercept(svm, INTERCEPT_CR0_READ); |
| 2501 | clr_cr_intercept(svm, INTERCEPT_CR0_WRITE); |
| 2502 | } else { |
| 2503 | set_cr_intercept(svm, INTERCEPT_CR0_READ); |
| 2504 | set_cr_intercept(svm, INTERCEPT_CR0_WRITE); |
| 2505 | } |
| 2506 | } |
| 2507 | |
| 2508 | static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| 2509 | { |
| 2510 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2511 | |
| 2512 | #ifdef CONFIG_X86_64 |
| 2513 | if (vcpu->arch.efer & EFER_LME) { |
| 2514 | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { |
| 2515 | vcpu->arch.efer |= EFER_LMA; |
| 2516 | svm->vmcb->save.efer |= EFER_LMA | EFER_LME; |
| 2517 | } |
| 2518 | |
| 2519 | if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { |
| 2520 | vcpu->arch.efer &= ~EFER_LMA; |
| 2521 | svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); |
| 2522 | } |
| 2523 | } |
| 2524 | #endif |
| 2525 | vcpu->arch.cr0 = cr0; |
| 2526 | |
| 2527 | if (!npt_enabled) |
| 2528 | cr0 |= X86_CR0_PG | X86_CR0_WP; |
| 2529 | |
| 2530 | /* |
| 2531 | * re-enable caching here because the QEMU bios |
| 2532 | * does not do it - this results in some delay at |
| 2533 | * reboot |
| 2534 | */ |
| 2535 | if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) |
| 2536 | cr0 &= ~(X86_CR0_CD | X86_CR0_NW); |
| 2537 | svm->vmcb->save.cr0 = cr0; |
| 2538 | mark_dirty(svm->vmcb, VMCB_CR); |
| 2539 | update_cr0_intercept(svm); |
| 2540 | } |
| 2541 | |
| 2542 | static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| 2543 | { |
| 2544 | unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; |
| 2545 | unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4; |
| 2546 | |
| 2547 | if (cr4 & X86_CR4_VMXE) |
| 2548 | return 1; |
| 2549 | |
| 2550 | if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) |
| 2551 | svm_flush_tlb(vcpu, true); |
| 2552 | |
| 2553 | vcpu->arch.cr4 = cr4; |
| 2554 | if (!npt_enabled) |
| 2555 | cr4 |= X86_CR4_PAE; |
| 2556 | cr4 |= host_cr4_mce; |
| 2557 | to_svm(vcpu)->vmcb->save.cr4 = cr4; |
| 2558 | mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); |
| 2559 | return 0; |
| 2560 | } |
| 2561 | |
| 2562 | static void svm_set_segment(struct kvm_vcpu *vcpu, |
| 2563 | struct kvm_segment *var, int seg) |
| 2564 | { |
| 2565 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2566 | struct vmcb_seg *s = svm_seg(vcpu, seg); |
| 2567 | |
| 2568 | s->base = var->base; |
| 2569 | s->limit = var->limit; |
| 2570 | s->selector = var->selector; |
| 2571 | s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); |
| 2572 | s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; |
| 2573 | s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; |
| 2574 | s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; |
| 2575 | s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; |
| 2576 | s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; |
| 2577 | s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; |
| 2578 | s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; |
| 2579 | |
| 2580 | /* |
| 2581 | * This is always accurate, except if SYSRET returned to a segment |
| 2582 | * with SS.DPL != 3. Intel does not have this quirk, and always |
| 2583 | * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it |
| 2584 | * would entail passing the CPL to userspace and back. |
| 2585 | */ |
| 2586 | if (seg == VCPU_SREG_SS) |
| 2587 | /* This is symmetric with svm_get_segment() */ |
| 2588 | svm->vmcb->save.cpl = (var->dpl & 3); |
| 2589 | |
| 2590 | mark_dirty(svm->vmcb, VMCB_SEG); |
| 2591 | } |
| 2592 | |
| 2593 | static void update_bp_intercept(struct kvm_vcpu *vcpu) |
| 2594 | { |
| 2595 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2596 | |
| 2597 | clr_exception_intercept(svm, BP_VECTOR); |
| 2598 | |
| 2599 | if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { |
| 2600 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) |
| 2601 | set_exception_intercept(svm, BP_VECTOR); |
| 2602 | } else |
| 2603 | vcpu->guest_debug = 0; |
| 2604 | } |
| 2605 | |
| 2606 | static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) |
| 2607 | { |
| 2608 | if (sd->next_asid > sd->max_asid) { |
| 2609 | ++sd->asid_generation; |
| 2610 | sd->next_asid = sd->min_asid; |
| 2611 | svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; |
| 2612 | } |
| 2613 | |
| 2614 | svm->asid_generation = sd->asid_generation; |
| 2615 | svm->vmcb->control.asid = sd->next_asid++; |
| 2616 | |
| 2617 | mark_dirty(svm->vmcb, VMCB_ASID); |
| 2618 | } |
| 2619 | |
| 2620 | static u64 svm_get_dr6(struct kvm_vcpu *vcpu) |
| 2621 | { |
| 2622 | return to_svm(vcpu)->vmcb->save.dr6; |
| 2623 | } |
| 2624 | |
| 2625 | static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value) |
| 2626 | { |
| 2627 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2628 | |
| 2629 | svm->vmcb->save.dr6 = value; |
| 2630 | mark_dirty(svm->vmcb, VMCB_DR); |
| 2631 | } |
| 2632 | |
| 2633 | static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) |
| 2634 | { |
| 2635 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2636 | |
| 2637 | get_debugreg(vcpu->arch.db[0], 0); |
| 2638 | get_debugreg(vcpu->arch.db[1], 1); |
| 2639 | get_debugreg(vcpu->arch.db[2], 2); |
| 2640 | get_debugreg(vcpu->arch.db[3], 3); |
| 2641 | vcpu->arch.dr6 = svm_get_dr6(vcpu); |
| 2642 | vcpu->arch.dr7 = svm->vmcb->save.dr7; |
| 2643 | |
| 2644 | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; |
| 2645 | set_dr_intercepts(svm); |
| 2646 | } |
| 2647 | |
| 2648 | static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) |
| 2649 | { |
| 2650 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2651 | |
| 2652 | svm->vmcb->save.dr7 = value; |
| 2653 | mark_dirty(svm->vmcb, VMCB_DR); |
| 2654 | } |
| 2655 | |
| 2656 | static int pf_interception(struct vcpu_svm *svm) |
| 2657 | { |
| 2658 | u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); |
| 2659 | u64 error_code = svm->vmcb->control.exit_info_1; |
| 2660 | |
| 2661 | return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address, |
| 2662 | static_cpu_has(X86_FEATURE_DECODEASSISTS) ? |
| 2663 | svm->vmcb->control.insn_bytes : NULL, |
| 2664 | svm->vmcb->control.insn_len); |
| 2665 | } |
| 2666 | |
| 2667 | static int npf_interception(struct vcpu_svm *svm) |
| 2668 | { |
| 2669 | u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); |
| 2670 | u64 error_code = svm->vmcb->control.exit_info_1; |
| 2671 | |
| 2672 | trace_kvm_page_fault(fault_address, error_code); |
| 2673 | return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, |
| 2674 | static_cpu_has(X86_FEATURE_DECODEASSISTS) ? |
| 2675 | svm->vmcb->control.insn_bytes : NULL, |
| 2676 | svm->vmcb->control.insn_len); |
| 2677 | } |
| 2678 | |
| 2679 | static int db_interception(struct vcpu_svm *svm) |
| 2680 | { |
| 2681 | struct kvm_run *kvm_run = svm->vcpu.run; |
| 2682 | |
| 2683 | if (!(svm->vcpu.guest_debug & |
| 2684 | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && |
| 2685 | !svm->nmi_singlestep) { |
| 2686 | kvm_queue_exception(&svm->vcpu, DB_VECTOR); |
| 2687 | return 1; |
| 2688 | } |
| 2689 | |
| 2690 | if (svm->nmi_singlestep) { |
| 2691 | disable_nmi_singlestep(svm); |
| 2692 | } |
| 2693 | |
| 2694 | if (svm->vcpu.guest_debug & |
| 2695 | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { |
| 2696 | kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| 2697 | kvm_run->debug.arch.pc = |
| 2698 | svm->vmcb->save.cs.base + svm->vmcb->save.rip; |
| 2699 | kvm_run->debug.arch.exception = DB_VECTOR; |
| 2700 | return 0; |
| 2701 | } |
| 2702 | |
| 2703 | return 1; |
| 2704 | } |
| 2705 | |
| 2706 | static int bp_interception(struct vcpu_svm *svm) |
| 2707 | { |
| 2708 | struct kvm_run *kvm_run = svm->vcpu.run; |
| 2709 | |
| 2710 | kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| 2711 | kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; |
| 2712 | kvm_run->debug.arch.exception = BP_VECTOR; |
| 2713 | return 0; |
| 2714 | } |
| 2715 | |
| 2716 | static int ud_interception(struct vcpu_svm *svm) |
| 2717 | { |
| 2718 | return handle_ud(&svm->vcpu); |
| 2719 | } |
| 2720 | |
| 2721 | static int ac_interception(struct vcpu_svm *svm) |
| 2722 | { |
| 2723 | kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0); |
| 2724 | return 1; |
| 2725 | } |
| 2726 | |
| 2727 | static int gp_interception(struct vcpu_svm *svm) |
| 2728 | { |
| 2729 | struct kvm_vcpu *vcpu = &svm->vcpu; |
| 2730 | u32 error_code = svm->vmcb->control.exit_info_1; |
| 2731 | int er; |
| 2732 | |
| 2733 | WARN_ON_ONCE(!enable_vmware_backdoor); |
| 2734 | |
| 2735 | er = kvm_emulate_instruction(vcpu, |
| 2736 | EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL); |
| 2737 | if (er == EMULATE_USER_EXIT) |
| 2738 | return 0; |
| 2739 | else if (er != EMULATE_DONE) |
| 2740 | kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); |
| 2741 | return 1; |
| 2742 | } |
| 2743 | |
| 2744 | static bool is_erratum_383(void) |
| 2745 | { |
| 2746 | int err, i; |
| 2747 | u64 value; |
| 2748 | |
| 2749 | if (!erratum_383_found) |
| 2750 | return false; |
| 2751 | |
| 2752 | value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); |
| 2753 | if (err) |
| 2754 | return false; |
| 2755 | |
| 2756 | /* Bit 62 may or may not be set for this mce */ |
| 2757 | value &= ~(1ULL << 62); |
| 2758 | |
| 2759 | if (value != 0xb600000000010015ULL) |
| 2760 | return false; |
| 2761 | |
| 2762 | /* Clear MCi_STATUS registers */ |
| 2763 | for (i = 0; i < 6; ++i) |
| 2764 | native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); |
| 2765 | |
| 2766 | value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); |
| 2767 | if (!err) { |
| 2768 | u32 low, high; |
| 2769 | |
| 2770 | value &= ~(1ULL << 2); |
| 2771 | low = lower_32_bits(value); |
| 2772 | high = upper_32_bits(value); |
| 2773 | |
| 2774 | native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); |
| 2775 | } |
| 2776 | |
| 2777 | /* Flush tlb to evict multi-match entries */ |
| 2778 | __flush_tlb_all(); |
| 2779 | |
| 2780 | return true; |
| 2781 | } |
| 2782 | |
| 2783 | static void svm_handle_mce(struct vcpu_svm *svm) |
| 2784 | { |
| 2785 | if (is_erratum_383()) { |
| 2786 | /* |
| 2787 | * Erratum 383 triggered. Guest state is corrupt so kill the |
| 2788 | * guest. |
| 2789 | */ |
| 2790 | pr_err("KVM: Guest triggered AMD Erratum 383\n"); |
| 2791 | |
| 2792 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); |
| 2793 | |
| 2794 | return; |
| 2795 | } |
| 2796 | |
| 2797 | /* |
| 2798 | * On an #MC intercept the MCE handler is not called automatically in |
| 2799 | * the host. So do it by hand here. |
| 2800 | */ |
| 2801 | asm volatile ( |
| 2802 | "int $0x12\n"); |
| 2803 | /* not sure if we ever come back to this point */ |
| 2804 | |
| 2805 | return; |
| 2806 | } |
| 2807 | |
| 2808 | static int mc_interception(struct vcpu_svm *svm) |
| 2809 | { |
| 2810 | return 1; |
| 2811 | } |
| 2812 | |
| 2813 | static int shutdown_interception(struct vcpu_svm *svm) |
| 2814 | { |
| 2815 | struct kvm_run *kvm_run = svm->vcpu.run; |
| 2816 | |
| 2817 | /* |
| 2818 | * VMCB is undefined after a SHUTDOWN intercept |
| 2819 | * so reinitialize it. |
| 2820 | */ |
| 2821 | clear_page(svm->vmcb); |
| 2822 | init_vmcb(svm); |
| 2823 | |
| 2824 | kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; |
| 2825 | return 0; |
| 2826 | } |
| 2827 | |
| 2828 | static int io_interception(struct vcpu_svm *svm) |
| 2829 | { |
| 2830 | struct kvm_vcpu *vcpu = &svm->vcpu; |
| 2831 | u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ |
| 2832 | int size, in, string; |
| 2833 | unsigned port; |
| 2834 | |
| 2835 | ++svm->vcpu.stat.io_exits; |
| 2836 | string = (io_info & SVM_IOIO_STR_MASK) != 0; |
| 2837 | in = (io_info & SVM_IOIO_TYPE_MASK) != 0; |
| 2838 | if (string) |
| 2839 | return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; |
| 2840 | |
| 2841 | port = io_info >> 16; |
| 2842 | size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; |
| 2843 | svm->next_rip = svm->vmcb->control.exit_info_2; |
| 2844 | |
| 2845 | return kvm_fast_pio(&svm->vcpu, size, port, in); |
| 2846 | } |
| 2847 | |
| 2848 | static int nmi_interception(struct vcpu_svm *svm) |
| 2849 | { |
| 2850 | return 1; |
| 2851 | } |
| 2852 | |
| 2853 | static int intr_interception(struct vcpu_svm *svm) |
| 2854 | { |
| 2855 | ++svm->vcpu.stat.irq_exits; |
| 2856 | return 1; |
| 2857 | } |
| 2858 | |
| 2859 | static int nop_on_interception(struct vcpu_svm *svm) |
| 2860 | { |
| 2861 | return 1; |
| 2862 | } |
| 2863 | |
| 2864 | static int halt_interception(struct vcpu_svm *svm) |
| 2865 | { |
| 2866 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 1; |
| 2867 | return kvm_emulate_halt(&svm->vcpu); |
| 2868 | } |
| 2869 | |
| 2870 | static int vmmcall_interception(struct vcpu_svm *svm) |
| 2871 | { |
| 2872 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
| 2873 | return kvm_emulate_hypercall(&svm->vcpu); |
| 2874 | } |
| 2875 | |
| 2876 | static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu) |
| 2877 | { |
| 2878 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2879 | |
| 2880 | return svm->nested.nested_cr3; |
| 2881 | } |
| 2882 | |
| 2883 | static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index) |
| 2884 | { |
| 2885 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2886 | u64 cr3 = svm->nested.nested_cr3; |
| 2887 | u64 pdpte; |
| 2888 | int ret; |
| 2889 | |
| 2890 | ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte, |
| 2891 | offset_in_page(cr3) + index * 8, 8); |
| 2892 | if (ret) |
| 2893 | return 0; |
| 2894 | return pdpte; |
| 2895 | } |
| 2896 | |
| 2897 | static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu, |
| 2898 | unsigned long root) |
| 2899 | { |
| 2900 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2901 | |
| 2902 | svm->vmcb->control.nested_cr3 = __sme_set(root); |
| 2903 | mark_dirty(svm->vmcb, VMCB_NPT); |
| 2904 | } |
| 2905 | |
| 2906 | static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu, |
| 2907 | struct x86_exception *fault) |
| 2908 | { |
| 2909 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2910 | |
| 2911 | if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) { |
| 2912 | /* |
| 2913 | * TODO: track the cause of the nested page fault, and |
| 2914 | * correctly fill in the high bits of exit_info_1. |
| 2915 | */ |
| 2916 | svm->vmcb->control.exit_code = SVM_EXIT_NPF; |
| 2917 | svm->vmcb->control.exit_code_hi = 0; |
| 2918 | svm->vmcb->control.exit_info_1 = (1ULL << 32); |
| 2919 | svm->vmcb->control.exit_info_2 = fault->address; |
| 2920 | } |
| 2921 | |
| 2922 | svm->vmcb->control.exit_info_1 &= ~0xffffffffULL; |
| 2923 | svm->vmcb->control.exit_info_1 |= fault->error_code; |
| 2924 | |
| 2925 | /* |
| 2926 | * The present bit is always zero for page structure faults on real |
| 2927 | * hardware. |
| 2928 | */ |
| 2929 | if (svm->vmcb->control.exit_info_1 & (2ULL << 32)) |
| 2930 | svm->vmcb->control.exit_info_1 &= ~1; |
| 2931 | |
| 2932 | nested_svm_vmexit(svm); |
| 2933 | } |
| 2934 | |
| 2935 | static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) |
| 2936 | { |
| 2937 | WARN_ON(mmu_is_nested(vcpu)); |
| 2938 | kvm_init_shadow_mmu(vcpu); |
| 2939 | vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3; |
| 2940 | vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3; |
| 2941 | vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr; |
| 2942 | vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit; |
| 2943 | vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu); |
| 2944 | reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu); |
| 2945 | vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; |
| 2946 | } |
| 2947 | |
| 2948 | static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu) |
| 2949 | { |
| 2950 | vcpu->arch.walk_mmu = &vcpu->arch.mmu; |
| 2951 | } |
| 2952 | |
| 2953 | static int nested_svm_check_permissions(struct vcpu_svm *svm) |
| 2954 | { |
| 2955 | if (!(svm->vcpu.arch.efer & EFER_SVME) || |
| 2956 | !is_paging(&svm->vcpu)) { |
| 2957 | kvm_queue_exception(&svm->vcpu, UD_VECTOR); |
| 2958 | return 1; |
| 2959 | } |
| 2960 | |
| 2961 | if (svm->vmcb->save.cpl) { |
| 2962 | kvm_inject_gp(&svm->vcpu, 0); |
| 2963 | return 1; |
| 2964 | } |
| 2965 | |
| 2966 | return 0; |
| 2967 | } |
| 2968 | |
| 2969 | static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, |
| 2970 | bool has_error_code, u32 error_code) |
| 2971 | { |
| 2972 | int vmexit; |
| 2973 | |
| 2974 | if (!is_guest_mode(&svm->vcpu)) |
| 2975 | return 0; |
| 2976 | |
| 2977 | vmexit = nested_svm_intercept(svm); |
| 2978 | if (vmexit != NESTED_EXIT_DONE) |
| 2979 | return 0; |
| 2980 | |
| 2981 | svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr; |
| 2982 | svm->vmcb->control.exit_code_hi = 0; |
| 2983 | svm->vmcb->control.exit_info_1 = error_code; |
| 2984 | |
| 2985 | /* |
| 2986 | * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception. |
| 2987 | * The fix is to add the ancillary datum (CR2 or DR6) to structs |
| 2988 | * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be |
| 2989 | * written only when inject_pending_event runs (DR6 would written here |
| 2990 | * too). This should be conditional on a new capability---if the |
| 2991 | * capability is disabled, kvm_multiple_exception would write the |
| 2992 | * ancillary information to CR2 or DR6, for backwards ABI-compatibility. |
| 2993 | */ |
| 2994 | if (svm->vcpu.arch.exception.nested_apf) |
| 2995 | svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token; |
| 2996 | else |
| 2997 | svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2; |
| 2998 | |
| 2999 | svm->nested.exit_required = true; |
| 3000 | return vmexit; |
| 3001 | } |
| 3002 | |
| 3003 | /* This function returns true if it is save to enable the irq window */ |
| 3004 | static inline bool nested_svm_intr(struct vcpu_svm *svm) |
| 3005 | { |
| 3006 | if (!is_guest_mode(&svm->vcpu)) |
| 3007 | return true; |
| 3008 | |
| 3009 | if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) |
| 3010 | return true; |
| 3011 | |
| 3012 | if (!(svm->vcpu.arch.hflags & HF_HIF_MASK)) |
| 3013 | return false; |
| 3014 | |
| 3015 | /* |
| 3016 | * if vmexit was already requested (by intercepted exception |
| 3017 | * for instance) do not overwrite it with "external interrupt" |
| 3018 | * vmexit. |
| 3019 | */ |
| 3020 | if (svm->nested.exit_required) |
| 3021 | return false; |
| 3022 | |
| 3023 | svm->vmcb->control.exit_code = SVM_EXIT_INTR; |
| 3024 | svm->vmcb->control.exit_info_1 = 0; |
| 3025 | svm->vmcb->control.exit_info_2 = 0; |
| 3026 | |
| 3027 | if (svm->nested.intercept & 1ULL) { |
| 3028 | /* |
| 3029 | * The #vmexit can't be emulated here directly because this |
| 3030 | * code path runs with irqs and preemption disabled. A |
| 3031 | * #vmexit emulation might sleep. Only signal request for |
| 3032 | * the #vmexit here. |
| 3033 | */ |
| 3034 | svm->nested.exit_required = true; |
| 3035 | trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip); |
| 3036 | return false; |
| 3037 | } |
| 3038 | |
| 3039 | return true; |
| 3040 | } |
| 3041 | |
| 3042 | /* This function returns true if it is save to enable the nmi window */ |
| 3043 | static inline bool nested_svm_nmi(struct vcpu_svm *svm) |
| 3044 | { |
| 3045 | if (!is_guest_mode(&svm->vcpu)) |
| 3046 | return true; |
| 3047 | |
| 3048 | if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI))) |
| 3049 | return true; |
| 3050 | |
| 3051 | svm->vmcb->control.exit_code = SVM_EXIT_NMI; |
| 3052 | svm->nested.exit_required = true; |
| 3053 | |
| 3054 | return false; |
| 3055 | } |
| 3056 | |
| 3057 | static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page) |
| 3058 | { |
| 3059 | struct page *page; |
| 3060 | |
| 3061 | might_sleep(); |
| 3062 | |
| 3063 | page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT); |
| 3064 | if (is_error_page(page)) |
| 3065 | goto error; |
| 3066 | |
| 3067 | *_page = page; |
| 3068 | |
| 3069 | return kmap(page); |
| 3070 | |
| 3071 | error: |
| 3072 | kvm_inject_gp(&svm->vcpu, 0); |
| 3073 | |
| 3074 | return NULL; |
| 3075 | } |
| 3076 | |
| 3077 | static void nested_svm_unmap(struct page *page) |
| 3078 | { |
| 3079 | kunmap(page); |
| 3080 | kvm_release_page_dirty(page); |
| 3081 | } |
| 3082 | |
| 3083 | static int nested_svm_intercept_ioio(struct vcpu_svm *svm) |
| 3084 | { |
| 3085 | unsigned port, size, iopm_len; |
| 3086 | u16 val, mask; |
| 3087 | u8 start_bit; |
| 3088 | u64 gpa; |
| 3089 | |
| 3090 | if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT))) |
| 3091 | return NESTED_EXIT_HOST; |
| 3092 | |
| 3093 | port = svm->vmcb->control.exit_info_1 >> 16; |
| 3094 | size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >> |
| 3095 | SVM_IOIO_SIZE_SHIFT; |
| 3096 | gpa = svm->nested.vmcb_iopm + (port / 8); |
| 3097 | start_bit = port % 8; |
| 3098 | iopm_len = (start_bit + size > 8) ? 2 : 1; |
| 3099 | mask = (0xf >> (4 - size)) << start_bit; |
| 3100 | val = 0; |
| 3101 | |
| 3102 | if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len)) |
| 3103 | return NESTED_EXIT_DONE; |
| 3104 | |
| 3105 | return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; |
| 3106 | } |
| 3107 | |
| 3108 | static int nested_svm_exit_handled_msr(struct vcpu_svm *svm) |
| 3109 | { |
| 3110 | u32 offset, msr, value; |
| 3111 | int write, mask; |
| 3112 | |
| 3113 | if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) |
| 3114 | return NESTED_EXIT_HOST; |
| 3115 | |
| 3116 | msr = svm->vcpu.arch.regs[VCPU_REGS_RCX]; |
| 3117 | offset = svm_msrpm_offset(msr); |
| 3118 | write = svm->vmcb->control.exit_info_1 & 1; |
| 3119 | mask = 1 << ((2 * (msr & 0xf)) + write); |
| 3120 | |
| 3121 | if (offset == MSR_INVALID) |
| 3122 | return NESTED_EXIT_DONE; |
| 3123 | |
| 3124 | /* Offset is in 32 bit units but need in 8 bit units */ |
| 3125 | offset *= 4; |
| 3126 | |
| 3127 | if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4)) |
| 3128 | return NESTED_EXIT_DONE; |
| 3129 | |
| 3130 | return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; |
| 3131 | } |
| 3132 | |
| 3133 | /* DB exceptions for our internal use must not cause vmexit */ |
| 3134 | static int nested_svm_intercept_db(struct vcpu_svm *svm) |
| 3135 | { |
| 3136 | unsigned long dr6; |
| 3137 | |
| 3138 | /* if we're not singlestepping, it's not ours */ |
| 3139 | if (!svm->nmi_singlestep) |
| 3140 | return NESTED_EXIT_DONE; |
| 3141 | |
| 3142 | /* if it's not a singlestep exception, it's not ours */ |
| 3143 | if (kvm_get_dr(&svm->vcpu, 6, &dr6)) |
| 3144 | return NESTED_EXIT_DONE; |
| 3145 | if (!(dr6 & DR6_BS)) |
| 3146 | return NESTED_EXIT_DONE; |
| 3147 | |
| 3148 | /* if the guest is singlestepping, it should get the vmexit */ |
| 3149 | if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) { |
| 3150 | disable_nmi_singlestep(svm); |
| 3151 | return NESTED_EXIT_DONE; |
| 3152 | } |
| 3153 | |
| 3154 | /* it's ours, the nested hypervisor must not see this one */ |
| 3155 | return NESTED_EXIT_HOST; |
| 3156 | } |
| 3157 | |
| 3158 | static int nested_svm_exit_special(struct vcpu_svm *svm) |
| 3159 | { |
| 3160 | u32 exit_code = svm->vmcb->control.exit_code; |
| 3161 | |
| 3162 | switch (exit_code) { |
| 3163 | case SVM_EXIT_INTR: |
| 3164 | case SVM_EXIT_NMI: |
| 3165 | case SVM_EXIT_EXCP_BASE + MC_VECTOR: |
| 3166 | return NESTED_EXIT_HOST; |
| 3167 | case SVM_EXIT_NPF: |
| 3168 | /* For now we are always handling NPFs when using them */ |
| 3169 | if (npt_enabled) |
| 3170 | return NESTED_EXIT_HOST; |
| 3171 | break; |
| 3172 | case SVM_EXIT_EXCP_BASE + PF_VECTOR: |
| 3173 | /* When we're shadowing, trap PFs, but not async PF */ |
| 3174 | if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0) |
| 3175 | return NESTED_EXIT_HOST; |
| 3176 | break; |
| 3177 | default: |
| 3178 | break; |
| 3179 | } |
| 3180 | |
| 3181 | return NESTED_EXIT_CONTINUE; |
| 3182 | } |
| 3183 | |
| 3184 | /* |
| 3185 | * If this function returns true, this #vmexit was already handled |
| 3186 | */ |
| 3187 | static int nested_svm_intercept(struct vcpu_svm *svm) |
| 3188 | { |
| 3189 | u32 exit_code = svm->vmcb->control.exit_code; |
| 3190 | int vmexit = NESTED_EXIT_HOST; |
| 3191 | |
| 3192 | switch (exit_code) { |
| 3193 | case SVM_EXIT_MSR: |
| 3194 | vmexit = nested_svm_exit_handled_msr(svm); |
| 3195 | break; |
| 3196 | case SVM_EXIT_IOIO: |
| 3197 | vmexit = nested_svm_intercept_ioio(svm); |
| 3198 | break; |
| 3199 | case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: { |
| 3200 | u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0); |
| 3201 | if (svm->nested.intercept_cr & bit) |
| 3202 | vmexit = NESTED_EXIT_DONE; |
| 3203 | break; |
| 3204 | } |
| 3205 | case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: { |
| 3206 | u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0); |
| 3207 | if (svm->nested.intercept_dr & bit) |
| 3208 | vmexit = NESTED_EXIT_DONE; |
| 3209 | break; |
| 3210 | } |
| 3211 | case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { |
| 3212 | u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); |
| 3213 | if (svm->nested.intercept_exceptions & excp_bits) { |
| 3214 | if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR) |
| 3215 | vmexit = nested_svm_intercept_db(svm); |
| 3216 | else |
| 3217 | vmexit = NESTED_EXIT_DONE; |
| 3218 | } |
| 3219 | /* async page fault always cause vmexit */ |
| 3220 | else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) && |
| 3221 | svm->vcpu.arch.exception.nested_apf != 0) |
| 3222 | vmexit = NESTED_EXIT_DONE; |
| 3223 | break; |
| 3224 | } |
| 3225 | case SVM_EXIT_ERR: { |
| 3226 | vmexit = NESTED_EXIT_DONE; |
| 3227 | break; |
| 3228 | } |
| 3229 | default: { |
| 3230 | u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR); |
| 3231 | if (svm->nested.intercept & exit_bits) |
| 3232 | vmexit = NESTED_EXIT_DONE; |
| 3233 | } |
| 3234 | } |
| 3235 | |
| 3236 | return vmexit; |
| 3237 | } |
| 3238 | |
| 3239 | static int nested_svm_exit_handled(struct vcpu_svm *svm) |
| 3240 | { |
| 3241 | int vmexit; |
| 3242 | |
| 3243 | vmexit = nested_svm_intercept(svm); |
| 3244 | |
| 3245 | if (vmexit == NESTED_EXIT_DONE) |
| 3246 | nested_svm_vmexit(svm); |
| 3247 | |
| 3248 | return vmexit; |
| 3249 | } |
| 3250 | |
| 3251 | static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb) |
| 3252 | { |
| 3253 | struct vmcb_control_area *dst = &dst_vmcb->control; |
| 3254 | struct vmcb_control_area *from = &from_vmcb->control; |
| 3255 | |
| 3256 | dst->intercept_cr = from->intercept_cr; |
| 3257 | dst->intercept_dr = from->intercept_dr; |
| 3258 | dst->intercept_exceptions = from->intercept_exceptions; |
| 3259 | dst->intercept = from->intercept; |
| 3260 | dst->iopm_base_pa = from->iopm_base_pa; |
| 3261 | dst->msrpm_base_pa = from->msrpm_base_pa; |
| 3262 | dst->tsc_offset = from->tsc_offset; |
| 3263 | dst->asid = from->asid; |
| 3264 | dst->tlb_ctl = from->tlb_ctl; |
| 3265 | dst->int_ctl = from->int_ctl; |
| 3266 | dst->int_vector = from->int_vector; |
| 3267 | dst->int_state = from->int_state; |
| 3268 | dst->exit_code = from->exit_code; |
| 3269 | dst->exit_code_hi = from->exit_code_hi; |
| 3270 | dst->exit_info_1 = from->exit_info_1; |
| 3271 | dst->exit_info_2 = from->exit_info_2; |
| 3272 | dst->exit_int_info = from->exit_int_info; |
| 3273 | dst->exit_int_info_err = from->exit_int_info_err; |
| 3274 | dst->nested_ctl = from->nested_ctl; |
| 3275 | dst->event_inj = from->event_inj; |
| 3276 | dst->event_inj_err = from->event_inj_err; |
| 3277 | dst->nested_cr3 = from->nested_cr3; |
| 3278 | dst->virt_ext = from->virt_ext; |
| 3279 | } |
| 3280 | |
| 3281 | static int nested_svm_vmexit(struct vcpu_svm *svm) |
| 3282 | { |
| 3283 | struct vmcb *nested_vmcb; |
| 3284 | struct vmcb *hsave = svm->nested.hsave; |
| 3285 | struct vmcb *vmcb = svm->vmcb; |
| 3286 | struct page *page; |
| 3287 | |
| 3288 | trace_kvm_nested_vmexit_inject(vmcb->control.exit_code, |
| 3289 | vmcb->control.exit_info_1, |
| 3290 | vmcb->control.exit_info_2, |
| 3291 | vmcb->control.exit_int_info, |
| 3292 | vmcb->control.exit_int_info_err, |
| 3293 | KVM_ISA_SVM); |
| 3294 | |
| 3295 | nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page); |
| 3296 | if (!nested_vmcb) |
| 3297 | return 1; |
| 3298 | |
| 3299 | /* Exit Guest-Mode */ |
| 3300 | leave_guest_mode(&svm->vcpu); |
| 3301 | svm->nested.vmcb = 0; |
| 3302 | |
| 3303 | /* Give the current vmcb to the guest */ |
| 3304 | disable_gif(svm); |
| 3305 | |
| 3306 | nested_vmcb->save.es = vmcb->save.es; |
| 3307 | nested_vmcb->save.cs = vmcb->save.cs; |
| 3308 | nested_vmcb->save.ss = vmcb->save.ss; |
| 3309 | nested_vmcb->save.ds = vmcb->save.ds; |
| 3310 | nested_vmcb->save.gdtr = vmcb->save.gdtr; |
| 3311 | nested_vmcb->save.idtr = vmcb->save.idtr; |
| 3312 | nested_vmcb->save.efer = svm->vcpu.arch.efer; |
| 3313 | nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu); |
| 3314 | nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu); |
| 3315 | nested_vmcb->save.cr2 = vmcb->save.cr2; |
| 3316 | nested_vmcb->save.cr4 = svm->vcpu.arch.cr4; |
| 3317 | nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu); |
| 3318 | nested_vmcb->save.rip = vmcb->save.rip; |
| 3319 | nested_vmcb->save.rsp = vmcb->save.rsp; |
| 3320 | nested_vmcb->save.rax = vmcb->save.rax; |
| 3321 | nested_vmcb->save.dr7 = vmcb->save.dr7; |
| 3322 | nested_vmcb->save.dr6 = vmcb->save.dr6; |
| 3323 | nested_vmcb->save.cpl = vmcb->save.cpl; |
| 3324 | |
| 3325 | nested_vmcb->control.int_ctl = vmcb->control.int_ctl; |
| 3326 | nested_vmcb->control.int_vector = vmcb->control.int_vector; |
| 3327 | nested_vmcb->control.int_state = vmcb->control.int_state; |
| 3328 | nested_vmcb->control.exit_code = vmcb->control.exit_code; |
| 3329 | nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi; |
| 3330 | nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1; |
| 3331 | nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2; |
| 3332 | nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info; |
| 3333 | nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err; |
| 3334 | |
| 3335 | if (svm->nrips_enabled) |
| 3336 | nested_vmcb->control.next_rip = vmcb->control.next_rip; |
| 3337 | |
| 3338 | /* |
| 3339 | * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have |
| 3340 | * to make sure that we do not lose injected events. So check event_inj |
| 3341 | * here and copy it to exit_int_info if it is valid. |
| 3342 | * Exit_int_info and event_inj can't be both valid because the case |
| 3343 | * below only happens on a VMRUN instruction intercept which has |
| 3344 | * no valid exit_int_info set. |
| 3345 | */ |
| 3346 | if (vmcb->control.event_inj & SVM_EVTINJ_VALID) { |
| 3347 | struct vmcb_control_area *nc = &nested_vmcb->control; |
| 3348 | |
| 3349 | nc->exit_int_info = vmcb->control.event_inj; |
| 3350 | nc->exit_int_info_err = vmcb->control.event_inj_err; |
| 3351 | } |
| 3352 | |
| 3353 | nested_vmcb->control.tlb_ctl = 0; |
| 3354 | nested_vmcb->control.event_inj = 0; |
| 3355 | nested_vmcb->control.event_inj_err = 0; |
| 3356 | |
| 3357 | /* We always set V_INTR_MASKING and remember the old value in hflags */ |
| 3358 | if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) |
| 3359 | nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK; |
| 3360 | |
| 3361 | /* Restore the original control entries */ |
| 3362 | copy_vmcb_control_area(vmcb, hsave); |
| 3363 | |
| 3364 | svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset; |
| 3365 | kvm_clear_exception_queue(&svm->vcpu); |
| 3366 | kvm_clear_interrupt_queue(&svm->vcpu); |
| 3367 | |
| 3368 | svm->nested.nested_cr3 = 0; |
| 3369 | |
| 3370 | /* Restore selected save entries */ |
| 3371 | svm->vmcb->save.es = hsave->save.es; |
| 3372 | svm->vmcb->save.cs = hsave->save.cs; |
| 3373 | svm->vmcb->save.ss = hsave->save.ss; |
| 3374 | svm->vmcb->save.ds = hsave->save.ds; |
| 3375 | svm->vmcb->save.gdtr = hsave->save.gdtr; |
| 3376 | svm->vmcb->save.idtr = hsave->save.idtr; |
| 3377 | kvm_set_rflags(&svm->vcpu, hsave->save.rflags); |
| 3378 | svm_set_efer(&svm->vcpu, hsave->save.efer); |
| 3379 | svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE); |
| 3380 | svm_set_cr4(&svm->vcpu, hsave->save.cr4); |
| 3381 | if (npt_enabled) { |
| 3382 | svm->vmcb->save.cr3 = hsave->save.cr3; |
| 3383 | svm->vcpu.arch.cr3 = hsave->save.cr3; |
| 3384 | } else { |
| 3385 | (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3); |
| 3386 | } |
| 3387 | kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax); |
| 3388 | kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp); |
| 3389 | kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip); |
| 3390 | svm->vmcb->save.dr7 = 0; |
| 3391 | svm->vmcb->save.cpl = 0; |
| 3392 | svm->vmcb->control.exit_int_info = 0; |
| 3393 | |
| 3394 | mark_all_dirty(svm->vmcb); |
| 3395 | |
| 3396 | nested_svm_unmap(page); |
| 3397 | |
| 3398 | nested_svm_uninit_mmu_context(&svm->vcpu); |
| 3399 | kvm_mmu_reset_context(&svm->vcpu); |
| 3400 | kvm_mmu_load(&svm->vcpu); |
| 3401 | |
| 3402 | return 0; |
| 3403 | } |
| 3404 | |
| 3405 | static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm) |
| 3406 | { |
| 3407 | /* |
| 3408 | * This function merges the msr permission bitmaps of kvm and the |
| 3409 | * nested vmcb. It is optimized in that it only merges the parts where |
| 3410 | * the kvm msr permission bitmap may contain zero bits |
| 3411 | */ |
| 3412 | int i; |
| 3413 | |
| 3414 | if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) |
| 3415 | return true; |
| 3416 | |
| 3417 | for (i = 0; i < MSRPM_OFFSETS; i++) { |
| 3418 | u32 value, p; |
| 3419 | u64 offset; |
| 3420 | |
| 3421 | if (msrpm_offsets[i] == 0xffffffff) |
| 3422 | break; |
| 3423 | |
| 3424 | p = msrpm_offsets[i]; |
| 3425 | offset = svm->nested.vmcb_msrpm + (p * 4); |
| 3426 | |
| 3427 | if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4)) |
| 3428 | return false; |
| 3429 | |
| 3430 | svm->nested.msrpm[p] = svm->msrpm[p] | value; |
| 3431 | } |
| 3432 | |
| 3433 | svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm)); |
| 3434 | |
| 3435 | return true; |
| 3436 | } |
| 3437 | |
| 3438 | static bool nested_vmcb_checks(struct vmcb *vmcb) |
| 3439 | { |
| 3440 | if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0) |
| 3441 | return false; |
| 3442 | |
| 3443 | if (vmcb->control.asid == 0) |
| 3444 | return false; |
| 3445 | |
| 3446 | if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) && |
| 3447 | !npt_enabled) |
| 3448 | return false; |
| 3449 | |
| 3450 | return true; |
| 3451 | } |
| 3452 | |
| 3453 | static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa, |
| 3454 | struct vmcb *nested_vmcb, struct page *page) |
| 3455 | { |
| 3456 | if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF) |
| 3457 | svm->vcpu.arch.hflags |= HF_HIF_MASK; |
| 3458 | else |
| 3459 | svm->vcpu.arch.hflags &= ~HF_HIF_MASK; |
| 3460 | |
| 3461 | if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) { |
| 3462 | kvm_mmu_unload(&svm->vcpu); |
| 3463 | svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3; |
| 3464 | nested_svm_init_mmu_context(&svm->vcpu); |
| 3465 | } |
| 3466 | |
| 3467 | /* Load the nested guest state */ |
| 3468 | svm->vmcb->save.es = nested_vmcb->save.es; |
| 3469 | svm->vmcb->save.cs = nested_vmcb->save.cs; |
| 3470 | svm->vmcb->save.ss = nested_vmcb->save.ss; |
| 3471 | svm->vmcb->save.ds = nested_vmcb->save.ds; |
| 3472 | svm->vmcb->save.gdtr = nested_vmcb->save.gdtr; |
| 3473 | svm->vmcb->save.idtr = nested_vmcb->save.idtr; |
| 3474 | kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags); |
| 3475 | svm_set_efer(&svm->vcpu, nested_vmcb->save.efer); |
| 3476 | svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0); |
| 3477 | svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4); |
| 3478 | if (npt_enabled) { |
| 3479 | svm->vmcb->save.cr3 = nested_vmcb->save.cr3; |
| 3480 | svm->vcpu.arch.cr3 = nested_vmcb->save.cr3; |
| 3481 | } else |
| 3482 | (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3); |
| 3483 | |
| 3484 | /* Guest paging mode is active - reset mmu */ |
| 3485 | kvm_mmu_reset_context(&svm->vcpu); |
| 3486 | |
| 3487 | svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2; |
| 3488 | kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax); |
| 3489 | kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp); |
| 3490 | kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip); |
| 3491 | |
| 3492 | /* In case we don't even reach vcpu_run, the fields are not updated */ |
| 3493 | svm->vmcb->save.rax = nested_vmcb->save.rax; |
| 3494 | svm->vmcb->save.rsp = nested_vmcb->save.rsp; |
| 3495 | svm->vmcb->save.rip = nested_vmcb->save.rip; |
| 3496 | svm->vmcb->save.dr7 = nested_vmcb->save.dr7; |
| 3497 | svm->vmcb->save.dr6 = nested_vmcb->save.dr6; |
| 3498 | svm->vmcb->save.cpl = nested_vmcb->save.cpl; |
| 3499 | |
| 3500 | svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL; |
| 3501 | svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL; |
| 3502 | |
| 3503 | /* cache intercepts */ |
| 3504 | svm->nested.intercept_cr = nested_vmcb->control.intercept_cr; |
| 3505 | svm->nested.intercept_dr = nested_vmcb->control.intercept_dr; |
| 3506 | svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions; |
| 3507 | svm->nested.intercept = nested_vmcb->control.intercept; |
| 3508 | |
| 3509 | svm_flush_tlb(&svm->vcpu, true); |
| 3510 | svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK; |
| 3511 | if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK) |
| 3512 | svm->vcpu.arch.hflags |= HF_VINTR_MASK; |
| 3513 | else |
| 3514 | svm->vcpu.arch.hflags &= ~HF_VINTR_MASK; |
| 3515 | |
| 3516 | if (svm->vcpu.arch.hflags & HF_VINTR_MASK) { |
| 3517 | /* We only want the cr8 intercept bits of the guest */ |
| 3518 | clr_cr_intercept(svm, INTERCEPT_CR8_READ); |
| 3519 | clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); |
| 3520 | } |
| 3521 | |
| 3522 | /* We don't want to see VMMCALLs from a nested guest */ |
| 3523 | clr_intercept(svm, INTERCEPT_VMMCALL); |
| 3524 | |
| 3525 | svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset; |
| 3526 | svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset; |
| 3527 | |
| 3528 | svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext; |
| 3529 | svm->vmcb->control.int_vector = nested_vmcb->control.int_vector; |
| 3530 | svm->vmcb->control.int_state = nested_vmcb->control.int_state; |
| 3531 | svm->vmcb->control.event_inj = nested_vmcb->control.event_inj; |
| 3532 | svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err; |
| 3533 | |
| 3534 | nested_svm_unmap(page); |
| 3535 | |
| 3536 | /* Enter Guest-Mode */ |
| 3537 | enter_guest_mode(&svm->vcpu); |
| 3538 | |
| 3539 | /* |
| 3540 | * Merge guest and host intercepts - must be called with vcpu in |
| 3541 | * guest-mode to take affect here |
| 3542 | */ |
| 3543 | recalc_intercepts(svm); |
| 3544 | |
| 3545 | svm->nested.vmcb = vmcb_gpa; |
| 3546 | |
| 3547 | enable_gif(svm); |
| 3548 | |
| 3549 | mark_all_dirty(svm->vmcb); |
| 3550 | } |
| 3551 | |
| 3552 | static bool nested_svm_vmrun(struct vcpu_svm *svm) |
| 3553 | { |
| 3554 | struct vmcb *nested_vmcb; |
| 3555 | struct vmcb *hsave = svm->nested.hsave; |
| 3556 | struct vmcb *vmcb = svm->vmcb; |
| 3557 | struct page *page; |
| 3558 | u64 vmcb_gpa; |
| 3559 | |
| 3560 | vmcb_gpa = svm->vmcb->save.rax; |
| 3561 | |
| 3562 | nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); |
| 3563 | if (!nested_vmcb) |
| 3564 | return false; |
| 3565 | |
| 3566 | if (!nested_vmcb_checks(nested_vmcb)) { |
| 3567 | nested_vmcb->control.exit_code = SVM_EXIT_ERR; |
| 3568 | nested_vmcb->control.exit_code_hi = 0; |
| 3569 | nested_vmcb->control.exit_info_1 = 0; |
| 3570 | nested_vmcb->control.exit_info_2 = 0; |
| 3571 | |
| 3572 | nested_svm_unmap(page); |
| 3573 | |
| 3574 | return false; |
| 3575 | } |
| 3576 | |
| 3577 | trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa, |
| 3578 | nested_vmcb->save.rip, |
| 3579 | nested_vmcb->control.int_ctl, |
| 3580 | nested_vmcb->control.event_inj, |
| 3581 | nested_vmcb->control.nested_ctl); |
| 3582 | |
| 3583 | trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff, |
| 3584 | nested_vmcb->control.intercept_cr >> 16, |
| 3585 | nested_vmcb->control.intercept_exceptions, |
| 3586 | nested_vmcb->control.intercept); |
| 3587 | |
| 3588 | /* Clear internal status */ |
| 3589 | kvm_clear_exception_queue(&svm->vcpu); |
| 3590 | kvm_clear_interrupt_queue(&svm->vcpu); |
| 3591 | |
| 3592 | /* |
| 3593 | * Save the old vmcb, so we don't need to pick what we save, but can |
| 3594 | * restore everything when a VMEXIT occurs |
| 3595 | */ |
| 3596 | hsave->save.es = vmcb->save.es; |
| 3597 | hsave->save.cs = vmcb->save.cs; |
| 3598 | hsave->save.ss = vmcb->save.ss; |
| 3599 | hsave->save.ds = vmcb->save.ds; |
| 3600 | hsave->save.gdtr = vmcb->save.gdtr; |
| 3601 | hsave->save.idtr = vmcb->save.idtr; |
| 3602 | hsave->save.efer = svm->vcpu.arch.efer; |
| 3603 | hsave->save.cr0 = kvm_read_cr0(&svm->vcpu); |
| 3604 | hsave->save.cr4 = svm->vcpu.arch.cr4; |
| 3605 | hsave->save.rflags = kvm_get_rflags(&svm->vcpu); |
| 3606 | hsave->save.rip = kvm_rip_read(&svm->vcpu); |
| 3607 | hsave->save.rsp = vmcb->save.rsp; |
| 3608 | hsave->save.rax = vmcb->save.rax; |
| 3609 | if (npt_enabled) |
| 3610 | hsave->save.cr3 = vmcb->save.cr3; |
| 3611 | else |
| 3612 | hsave->save.cr3 = kvm_read_cr3(&svm->vcpu); |
| 3613 | |
| 3614 | copy_vmcb_control_area(hsave, vmcb); |
| 3615 | |
| 3616 | enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page); |
| 3617 | |
| 3618 | return true; |
| 3619 | } |
| 3620 | |
| 3621 | static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb) |
| 3622 | { |
| 3623 | to_vmcb->save.fs = from_vmcb->save.fs; |
| 3624 | to_vmcb->save.gs = from_vmcb->save.gs; |
| 3625 | to_vmcb->save.tr = from_vmcb->save.tr; |
| 3626 | to_vmcb->save.ldtr = from_vmcb->save.ldtr; |
| 3627 | to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; |
| 3628 | to_vmcb->save.star = from_vmcb->save.star; |
| 3629 | to_vmcb->save.lstar = from_vmcb->save.lstar; |
| 3630 | to_vmcb->save.cstar = from_vmcb->save.cstar; |
| 3631 | to_vmcb->save.sfmask = from_vmcb->save.sfmask; |
| 3632 | to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; |
| 3633 | to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; |
| 3634 | to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; |
| 3635 | } |
| 3636 | |
| 3637 | static int vmload_interception(struct vcpu_svm *svm) |
| 3638 | { |
| 3639 | struct vmcb *nested_vmcb; |
| 3640 | struct page *page; |
| 3641 | int ret; |
| 3642 | |
| 3643 | if (nested_svm_check_permissions(svm)) |
| 3644 | return 1; |
| 3645 | |
| 3646 | nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); |
| 3647 | if (!nested_vmcb) |
| 3648 | return 1; |
| 3649 | |
| 3650 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
| 3651 | ret = kvm_skip_emulated_instruction(&svm->vcpu); |
| 3652 | |
| 3653 | nested_svm_vmloadsave(nested_vmcb, svm->vmcb); |
| 3654 | nested_svm_unmap(page); |
| 3655 | |
| 3656 | return ret; |
| 3657 | } |
| 3658 | |
| 3659 | static int vmsave_interception(struct vcpu_svm *svm) |
| 3660 | { |
| 3661 | struct vmcb *nested_vmcb; |
| 3662 | struct page *page; |
| 3663 | int ret; |
| 3664 | |
| 3665 | if (nested_svm_check_permissions(svm)) |
| 3666 | return 1; |
| 3667 | |
| 3668 | nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); |
| 3669 | if (!nested_vmcb) |
| 3670 | return 1; |
| 3671 | |
| 3672 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
| 3673 | ret = kvm_skip_emulated_instruction(&svm->vcpu); |
| 3674 | |
| 3675 | nested_svm_vmloadsave(svm->vmcb, nested_vmcb); |
| 3676 | nested_svm_unmap(page); |
| 3677 | |
| 3678 | return ret; |
| 3679 | } |
| 3680 | |
| 3681 | static int vmrun_interception(struct vcpu_svm *svm) |
| 3682 | { |
| 3683 | if (nested_svm_check_permissions(svm)) |
| 3684 | return 1; |
| 3685 | |
| 3686 | /* Save rip after vmrun instruction */ |
| 3687 | kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3); |
| 3688 | |
| 3689 | if (!nested_svm_vmrun(svm)) |
| 3690 | return 1; |
| 3691 | |
| 3692 | if (!nested_svm_vmrun_msrpm(svm)) |
| 3693 | goto failed; |
| 3694 | |
| 3695 | return 1; |
| 3696 | |
| 3697 | failed: |
| 3698 | |
| 3699 | svm->vmcb->control.exit_code = SVM_EXIT_ERR; |
| 3700 | svm->vmcb->control.exit_code_hi = 0; |
| 3701 | svm->vmcb->control.exit_info_1 = 0; |
| 3702 | svm->vmcb->control.exit_info_2 = 0; |
| 3703 | |
| 3704 | nested_svm_vmexit(svm); |
| 3705 | |
| 3706 | return 1; |
| 3707 | } |
| 3708 | |
| 3709 | static int stgi_interception(struct vcpu_svm *svm) |
| 3710 | { |
| 3711 | int ret; |
| 3712 | |
| 3713 | if (nested_svm_check_permissions(svm)) |
| 3714 | return 1; |
| 3715 | |
| 3716 | /* |
| 3717 | * If VGIF is enabled, the STGI intercept is only added to |
| 3718 | * detect the opening of the SMI/NMI window; remove it now. |
| 3719 | */ |
| 3720 | if (vgif_enabled(svm)) |
| 3721 | clr_intercept(svm, INTERCEPT_STGI); |
| 3722 | |
| 3723 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
| 3724 | ret = kvm_skip_emulated_instruction(&svm->vcpu); |
| 3725 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
| 3726 | |
| 3727 | enable_gif(svm); |
| 3728 | |
| 3729 | return ret; |
| 3730 | } |
| 3731 | |
| 3732 | static int clgi_interception(struct vcpu_svm *svm) |
| 3733 | { |
| 3734 | int ret; |
| 3735 | |
| 3736 | if (nested_svm_check_permissions(svm)) |
| 3737 | return 1; |
| 3738 | |
| 3739 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
| 3740 | ret = kvm_skip_emulated_instruction(&svm->vcpu); |
| 3741 | |
| 3742 | disable_gif(svm); |
| 3743 | |
| 3744 | /* After a CLGI no interrupts should come */ |
| 3745 | if (!kvm_vcpu_apicv_active(&svm->vcpu)) { |
| 3746 | svm_clear_vintr(svm); |
| 3747 | svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; |
| 3748 | mark_dirty(svm->vmcb, VMCB_INTR); |
| 3749 | } |
| 3750 | |
| 3751 | return ret; |
| 3752 | } |
| 3753 | |
| 3754 | static int invlpga_interception(struct vcpu_svm *svm) |
| 3755 | { |
| 3756 | struct kvm_vcpu *vcpu = &svm->vcpu; |
| 3757 | |
| 3758 | trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX), |
| 3759 | kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); |
| 3760 | |
| 3761 | /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ |
| 3762 | kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); |
| 3763 | |
| 3764 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
| 3765 | return kvm_skip_emulated_instruction(&svm->vcpu); |
| 3766 | } |
| 3767 | |
| 3768 | static int skinit_interception(struct vcpu_svm *svm) |
| 3769 | { |
| 3770 | trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); |
| 3771 | |
| 3772 | kvm_queue_exception(&svm->vcpu, UD_VECTOR); |
| 3773 | return 1; |
| 3774 | } |
| 3775 | |
| 3776 | static int wbinvd_interception(struct vcpu_svm *svm) |
| 3777 | { |
| 3778 | return kvm_emulate_wbinvd(&svm->vcpu); |
| 3779 | } |
| 3780 | |
| 3781 | static int xsetbv_interception(struct vcpu_svm *svm) |
| 3782 | { |
| 3783 | u64 new_bv = kvm_read_edx_eax(&svm->vcpu); |
| 3784 | u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); |
| 3785 | |
| 3786 | if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) { |
| 3787 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
| 3788 | return kvm_skip_emulated_instruction(&svm->vcpu); |
| 3789 | } |
| 3790 | |
| 3791 | return 1; |
| 3792 | } |
| 3793 | |
| 3794 | static int task_switch_interception(struct vcpu_svm *svm) |
| 3795 | { |
| 3796 | u16 tss_selector; |
| 3797 | int reason; |
| 3798 | int int_type = svm->vmcb->control.exit_int_info & |
| 3799 | SVM_EXITINTINFO_TYPE_MASK; |
| 3800 | int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; |
| 3801 | uint32_t type = |
| 3802 | svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; |
| 3803 | uint32_t idt_v = |
| 3804 | svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; |
| 3805 | bool has_error_code = false; |
| 3806 | u32 error_code = 0; |
| 3807 | |
| 3808 | tss_selector = (u16)svm->vmcb->control.exit_info_1; |
| 3809 | |
| 3810 | if (svm->vmcb->control.exit_info_2 & |
| 3811 | (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) |
| 3812 | reason = TASK_SWITCH_IRET; |
| 3813 | else if (svm->vmcb->control.exit_info_2 & |
| 3814 | (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) |
| 3815 | reason = TASK_SWITCH_JMP; |
| 3816 | else if (idt_v) |
| 3817 | reason = TASK_SWITCH_GATE; |
| 3818 | else |
| 3819 | reason = TASK_SWITCH_CALL; |
| 3820 | |
| 3821 | if (reason == TASK_SWITCH_GATE) { |
| 3822 | switch (type) { |
| 3823 | case SVM_EXITINTINFO_TYPE_NMI: |
| 3824 | svm->vcpu.arch.nmi_injected = false; |
| 3825 | break; |
| 3826 | case SVM_EXITINTINFO_TYPE_EXEPT: |
| 3827 | if (svm->vmcb->control.exit_info_2 & |
| 3828 | (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { |
| 3829 | has_error_code = true; |
| 3830 | error_code = |
| 3831 | (u32)svm->vmcb->control.exit_info_2; |
| 3832 | } |
| 3833 | kvm_clear_exception_queue(&svm->vcpu); |
| 3834 | break; |
| 3835 | case SVM_EXITINTINFO_TYPE_INTR: |
| 3836 | kvm_clear_interrupt_queue(&svm->vcpu); |
| 3837 | break; |
| 3838 | default: |
| 3839 | break; |
| 3840 | } |
| 3841 | } |
| 3842 | |
| 3843 | if (reason != TASK_SWITCH_GATE || |
| 3844 | int_type == SVM_EXITINTINFO_TYPE_SOFT || |
| 3845 | (int_type == SVM_EXITINTINFO_TYPE_EXEPT && |
| 3846 | (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) |
| 3847 | skip_emulated_instruction(&svm->vcpu); |
| 3848 | |
| 3849 | if (int_type != SVM_EXITINTINFO_TYPE_SOFT) |
| 3850 | int_vec = -1; |
| 3851 | |
| 3852 | if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason, |
| 3853 | has_error_code, error_code) == EMULATE_FAIL) { |
| 3854 | svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 3855 | svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; |
| 3856 | svm->vcpu.run->internal.ndata = 0; |
| 3857 | return 0; |
| 3858 | } |
| 3859 | return 1; |
| 3860 | } |
| 3861 | |
| 3862 | static int cpuid_interception(struct vcpu_svm *svm) |
| 3863 | { |
| 3864 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; |
| 3865 | return kvm_emulate_cpuid(&svm->vcpu); |
| 3866 | } |
| 3867 | |
| 3868 | static int iret_interception(struct vcpu_svm *svm) |
| 3869 | { |
| 3870 | ++svm->vcpu.stat.nmi_window_exits; |
| 3871 | clr_intercept(svm, INTERCEPT_IRET); |
| 3872 | svm->vcpu.arch.hflags |= HF_IRET_MASK; |
| 3873 | svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu); |
| 3874 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
| 3875 | return 1; |
| 3876 | } |
| 3877 | |
| 3878 | static int invlpg_interception(struct vcpu_svm *svm) |
| 3879 | { |
| 3880 | if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) |
| 3881 | return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE; |
| 3882 | |
| 3883 | kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); |
| 3884 | return kvm_skip_emulated_instruction(&svm->vcpu); |
| 3885 | } |
| 3886 | |
| 3887 | static int emulate_on_interception(struct vcpu_svm *svm) |
| 3888 | { |
| 3889 | return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE; |
| 3890 | } |
| 3891 | |
| 3892 | static int rsm_interception(struct vcpu_svm *svm) |
| 3893 | { |
| 3894 | return kvm_emulate_instruction_from_buffer(&svm->vcpu, |
| 3895 | rsm_ins_bytes, 2) == EMULATE_DONE; |
| 3896 | } |
| 3897 | |
| 3898 | static int rdpmc_interception(struct vcpu_svm *svm) |
| 3899 | { |
| 3900 | int err; |
| 3901 | |
| 3902 | if (!static_cpu_has(X86_FEATURE_NRIPS)) |
| 3903 | return emulate_on_interception(svm); |
| 3904 | |
| 3905 | err = kvm_rdpmc(&svm->vcpu); |
| 3906 | return kvm_complete_insn_gp(&svm->vcpu, err); |
| 3907 | } |
| 3908 | |
| 3909 | static bool check_selective_cr0_intercepted(struct vcpu_svm *svm, |
| 3910 | unsigned long val) |
| 3911 | { |
| 3912 | unsigned long cr0 = svm->vcpu.arch.cr0; |
| 3913 | bool ret = false; |
| 3914 | u64 intercept; |
| 3915 | |
| 3916 | intercept = svm->nested.intercept; |
| 3917 | |
| 3918 | if (!is_guest_mode(&svm->vcpu) || |
| 3919 | (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))) |
| 3920 | return false; |
| 3921 | |
| 3922 | cr0 &= ~SVM_CR0_SELECTIVE_MASK; |
| 3923 | val &= ~SVM_CR0_SELECTIVE_MASK; |
| 3924 | |
| 3925 | if (cr0 ^ val) { |
| 3926 | svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; |
| 3927 | ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); |
| 3928 | } |
| 3929 | |
| 3930 | return ret; |
| 3931 | } |
| 3932 | |
| 3933 | #define CR_VALID (1ULL << 63) |
| 3934 | |
| 3935 | static int cr_interception(struct vcpu_svm *svm) |
| 3936 | { |
| 3937 | int reg, cr; |
| 3938 | unsigned long val; |
| 3939 | int err; |
| 3940 | |
| 3941 | if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) |
| 3942 | return emulate_on_interception(svm); |
| 3943 | |
| 3944 | if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) |
| 3945 | return emulate_on_interception(svm); |
| 3946 | |
| 3947 | reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; |
| 3948 | if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) |
| 3949 | cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; |
| 3950 | else |
| 3951 | cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; |
| 3952 | |
| 3953 | err = 0; |
| 3954 | if (cr >= 16) { /* mov to cr */ |
| 3955 | cr -= 16; |
| 3956 | val = kvm_register_read(&svm->vcpu, reg); |
| 3957 | switch (cr) { |
| 3958 | case 0: |
| 3959 | if (!check_selective_cr0_intercepted(svm, val)) |
| 3960 | err = kvm_set_cr0(&svm->vcpu, val); |
| 3961 | else |
| 3962 | return 1; |
| 3963 | |
| 3964 | break; |
| 3965 | case 3: |
| 3966 | err = kvm_set_cr3(&svm->vcpu, val); |
| 3967 | break; |
| 3968 | case 4: |
| 3969 | err = kvm_set_cr4(&svm->vcpu, val); |
| 3970 | break; |
| 3971 | case 8: |
| 3972 | err = kvm_set_cr8(&svm->vcpu, val); |
| 3973 | break; |
| 3974 | default: |
| 3975 | WARN(1, "unhandled write to CR%d", cr); |
| 3976 | kvm_queue_exception(&svm->vcpu, UD_VECTOR); |
| 3977 | return 1; |
| 3978 | } |
| 3979 | } else { /* mov from cr */ |
| 3980 | switch (cr) { |
| 3981 | case 0: |
| 3982 | val = kvm_read_cr0(&svm->vcpu); |
| 3983 | break; |
| 3984 | case 2: |
| 3985 | val = svm->vcpu.arch.cr2; |
| 3986 | break; |
| 3987 | case 3: |
| 3988 | val = kvm_read_cr3(&svm->vcpu); |
| 3989 | break; |
| 3990 | case 4: |
| 3991 | val = kvm_read_cr4(&svm->vcpu); |
| 3992 | break; |
| 3993 | case 8: |
| 3994 | val = kvm_get_cr8(&svm->vcpu); |
| 3995 | break; |
| 3996 | default: |
| 3997 | WARN(1, "unhandled read from CR%d", cr); |
| 3998 | kvm_queue_exception(&svm->vcpu, UD_VECTOR); |
| 3999 | return 1; |
| 4000 | } |
| 4001 | kvm_register_write(&svm->vcpu, reg, val); |
| 4002 | } |
| 4003 | return kvm_complete_insn_gp(&svm->vcpu, err); |
| 4004 | } |
| 4005 | |
| 4006 | static int dr_interception(struct vcpu_svm *svm) |
| 4007 | { |
| 4008 | int reg, dr; |
| 4009 | unsigned long val; |
| 4010 | |
| 4011 | if (svm->vcpu.guest_debug == 0) { |
| 4012 | /* |
| 4013 | * No more DR vmexits; force a reload of the debug registers |
| 4014 | * and reenter on this instruction. The next vmexit will |
| 4015 | * retrieve the full state of the debug registers. |
| 4016 | */ |
| 4017 | clr_dr_intercepts(svm); |
| 4018 | svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; |
| 4019 | return 1; |
| 4020 | } |
| 4021 | |
| 4022 | if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) |
| 4023 | return emulate_on_interception(svm); |
| 4024 | |
| 4025 | reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; |
| 4026 | dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; |
| 4027 | |
| 4028 | if (dr >= 16) { /* mov to DRn */ |
| 4029 | if (!kvm_require_dr(&svm->vcpu, dr - 16)) |
| 4030 | return 1; |
| 4031 | val = kvm_register_read(&svm->vcpu, reg); |
| 4032 | kvm_set_dr(&svm->vcpu, dr - 16, val); |
| 4033 | } else { |
| 4034 | if (!kvm_require_dr(&svm->vcpu, dr)) |
| 4035 | return 1; |
| 4036 | kvm_get_dr(&svm->vcpu, dr, &val); |
| 4037 | kvm_register_write(&svm->vcpu, reg, val); |
| 4038 | } |
| 4039 | |
| 4040 | return kvm_skip_emulated_instruction(&svm->vcpu); |
| 4041 | } |
| 4042 | |
| 4043 | static int cr8_write_interception(struct vcpu_svm *svm) |
| 4044 | { |
| 4045 | struct kvm_run *kvm_run = svm->vcpu.run; |
| 4046 | int r; |
| 4047 | |
| 4048 | u8 cr8_prev = kvm_get_cr8(&svm->vcpu); |
| 4049 | /* instruction emulation calls kvm_set_cr8() */ |
| 4050 | r = cr_interception(svm); |
| 4051 | if (lapic_in_kernel(&svm->vcpu)) |
| 4052 | return r; |
| 4053 | if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) |
| 4054 | return r; |
| 4055 | kvm_run->exit_reason = KVM_EXIT_SET_TPR; |
| 4056 | return 0; |
| 4057 | } |
| 4058 | |
| 4059 | static int svm_get_msr_feature(struct kvm_msr_entry *msr) |
| 4060 | { |
| 4061 | msr->data = 0; |
| 4062 | |
| 4063 | switch (msr->index) { |
| 4064 | case MSR_F10H_DECFG: |
| 4065 | if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) |
| 4066 | msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; |
| 4067 | break; |
| 4068 | default: |
| 4069 | return 1; |
| 4070 | } |
| 4071 | |
| 4072 | return 0; |
| 4073 | } |
| 4074 | |
| 4075 | static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| 4076 | { |
| 4077 | struct vcpu_svm *svm = to_svm(vcpu); |
| 4078 | |
| 4079 | switch (msr_info->index) { |
| 4080 | case MSR_STAR: |
| 4081 | msr_info->data = svm->vmcb->save.star; |
| 4082 | break; |
| 4083 | #ifdef CONFIG_X86_64 |
| 4084 | case MSR_LSTAR: |
| 4085 | msr_info->data = svm->vmcb->save.lstar; |
| 4086 | break; |
| 4087 | case MSR_CSTAR: |
| 4088 | msr_info->data = svm->vmcb->save.cstar; |
| 4089 | break; |
| 4090 | case MSR_KERNEL_GS_BASE: |
| 4091 | msr_info->data = svm->vmcb->save.kernel_gs_base; |
| 4092 | break; |
| 4093 | case MSR_SYSCALL_MASK: |
| 4094 | msr_info->data = svm->vmcb->save.sfmask; |
| 4095 | break; |
| 4096 | #endif |
| 4097 | case MSR_IA32_SYSENTER_CS: |
| 4098 | msr_info->data = svm->vmcb->save.sysenter_cs; |
| 4099 | break; |
| 4100 | case MSR_IA32_SYSENTER_EIP: |
| 4101 | msr_info->data = svm->sysenter_eip; |
| 4102 | break; |
| 4103 | case MSR_IA32_SYSENTER_ESP: |
| 4104 | msr_info->data = svm->sysenter_esp; |
| 4105 | break; |
| 4106 | case MSR_TSC_AUX: |
| 4107 | if (!boot_cpu_has(X86_FEATURE_RDTSCP)) |
| 4108 | return 1; |
| 4109 | msr_info->data = svm->tsc_aux; |
| 4110 | break; |
| 4111 | /* |
| 4112 | * Nobody will change the following 5 values in the VMCB so we can |
| 4113 | * safely return them on rdmsr. They will always be 0 until LBRV is |
| 4114 | * implemented. |
| 4115 | */ |
| 4116 | case MSR_IA32_DEBUGCTLMSR: |
| 4117 | msr_info->data = svm->vmcb->save.dbgctl; |
| 4118 | break; |
| 4119 | case MSR_IA32_LASTBRANCHFROMIP: |
| 4120 | msr_info->data = svm->vmcb->save.br_from; |
| 4121 | break; |
| 4122 | case MSR_IA32_LASTBRANCHTOIP: |
| 4123 | msr_info->data = svm->vmcb->save.br_to; |
| 4124 | break; |
| 4125 | case MSR_IA32_LASTINTFROMIP: |
| 4126 | msr_info->data = svm->vmcb->save.last_excp_from; |
| 4127 | break; |
| 4128 | case MSR_IA32_LASTINTTOIP: |
| 4129 | msr_info->data = svm->vmcb->save.last_excp_to; |
| 4130 | break; |
| 4131 | case MSR_VM_HSAVE_PA: |
| 4132 | msr_info->data = svm->nested.hsave_msr; |
| 4133 | break; |
| 4134 | case MSR_VM_CR: |
| 4135 | msr_info->data = svm->nested.vm_cr_msr; |
| 4136 | break; |
| 4137 | case MSR_IA32_SPEC_CTRL: |
| 4138 | if (!msr_info->host_initiated && |
| 4139 | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && |
| 4140 | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) |
| 4141 | return 1; |
| 4142 | |
| 4143 | msr_info->data = svm->spec_ctrl; |
| 4144 | break; |
| 4145 | case MSR_AMD64_VIRT_SPEC_CTRL: |
| 4146 | if (!msr_info->host_initiated && |
| 4147 | !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) |
| 4148 | return 1; |
| 4149 | |
| 4150 | msr_info->data = svm->virt_spec_ctrl; |
| 4151 | break; |
| 4152 | case MSR_F15H_IC_CFG: { |
| 4153 | |
| 4154 | int family, model; |
| 4155 | |
| 4156 | family = guest_cpuid_family(vcpu); |
| 4157 | model = guest_cpuid_model(vcpu); |
| 4158 | |
| 4159 | if (family < 0 || model < 0) |
| 4160 | return kvm_get_msr_common(vcpu, msr_info); |
| 4161 | |
| 4162 | msr_info->data = 0; |
| 4163 | |
| 4164 | if (family == 0x15 && |
| 4165 | (model >= 0x2 && model < 0x20)) |
| 4166 | msr_info->data = 0x1E; |
| 4167 | } |
| 4168 | break; |
| 4169 | case MSR_F10H_DECFG: |
| 4170 | msr_info->data = svm->msr_decfg; |
| 4171 | break; |
| 4172 | default: |
| 4173 | return kvm_get_msr_common(vcpu, msr_info); |
| 4174 | } |
| 4175 | return 0; |
| 4176 | } |
| 4177 | |
| 4178 | static int rdmsr_interception(struct vcpu_svm *svm) |
| 4179 | { |
| 4180 | u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); |
| 4181 | struct msr_data msr_info; |
| 4182 | |
| 4183 | msr_info.index = ecx; |
| 4184 | msr_info.host_initiated = false; |
| 4185 | if (svm_get_msr(&svm->vcpu, &msr_info)) { |
| 4186 | trace_kvm_msr_read_ex(ecx); |
| 4187 | kvm_inject_gp(&svm->vcpu, 0); |
| 4188 | return 1; |
| 4189 | } else { |
| 4190 | trace_kvm_msr_read(ecx, msr_info.data); |
| 4191 | |
| 4192 | kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, |
| 4193 | msr_info.data & 0xffffffff); |
| 4194 | kvm_register_write(&svm->vcpu, VCPU_REGS_RDX, |
| 4195 | msr_info.data >> 32); |
| 4196 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; |
| 4197 | return kvm_skip_emulated_instruction(&svm->vcpu); |
| 4198 | } |
| 4199 | } |
| 4200 | |
| 4201 | static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) |
| 4202 | { |
| 4203 | struct vcpu_svm *svm = to_svm(vcpu); |
| 4204 | int svm_dis, chg_mask; |
| 4205 | |
| 4206 | if (data & ~SVM_VM_CR_VALID_MASK) |
| 4207 | return 1; |
| 4208 | |
| 4209 | chg_mask = SVM_VM_CR_VALID_MASK; |
| 4210 | |
| 4211 | if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) |
| 4212 | chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); |
| 4213 | |
| 4214 | svm->nested.vm_cr_msr &= ~chg_mask; |
| 4215 | svm->nested.vm_cr_msr |= (data & chg_mask); |
| 4216 | |
| 4217 | svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; |
| 4218 | |
| 4219 | /* check for svm_disable while efer.svme is set */ |
| 4220 | if (svm_dis && (vcpu->arch.efer & EFER_SVME)) |
| 4221 | return 1; |
| 4222 | |
| 4223 | return 0; |
| 4224 | } |
| 4225 | |
| 4226 | static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
| 4227 | { |
| 4228 | struct vcpu_svm *svm = to_svm(vcpu); |
| 4229 | |
| 4230 | u32 ecx = msr->index; |
| 4231 | u64 data = msr->data; |
| 4232 | switch (ecx) { |
| 4233 | case MSR_IA32_CR_PAT: |
| 4234 | if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) |
| 4235 | return 1; |
| 4236 | vcpu->arch.pat = data; |
| 4237 | svm->vmcb->save.g_pat = data; |
| 4238 | mark_dirty(svm->vmcb, VMCB_NPT); |
| 4239 | break; |
| 4240 | case MSR_IA32_SPEC_CTRL: |
| 4241 | if (!msr->host_initiated && |
| 4242 | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && |
| 4243 | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) |
| 4244 | return 1; |
| 4245 | |
| 4246 | /* The STIBP bit doesn't fault even if it's not advertised */ |
| 4247 | if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) |
| 4248 | return 1; |
| 4249 | |
| 4250 | svm->spec_ctrl = data; |
| 4251 | |
| 4252 | if (!data) |
| 4253 | break; |
| 4254 | |
| 4255 | /* |
| 4256 | * For non-nested: |
| 4257 | * When it's written (to non-zero) for the first time, pass |
| 4258 | * it through. |
| 4259 | * |
| 4260 | * For nested: |
| 4261 | * The handling of the MSR bitmap for L2 guests is done in |
| 4262 | * nested_svm_vmrun_msrpm. |
| 4263 | * We update the L1 MSR bit as well since it will end up |
| 4264 | * touching the MSR anyway now. |
| 4265 | */ |
| 4266 | set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); |
| 4267 | break; |
| 4268 | case MSR_IA32_PRED_CMD: |
| 4269 | if (!msr->host_initiated && |
| 4270 | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) |
| 4271 | return 1; |
| 4272 | |
| 4273 | if (data & ~PRED_CMD_IBPB) |
| 4274 | return 1; |
| 4275 | |
| 4276 | if (!data) |
| 4277 | break; |
| 4278 | |
| 4279 | wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); |
| 4280 | if (is_guest_mode(vcpu)) |
| 4281 | break; |
| 4282 | set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); |
| 4283 | break; |
| 4284 | case MSR_AMD64_VIRT_SPEC_CTRL: |
| 4285 | if (!msr->host_initiated && |
| 4286 | !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) |
| 4287 | return 1; |
| 4288 | |
| 4289 | if (data & ~SPEC_CTRL_SSBD) |
| 4290 | return 1; |
| 4291 | |
| 4292 | svm->virt_spec_ctrl = data; |
| 4293 | break; |
| 4294 | case MSR_STAR: |
| 4295 | svm->vmcb->save.star = data; |
| 4296 | break; |
| 4297 | #ifdef CONFIG_X86_64 |
| 4298 | case MSR_LSTAR: |
| 4299 | svm->vmcb->save.lstar = data; |
| 4300 | break; |
| 4301 | case MSR_CSTAR: |
| 4302 | svm->vmcb->save.cstar = data; |
| 4303 | break; |
| 4304 | case MSR_KERNEL_GS_BASE: |
| 4305 | svm->vmcb->save.kernel_gs_base = data; |
| 4306 | break; |
| 4307 | case MSR_SYSCALL_MASK: |
| 4308 | svm->vmcb->save.sfmask = data; |
| 4309 | break; |
| 4310 | #endif |
| 4311 | case MSR_IA32_SYSENTER_CS: |
| 4312 | svm->vmcb->save.sysenter_cs = data; |
| 4313 | break; |
| 4314 | case MSR_IA32_SYSENTER_EIP: |
| 4315 | svm->sysenter_eip = data; |
| 4316 | svm->vmcb->save.sysenter_eip = data; |
| 4317 | break; |
| 4318 | case MSR_IA32_SYSENTER_ESP: |
| 4319 | svm->sysenter_esp = data; |
| 4320 | svm->vmcb->save.sysenter_esp = data; |
| 4321 | break; |
| 4322 | case MSR_TSC_AUX: |
| 4323 | if (!boot_cpu_has(X86_FEATURE_RDTSCP)) |
| 4324 | return 1; |
| 4325 | |
| 4326 | /* |
| 4327 | * This is rare, so we update the MSR here instead of using |
| 4328 | * direct_access_msrs. Doing that would require a rdmsr in |
| 4329 | * svm_vcpu_put. |
| 4330 | */ |
| 4331 | svm->tsc_aux = data; |
| 4332 | wrmsrl(MSR_TSC_AUX, svm->tsc_aux); |
| 4333 | break; |
| 4334 | case MSR_IA32_DEBUGCTLMSR: |
| 4335 | if (!boot_cpu_has(X86_FEATURE_LBRV)) { |
| 4336 | vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", |
| 4337 | __func__, data); |
| 4338 | break; |
| 4339 | } |
| 4340 | if (data & DEBUGCTL_RESERVED_BITS) |
| 4341 | return 1; |
| 4342 | |
| 4343 | svm->vmcb->save.dbgctl = data; |
| 4344 | mark_dirty(svm->vmcb, VMCB_LBR); |
| 4345 | if (data & (1ULL<<0)) |
| 4346 | svm_enable_lbrv(svm); |
| 4347 | else |
| 4348 | svm_disable_lbrv(svm); |
| 4349 | break; |
| 4350 | case MSR_VM_HSAVE_PA: |
| 4351 | svm->nested.hsave_msr = data; |
| 4352 | break; |
| 4353 | case MSR_VM_CR: |
| 4354 | return svm_set_vm_cr(vcpu, data); |
| 4355 | case MSR_VM_IGNNE: |
| 4356 | vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); |
| 4357 | break; |
| 4358 | case MSR_F10H_DECFG: { |
| 4359 | struct kvm_msr_entry msr_entry; |
| 4360 | |
| 4361 | msr_entry.index = msr->index; |
| 4362 | if (svm_get_msr_feature(&msr_entry)) |
| 4363 | return 1; |
| 4364 | |
| 4365 | /* Check the supported bits */ |
| 4366 | if (data & ~msr_entry.data) |
| 4367 | return 1; |
| 4368 | |
| 4369 | /* Don't allow the guest to change a bit, #GP */ |
| 4370 | if (!msr->host_initiated && (data ^ msr_entry.data)) |
| 4371 | return 1; |
| 4372 | |
| 4373 | svm->msr_decfg = data; |
| 4374 | break; |
| 4375 | } |
| 4376 | case MSR_IA32_APICBASE: |
| 4377 | if (kvm_vcpu_apicv_active(vcpu)) |
| 4378 | avic_update_vapic_bar(to_svm(vcpu), data); |
| 4379 | /* Follow through */ |
| 4380 | default: |
| 4381 | return kvm_set_msr_common(vcpu, msr); |
| 4382 | } |
| 4383 | return 0; |
| 4384 | } |
| 4385 | |
| 4386 | static int wrmsr_interception(struct vcpu_svm *svm) |
| 4387 | { |
| 4388 | struct msr_data msr; |
| 4389 | u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); |
| 4390 | u64 data = kvm_read_edx_eax(&svm->vcpu); |
| 4391 | |
| 4392 | msr.data = data; |
| 4393 | msr.index = ecx; |
| 4394 | msr.host_initiated = false; |
| 4395 | |
| 4396 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; |
| 4397 | if (kvm_set_msr(&svm->vcpu, &msr)) { |
| 4398 | trace_kvm_msr_write_ex(ecx, data); |
| 4399 | kvm_inject_gp(&svm->vcpu, 0); |
| 4400 | return 1; |
| 4401 | } else { |
| 4402 | trace_kvm_msr_write(ecx, data); |
| 4403 | return kvm_skip_emulated_instruction(&svm->vcpu); |
| 4404 | } |
| 4405 | } |
| 4406 | |
| 4407 | static int msr_interception(struct vcpu_svm *svm) |
| 4408 | { |
| 4409 | if (svm->vmcb->control.exit_info_1) |
| 4410 | return wrmsr_interception(svm); |
| 4411 | else |
| 4412 | return rdmsr_interception(svm); |
| 4413 | } |
| 4414 | |
| 4415 | static int interrupt_window_interception(struct vcpu_svm *svm) |
| 4416 | { |
| 4417 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
| 4418 | svm_clear_vintr(svm); |
| 4419 | svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; |
| 4420 | mark_dirty(svm->vmcb, VMCB_INTR); |
| 4421 | ++svm->vcpu.stat.irq_window_exits; |
| 4422 | return 1; |
| 4423 | } |
| 4424 | |
| 4425 | static int pause_interception(struct vcpu_svm *svm) |
| 4426 | { |
| 4427 | struct kvm_vcpu *vcpu = &svm->vcpu; |
| 4428 | bool in_kernel = (svm_get_cpl(vcpu) == 0); |
| 4429 | |
| 4430 | if (pause_filter_thresh) |
| 4431 | grow_ple_window(vcpu); |
| 4432 | |
| 4433 | kvm_vcpu_on_spin(vcpu, in_kernel); |
| 4434 | return 1; |
| 4435 | } |
| 4436 | |
| 4437 | static int nop_interception(struct vcpu_svm *svm) |
| 4438 | { |
| 4439 | return kvm_skip_emulated_instruction(&(svm->vcpu)); |
| 4440 | } |
| 4441 | |
| 4442 | static int monitor_interception(struct vcpu_svm *svm) |
| 4443 | { |
| 4444 | printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); |
| 4445 | return nop_interception(svm); |
| 4446 | } |
| 4447 | |
| 4448 | static int mwait_interception(struct vcpu_svm *svm) |
| 4449 | { |
| 4450 | printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); |
| 4451 | return nop_interception(svm); |
| 4452 | } |
| 4453 | |
| 4454 | enum avic_ipi_failure_cause { |
| 4455 | AVIC_IPI_FAILURE_INVALID_INT_TYPE, |
| 4456 | AVIC_IPI_FAILURE_TARGET_NOT_RUNNING, |
| 4457 | AVIC_IPI_FAILURE_INVALID_TARGET, |
| 4458 | AVIC_IPI_FAILURE_INVALID_BACKING_PAGE, |
| 4459 | }; |
| 4460 | |
| 4461 | static int avic_incomplete_ipi_interception(struct vcpu_svm *svm) |
| 4462 | { |
| 4463 | u32 icrh = svm->vmcb->control.exit_info_1 >> 32; |
| 4464 | u32 icrl = svm->vmcb->control.exit_info_1; |
| 4465 | u32 id = svm->vmcb->control.exit_info_2 >> 32; |
| 4466 | u32 index = svm->vmcb->control.exit_info_2 & 0xFF; |
| 4467 | struct kvm_lapic *apic = svm->vcpu.arch.apic; |
| 4468 | |
| 4469 | trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index); |
| 4470 | |
| 4471 | switch (id) { |
| 4472 | case AVIC_IPI_FAILURE_INVALID_INT_TYPE: |
| 4473 | /* |
| 4474 | * AVIC hardware handles the generation of |
| 4475 | * IPIs when the specified Message Type is Fixed |
| 4476 | * (also known as fixed delivery mode) and |
| 4477 | * the Trigger Mode is edge-triggered. The hardware |
| 4478 | * also supports self and broadcast delivery modes |
| 4479 | * specified via the Destination Shorthand(DSH) |
| 4480 | * field of the ICRL. Logical and physical APIC ID |
| 4481 | * formats are supported. All other IPI types cause |
| 4482 | * a #VMEXIT, which needs to emulated. |
| 4483 | */ |
| 4484 | kvm_lapic_reg_write(apic, APIC_ICR2, icrh); |
| 4485 | kvm_lapic_reg_write(apic, APIC_ICR, icrl); |
| 4486 | break; |
| 4487 | case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: { |
| 4488 | int i; |
| 4489 | struct kvm_vcpu *vcpu; |
| 4490 | struct kvm *kvm = svm->vcpu.kvm; |
| 4491 | struct kvm_lapic *apic = svm->vcpu.arch.apic; |
| 4492 | |
| 4493 | /* |
| 4494 | * At this point, we expect that the AVIC HW has already |
| 4495 | * set the appropriate IRR bits on the valid target |
| 4496 | * vcpus. So, we just need to kick the appropriate vcpu. |
| 4497 | */ |
| 4498 | kvm_for_each_vcpu(i, vcpu, kvm) { |
| 4499 | bool m = kvm_apic_match_dest(vcpu, apic, |
| 4500 | icrl & KVM_APIC_SHORT_MASK, |
| 4501 | GET_APIC_DEST_FIELD(icrh), |
| 4502 | icrl & KVM_APIC_DEST_MASK); |
| 4503 | |
| 4504 | if (m && !avic_vcpu_is_running(vcpu)) |
| 4505 | kvm_vcpu_wake_up(vcpu); |
| 4506 | } |
| 4507 | break; |
| 4508 | } |
| 4509 | case AVIC_IPI_FAILURE_INVALID_TARGET: |
| 4510 | break; |
| 4511 | case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE: |
| 4512 | WARN_ONCE(1, "Invalid backing page\n"); |
| 4513 | break; |
| 4514 | default: |
| 4515 | pr_err("Unknown IPI interception\n"); |
| 4516 | } |
| 4517 | |
| 4518 | return 1; |
| 4519 | } |
| 4520 | |
| 4521 | static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat) |
| 4522 | { |
| 4523 | struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); |
| 4524 | int index; |
| 4525 | u32 *logical_apic_id_table; |
| 4526 | int dlid = GET_APIC_LOGICAL_ID(ldr); |
| 4527 | |
| 4528 | if (!dlid) |
| 4529 | return NULL; |
| 4530 | |
| 4531 | if (flat) { /* flat */ |
| 4532 | index = ffs(dlid) - 1; |
| 4533 | if (index > 7) |
| 4534 | return NULL; |
| 4535 | } else { /* cluster */ |
| 4536 | int cluster = (dlid & 0xf0) >> 4; |
| 4537 | int apic = ffs(dlid & 0x0f) - 1; |
| 4538 | |
| 4539 | if ((apic < 0) || (apic > 7) || |
| 4540 | (cluster >= 0xf)) |
| 4541 | return NULL; |
| 4542 | index = (cluster << 2) + apic; |
| 4543 | } |
| 4544 | |
| 4545 | logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page); |
| 4546 | |
| 4547 | return &logical_apic_id_table[index]; |
| 4548 | } |
| 4549 | |
| 4550 | static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr, |
| 4551 | bool valid) |
| 4552 | { |
| 4553 | bool flat; |
| 4554 | u32 *entry, new_entry; |
| 4555 | |
| 4556 | flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT; |
| 4557 | entry = avic_get_logical_id_entry(vcpu, ldr, flat); |
| 4558 | if (!entry) |
| 4559 | return -EINVAL; |
| 4560 | |
| 4561 | new_entry = READ_ONCE(*entry); |
| 4562 | new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; |
| 4563 | new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK); |
| 4564 | if (valid) |
| 4565 | new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK; |
| 4566 | else |
| 4567 | new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK; |
| 4568 | WRITE_ONCE(*entry, new_entry); |
| 4569 | |
| 4570 | return 0; |
| 4571 | } |
| 4572 | |
| 4573 | static int avic_handle_ldr_update(struct kvm_vcpu *vcpu) |
| 4574 | { |
| 4575 | int ret; |
| 4576 | struct vcpu_svm *svm = to_svm(vcpu); |
| 4577 | u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR); |
| 4578 | |
| 4579 | if (!ldr) |
| 4580 | return 1; |
| 4581 | |
| 4582 | ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true); |
| 4583 | if (ret && svm->ldr_reg) { |
| 4584 | avic_ldr_write(vcpu, 0, svm->ldr_reg, false); |
| 4585 | svm->ldr_reg = 0; |
| 4586 | } else { |
| 4587 | svm->ldr_reg = ldr; |
| 4588 | } |
| 4589 | return ret; |
| 4590 | } |
| 4591 | |
| 4592 | static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu) |
| 4593 | { |
| 4594 | u64 *old, *new; |
| 4595 | struct vcpu_svm *svm = to_svm(vcpu); |
| 4596 | u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID); |
| 4597 | u32 id = (apic_id_reg >> 24) & 0xff; |
| 4598 | |
| 4599 | if (vcpu->vcpu_id == id) |
| 4600 | return 0; |
| 4601 | |
| 4602 | old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id); |
| 4603 | new = avic_get_physical_id_entry(vcpu, id); |
| 4604 | if (!new || !old) |
| 4605 | return 1; |
| 4606 | |
| 4607 | /* We need to move physical_id_entry to new offset */ |
| 4608 | *new = *old; |
| 4609 | *old = 0ULL; |
| 4610 | to_svm(vcpu)->avic_physical_id_cache = new; |
| 4611 | |
| 4612 | /* |
| 4613 | * Also update the guest physical APIC ID in the logical |
| 4614 | * APIC ID table entry if already setup the LDR. |
| 4615 | */ |
| 4616 | if (svm->ldr_reg) |
| 4617 | avic_handle_ldr_update(vcpu); |
| 4618 | |
| 4619 | return 0; |
| 4620 | } |
| 4621 | |
| 4622 | static int avic_handle_dfr_update(struct kvm_vcpu *vcpu) |
| 4623 | { |
| 4624 | struct vcpu_svm *svm = to_svm(vcpu); |
| 4625 | struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); |
| 4626 | u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR); |
| 4627 | u32 mod = (dfr >> 28) & 0xf; |
| 4628 | |
| 4629 | /* |
| 4630 | * We assume that all local APICs are using the same type. |
| 4631 | * If this changes, we need to flush the AVIC logical |
| 4632 | * APID id table. |
| 4633 | */ |
| 4634 | if (kvm_svm->ldr_mode == mod) |
| 4635 | return 0; |
| 4636 | |
| 4637 | clear_page(page_address(kvm_svm->avic_logical_id_table_page)); |
| 4638 | kvm_svm->ldr_mode = mod; |
| 4639 | |
| 4640 | if (svm->ldr_reg) |
| 4641 | avic_handle_ldr_update(vcpu); |
| 4642 | return 0; |
| 4643 | } |
| 4644 | |
| 4645 | static int avic_unaccel_trap_write(struct vcpu_svm *svm) |
| 4646 | { |
| 4647 | struct kvm_lapic *apic = svm->vcpu.arch.apic; |
| 4648 | u32 offset = svm->vmcb->control.exit_info_1 & |
| 4649 | AVIC_UNACCEL_ACCESS_OFFSET_MASK; |
| 4650 | |
| 4651 | switch (offset) { |
| 4652 | case APIC_ID: |
| 4653 | if (avic_handle_apic_id_update(&svm->vcpu)) |
| 4654 | return 0; |
| 4655 | break; |
| 4656 | case APIC_LDR: |
| 4657 | if (avic_handle_ldr_update(&svm->vcpu)) |
| 4658 | return 0; |
| 4659 | break; |
| 4660 | case APIC_DFR: |
| 4661 | avic_handle_dfr_update(&svm->vcpu); |
| 4662 | break; |
| 4663 | default: |
| 4664 | break; |
| 4665 | } |
| 4666 | |
| 4667 | kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); |
| 4668 | |
| 4669 | return 1; |
| 4670 | } |
| 4671 | |
| 4672 | static bool is_avic_unaccelerated_access_trap(u32 offset) |
| 4673 | { |
| 4674 | bool ret = false; |
| 4675 | |
| 4676 | switch (offset) { |
| 4677 | case APIC_ID: |
| 4678 | case APIC_EOI: |
| 4679 | case APIC_RRR: |
| 4680 | case APIC_LDR: |
| 4681 | case APIC_DFR: |
| 4682 | case APIC_SPIV: |
| 4683 | case APIC_ESR: |
| 4684 | case APIC_ICR: |
| 4685 | case APIC_LVTT: |
| 4686 | case APIC_LVTTHMR: |
| 4687 | case APIC_LVTPC: |
| 4688 | case APIC_LVT0: |
| 4689 | case APIC_LVT1: |
| 4690 | case APIC_LVTERR: |
| 4691 | case APIC_TMICT: |
| 4692 | case APIC_TDCR: |
| 4693 | ret = true; |
| 4694 | break; |
| 4695 | default: |
| 4696 | break; |
| 4697 | } |
| 4698 | return ret; |
| 4699 | } |
| 4700 | |
| 4701 | static int avic_unaccelerated_access_interception(struct vcpu_svm *svm) |
| 4702 | { |
| 4703 | int ret = 0; |
| 4704 | u32 offset = svm->vmcb->control.exit_info_1 & |
| 4705 | AVIC_UNACCEL_ACCESS_OFFSET_MASK; |
| 4706 | u32 vector = svm->vmcb->control.exit_info_2 & |
| 4707 | AVIC_UNACCEL_ACCESS_VECTOR_MASK; |
| 4708 | bool write = (svm->vmcb->control.exit_info_1 >> 32) & |
| 4709 | AVIC_UNACCEL_ACCESS_WRITE_MASK; |
| 4710 | bool trap = is_avic_unaccelerated_access_trap(offset); |
| 4711 | |
| 4712 | trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset, |
| 4713 | trap, write, vector); |
| 4714 | if (trap) { |
| 4715 | /* Handling Trap */ |
| 4716 | WARN_ONCE(!write, "svm: Handling trap read.\n"); |
| 4717 | ret = avic_unaccel_trap_write(svm); |
| 4718 | } else { |
| 4719 | /* Handling Fault */ |
| 4720 | ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE); |
| 4721 | } |
| 4722 | |
| 4723 | return ret; |
| 4724 | } |
| 4725 | |
| 4726 | static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { |
| 4727 | [SVM_EXIT_READ_CR0] = cr_interception, |
| 4728 | [SVM_EXIT_READ_CR3] = cr_interception, |
| 4729 | [SVM_EXIT_READ_CR4] = cr_interception, |
| 4730 | [SVM_EXIT_READ_CR8] = cr_interception, |
| 4731 | [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, |
| 4732 | [SVM_EXIT_WRITE_CR0] = cr_interception, |
| 4733 | [SVM_EXIT_WRITE_CR3] = cr_interception, |
| 4734 | [SVM_EXIT_WRITE_CR4] = cr_interception, |
| 4735 | [SVM_EXIT_WRITE_CR8] = cr8_write_interception, |
| 4736 | [SVM_EXIT_READ_DR0] = dr_interception, |
| 4737 | [SVM_EXIT_READ_DR1] = dr_interception, |
| 4738 | [SVM_EXIT_READ_DR2] = dr_interception, |
| 4739 | [SVM_EXIT_READ_DR3] = dr_interception, |
| 4740 | [SVM_EXIT_READ_DR4] = dr_interception, |
| 4741 | [SVM_EXIT_READ_DR5] = dr_interception, |
| 4742 | [SVM_EXIT_READ_DR6] = dr_interception, |
| 4743 | [SVM_EXIT_READ_DR7] = dr_interception, |
| 4744 | [SVM_EXIT_WRITE_DR0] = dr_interception, |
| 4745 | [SVM_EXIT_WRITE_DR1] = dr_interception, |
| 4746 | [SVM_EXIT_WRITE_DR2] = dr_interception, |
| 4747 | [SVM_EXIT_WRITE_DR3] = dr_interception, |
| 4748 | [SVM_EXIT_WRITE_DR4] = dr_interception, |
| 4749 | [SVM_EXIT_WRITE_DR5] = dr_interception, |
| 4750 | [SVM_EXIT_WRITE_DR6] = dr_interception, |
| 4751 | [SVM_EXIT_WRITE_DR7] = dr_interception, |
| 4752 | [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, |
| 4753 | [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, |
| 4754 | [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, |
| 4755 | [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, |
| 4756 | [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, |
| 4757 | [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, |
| 4758 | [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, |
| 4759 | [SVM_EXIT_INTR] = intr_interception, |
| 4760 | [SVM_EXIT_NMI] = nmi_interception, |
| 4761 | [SVM_EXIT_SMI] = nop_on_interception, |
| 4762 | [SVM_EXIT_INIT] = nop_on_interception, |
| 4763 | [SVM_EXIT_VINTR] = interrupt_window_interception, |
| 4764 | [SVM_EXIT_RDPMC] = rdpmc_interception, |
| 4765 | [SVM_EXIT_CPUID] = cpuid_interception, |
| 4766 | [SVM_EXIT_IRET] = iret_interception, |
| 4767 | [SVM_EXIT_INVD] = emulate_on_interception, |
| 4768 | [SVM_EXIT_PAUSE] = pause_interception, |
| 4769 | [SVM_EXIT_HLT] = halt_interception, |
| 4770 | [SVM_EXIT_INVLPG] = invlpg_interception, |
| 4771 | [SVM_EXIT_INVLPGA] = invlpga_interception, |
| 4772 | [SVM_EXIT_IOIO] = io_interception, |
| 4773 | [SVM_EXIT_MSR] = msr_interception, |
| 4774 | [SVM_EXIT_TASK_SWITCH] = task_switch_interception, |
| 4775 | [SVM_EXIT_SHUTDOWN] = shutdown_interception, |
| 4776 | [SVM_EXIT_VMRUN] = vmrun_interception, |
| 4777 | [SVM_EXIT_VMMCALL] = vmmcall_interception, |
| 4778 | [SVM_EXIT_VMLOAD] = vmload_interception, |
| 4779 | [SVM_EXIT_VMSAVE] = vmsave_interception, |
| 4780 | [SVM_EXIT_STGI] = stgi_interception, |
| 4781 | [SVM_EXIT_CLGI] = clgi_interception, |
| 4782 | [SVM_EXIT_SKINIT] = skinit_interception, |
| 4783 | [SVM_EXIT_WBINVD] = wbinvd_interception, |
| 4784 | [SVM_EXIT_MONITOR] = monitor_interception, |
| 4785 | [SVM_EXIT_MWAIT] = mwait_interception, |
| 4786 | [SVM_EXIT_XSETBV] = xsetbv_interception, |
| 4787 | [SVM_EXIT_NPF] = npf_interception, |
| 4788 | [SVM_EXIT_RSM] = rsm_interception, |
| 4789 | [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, |
| 4790 | [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, |
| 4791 | }; |
| 4792 | |
| 4793 | static void dump_vmcb(struct kvm_vcpu *vcpu) |
| 4794 | { |
| 4795 | struct vcpu_svm *svm = to_svm(vcpu); |
| 4796 | struct vmcb_control_area *control = &svm->vmcb->control; |
| 4797 | struct vmcb_save_area *save = &svm->vmcb->save; |
| 4798 | |
| 4799 | pr_err("VMCB Control Area:\n"); |
| 4800 | pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff); |
| 4801 | pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16); |
| 4802 | pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff); |
| 4803 | pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16); |
| 4804 | pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions); |
| 4805 | pr_err("%-20s%016llx\n", "intercepts:", control->intercept); |
| 4806 | pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); |
| 4807 | pr_err("%-20s%d\n", "pause filter threshold:", |
| 4808 | control->pause_filter_thresh); |
| 4809 | pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); |
| 4810 | pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); |
| 4811 | pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); |
| 4812 | pr_err("%-20s%d\n", "asid:", control->asid); |
| 4813 | pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); |
| 4814 | pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); |
| 4815 | pr_err("%-20s%08x\n", "int_vector:", control->int_vector); |
| 4816 | pr_err("%-20s%08x\n", "int_state:", control->int_state); |
| 4817 | pr_err("%-20s%08x\n", "exit_code:", control->exit_code); |
| 4818 | pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); |
| 4819 | pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); |
| 4820 | pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); |
| 4821 | pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); |
| 4822 | pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); |
| 4823 | pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); |
| 4824 | pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); |
| 4825 | pr_err("%-20s%08x\n", "event_inj:", control->event_inj); |
| 4826 | pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); |
| 4827 | pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); |
| 4828 | pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); |
| 4829 | pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); |
| 4830 | pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); |
| 4831 | pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); |
| 4832 | pr_err("VMCB State Save Area:\n"); |
| 4833 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 4834 | "es:", |
| 4835 | save->es.selector, save->es.attrib, |
| 4836 | save->es.limit, save->es.base); |
| 4837 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 4838 | "cs:", |
| 4839 | save->cs.selector, save->cs.attrib, |
| 4840 | save->cs.limit, save->cs.base); |
| 4841 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 4842 | "ss:", |
| 4843 | save->ss.selector, save->ss.attrib, |
| 4844 | save->ss.limit, save->ss.base); |
| 4845 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 4846 | "ds:", |
| 4847 | save->ds.selector, save->ds.attrib, |
| 4848 | save->ds.limit, save->ds.base); |
| 4849 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 4850 | "fs:", |
| 4851 | save->fs.selector, save->fs.attrib, |
| 4852 | save->fs.limit, save->fs.base); |
| 4853 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 4854 | "gs:", |
| 4855 | save->gs.selector, save->gs.attrib, |
| 4856 | save->gs.limit, save->gs.base); |
| 4857 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 4858 | "gdtr:", |
| 4859 | save->gdtr.selector, save->gdtr.attrib, |
| 4860 | save->gdtr.limit, save->gdtr.base); |
| 4861 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 4862 | "ldtr:", |
| 4863 | save->ldtr.selector, save->ldtr.attrib, |
| 4864 | save->ldtr.limit, save->ldtr.base); |
| 4865 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 4866 | "idtr:", |
| 4867 | save->idtr.selector, save->idtr.attrib, |
| 4868 | save->idtr.limit, save->idtr.base); |
| 4869 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 4870 | "tr:", |
| 4871 | save->tr.selector, save->tr.attrib, |
| 4872 | save->tr.limit, save->tr.base); |
| 4873 | pr_err("cpl: %d efer: %016llx\n", |
| 4874 | save->cpl, save->efer); |
| 4875 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 4876 | "cr0:", save->cr0, "cr2:", save->cr2); |
| 4877 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 4878 | "cr3:", save->cr3, "cr4:", save->cr4); |
| 4879 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 4880 | "dr6:", save->dr6, "dr7:", save->dr7); |
| 4881 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 4882 | "rip:", save->rip, "rflags:", save->rflags); |
| 4883 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 4884 | "rsp:", save->rsp, "rax:", save->rax); |
| 4885 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 4886 | "star:", save->star, "lstar:", save->lstar); |
| 4887 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 4888 | "cstar:", save->cstar, "sfmask:", save->sfmask); |
| 4889 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 4890 | "kernel_gs_base:", save->kernel_gs_base, |
| 4891 | "sysenter_cs:", save->sysenter_cs); |
| 4892 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 4893 | "sysenter_esp:", save->sysenter_esp, |
| 4894 | "sysenter_eip:", save->sysenter_eip); |
| 4895 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 4896 | "gpat:", save->g_pat, "dbgctl:", save->dbgctl); |
| 4897 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 4898 | "br_from:", save->br_from, "br_to:", save->br_to); |
| 4899 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 4900 | "excp_from:", save->last_excp_from, |
| 4901 | "excp_to:", save->last_excp_to); |
| 4902 | } |
| 4903 | |
| 4904 | static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) |
| 4905 | { |
| 4906 | struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; |
| 4907 | |
| 4908 | *info1 = control->exit_info_1; |
| 4909 | *info2 = control->exit_info_2; |
| 4910 | } |
| 4911 | |
| 4912 | static int handle_exit(struct kvm_vcpu *vcpu) |
| 4913 | { |
| 4914 | struct vcpu_svm *svm = to_svm(vcpu); |
| 4915 | struct kvm_run *kvm_run = vcpu->run; |
| 4916 | u32 exit_code = svm->vmcb->control.exit_code; |
| 4917 | |
| 4918 | trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); |
| 4919 | |
| 4920 | if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE)) |
| 4921 | vcpu->arch.cr0 = svm->vmcb->save.cr0; |
| 4922 | if (npt_enabled) |
| 4923 | vcpu->arch.cr3 = svm->vmcb->save.cr3; |
| 4924 | |
| 4925 | if (unlikely(svm->nested.exit_required)) { |
| 4926 | nested_svm_vmexit(svm); |
| 4927 | svm->nested.exit_required = false; |
| 4928 | |
| 4929 | return 1; |
| 4930 | } |
| 4931 | |
| 4932 | if (is_guest_mode(vcpu)) { |
| 4933 | int vmexit; |
| 4934 | |
| 4935 | trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code, |
| 4936 | svm->vmcb->control.exit_info_1, |
| 4937 | svm->vmcb->control.exit_info_2, |
| 4938 | svm->vmcb->control.exit_int_info, |
| 4939 | svm->vmcb->control.exit_int_info_err, |
| 4940 | KVM_ISA_SVM); |
| 4941 | |
| 4942 | vmexit = nested_svm_exit_special(svm); |
| 4943 | |
| 4944 | if (vmexit == NESTED_EXIT_CONTINUE) |
| 4945 | vmexit = nested_svm_exit_handled(svm); |
| 4946 | |
| 4947 | if (vmexit == NESTED_EXIT_DONE) |
| 4948 | return 1; |
| 4949 | } |
| 4950 | |
| 4951 | svm_complete_interrupts(svm); |
| 4952 | |
| 4953 | if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { |
| 4954 | kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| 4955 | kvm_run->fail_entry.hardware_entry_failure_reason |
| 4956 | = svm->vmcb->control.exit_code; |
| 4957 | pr_err("KVM: FAILED VMRUN WITH VMCB:\n"); |
| 4958 | dump_vmcb(vcpu); |
| 4959 | return 0; |
| 4960 | } |
| 4961 | |
| 4962 | if (is_external_interrupt(svm->vmcb->control.exit_int_info) && |
| 4963 | exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && |
| 4964 | exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && |
| 4965 | exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) |
| 4966 | printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " |
| 4967 | "exit_code 0x%x\n", |
| 4968 | __func__, svm->vmcb->control.exit_int_info, |
| 4969 | exit_code); |
| 4970 | |
| 4971 | if (exit_code >= ARRAY_SIZE(svm_exit_handlers) |
| 4972 | || !svm_exit_handlers[exit_code]) { |
| 4973 | WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code); |
| 4974 | kvm_queue_exception(vcpu, UD_VECTOR); |
| 4975 | return 1; |
| 4976 | } |
| 4977 | |
| 4978 | return svm_exit_handlers[exit_code](svm); |
| 4979 | } |
| 4980 | |
| 4981 | static void reload_tss(struct kvm_vcpu *vcpu) |
| 4982 | { |
| 4983 | int cpu = raw_smp_processor_id(); |
| 4984 | |
| 4985 | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); |
| 4986 | sd->tss_desc->type = 9; /* available 32/64-bit TSS */ |
| 4987 | load_TR_desc(); |
| 4988 | } |
| 4989 | |
| 4990 | static void pre_sev_run(struct vcpu_svm *svm, int cpu) |
| 4991 | { |
| 4992 | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); |
| 4993 | int asid = sev_get_asid(svm->vcpu.kvm); |
| 4994 | |
| 4995 | /* Assign the asid allocated with this SEV guest */ |
| 4996 | svm->vmcb->control.asid = asid; |
| 4997 | |
| 4998 | /* |
| 4999 | * Flush guest TLB: |
| 5000 | * |
| 5001 | * 1) when different VMCB for the same ASID is to be run on the same host CPU. |
| 5002 | * 2) or this VMCB was executed on different host CPU in previous VMRUNs. |
| 5003 | */ |
| 5004 | if (sd->sev_vmcbs[asid] == svm->vmcb && |
| 5005 | svm->last_cpu == cpu) |
| 5006 | return; |
| 5007 | |
| 5008 | svm->last_cpu = cpu; |
| 5009 | sd->sev_vmcbs[asid] = svm->vmcb; |
| 5010 | svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; |
| 5011 | mark_dirty(svm->vmcb, VMCB_ASID); |
| 5012 | } |
| 5013 | |
| 5014 | static void pre_svm_run(struct vcpu_svm *svm) |
| 5015 | { |
| 5016 | int cpu = raw_smp_processor_id(); |
| 5017 | |
| 5018 | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); |
| 5019 | |
| 5020 | if (sev_guest(svm->vcpu.kvm)) |
| 5021 | return pre_sev_run(svm, cpu); |
| 5022 | |
| 5023 | /* FIXME: handle wraparound of asid_generation */ |
| 5024 | if (svm->asid_generation != sd->asid_generation) |
| 5025 | new_asid(svm, sd); |
| 5026 | } |
| 5027 | |
| 5028 | static void svm_inject_nmi(struct kvm_vcpu *vcpu) |
| 5029 | { |
| 5030 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5031 | |
| 5032 | svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; |
| 5033 | vcpu->arch.hflags |= HF_NMI_MASK; |
| 5034 | set_intercept(svm, INTERCEPT_IRET); |
| 5035 | ++vcpu->stat.nmi_injections; |
| 5036 | } |
| 5037 | |
| 5038 | static inline void svm_inject_irq(struct vcpu_svm *svm, int irq) |
| 5039 | { |
| 5040 | struct vmcb_control_area *control; |
| 5041 | |
| 5042 | /* The following fields are ignored when AVIC is enabled */ |
| 5043 | control = &svm->vmcb->control; |
| 5044 | control->int_vector = irq; |
| 5045 | control->int_ctl &= ~V_INTR_PRIO_MASK; |
| 5046 | control->int_ctl |= V_IRQ_MASK | |
| 5047 | ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); |
| 5048 | mark_dirty(svm->vmcb, VMCB_INTR); |
| 5049 | } |
| 5050 | |
| 5051 | static void svm_set_irq(struct kvm_vcpu *vcpu) |
| 5052 | { |
| 5053 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5054 | |
| 5055 | BUG_ON(!(gif_set(svm))); |
| 5056 | |
| 5057 | trace_kvm_inj_virq(vcpu->arch.interrupt.nr); |
| 5058 | ++vcpu->stat.irq_injections; |
| 5059 | |
| 5060 | svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | |
| 5061 | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; |
| 5062 | } |
| 5063 | |
| 5064 | static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu) |
| 5065 | { |
| 5066 | return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK); |
| 5067 | } |
| 5068 | |
| 5069 | static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) |
| 5070 | { |
| 5071 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5072 | |
| 5073 | if (svm_nested_virtualize_tpr(vcpu) || |
| 5074 | kvm_vcpu_apicv_active(vcpu)) |
| 5075 | return; |
| 5076 | |
| 5077 | clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); |
| 5078 | |
| 5079 | if (irr == -1) |
| 5080 | return; |
| 5081 | |
| 5082 | if (tpr >= irr) |
| 5083 | set_cr_intercept(svm, INTERCEPT_CR8_WRITE); |
| 5084 | } |
| 5085 | |
| 5086 | static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu) |
| 5087 | { |
| 5088 | return; |
| 5089 | } |
| 5090 | |
| 5091 | static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu) |
| 5092 | { |
| 5093 | return avic && irqchip_split(vcpu->kvm); |
| 5094 | } |
| 5095 | |
| 5096 | static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) |
| 5097 | { |
| 5098 | } |
| 5099 | |
| 5100 | static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) |
| 5101 | { |
| 5102 | } |
| 5103 | |
| 5104 | /* Note: Currently only used by Hyper-V. */ |
| 5105 | static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) |
| 5106 | { |
| 5107 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5108 | struct vmcb *vmcb = svm->vmcb; |
| 5109 | |
| 5110 | if (!kvm_vcpu_apicv_active(&svm->vcpu)) |
| 5111 | return; |
| 5112 | |
| 5113 | vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK; |
| 5114 | mark_dirty(vmcb, VMCB_INTR); |
| 5115 | } |
| 5116 | |
| 5117 | static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) |
| 5118 | { |
| 5119 | return; |
| 5120 | } |
| 5121 | |
| 5122 | static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec) |
| 5123 | { |
| 5124 | kvm_lapic_set_irr(vec, vcpu->arch.apic); |
| 5125 | smp_mb__after_atomic(); |
| 5126 | |
| 5127 | if (avic_vcpu_is_running(vcpu)) |
| 5128 | wrmsrl(SVM_AVIC_DOORBELL, |
| 5129 | kvm_cpu_get_apicid(vcpu->cpu)); |
| 5130 | else |
| 5131 | kvm_vcpu_wake_up(vcpu); |
| 5132 | } |
| 5133 | |
| 5134 | static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) |
| 5135 | { |
| 5136 | unsigned long flags; |
| 5137 | struct amd_svm_iommu_ir *cur; |
| 5138 | |
| 5139 | spin_lock_irqsave(&svm->ir_list_lock, flags); |
| 5140 | list_for_each_entry(cur, &svm->ir_list, node) { |
| 5141 | if (cur->data != pi->ir_data) |
| 5142 | continue; |
| 5143 | list_del(&cur->node); |
| 5144 | kfree(cur); |
| 5145 | break; |
| 5146 | } |
| 5147 | spin_unlock_irqrestore(&svm->ir_list_lock, flags); |
| 5148 | } |
| 5149 | |
| 5150 | static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) |
| 5151 | { |
| 5152 | int ret = 0; |
| 5153 | unsigned long flags; |
| 5154 | struct amd_svm_iommu_ir *ir; |
| 5155 | |
| 5156 | /** |
| 5157 | * In some cases, the existing irte is updaed and re-set, |
| 5158 | * so we need to check here if it's already been * added |
| 5159 | * to the ir_list. |
| 5160 | */ |
| 5161 | if (pi->ir_data && (pi->prev_ga_tag != 0)) { |
| 5162 | struct kvm *kvm = svm->vcpu.kvm; |
| 5163 | u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag); |
| 5164 | struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); |
| 5165 | struct vcpu_svm *prev_svm; |
| 5166 | |
| 5167 | if (!prev_vcpu) { |
| 5168 | ret = -EINVAL; |
| 5169 | goto out; |
| 5170 | } |
| 5171 | |
| 5172 | prev_svm = to_svm(prev_vcpu); |
| 5173 | svm_ir_list_del(prev_svm, pi); |
| 5174 | } |
| 5175 | |
| 5176 | /** |
| 5177 | * Allocating new amd_iommu_pi_data, which will get |
| 5178 | * add to the per-vcpu ir_list. |
| 5179 | */ |
| 5180 | ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL); |
| 5181 | if (!ir) { |
| 5182 | ret = -ENOMEM; |
| 5183 | goto out; |
| 5184 | } |
| 5185 | ir->data = pi->ir_data; |
| 5186 | |
| 5187 | spin_lock_irqsave(&svm->ir_list_lock, flags); |
| 5188 | list_add(&ir->node, &svm->ir_list); |
| 5189 | spin_unlock_irqrestore(&svm->ir_list_lock, flags); |
| 5190 | out: |
| 5191 | return ret; |
| 5192 | } |
| 5193 | |
| 5194 | /** |
| 5195 | * Note: |
| 5196 | * The HW cannot support posting multicast/broadcast |
| 5197 | * interrupts to a vCPU. So, we still use legacy interrupt |
| 5198 | * remapping for these kind of interrupts. |
| 5199 | * |
| 5200 | * For lowest-priority interrupts, we only support |
| 5201 | * those with single CPU as the destination, e.g. user |
| 5202 | * configures the interrupts via /proc/irq or uses |
| 5203 | * irqbalance to make the interrupts single-CPU. |
| 5204 | */ |
| 5205 | static int |
| 5206 | get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, |
| 5207 | struct vcpu_data *vcpu_info, struct vcpu_svm **svm) |
| 5208 | { |
| 5209 | struct kvm_lapic_irq irq; |
| 5210 | struct kvm_vcpu *vcpu = NULL; |
| 5211 | |
| 5212 | kvm_set_msi_irq(kvm, e, &irq); |
| 5213 | |
| 5214 | if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { |
| 5215 | pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n", |
| 5216 | __func__, irq.vector); |
| 5217 | return -1; |
| 5218 | } |
| 5219 | |
| 5220 | pr_debug("SVM: %s: use GA mode for irq %u\n", __func__, |
| 5221 | irq.vector); |
| 5222 | *svm = to_svm(vcpu); |
| 5223 | vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page)); |
| 5224 | vcpu_info->vector = irq.vector; |
| 5225 | |
| 5226 | return 0; |
| 5227 | } |
| 5228 | |
| 5229 | /* |
| 5230 | * svm_update_pi_irte - set IRTE for Posted-Interrupts |
| 5231 | * |
| 5232 | * @kvm: kvm |
| 5233 | * @host_irq: host irq of the interrupt |
| 5234 | * @guest_irq: gsi of the interrupt |
| 5235 | * @set: set or unset PI |
| 5236 | * returns 0 on success, < 0 on failure |
| 5237 | */ |
| 5238 | static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq, |
| 5239 | uint32_t guest_irq, bool set) |
| 5240 | { |
| 5241 | struct kvm_kernel_irq_routing_entry *e; |
| 5242 | struct kvm_irq_routing_table *irq_rt; |
| 5243 | int idx, ret = -EINVAL; |
| 5244 | |
| 5245 | if (!kvm_arch_has_assigned_device(kvm) || |
| 5246 | !irq_remapping_cap(IRQ_POSTING_CAP)) |
| 5247 | return 0; |
| 5248 | |
| 5249 | pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n", |
| 5250 | __func__, host_irq, guest_irq, set); |
| 5251 | |
| 5252 | idx = srcu_read_lock(&kvm->irq_srcu); |
| 5253 | irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); |
| 5254 | WARN_ON(guest_irq >= irq_rt->nr_rt_entries); |
| 5255 | |
| 5256 | hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { |
| 5257 | struct vcpu_data vcpu_info; |
| 5258 | struct vcpu_svm *svm = NULL; |
| 5259 | |
| 5260 | if (e->type != KVM_IRQ_ROUTING_MSI) |
| 5261 | continue; |
| 5262 | |
| 5263 | /** |
| 5264 | * Here, we setup with legacy mode in the following cases: |
| 5265 | * 1. When cannot target interrupt to a specific vcpu. |
| 5266 | * 2. Unsetting posted interrupt. |
| 5267 | * 3. APIC virtialization is disabled for the vcpu. |
| 5268 | */ |
| 5269 | if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set && |
| 5270 | kvm_vcpu_apicv_active(&svm->vcpu)) { |
| 5271 | struct amd_iommu_pi_data pi; |
| 5272 | |
| 5273 | /* Try to enable guest_mode in IRTE */ |
| 5274 | pi.base = __sme_set(page_to_phys(svm->avic_backing_page) & |
| 5275 | AVIC_HPA_MASK); |
| 5276 | pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id, |
| 5277 | svm->vcpu.vcpu_id); |
| 5278 | pi.is_guest_mode = true; |
| 5279 | pi.vcpu_data = &vcpu_info; |
| 5280 | ret = irq_set_vcpu_affinity(host_irq, &pi); |
| 5281 | |
| 5282 | /** |
| 5283 | * Here, we successfully setting up vcpu affinity in |
| 5284 | * IOMMU guest mode. Now, we need to store the posted |
| 5285 | * interrupt information in a per-vcpu ir_list so that |
| 5286 | * we can reference to them directly when we update vcpu |
| 5287 | * scheduling information in IOMMU irte. |
| 5288 | */ |
| 5289 | if (!ret && pi.is_guest_mode) |
| 5290 | svm_ir_list_add(svm, &pi); |
| 5291 | } else { |
| 5292 | /* Use legacy mode in IRTE */ |
| 5293 | struct amd_iommu_pi_data pi; |
| 5294 | |
| 5295 | /** |
| 5296 | * Here, pi is used to: |
| 5297 | * - Tell IOMMU to use legacy mode for this interrupt. |
| 5298 | * - Retrieve ga_tag of prior interrupt remapping data. |
| 5299 | */ |
| 5300 | pi.is_guest_mode = false; |
| 5301 | ret = irq_set_vcpu_affinity(host_irq, &pi); |
| 5302 | |
| 5303 | /** |
| 5304 | * Check if the posted interrupt was previously |
| 5305 | * setup with the guest_mode by checking if the ga_tag |
| 5306 | * was cached. If so, we need to clean up the per-vcpu |
| 5307 | * ir_list. |
| 5308 | */ |
| 5309 | if (!ret && pi.prev_ga_tag) { |
| 5310 | int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag); |
| 5311 | struct kvm_vcpu *vcpu; |
| 5312 | |
| 5313 | vcpu = kvm_get_vcpu_by_id(kvm, id); |
| 5314 | if (vcpu) |
| 5315 | svm_ir_list_del(to_svm(vcpu), &pi); |
| 5316 | } |
| 5317 | } |
| 5318 | |
| 5319 | if (!ret && svm) { |
| 5320 | trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id, |
| 5321 | e->gsi, vcpu_info.vector, |
| 5322 | vcpu_info.pi_desc_addr, set); |
| 5323 | } |
| 5324 | |
| 5325 | if (ret < 0) { |
| 5326 | pr_err("%s: failed to update PI IRTE\n", __func__); |
| 5327 | goto out; |
| 5328 | } |
| 5329 | } |
| 5330 | |
| 5331 | ret = 0; |
| 5332 | out: |
| 5333 | srcu_read_unlock(&kvm->irq_srcu, idx); |
| 5334 | return ret; |
| 5335 | } |
| 5336 | |
| 5337 | static int svm_nmi_allowed(struct kvm_vcpu *vcpu) |
| 5338 | { |
| 5339 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5340 | struct vmcb *vmcb = svm->vmcb; |
| 5341 | int ret; |
| 5342 | ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) && |
| 5343 | !(svm->vcpu.arch.hflags & HF_NMI_MASK); |
| 5344 | ret = ret && gif_set(svm) && nested_svm_nmi(svm); |
| 5345 | |
| 5346 | return ret; |
| 5347 | } |
| 5348 | |
| 5349 | static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) |
| 5350 | { |
| 5351 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5352 | |
| 5353 | return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); |
| 5354 | } |
| 5355 | |
| 5356 | static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) |
| 5357 | { |
| 5358 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5359 | |
| 5360 | if (masked) { |
| 5361 | svm->vcpu.arch.hflags |= HF_NMI_MASK; |
| 5362 | set_intercept(svm, INTERCEPT_IRET); |
| 5363 | } else { |
| 5364 | svm->vcpu.arch.hflags &= ~HF_NMI_MASK; |
| 5365 | clr_intercept(svm, INTERCEPT_IRET); |
| 5366 | } |
| 5367 | } |
| 5368 | |
| 5369 | static int svm_interrupt_allowed(struct kvm_vcpu *vcpu) |
| 5370 | { |
| 5371 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5372 | struct vmcb *vmcb = svm->vmcb; |
| 5373 | int ret; |
| 5374 | |
| 5375 | if (!gif_set(svm) || |
| 5376 | (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)) |
| 5377 | return 0; |
| 5378 | |
| 5379 | ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF); |
| 5380 | |
| 5381 | if (is_guest_mode(vcpu)) |
| 5382 | return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK); |
| 5383 | |
| 5384 | return ret; |
| 5385 | } |
| 5386 | |
| 5387 | static void enable_irq_window(struct kvm_vcpu *vcpu) |
| 5388 | { |
| 5389 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5390 | |
| 5391 | if (kvm_vcpu_apicv_active(vcpu)) |
| 5392 | return; |
| 5393 | |
| 5394 | /* |
| 5395 | * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes |
| 5396 | * 1, because that's a separate STGI/VMRUN intercept. The next time we |
| 5397 | * get that intercept, this function will be called again though and |
| 5398 | * we'll get the vintr intercept. However, if the vGIF feature is |
| 5399 | * enabled, the STGI interception will not occur. Enable the irq |
| 5400 | * window under the assumption that the hardware will set the GIF. |
| 5401 | */ |
| 5402 | if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) { |
| 5403 | svm_set_vintr(svm); |
| 5404 | svm_inject_irq(svm, 0x0); |
| 5405 | } |
| 5406 | } |
| 5407 | |
| 5408 | static void enable_nmi_window(struct kvm_vcpu *vcpu) |
| 5409 | { |
| 5410 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5411 | |
| 5412 | if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) |
| 5413 | == HF_NMI_MASK) |
| 5414 | return; /* IRET will cause a vm exit */ |
| 5415 | |
| 5416 | if (!gif_set(svm)) { |
| 5417 | if (vgif_enabled(svm)) |
| 5418 | set_intercept(svm, INTERCEPT_STGI); |
| 5419 | return; /* STGI will cause a vm exit */ |
| 5420 | } |
| 5421 | |
| 5422 | if (svm->nested.exit_required) |
| 5423 | return; /* we're not going to run the guest yet */ |
| 5424 | |
| 5425 | /* |
| 5426 | * Something prevents NMI from been injected. Single step over possible |
| 5427 | * problem (IRET or exception injection or interrupt shadow) |
| 5428 | */ |
| 5429 | svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); |
| 5430 | svm->nmi_singlestep = true; |
| 5431 | svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); |
| 5432 | } |
| 5433 | |
| 5434 | static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) |
| 5435 | { |
| 5436 | return 0; |
| 5437 | } |
| 5438 | |
| 5439 | static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) |
| 5440 | { |
| 5441 | return 0; |
| 5442 | } |
| 5443 | |
| 5444 | static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) |
| 5445 | { |
| 5446 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5447 | |
| 5448 | if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) |
| 5449 | svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; |
| 5450 | else |
| 5451 | svm->asid_generation--; |
| 5452 | } |
| 5453 | |
| 5454 | static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) |
| 5455 | { |
| 5456 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5457 | |
| 5458 | invlpga(gva, svm->vmcb->control.asid); |
| 5459 | } |
| 5460 | |
| 5461 | static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) |
| 5462 | { |
| 5463 | } |
| 5464 | |
| 5465 | static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) |
| 5466 | { |
| 5467 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5468 | |
| 5469 | if (svm_nested_virtualize_tpr(vcpu)) |
| 5470 | return; |
| 5471 | |
| 5472 | if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) { |
| 5473 | int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; |
| 5474 | kvm_set_cr8(vcpu, cr8); |
| 5475 | } |
| 5476 | } |
| 5477 | |
| 5478 | static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) |
| 5479 | { |
| 5480 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5481 | u64 cr8; |
| 5482 | |
| 5483 | if (svm_nested_virtualize_tpr(vcpu) || |
| 5484 | kvm_vcpu_apicv_active(vcpu)) |
| 5485 | return; |
| 5486 | |
| 5487 | cr8 = kvm_get_cr8(vcpu); |
| 5488 | svm->vmcb->control.int_ctl &= ~V_TPR_MASK; |
| 5489 | svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; |
| 5490 | } |
| 5491 | |
| 5492 | static void svm_complete_interrupts(struct vcpu_svm *svm) |
| 5493 | { |
| 5494 | u8 vector; |
| 5495 | int type; |
| 5496 | u32 exitintinfo = svm->vmcb->control.exit_int_info; |
| 5497 | unsigned int3_injected = svm->int3_injected; |
| 5498 | |
| 5499 | svm->int3_injected = 0; |
| 5500 | |
| 5501 | /* |
| 5502 | * If we've made progress since setting HF_IRET_MASK, we've |
| 5503 | * executed an IRET and can allow NMI injection. |
| 5504 | */ |
| 5505 | if ((svm->vcpu.arch.hflags & HF_IRET_MASK) |
| 5506 | && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) { |
| 5507 | svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); |
| 5508 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
| 5509 | } |
| 5510 | |
| 5511 | svm->vcpu.arch.nmi_injected = false; |
| 5512 | kvm_clear_exception_queue(&svm->vcpu); |
| 5513 | kvm_clear_interrupt_queue(&svm->vcpu); |
| 5514 | |
| 5515 | if (!(exitintinfo & SVM_EXITINTINFO_VALID)) |
| 5516 | return; |
| 5517 | |
| 5518 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
| 5519 | |
| 5520 | vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; |
| 5521 | type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; |
| 5522 | |
| 5523 | switch (type) { |
| 5524 | case SVM_EXITINTINFO_TYPE_NMI: |
| 5525 | svm->vcpu.arch.nmi_injected = true; |
| 5526 | break; |
| 5527 | case SVM_EXITINTINFO_TYPE_EXEPT: |
| 5528 | /* |
| 5529 | * In case of software exceptions, do not reinject the vector, |
| 5530 | * but re-execute the instruction instead. Rewind RIP first |
| 5531 | * if we emulated INT3 before. |
| 5532 | */ |
| 5533 | if (kvm_exception_is_soft(vector)) { |
| 5534 | if (vector == BP_VECTOR && int3_injected && |
| 5535 | kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) |
| 5536 | kvm_rip_write(&svm->vcpu, |
| 5537 | kvm_rip_read(&svm->vcpu) - |
| 5538 | int3_injected); |
| 5539 | break; |
| 5540 | } |
| 5541 | if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { |
| 5542 | u32 err = svm->vmcb->control.exit_int_info_err; |
| 5543 | kvm_requeue_exception_e(&svm->vcpu, vector, err); |
| 5544 | |
| 5545 | } else |
| 5546 | kvm_requeue_exception(&svm->vcpu, vector); |
| 5547 | break; |
| 5548 | case SVM_EXITINTINFO_TYPE_INTR: |
| 5549 | kvm_queue_interrupt(&svm->vcpu, vector, false); |
| 5550 | break; |
| 5551 | default: |
| 5552 | break; |
| 5553 | } |
| 5554 | } |
| 5555 | |
| 5556 | static void svm_cancel_injection(struct kvm_vcpu *vcpu) |
| 5557 | { |
| 5558 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5559 | struct vmcb_control_area *control = &svm->vmcb->control; |
| 5560 | |
| 5561 | control->exit_int_info = control->event_inj; |
| 5562 | control->exit_int_info_err = control->event_inj_err; |
| 5563 | control->event_inj = 0; |
| 5564 | svm_complete_interrupts(svm); |
| 5565 | } |
| 5566 | |
| 5567 | static void svm_vcpu_run(struct kvm_vcpu *vcpu) |
| 5568 | { |
| 5569 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5570 | |
| 5571 | svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; |
| 5572 | svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; |
| 5573 | svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; |
| 5574 | |
| 5575 | /* |
| 5576 | * A vmexit emulation is required before the vcpu can be executed |
| 5577 | * again. |
| 5578 | */ |
| 5579 | if (unlikely(svm->nested.exit_required)) |
| 5580 | return; |
| 5581 | |
| 5582 | /* |
| 5583 | * Disable singlestep if we're injecting an interrupt/exception. |
| 5584 | * We don't want our modified rflags to be pushed on the stack where |
| 5585 | * we might not be able to easily reset them if we disabled NMI |
| 5586 | * singlestep later. |
| 5587 | */ |
| 5588 | if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { |
| 5589 | /* |
| 5590 | * Event injection happens before external interrupts cause a |
| 5591 | * vmexit and interrupts are disabled here, so smp_send_reschedule |
| 5592 | * is enough to force an immediate vmexit. |
| 5593 | */ |
| 5594 | disable_nmi_singlestep(svm); |
| 5595 | smp_send_reschedule(vcpu->cpu); |
| 5596 | } |
| 5597 | |
| 5598 | pre_svm_run(svm); |
| 5599 | |
| 5600 | sync_lapic_to_cr8(vcpu); |
| 5601 | |
| 5602 | svm->vmcb->save.cr2 = vcpu->arch.cr2; |
| 5603 | |
| 5604 | clgi(); |
| 5605 | |
| 5606 | /* |
| 5607 | * If this vCPU has touched SPEC_CTRL, restore the guest's value if |
| 5608 | * it's non-zero. Since vmentry is serialising on affected CPUs, there |
| 5609 | * is no need to worry about the conditional branch over the wrmsr |
| 5610 | * being speculatively taken. |
| 5611 | */ |
| 5612 | x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); |
| 5613 | |
| 5614 | local_irq_enable(); |
| 5615 | |
| 5616 | asm volatile ( |
| 5617 | "push %%" _ASM_BP "; \n\t" |
| 5618 | "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t" |
| 5619 | "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t" |
| 5620 | "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t" |
| 5621 | "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t" |
| 5622 | "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t" |
| 5623 | "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t" |
| 5624 | #ifdef CONFIG_X86_64 |
| 5625 | "mov %c[r8](%[svm]), %%r8 \n\t" |
| 5626 | "mov %c[r9](%[svm]), %%r9 \n\t" |
| 5627 | "mov %c[r10](%[svm]), %%r10 \n\t" |
| 5628 | "mov %c[r11](%[svm]), %%r11 \n\t" |
| 5629 | "mov %c[r12](%[svm]), %%r12 \n\t" |
| 5630 | "mov %c[r13](%[svm]), %%r13 \n\t" |
| 5631 | "mov %c[r14](%[svm]), %%r14 \n\t" |
| 5632 | "mov %c[r15](%[svm]), %%r15 \n\t" |
| 5633 | #endif |
| 5634 | |
| 5635 | /* Enter guest mode */ |
| 5636 | "push %%" _ASM_AX " \n\t" |
| 5637 | "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t" |
| 5638 | __ex(SVM_VMLOAD) "\n\t" |
| 5639 | __ex(SVM_VMRUN) "\n\t" |
| 5640 | __ex(SVM_VMSAVE) "\n\t" |
| 5641 | "pop %%" _ASM_AX " \n\t" |
| 5642 | |
| 5643 | /* Save guest registers, load host registers */ |
| 5644 | "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t" |
| 5645 | "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t" |
| 5646 | "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t" |
| 5647 | "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t" |
| 5648 | "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t" |
| 5649 | "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t" |
| 5650 | #ifdef CONFIG_X86_64 |
| 5651 | "mov %%r8, %c[r8](%[svm]) \n\t" |
| 5652 | "mov %%r9, %c[r9](%[svm]) \n\t" |
| 5653 | "mov %%r10, %c[r10](%[svm]) \n\t" |
| 5654 | "mov %%r11, %c[r11](%[svm]) \n\t" |
| 5655 | "mov %%r12, %c[r12](%[svm]) \n\t" |
| 5656 | "mov %%r13, %c[r13](%[svm]) \n\t" |
| 5657 | "mov %%r14, %c[r14](%[svm]) \n\t" |
| 5658 | "mov %%r15, %c[r15](%[svm]) \n\t" |
| 5659 | #endif |
| 5660 | /* |
| 5661 | * Clear host registers marked as clobbered to prevent |
| 5662 | * speculative use. |
| 5663 | */ |
| 5664 | "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t" |
| 5665 | "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t" |
| 5666 | "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t" |
| 5667 | "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t" |
| 5668 | "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t" |
| 5669 | #ifdef CONFIG_X86_64 |
| 5670 | "xor %%r8, %%r8 \n\t" |
| 5671 | "xor %%r9, %%r9 \n\t" |
| 5672 | "xor %%r10, %%r10 \n\t" |
| 5673 | "xor %%r11, %%r11 \n\t" |
| 5674 | "xor %%r12, %%r12 \n\t" |
| 5675 | "xor %%r13, %%r13 \n\t" |
| 5676 | "xor %%r14, %%r14 \n\t" |
| 5677 | "xor %%r15, %%r15 \n\t" |
| 5678 | #endif |
| 5679 | "pop %%" _ASM_BP |
| 5680 | : |
| 5681 | : [svm]"a"(svm), |
| 5682 | [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)), |
| 5683 | [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])), |
| 5684 | [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])), |
| 5685 | [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])), |
| 5686 | [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])), |
| 5687 | [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])), |
| 5688 | [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP])) |
| 5689 | #ifdef CONFIG_X86_64 |
| 5690 | , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])), |
| 5691 | [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])), |
| 5692 | [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])), |
| 5693 | [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])), |
| 5694 | [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])), |
| 5695 | [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])), |
| 5696 | [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])), |
| 5697 | [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15])) |
| 5698 | #endif |
| 5699 | : "cc", "memory" |
| 5700 | #ifdef CONFIG_X86_64 |
| 5701 | , "rbx", "rcx", "rdx", "rsi", "rdi" |
| 5702 | , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15" |
| 5703 | #else |
| 5704 | , "ebx", "ecx", "edx", "esi", "edi" |
| 5705 | #endif |
| 5706 | ); |
| 5707 | |
| 5708 | /* Eliminate branch target predictions from guest mode */ |
| 5709 | vmexit_fill_RSB(); |
| 5710 | |
| 5711 | #ifdef CONFIG_X86_64 |
| 5712 | wrmsrl(MSR_GS_BASE, svm->host.gs_base); |
| 5713 | #else |
| 5714 | loadsegment(fs, svm->host.fs); |
| 5715 | #ifndef CONFIG_X86_32_LAZY_GS |
| 5716 | loadsegment(gs, svm->host.gs); |
| 5717 | #endif |
| 5718 | #endif |
| 5719 | |
| 5720 | /* |
| 5721 | * We do not use IBRS in the kernel. If this vCPU has used the |
| 5722 | * SPEC_CTRL MSR it may have left it on; save the value and |
| 5723 | * turn it off. This is much more efficient than blindly adding |
| 5724 | * it to the atomic save/restore list. Especially as the former |
| 5725 | * (Saving guest MSRs on vmexit) doesn't even exist in KVM. |
| 5726 | * |
| 5727 | * For non-nested case: |
| 5728 | * If the L01 MSR bitmap does not intercept the MSR, then we need to |
| 5729 | * save it. |
| 5730 | * |
| 5731 | * For nested case: |
| 5732 | * If the L02 MSR bitmap does not intercept the MSR, then we need to |
| 5733 | * save it. |
| 5734 | */ |
| 5735 | if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) |
| 5736 | svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); |
| 5737 | |
| 5738 | reload_tss(vcpu); |
| 5739 | |
| 5740 | local_irq_disable(); |
| 5741 | |
| 5742 | x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); |
| 5743 | |
| 5744 | vcpu->arch.cr2 = svm->vmcb->save.cr2; |
| 5745 | vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; |
| 5746 | vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; |
| 5747 | vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; |
| 5748 | |
| 5749 | if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) |
| 5750 | kvm_before_interrupt(&svm->vcpu); |
| 5751 | |
| 5752 | stgi(); |
| 5753 | |
| 5754 | /* Any pending NMI will happen here */ |
| 5755 | |
| 5756 | if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) |
| 5757 | kvm_after_interrupt(&svm->vcpu); |
| 5758 | |
| 5759 | sync_cr8_to_lapic(vcpu); |
| 5760 | |
| 5761 | svm->next_rip = 0; |
| 5762 | |
| 5763 | svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; |
| 5764 | |
| 5765 | /* if exit due to PF check for async PF */ |
| 5766 | if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) |
| 5767 | svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); |
| 5768 | |
| 5769 | if (npt_enabled) { |
| 5770 | vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); |
| 5771 | vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); |
| 5772 | } |
| 5773 | |
| 5774 | /* |
| 5775 | * We need to handle MC intercepts here before the vcpu has a chance to |
| 5776 | * change the physical cpu |
| 5777 | */ |
| 5778 | if (unlikely(svm->vmcb->control.exit_code == |
| 5779 | SVM_EXIT_EXCP_BASE + MC_VECTOR)) |
| 5780 | svm_handle_mce(svm); |
| 5781 | |
| 5782 | mark_all_clean(svm->vmcb); |
| 5783 | } |
| 5784 | STACK_FRAME_NON_STANDARD(svm_vcpu_run); |
| 5785 | |
| 5786 | static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root) |
| 5787 | { |
| 5788 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5789 | |
| 5790 | svm->vmcb->save.cr3 = __sme_set(root); |
| 5791 | mark_dirty(svm->vmcb, VMCB_CR); |
| 5792 | } |
| 5793 | |
| 5794 | static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root) |
| 5795 | { |
| 5796 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5797 | |
| 5798 | svm->vmcb->control.nested_cr3 = __sme_set(root); |
| 5799 | mark_dirty(svm->vmcb, VMCB_NPT); |
| 5800 | |
| 5801 | /* Also sync guest cr3 here in case we live migrate */ |
| 5802 | svm->vmcb->save.cr3 = kvm_read_cr3(vcpu); |
| 5803 | mark_dirty(svm->vmcb, VMCB_CR); |
| 5804 | } |
| 5805 | |
| 5806 | static int is_disabled(void) |
| 5807 | { |
| 5808 | u64 vm_cr; |
| 5809 | |
| 5810 | rdmsrl(MSR_VM_CR, vm_cr); |
| 5811 | if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) |
| 5812 | return 1; |
| 5813 | |
| 5814 | return 0; |
| 5815 | } |
| 5816 | |
| 5817 | static void |
| 5818 | svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) |
| 5819 | { |
| 5820 | /* |
| 5821 | * Patch in the VMMCALL instruction: |
| 5822 | */ |
| 5823 | hypercall[0] = 0x0f; |
| 5824 | hypercall[1] = 0x01; |
| 5825 | hypercall[2] = 0xd9; |
| 5826 | } |
| 5827 | |
| 5828 | static void svm_check_processor_compat(void *rtn) |
| 5829 | { |
| 5830 | *(int *)rtn = 0; |
| 5831 | } |
| 5832 | |
| 5833 | static bool svm_cpu_has_accelerated_tpr(void) |
| 5834 | { |
| 5835 | return false; |
| 5836 | } |
| 5837 | |
| 5838 | static bool svm_has_emulated_msr(int index) |
| 5839 | { |
| 5840 | return true; |
| 5841 | } |
| 5842 | |
| 5843 | static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) |
| 5844 | { |
| 5845 | return 0; |
| 5846 | } |
| 5847 | |
| 5848 | static void svm_cpuid_update(struct kvm_vcpu *vcpu) |
| 5849 | { |
| 5850 | struct vcpu_svm *svm = to_svm(vcpu); |
| 5851 | |
| 5852 | /* Update nrips enabled cache */ |
| 5853 | svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS); |
| 5854 | |
| 5855 | if (!kvm_vcpu_apicv_active(vcpu)) |
| 5856 | return; |
| 5857 | |
| 5858 | guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC); |
| 5859 | } |
| 5860 | |
| 5861 | static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) |
| 5862 | { |
| 5863 | switch (func) { |
| 5864 | case 0x1: |
| 5865 | if (avic) |
| 5866 | entry->ecx &= ~bit(X86_FEATURE_X2APIC); |
| 5867 | break; |
| 5868 | case 0x80000001: |
| 5869 | if (nested) |
| 5870 | entry->ecx |= (1 << 2); /* Set SVM bit */ |
| 5871 | break; |
| 5872 | case 0x8000000A: |
| 5873 | entry->eax = 1; /* SVM revision 1 */ |
| 5874 | entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper |
| 5875 | ASID emulation to nested SVM */ |
| 5876 | entry->ecx = 0; /* Reserved */ |
| 5877 | entry->edx = 0; /* Per default do not support any |
| 5878 | additional features */ |
| 5879 | |
| 5880 | /* Support next_rip if host supports it */ |
| 5881 | if (boot_cpu_has(X86_FEATURE_NRIPS)) |
| 5882 | entry->edx |= SVM_FEATURE_NRIP; |
| 5883 | |
| 5884 | /* Support NPT for the guest if enabled */ |
| 5885 | if (npt_enabled) |
| 5886 | entry->edx |= SVM_FEATURE_NPT; |
| 5887 | |
| 5888 | break; |
| 5889 | case 0x8000001F: |
| 5890 | /* Support memory encryption cpuid if host supports it */ |
| 5891 | if (boot_cpu_has(X86_FEATURE_SEV)) |
| 5892 | cpuid(0x8000001f, &entry->eax, &entry->ebx, |
| 5893 | &entry->ecx, &entry->edx); |
| 5894 | |
| 5895 | } |
| 5896 | } |
| 5897 | |
| 5898 | static int svm_get_lpage_level(void) |
| 5899 | { |
| 5900 | return PT_PDPE_LEVEL; |
| 5901 | } |
| 5902 | |
| 5903 | static bool svm_rdtscp_supported(void) |
| 5904 | { |
| 5905 | return boot_cpu_has(X86_FEATURE_RDTSCP); |
| 5906 | } |
| 5907 | |
| 5908 | static bool svm_invpcid_supported(void) |
| 5909 | { |
| 5910 | return false; |
| 5911 | } |
| 5912 | |
| 5913 | static bool svm_mpx_supported(void) |
| 5914 | { |
| 5915 | return false; |
| 5916 | } |
| 5917 | |
| 5918 | static bool svm_xsaves_supported(void) |
| 5919 | { |
| 5920 | return false; |
| 5921 | } |
| 5922 | |
| 5923 | static bool svm_umip_emulated(void) |
| 5924 | { |
| 5925 | return false; |
| 5926 | } |
| 5927 | |
| 5928 | static bool svm_has_wbinvd_exit(void) |
| 5929 | { |
| 5930 | return true; |
| 5931 | } |
| 5932 | |
| 5933 | #define PRE_EX(exit) { .exit_code = (exit), \ |
| 5934 | .stage = X86_ICPT_PRE_EXCEPT, } |
| 5935 | #define POST_EX(exit) { .exit_code = (exit), \ |
| 5936 | .stage = X86_ICPT_POST_EXCEPT, } |
| 5937 | #define POST_MEM(exit) { .exit_code = (exit), \ |
| 5938 | .stage = X86_ICPT_POST_MEMACCESS, } |
| 5939 | |
| 5940 | static const struct __x86_intercept { |
| 5941 | u32 exit_code; |
| 5942 | enum x86_intercept_stage stage; |
| 5943 | } x86_intercept_map[] = { |
| 5944 | [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), |
| 5945 | [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), |
| 5946 | [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), |
| 5947 | [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), |
| 5948 | [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), |
| 5949 | [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), |
| 5950 | [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), |
| 5951 | [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), |
| 5952 | [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), |
| 5953 | [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), |
| 5954 | [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), |
| 5955 | [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), |
| 5956 | [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), |
| 5957 | [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), |
| 5958 | [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), |
| 5959 | [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), |
| 5960 | [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), |
| 5961 | [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), |
| 5962 | [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), |
| 5963 | [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), |
| 5964 | [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), |
| 5965 | [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), |
| 5966 | [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), |
| 5967 | [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), |
| 5968 | [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), |
| 5969 | [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), |
| 5970 | [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), |
| 5971 | [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), |
| 5972 | [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), |
| 5973 | [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), |
| 5974 | [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), |
| 5975 | [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), |
| 5976 | [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), |
| 5977 | [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), |
| 5978 | [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), |
| 5979 | [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), |
| 5980 | [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), |
| 5981 | [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), |
| 5982 | [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), |
| 5983 | [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), |
| 5984 | [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), |
| 5985 | [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), |
| 5986 | [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), |
| 5987 | [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), |
| 5988 | [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), |
| 5989 | [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), |
| 5990 | }; |
| 5991 | |
| 5992 | #undef PRE_EX |
| 5993 | #undef POST_EX |
| 5994 | #undef POST_MEM |
| 5995 | |
| 5996 | static int svm_check_intercept(struct kvm_vcpu *vcpu, |
| 5997 | struct x86_instruction_info *info, |
| 5998 | enum x86_intercept_stage stage) |
| 5999 | { |
| 6000 | struct vcpu_svm *svm = to_svm(vcpu); |
| 6001 | int vmexit, ret = X86EMUL_CONTINUE; |
| 6002 | struct __x86_intercept icpt_info; |
| 6003 | struct vmcb *vmcb = svm->vmcb; |
| 6004 | |
| 6005 | if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) |
| 6006 | goto out; |
| 6007 | |
| 6008 | icpt_info = x86_intercept_map[info->intercept]; |
| 6009 | |
| 6010 | if (stage != icpt_info.stage) |
| 6011 | goto out; |
| 6012 | |
| 6013 | switch (icpt_info.exit_code) { |
| 6014 | case SVM_EXIT_READ_CR0: |
| 6015 | if (info->intercept == x86_intercept_cr_read) |
| 6016 | icpt_info.exit_code += info->modrm_reg; |
| 6017 | break; |
| 6018 | case SVM_EXIT_WRITE_CR0: { |
| 6019 | unsigned long cr0, val; |
| 6020 | u64 intercept; |
| 6021 | |
| 6022 | if (info->intercept == x86_intercept_cr_write) |
| 6023 | icpt_info.exit_code += info->modrm_reg; |
| 6024 | |
| 6025 | if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || |
| 6026 | info->intercept == x86_intercept_clts) |
| 6027 | break; |
| 6028 | |
| 6029 | intercept = svm->nested.intercept; |
| 6030 | |
| 6031 | if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))) |
| 6032 | break; |
| 6033 | |
| 6034 | cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; |
| 6035 | val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; |
| 6036 | |
| 6037 | if (info->intercept == x86_intercept_lmsw) { |
| 6038 | cr0 &= 0xfUL; |
| 6039 | val &= 0xfUL; |
| 6040 | /* lmsw can't clear PE - catch this here */ |
| 6041 | if (cr0 & X86_CR0_PE) |
| 6042 | val |= X86_CR0_PE; |
| 6043 | } |
| 6044 | |
| 6045 | if (cr0 ^ val) |
| 6046 | icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; |
| 6047 | |
| 6048 | break; |
| 6049 | } |
| 6050 | case SVM_EXIT_READ_DR0: |
| 6051 | case SVM_EXIT_WRITE_DR0: |
| 6052 | icpt_info.exit_code += info->modrm_reg; |
| 6053 | break; |
| 6054 | case SVM_EXIT_MSR: |
| 6055 | if (info->intercept == x86_intercept_wrmsr) |
| 6056 | vmcb->control.exit_info_1 = 1; |
| 6057 | else |
| 6058 | vmcb->control.exit_info_1 = 0; |
| 6059 | break; |
| 6060 | case SVM_EXIT_PAUSE: |
| 6061 | /* |
| 6062 | * We get this for NOP only, but pause |
| 6063 | * is rep not, check this here |
| 6064 | */ |
| 6065 | if (info->rep_prefix != REPE_PREFIX) |
| 6066 | goto out; |
| 6067 | break; |
| 6068 | case SVM_EXIT_IOIO: { |
| 6069 | u64 exit_info; |
| 6070 | u32 bytes; |
| 6071 | |
| 6072 | if (info->intercept == x86_intercept_in || |
| 6073 | info->intercept == x86_intercept_ins) { |
| 6074 | exit_info = ((info->src_val & 0xffff) << 16) | |
| 6075 | SVM_IOIO_TYPE_MASK; |
| 6076 | bytes = info->dst_bytes; |
| 6077 | } else { |
| 6078 | exit_info = (info->dst_val & 0xffff) << 16; |
| 6079 | bytes = info->src_bytes; |
| 6080 | } |
| 6081 | |
| 6082 | if (info->intercept == x86_intercept_outs || |
| 6083 | info->intercept == x86_intercept_ins) |
| 6084 | exit_info |= SVM_IOIO_STR_MASK; |
| 6085 | |
| 6086 | if (info->rep_prefix) |
| 6087 | exit_info |= SVM_IOIO_REP_MASK; |
| 6088 | |
| 6089 | bytes = min(bytes, 4u); |
| 6090 | |
| 6091 | exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; |
| 6092 | |
| 6093 | exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); |
| 6094 | |
| 6095 | vmcb->control.exit_info_1 = exit_info; |
| 6096 | vmcb->control.exit_info_2 = info->next_rip; |
| 6097 | |
| 6098 | break; |
| 6099 | } |
| 6100 | default: |
| 6101 | break; |
| 6102 | } |
| 6103 | |
| 6104 | /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ |
| 6105 | if (static_cpu_has(X86_FEATURE_NRIPS)) |
| 6106 | vmcb->control.next_rip = info->next_rip; |
| 6107 | vmcb->control.exit_code = icpt_info.exit_code; |
| 6108 | vmexit = nested_svm_exit_handled(svm); |
| 6109 | |
| 6110 | ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED |
| 6111 | : X86EMUL_CONTINUE; |
| 6112 | |
| 6113 | out: |
| 6114 | return ret; |
| 6115 | } |
| 6116 | |
| 6117 | static void svm_handle_external_intr(struct kvm_vcpu *vcpu) |
| 6118 | { |
| 6119 | local_irq_enable(); |
| 6120 | /* |
| 6121 | * We must have an instruction with interrupts enabled, so |
| 6122 | * the timer interrupt isn't delayed by the interrupt shadow. |
| 6123 | */ |
| 6124 | asm("nop"); |
| 6125 | local_irq_disable(); |
| 6126 | } |
| 6127 | |
| 6128 | static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) |
| 6129 | { |
| 6130 | if (pause_filter_thresh) |
| 6131 | shrink_ple_window(vcpu); |
| 6132 | } |
| 6133 | |
| 6134 | static inline void avic_post_state_restore(struct kvm_vcpu *vcpu) |
| 6135 | { |
| 6136 | if (avic_handle_apic_id_update(vcpu) != 0) |
| 6137 | return; |
| 6138 | if (avic_handle_dfr_update(vcpu) != 0) |
| 6139 | return; |
| 6140 | avic_handle_ldr_update(vcpu); |
| 6141 | } |
| 6142 | |
| 6143 | static void svm_setup_mce(struct kvm_vcpu *vcpu) |
| 6144 | { |
| 6145 | /* [63:9] are reserved. */ |
| 6146 | vcpu->arch.mcg_cap &= 0x1ff; |
| 6147 | } |
| 6148 | |
| 6149 | static int svm_smi_allowed(struct kvm_vcpu *vcpu) |
| 6150 | { |
| 6151 | struct vcpu_svm *svm = to_svm(vcpu); |
| 6152 | |
| 6153 | /* Per APM Vol.2 15.22.2 "Response to SMI" */ |
| 6154 | if (!gif_set(svm)) |
| 6155 | return 0; |
| 6156 | |
| 6157 | if (is_guest_mode(&svm->vcpu) && |
| 6158 | svm->nested.intercept & (1ULL << INTERCEPT_SMI)) { |
| 6159 | /* TODO: Might need to set exit_info_1 and exit_info_2 here */ |
| 6160 | svm->vmcb->control.exit_code = SVM_EXIT_SMI; |
| 6161 | svm->nested.exit_required = true; |
| 6162 | return 0; |
| 6163 | } |
| 6164 | |
| 6165 | return 1; |
| 6166 | } |
| 6167 | |
| 6168 | static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) |
| 6169 | { |
| 6170 | struct vcpu_svm *svm = to_svm(vcpu); |
| 6171 | int ret; |
| 6172 | |
| 6173 | if (is_guest_mode(vcpu)) { |
| 6174 | /* FED8h - SVM Guest */ |
| 6175 | put_smstate(u64, smstate, 0x7ed8, 1); |
| 6176 | /* FEE0h - SVM Guest VMCB Physical Address */ |
| 6177 | put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb); |
| 6178 | |
| 6179 | svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; |
| 6180 | svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; |
| 6181 | svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; |
| 6182 | |
| 6183 | ret = nested_svm_vmexit(svm); |
| 6184 | if (ret) |
| 6185 | return ret; |
| 6186 | } |
| 6187 | return 0; |
| 6188 | } |
| 6189 | |
| 6190 | static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase) |
| 6191 | { |
| 6192 | struct vcpu_svm *svm = to_svm(vcpu); |
| 6193 | struct vmcb *nested_vmcb; |
| 6194 | struct page *page; |
| 6195 | struct { |
| 6196 | u64 guest; |
| 6197 | u64 vmcb; |
| 6198 | } svm_state_save; |
| 6199 | int ret; |
| 6200 | |
| 6201 | ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save, |
| 6202 | sizeof(svm_state_save)); |
| 6203 | if (ret) |
| 6204 | return ret; |
| 6205 | |
| 6206 | if (svm_state_save.guest) { |
| 6207 | vcpu->arch.hflags &= ~HF_SMM_MASK; |
| 6208 | nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page); |
| 6209 | if (nested_vmcb) |
| 6210 | enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page); |
| 6211 | else |
| 6212 | ret = 1; |
| 6213 | vcpu->arch.hflags |= HF_SMM_MASK; |
| 6214 | } |
| 6215 | return ret; |
| 6216 | } |
| 6217 | |
| 6218 | static int enable_smi_window(struct kvm_vcpu *vcpu) |
| 6219 | { |
| 6220 | struct vcpu_svm *svm = to_svm(vcpu); |
| 6221 | |
| 6222 | if (!gif_set(svm)) { |
| 6223 | if (vgif_enabled(svm)) |
| 6224 | set_intercept(svm, INTERCEPT_STGI); |
| 6225 | /* STGI will cause a vm exit */ |
| 6226 | return 1; |
| 6227 | } |
| 6228 | return 0; |
| 6229 | } |
| 6230 | |
| 6231 | static int sev_asid_new(void) |
| 6232 | { |
| 6233 | int pos; |
| 6234 | |
| 6235 | /* |
| 6236 | * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid. |
| 6237 | */ |
| 6238 | pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1); |
| 6239 | if (pos >= max_sev_asid) |
| 6240 | return -EBUSY; |
| 6241 | |
| 6242 | set_bit(pos, sev_asid_bitmap); |
| 6243 | return pos + 1; |
| 6244 | } |
| 6245 | |
| 6246 | static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| 6247 | { |
| 6248 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 6249 | int asid, ret; |
| 6250 | |
| 6251 | ret = -EBUSY; |
| 6252 | asid = sev_asid_new(); |
| 6253 | if (asid < 0) |
| 6254 | return ret; |
| 6255 | |
| 6256 | ret = sev_platform_init(&argp->error); |
| 6257 | if (ret) |
| 6258 | goto e_free; |
| 6259 | |
| 6260 | sev->active = true; |
| 6261 | sev->asid = asid; |
| 6262 | INIT_LIST_HEAD(&sev->regions_list); |
| 6263 | |
| 6264 | return 0; |
| 6265 | |
| 6266 | e_free: |
| 6267 | __sev_asid_free(asid); |
| 6268 | return ret; |
| 6269 | } |
| 6270 | |
| 6271 | static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) |
| 6272 | { |
| 6273 | struct sev_data_activate *data; |
| 6274 | int asid = sev_get_asid(kvm); |
| 6275 | int ret; |
| 6276 | |
| 6277 | wbinvd_on_all_cpus(); |
| 6278 | |
| 6279 | ret = sev_guest_df_flush(error); |
| 6280 | if (ret) |
| 6281 | return ret; |
| 6282 | |
| 6283 | data = kzalloc(sizeof(*data), GFP_KERNEL); |
| 6284 | if (!data) |
| 6285 | return -ENOMEM; |
| 6286 | |
| 6287 | /* activate ASID on the given handle */ |
| 6288 | data->handle = handle; |
| 6289 | data->asid = asid; |
| 6290 | ret = sev_guest_activate(data, error); |
| 6291 | kfree(data); |
| 6292 | |
| 6293 | return ret; |
| 6294 | } |
| 6295 | |
| 6296 | static int __sev_issue_cmd(int fd, int id, void *data, int *error) |
| 6297 | { |
| 6298 | struct fd f; |
| 6299 | int ret; |
| 6300 | |
| 6301 | f = fdget(fd); |
| 6302 | if (!f.file) |
| 6303 | return -EBADF; |
| 6304 | |
| 6305 | ret = sev_issue_cmd_external_user(f.file, id, data, error); |
| 6306 | |
| 6307 | fdput(f); |
| 6308 | return ret; |
| 6309 | } |
| 6310 | |
| 6311 | static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) |
| 6312 | { |
| 6313 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 6314 | |
| 6315 | return __sev_issue_cmd(sev->fd, id, data, error); |
| 6316 | } |
| 6317 | |
| 6318 | static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| 6319 | { |
| 6320 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 6321 | struct sev_data_launch_start *start; |
| 6322 | struct kvm_sev_launch_start params; |
| 6323 | void *dh_blob, *session_blob; |
| 6324 | int *error = &argp->error; |
| 6325 | int ret; |
| 6326 | |
| 6327 | if (!sev_guest(kvm)) |
| 6328 | return -ENOTTY; |
| 6329 | |
| 6330 | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) |
| 6331 | return -EFAULT; |
| 6332 | |
| 6333 | start = kzalloc(sizeof(*start), GFP_KERNEL); |
| 6334 | if (!start) |
| 6335 | return -ENOMEM; |
| 6336 | |
| 6337 | dh_blob = NULL; |
| 6338 | if (params.dh_uaddr) { |
| 6339 | dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); |
| 6340 | if (IS_ERR(dh_blob)) { |
| 6341 | ret = PTR_ERR(dh_blob); |
| 6342 | goto e_free; |
| 6343 | } |
| 6344 | |
| 6345 | start->dh_cert_address = __sme_set(__pa(dh_blob)); |
| 6346 | start->dh_cert_len = params.dh_len; |
| 6347 | } |
| 6348 | |
| 6349 | session_blob = NULL; |
| 6350 | if (params.session_uaddr) { |
| 6351 | session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); |
| 6352 | if (IS_ERR(session_blob)) { |
| 6353 | ret = PTR_ERR(session_blob); |
| 6354 | goto e_free_dh; |
| 6355 | } |
| 6356 | |
| 6357 | start->session_address = __sme_set(__pa(session_blob)); |
| 6358 | start->session_len = params.session_len; |
| 6359 | } |
| 6360 | |
| 6361 | start->handle = params.handle; |
| 6362 | start->policy = params.policy; |
| 6363 | |
| 6364 | /* create memory encryption context */ |
| 6365 | ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error); |
| 6366 | if (ret) |
| 6367 | goto e_free_session; |
| 6368 | |
| 6369 | /* Bind ASID to this guest */ |
| 6370 | ret = sev_bind_asid(kvm, start->handle, error); |
| 6371 | if (ret) |
| 6372 | goto e_free_session; |
| 6373 | |
| 6374 | /* return handle to userspace */ |
| 6375 | params.handle = start->handle; |
| 6376 | if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { |
| 6377 | sev_unbind_asid(kvm, start->handle); |
| 6378 | ret = -EFAULT; |
| 6379 | goto e_free_session; |
| 6380 | } |
| 6381 | |
| 6382 | sev->handle = start->handle; |
| 6383 | sev->fd = argp->sev_fd; |
| 6384 | |
| 6385 | e_free_session: |
| 6386 | kfree(session_blob); |
| 6387 | e_free_dh: |
| 6388 | kfree(dh_blob); |
| 6389 | e_free: |
| 6390 | kfree(start); |
| 6391 | return ret; |
| 6392 | } |
| 6393 | |
| 6394 | static int get_num_contig_pages(int idx, struct page **inpages, |
| 6395 | unsigned long npages) |
| 6396 | { |
| 6397 | unsigned long paddr, next_paddr; |
| 6398 | int i = idx + 1, pages = 1; |
| 6399 | |
| 6400 | /* find the number of contiguous pages starting from idx */ |
| 6401 | paddr = __sme_page_pa(inpages[idx]); |
| 6402 | while (i < npages) { |
| 6403 | next_paddr = __sme_page_pa(inpages[i++]); |
| 6404 | if ((paddr + PAGE_SIZE) == next_paddr) { |
| 6405 | pages++; |
| 6406 | paddr = next_paddr; |
| 6407 | continue; |
| 6408 | } |
| 6409 | break; |
| 6410 | } |
| 6411 | |
| 6412 | return pages; |
| 6413 | } |
| 6414 | |
| 6415 | static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| 6416 | { |
| 6417 | unsigned long vaddr, vaddr_end, next_vaddr, npages, size; |
| 6418 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 6419 | struct kvm_sev_launch_update_data params; |
| 6420 | struct sev_data_launch_update_data *data; |
| 6421 | struct page **inpages; |
| 6422 | int i, ret, pages; |
| 6423 | |
| 6424 | if (!sev_guest(kvm)) |
| 6425 | return -ENOTTY; |
| 6426 | |
| 6427 | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) |
| 6428 | return -EFAULT; |
| 6429 | |
| 6430 | data = kzalloc(sizeof(*data), GFP_KERNEL); |
| 6431 | if (!data) |
| 6432 | return -ENOMEM; |
| 6433 | |
| 6434 | vaddr = params.uaddr; |
| 6435 | size = params.len; |
| 6436 | vaddr_end = vaddr + size; |
| 6437 | |
| 6438 | /* Lock the user memory. */ |
| 6439 | inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); |
| 6440 | if (!inpages) { |
| 6441 | ret = -ENOMEM; |
| 6442 | goto e_free; |
| 6443 | } |
| 6444 | |
| 6445 | /* |
| 6446 | * The LAUNCH_UPDATE command will perform in-place encryption of the |
| 6447 | * memory content (i.e it will write the same memory region with C=1). |
| 6448 | * It's possible that the cache may contain the data with C=0, i.e., |
| 6449 | * unencrypted so invalidate it first. |
| 6450 | */ |
| 6451 | sev_clflush_pages(inpages, npages); |
| 6452 | |
| 6453 | for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { |
| 6454 | int offset, len; |
| 6455 | |
| 6456 | /* |
| 6457 | * If the user buffer is not page-aligned, calculate the offset |
| 6458 | * within the page. |
| 6459 | */ |
| 6460 | offset = vaddr & (PAGE_SIZE - 1); |
| 6461 | |
| 6462 | /* Calculate the number of pages that can be encrypted in one go. */ |
| 6463 | pages = get_num_contig_pages(i, inpages, npages); |
| 6464 | |
| 6465 | len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); |
| 6466 | |
| 6467 | data->handle = sev->handle; |
| 6468 | data->len = len; |
| 6469 | data->address = __sme_page_pa(inpages[i]) + offset; |
| 6470 | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error); |
| 6471 | if (ret) |
| 6472 | goto e_unpin; |
| 6473 | |
| 6474 | size -= len; |
| 6475 | next_vaddr = vaddr + len; |
| 6476 | } |
| 6477 | |
| 6478 | e_unpin: |
| 6479 | /* content of memory is updated, mark pages dirty */ |
| 6480 | for (i = 0; i < npages; i++) { |
| 6481 | set_page_dirty_lock(inpages[i]); |
| 6482 | mark_page_accessed(inpages[i]); |
| 6483 | } |
| 6484 | /* unlock the user pages */ |
| 6485 | sev_unpin_memory(kvm, inpages, npages); |
| 6486 | e_free: |
| 6487 | kfree(data); |
| 6488 | return ret; |
| 6489 | } |
| 6490 | |
| 6491 | static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| 6492 | { |
| 6493 | void __user *measure = (void __user *)(uintptr_t)argp->data; |
| 6494 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 6495 | struct sev_data_launch_measure *data; |
| 6496 | struct kvm_sev_launch_measure params; |
| 6497 | void __user *p = NULL; |
| 6498 | void *blob = NULL; |
| 6499 | int ret; |
| 6500 | |
| 6501 | if (!sev_guest(kvm)) |
| 6502 | return -ENOTTY; |
| 6503 | |
| 6504 | if (copy_from_user(¶ms, measure, sizeof(params))) |
| 6505 | return -EFAULT; |
| 6506 | |
| 6507 | data = kzalloc(sizeof(*data), GFP_KERNEL); |
| 6508 | if (!data) |
| 6509 | return -ENOMEM; |
| 6510 | |
| 6511 | /* User wants to query the blob length */ |
| 6512 | if (!params.len) |
| 6513 | goto cmd; |
| 6514 | |
| 6515 | p = (void __user *)(uintptr_t)params.uaddr; |
| 6516 | if (p) { |
| 6517 | if (params.len > SEV_FW_BLOB_MAX_SIZE) { |
| 6518 | ret = -EINVAL; |
| 6519 | goto e_free; |
| 6520 | } |
| 6521 | |
| 6522 | ret = -ENOMEM; |
| 6523 | blob = kmalloc(params.len, GFP_KERNEL); |
| 6524 | if (!blob) |
| 6525 | goto e_free; |
| 6526 | |
| 6527 | data->address = __psp_pa(blob); |
| 6528 | data->len = params.len; |
| 6529 | } |
| 6530 | |
| 6531 | cmd: |
| 6532 | data->handle = sev->handle; |
| 6533 | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error); |
| 6534 | |
| 6535 | /* |
| 6536 | * If we query the session length, FW responded with expected data. |
| 6537 | */ |
| 6538 | if (!params.len) |
| 6539 | goto done; |
| 6540 | |
| 6541 | if (ret) |
| 6542 | goto e_free_blob; |
| 6543 | |
| 6544 | if (blob) { |
| 6545 | if (copy_to_user(p, blob, params.len)) |
| 6546 | ret = -EFAULT; |
| 6547 | } |
| 6548 | |
| 6549 | done: |
| 6550 | params.len = data->len; |
| 6551 | if (copy_to_user(measure, ¶ms, sizeof(params))) |
| 6552 | ret = -EFAULT; |
| 6553 | e_free_blob: |
| 6554 | kfree(blob); |
| 6555 | e_free: |
| 6556 | kfree(data); |
| 6557 | return ret; |
| 6558 | } |
| 6559 | |
| 6560 | static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| 6561 | { |
| 6562 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 6563 | struct sev_data_launch_finish *data; |
| 6564 | int ret; |
| 6565 | |
| 6566 | if (!sev_guest(kvm)) |
| 6567 | return -ENOTTY; |
| 6568 | |
| 6569 | data = kzalloc(sizeof(*data), GFP_KERNEL); |
| 6570 | if (!data) |
| 6571 | return -ENOMEM; |
| 6572 | |
| 6573 | data->handle = sev->handle; |
| 6574 | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error); |
| 6575 | |
| 6576 | kfree(data); |
| 6577 | return ret; |
| 6578 | } |
| 6579 | |
| 6580 | static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| 6581 | { |
| 6582 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 6583 | struct kvm_sev_guest_status params; |
| 6584 | struct sev_data_guest_status *data; |
| 6585 | int ret; |
| 6586 | |
| 6587 | if (!sev_guest(kvm)) |
| 6588 | return -ENOTTY; |
| 6589 | |
| 6590 | data = kzalloc(sizeof(*data), GFP_KERNEL); |
| 6591 | if (!data) |
| 6592 | return -ENOMEM; |
| 6593 | |
| 6594 | data->handle = sev->handle; |
| 6595 | ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error); |
| 6596 | if (ret) |
| 6597 | goto e_free; |
| 6598 | |
| 6599 | params.policy = data->policy; |
| 6600 | params.state = data->state; |
| 6601 | params.handle = data->handle; |
| 6602 | |
| 6603 | if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) |
| 6604 | ret = -EFAULT; |
| 6605 | e_free: |
| 6606 | kfree(data); |
| 6607 | return ret; |
| 6608 | } |
| 6609 | |
| 6610 | static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, |
| 6611 | unsigned long dst, int size, |
| 6612 | int *error, bool enc) |
| 6613 | { |
| 6614 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 6615 | struct sev_data_dbg *data; |
| 6616 | int ret; |
| 6617 | |
| 6618 | data = kzalloc(sizeof(*data), GFP_KERNEL); |
| 6619 | if (!data) |
| 6620 | return -ENOMEM; |
| 6621 | |
| 6622 | data->handle = sev->handle; |
| 6623 | data->dst_addr = dst; |
| 6624 | data->src_addr = src; |
| 6625 | data->len = size; |
| 6626 | |
| 6627 | ret = sev_issue_cmd(kvm, |
| 6628 | enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, |
| 6629 | data, error); |
| 6630 | kfree(data); |
| 6631 | return ret; |
| 6632 | } |
| 6633 | |
| 6634 | static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, |
| 6635 | unsigned long dst_paddr, int sz, int *err) |
| 6636 | { |
| 6637 | int offset; |
| 6638 | |
| 6639 | /* |
| 6640 | * Its safe to read more than we are asked, caller should ensure that |
| 6641 | * destination has enough space. |
| 6642 | */ |
| 6643 | src_paddr = round_down(src_paddr, 16); |
| 6644 | offset = src_paddr & 15; |
| 6645 | sz = round_up(sz + offset, 16); |
| 6646 | |
| 6647 | return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); |
| 6648 | } |
| 6649 | |
| 6650 | static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, |
| 6651 | unsigned long __user dst_uaddr, |
| 6652 | unsigned long dst_paddr, |
| 6653 | int size, int *err) |
| 6654 | { |
| 6655 | struct page *tpage = NULL; |
| 6656 | int ret, offset; |
| 6657 | |
| 6658 | /* if inputs are not 16-byte then use intermediate buffer */ |
| 6659 | if (!IS_ALIGNED(dst_paddr, 16) || |
| 6660 | !IS_ALIGNED(paddr, 16) || |
| 6661 | !IS_ALIGNED(size, 16)) { |
| 6662 | tpage = (void *)alloc_page(GFP_KERNEL); |
| 6663 | if (!tpage) |
| 6664 | return -ENOMEM; |
| 6665 | |
| 6666 | dst_paddr = __sme_page_pa(tpage); |
| 6667 | } |
| 6668 | |
| 6669 | ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); |
| 6670 | if (ret) |
| 6671 | goto e_free; |
| 6672 | |
| 6673 | if (tpage) { |
| 6674 | offset = paddr & 15; |
| 6675 | if (copy_to_user((void __user *)(uintptr_t)dst_uaddr, |
| 6676 | page_address(tpage) + offset, size)) |
| 6677 | ret = -EFAULT; |
| 6678 | } |
| 6679 | |
| 6680 | e_free: |
| 6681 | if (tpage) |
| 6682 | __free_page(tpage); |
| 6683 | |
| 6684 | return ret; |
| 6685 | } |
| 6686 | |
| 6687 | static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, |
| 6688 | unsigned long __user vaddr, |
| 6689 | unsigned long dst_paddr, |
| 6690 | unsigned long __user dst_vaddr, |
| 6691 | int size, int *error) |
| 6692 | { |
| 6693 | struct page *src_tpage = NULL; |
| 6694 | struct page *dst_tpage = NULL; |
| 6695 | int ret, len = size; |
| 6696 | |
| 6697 | /* If source buffer is not aligned then use an intermediate buffer */ |
| 6698 | if (!IS_ALIGNED(vaddr, 16)) { |
| 6699 | src_tpage = alloc_page(GFP_KERNEL); |
| 6700 | if (!src_tpage) |
| 6701 | return -ENOMEM; |
| 6702 | |
| 6703 | if (copy_from_user(page_address(src_tpage), |
| 6704 | (void __user *)(uintptr_t)vaddr, size)) { |
| 6705 | __free_page(src_tpage); |
| 6706 | return -EFAULT; |
| 6707 | } |
| 6708 | |
| 6709 | paddr = __sme_page_pa(src_tpage); |
| 6710 | } |
| 6711 | |
| 6712 | /* |
| 6713 | * If destination buffer or length is not aligned then do read-modify-write: |
| 6714 | * - decrypt destination in an intermediate buffer |
| 6715 | * - copy the source buffer in an intermediate buffer |
| 6716 | * - use the intermediate buffer as source buffer |
| 6717 | */ |
| 6718 | if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { |
| 6719 | int dst_offset; |
| 6720 | |
| 6721 | dst_tpage = alloc_page(GFP_KERNEL); |
| 6722 | if (!dst_tpage) { |
| 6723 | ret = -ENOMEM; |
| 6724 | goto e_free; |
| 6725 | } |
| 6726 | |
| 6727 | ret = __sev_dbg_decrypt(kvm, dst_paddr, |
| 6728 | __sme_page_pa(dst_tpage), size, error); |
| 6729 | if (ret) |
| 6730 | goto e_free; |
| 6731 | |
| 6732 | /* |
| 6733 | * If source is kernel buffer then use memcpy() otherwise |
| 6734 | * copy_from_user(). |
| 6735 | */ |
| 6736 | dst_offset = dst_paddr & 15; |
| 6737 | |
| 6738 | if (src_tpage) |
| 6739 | memcpy(page_address(dst_tpage) + dst_offset, |
| 6740 | page_address(src_tpage), size); |
| 6741 | else { |
| 6742 | if (copy_from_user(page_address(dst_tpage) + dst_offset, |
| 6743 | (void __user *)(uintptr_t)vaddr, size)) { |
| 6744 | ret = -EFAULT; |
| 6745 | goto e_free; |
| 6746 | } |
| 6747 | } |
| 6748 | |
| 6749 | paddr = __sme_page_pa(dst_tpage); |
| 6750 | dst_paddr = round_down(dst_paddr, 16); |
| 6751 | len = round_up(size, 16); |
| 6752 | } |
| 6753 | |
| 6754 | ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); |
| 6755 | |
| 6756 | e_free: |
| 6757 | if (src_tpage) |
| 6758 | __free_page(src_tpage); |
| 6759 | if (dst_tpage) |
| 6760 | __free_page(dst_tpage); |
| 6761 | return ret; |
| 6762 | } |
| 6763 | |
| 6764 | static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) |
| 6765 | { |
| 6766 | unsigned long vaddr, vaddr_end, next_vaddr; |
| 6767 | unsigned long dst_vaddr; |
| 6768 | struct page **src_p, **dst_p; |
| 6769 | struct kvm_sev_dbg debug; |
| 6770 | unsigned long n; |
| 6771 | int ret, size; |
| 6772 | |
| 6773 | if (!sev_guest(kvm)) |
| 6774 | return -ENOTTY; |
| 6775 | |
| 6776 | if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) |
| 6777 | return -EFAULT; |
| 6778 | |
| 6779 | vaddr = debug.src_uaddr; |
| 6780 | size = debug.len; |
| 6781 | vaddr_end = vaddr + size; |
| 6782 | dst_vaddr = debug.dst_uaddr; |
| 6783 | |
| 6784 | for (; vaddr < vaddr_end; vaddr = next_vaddr) { |
| 6785 | int len, s_off, d_off; |
| 6786 | |
| 6787 | /* lock userspace source and destination page */ |
| 6788 | src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); |
| 6789 | if (!src_p) |
| 6790 | return -EFAULT; |
| 6791 | |
| 6792 | dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); |
| 6793 | if (!dst_p) { |
| 6794 | sev_unpin_memory(kvm, src_p, n); |
| 6795 | return -EFAULT; |
| 6796 | } |
| 6797 | |
| 6798 | /* |
| 6799 | * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the |
| 6800 | * memory content (i.e it will write the same memory region with C=1). |
| 6801 | * It's possible that the cache may contain the data with C=0, i.e., |
| 6802 | * unencrypted so invalidate it first. |
| 6803 | */ |
| 6804 | sev_clflush_pages(src_p, 1); |
| 6805 | sev_clflush_pages(dst_p, 1); |
| 6806 | |
| 6807 | /* |
| 6808 | * Since user buffer may not be page aligned, calculate the |
| 6809 | * offset within the page. |
| 6810 | */ |
| 6811 | s_off = vaddr & ~PAGE_MASK; |
| 6812 | d_off = dst_vaddr & ~PAGE_MASK; |
| 6813 | len = min_t(size_t, (PAGE_SIZE - s_off), size); |
| 6814 | |
| 6815 | if (dec) |
| 6816 | ret = __sev_dbg_decrypt_user(kvm, |
| 6817 | __sme_page_pa(src_p[0]) + s_off, |
| 6818 | dst_vaddr, |
| 6819 | __sme_page_pa(dst_p[0]) + d_off, |
| 6820 | len, &argp->error); |
| 6821 | else |
| 6822 | ret = __sev_dbg_encrypt_user(kvm, |
| 6823 | __sme_page_pa(src_p[0]) + s_off, |
| 6824 | vaddr, |
| 6825 | __sme_page_pa(dst_p[0]) + d_off, |
| 6826 | dst_vaddr, |
| 6827 | len, &argp->error); |
| 6828 | |
| 6829 | sev_unpin_memory(kvm, src_p, 1); |
| 6830 | sev_unpin_memory(kvm, dst_p, 1); |
| 6831 | |
| 6832 | if (ret) |
| 6833 | goto err; |
| 6834 | |
| 6835 | next_vaddr = vaddr + len; |
| 6836 | dst_vaddr = dst_vaddr + len; |
| 6837 | size -= len; |
| 6838 | } |
| 6839 | err: |
| 6840 | return ret; |
| 6841 | } |
| 6842 | |
| 6843 | static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| 6844 | { |
| 6845 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 6846 | struct sev_data_launch_secret *data; |
| 6847 | struct kvm_sev_launch_secret params; |
| 6848 | struct page **pages; |
| 6849 | void *blob, *hdr; |
| 6850 | unsigned long n; |
| 6851 | int ret, offset; |
| 6852 | |
| 6853 | if (!sev_guest(kvm)) |
| 6854 | return -ENOTTY; |
| 6855 | |
| 6856 | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) |
| 6857 | return -EFAULT; |
| 6858 | |
| 6859 | pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); |
| 6860 | if (!pages) |
| 6861 | return -ENOMEM; |
| 6862 | |
| 6863 | /* |
| 6864 | * The secret must be copied into contiguous memory region, lets verify |
| 6865 | * that userspace memory pages are contiguous before we issue command. |
| 6866 | */ |
| 6867 | if (get_num_contig_pages(0, pages, n) != n) { |
| 6868 | ret = -EINVAL; |
| 6869 | goto e_unpin_memory; |
| 6870 | } |
| 6871 | |
| 6872 | ret = -ENOMEM; |
| 6873 | data = kzalloc(sizeof(*data), GFP_KERNEL); |
| 6874 | if (!data) |
| 6875 | goto e_unpin_memory; |
| 6876 | |
| 6877 | offset = params.guest_uaddr & (PAGE_SIZE - 1); |
| 6878 | data->guest_address = __sme_page_pa(pages[0]) + offset; |
| 6879 | data->guest_len = params.guest_len; |
| 6880 | |
| 6881 | blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); |
| 6882 | if (IS_ERR(blob)) { |
| 6883 | ret = PTR_ERR(blob); |
| 6884 | goto e_free; |
| 6885 | } |
| 6886 | |
| 6887 | data->trans_address = __psp_pa(blob); |
| 6888 | data->trans_len = params.trans_len; |
| 6889 | |
| 6890 | hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); |
| 6891 | if (IS_ERR(hdr)) { |
| 6892 | ret = PTR_ERR(hdr); |
| 6893 | goto e_free_blob; |
| 6894 | } |
| 6895 | data->hdr_address = __psp_pa(hdr); |
| 6896 | data->hdr_len = params.hdr_len; |
| 6897 | |
| 6898 | data->handle = sev->handle; |
| 6899 | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error); |
| 6900 | |
| 6901 | kfree(hdr); |
| 6902 | |
| 6903 | e_free_blob: |
| 6904 | kfree(blob); |
| 6905 | e_free: |
| 6906 | kfree(data); |
| 6907 | e_unpin_memory: |
| 6908 | sev_unpin_memory(kvm, pages, n); |
| 6909 | return ret; |
| 6910 | } |
| 6911 | |
| 6912 | static int svm_mem_enc_op(struct kvm *kvm, void __user *argp) |
| 6913 | { |
| 6914 | struct kvm_sev_cmd sev_cmd; |
| 6915 | int r; |
| 6916 | |
| 6917 | if (!svm_sev_enabled()) |
| 6918 | return -ENOTTY; |
| 6919 | |
| 6920 | if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) |
| 6921 | return -EFAULT; |
| 6922 | |
| 6923 | mutex_lock(&kvm->lock); |
| 6924 | |
| 6925 | switch (sev_cmd.id) { |
| 6926 | case KVM_SEV_INIT: |
| 6927 | r = sev_guest_init(kvm, &sev_cmd); |
| 6928 | break; |
| 6929 | case KVM_SEV_LAUNCH_START: |
| 6930 | r = sev_launch_start(kvm, &sev_cmd); |
| 6931 | break; |
| 6932 | case KVM_SEV_LAUNCH_UPDATE_DATA: |
| 6933 | r = sev_launch_update_data(kvm, &sev_cmd); |
| 6934 | break; |
| 6935 | case KVM_SEV_LAUNCH_MEASURE: |
| 6936 | r = sev_launch_measure(kvm, &sev_cmd); |
| 6937 | break; |
| 6938 | case KVM_SEV_LAUNCH_FINISH: |
| 6939 | r = sev_launch_finish(kvm, &sev_cmd); |
| 6940 | break; |
| 6941 | case KVM_SEV_GUEST_STATUS: |
| 6942 | r = sev_guest_status(kvm, &sev_cmd); |
| 6943 | break; |
| 6944 | case KVM_SEV_DBG_DECRYPT: |
| 6945 | r = sev_dbg_crypt(kvm, &sev_cmd, true); |
| 6946 | break; |
| 6947 | case KVM_SEV_DBG_ENCRYPT: |
| 6948 | r = sev_dbg_crypt(kvm, &sev_cmd, false); |
| 6949 | break; |
| 6950 | case KVM_SEV_LAUNCH_SECRET: |
| 6951 | r = sev_launch_secret(kvm, &sev_cmd); |
| 6952 | break; |
| 6953 | default: |
| 6954 | r = -EINVAL; |
| 6955 | goto out; |
| 6956 | } |
| 6957 | |
| 6958 | if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) |
| 6959 | r = -EFAULT; |
| 6960 | |
| 6961 | out: |
| 6962 | mutex_unlock(&kvm->lock); |
| 6963 | return r; |
| 6964 | } |
| 6965 | |
| 6966 | static int svm_register_enc_region(struct kvm *kvm, |
| 6967 | struct kvm_enc_region *range) |
| 6968 | { |
| 6969 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 6970 | struct enc_region *region; |
| 6971 | int ret = 0; |
| 6972 | |
| 6973 | if (!sev_guest(kvm)) |
| 6974 | return -ENOTTY; |
| 6975 | |
| 6976 | if (range->addr > ULONG_MAX || range->size > ULONG_MAX) |
| 6977 | return -EINVAL; |
| 6978 | |
| 6979 | region = kzalloc(sizeof(*region), GFP_KERNEL); |
| 6980 | if (!region) |
| 6981 | return -ENOMEM; |
| 6982 | |
| 6983 | region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); |
| 6984 | if (!region->pages) { |
| 6985 | ret = -ENOMEM; |
| 6986 | goto e_free; |
| 6987 | } |
| 6988 | |
| 6989 | /* |
| 6990 | * The guest may change the memory encryption attribute from C=0 -> C=1 |
| 6991 | * or vice versa for this memory range. Lets make sure caches are |
| 6992 | * flushed to ensure that guest data gets written into memory with |
| 6993 | * correct C-bit. |
| 6994 | */ |
| 6995 | sev_clflush_pages(region->pages, region->npages); |
| 6996 | |
| 6997 | region->uaddr = range->addr; |
| 6998 | region->size = range->size; |
| 6999 | |
| 7000 | mutex_lock(&kvm->lock); |
| 7001 | list_add_tail(®ion->list, &sev->regions_list); |
| 7002 | mutex_unlock(&kvm->lock); |
| 7003 | |
| 7004 | return ret; |
| 7005 | |
| 7006 | e_free: |
| 7007 | kfree(region); |
| 7008 | return ret; |
| 7009 | } |
| 7010 | |
| 7011 | static struct enc_region * |
| 7012 | find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) |
| 7013 | { |
| 7014 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| 7015 | struct list_head *head = &sev->regions_list; |
| 7016 | struct enc_region *i; |
| 7017 | |
| 7018 | list_for_each_entry(i, head, list) { |
| 7019 | if (i->uaddr == range->addr && |
| 7020 | i->size == range->size) |
| 7021 | return i; |
| 7022 | } |
| 7023 | |
| 7024 | return NULL; |
| 7025 | } |
| 7026 | |
| 7027 | |
| 7028 | static int svm_unregister_enc_region(struct kvm *kvm, |
| 7029 | struct kvm_enc_region *range) |
| 7030 | { |
| 7031 | struct enc_region *region; |
| 7032 | int ret; |
| 7033 | |
| 7034 | mutex_lock(&kvm->lock); |
| 7035 | |
| 7036 | if (!sev_guest(kvm)) { |
| 7037 | ret = -ENOTTY; |
| 7038 | goto failed; |
| 7039 | } |
| 7040 | |
| 7041 | region = find_enc_region(kvm, range); |
| 7042 | if (!region) { |
| 7043 | ret = -EINVAL; |
| 7044 | goto failed; |
| 7045 | } |
| 7046 | |
| 7047 | __unregister_enc_region_locked(kvm, region); |
| 7048 | |
| 7049 | mutex_unlock(&kvm->lock); |
| 7050 | return 0; |
| 7051 | |
| 7052 | failed: |
| 7053 | mutex_unlock(&kvm->lock); |
| 7054 | return ret; |
| 7055 | } |
| 7056 | |
| 7057 | static struct kvm_x86_ops svm_x86_ops __ro_after_init = { |
| 7058 | .cpu_has_kvm_support = has_svm, |
| 7059 | .disabled_by_bios = is_disabled, |
| 7060 | .hardware_setup = svm_hardware_setup, |
| 7061 | .hardware_unsetup = svm_hardware_unsetup, |
| 7062 | .check_processor_compatibility = svm_check_processor_compat, |
| 7063 | .hardware_enable = svm_hardware_enable, |
| 7064 | .hardware_disable = svm_hardware_disable, |
| 7065 | .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, |
| 7066 | .has_emulated_msr = svm_has_emulated_msr, |
| 7067 | |
| 7068 | .vcpu_create = svm_create_vcpu, |
| 7069 | .vcpu_free = svm_free_vcpu, |
| 7070 | .vcpu_reset = svm_vcpu_reset, |
| 7071 | |
| 7072 | .vm_alloc = svm_vm_alloc, |
| 7073 | .vm_free = svm_vm_free, |
| 7074 | .vm_init = avic_vm_init, |
| 7075 | .vm_destroy = svm_vm_destroy, |
| 7076 | |
| 7077 | .prepare_guest_switch = svm_prepare_guest_switch, |
| 7078 | .vcpu_load = svm_vcpu_load, |
| 7079 | .vcpu_put = svm_vcpu_put, |
| 7080 | .vcpu_blocking = svm_vcpu_blocking, |
| 7081 | .vcpu_unblocking = svm_vcpu_unblocking, |
| 7082 | |
| 7083 | .update_bp_intercept = update_bp_intercept, |
| 7084 | .get_msr_feature = svm_get_msr_feature, |
| 7085 | .get_msr = svm_get_msr, |
| 7086 | .set_msr = svm_set_msr, |
| 7087 | .get_segment_base = svm_get_segment_base, |
| 7088 | .get_segment = svm_get_segment, |
| 7089 | .set_segment = svm_set_segment, |
| 7090 | .get_cpl = svm_get_cpl, |
| 7091 | .get_cs_db_l_bits = kvm_get_cs_db_l_bits, |
| 7092 | .decache_cr0_guest_bits = svm_decache_cr0_guest_bits, |
| 7093 | .decache_cr3 = svm_decache_cr3, |
| 7094 | .decache_cr4_guest_bits = svm_decache_cr4_guest_bits, |
| 7095 | .set_cr0 = svm_set_cr0, |
| 7096 | .set_cr3 = svm_set_cr3, |
| 7097 | .set_cr4 = svm_set_cr4, |
| 7098 | .set_efer = svm_set_efer, |
| 7099 | .get_idt = svm_get_idt, |
| 7100 | .set_idt = svm_set_idt, |
| 7101 | .get_gdt = svm_get_gdt, |
| 7102 | .set_gdt = svm_set_gdt, |
| 7103 | .get_dr6 = svm_get_dr6, |
| 7104 | .set_dr6 = svm_set_dr6, |
| 7105 | .set_dr7 = svm_set_dr7, |
| 7106 | .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, |
| 7107 | .cache_reg = svm_cache_reg, |
| 7108 | .get_rflags = svm_get_rflags, |
| 7109 | .set_rflags = svm_set_rflags, |
| 7110 | |
| 7111 | .tlb_flush = svm_flush_tlb, |
| 7112 | .tlb_flush_gva = svm_flush_tlb_gva, |
| 7113 | |
| 7114 | .run = svm_vcpu_run, |
| 7115 | .handle_exit = handle_exit, |
| 7116 | .skip_emulated_instruction = skip_emulated_instruction, |
| 7117 | .set_interrupt_shadow = svm_set_interrupt_shadow, |
| 7118 | .get_interrupt_shadow = svm_get_interrupt_shadow, |
| 7119 | .patch_hypercall = svm_patch_hypercall, |
| 7120 | .set_irq = svm_set_irq, |
| 7121 | .set_nmi = svm_inject_nmi, |
| 7122 | .queue_exception = svm_queue_exception, |
| 7123 | .cancel_injection = svm_cancel_injection, |
| 7124 | .interrupt_allowed = svm_interrupt_allowed, |
| 7125 | .nmi_allowed = svm_nmi_allowed, |
| 7126 | .get_nmi_mask = svm_get_nmi_mask, |
| 7127 | .set_nmi_mask = svm_set_nmi_mask, |
| 7128 | .enable_nmi_window = enable_nmi_window, |
| 7129 | .enable_irq_window = enable_irq_window, |
| 7130 | .update_cr8_intercept = update_cr8_intercept, |
| 7131 | .set_virtual_apic_mode = svm_set_virtual_apic_mode, |
| 7132 | .get_enable_apicv = svm_get_enable_apicv, |
| 7133 | .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, |
| 7134 | .load_eoi_exitmap = svm_load_eoi_exitmap, |
| 7135 | .hwapic_irr_update = svm_hwapic_irr_update, |
| 7136 | .hwapic_isr_update = svm_hwapic_isr_update, |
| 7137 | .sync_pir_to_irr = kvm_lapic_find_highest_irr, |
| 7138 | .apicv_post_state_restore = avic_post_state_restore, |
| 7139 | |
| 7140 | .set_tss_addr = svm_set_tss_addr, |
| 7141 | .set_identity_map_addr = svm_set_identity_map_addr, |
| 7142 | .get_tdp_level = get_npt_level, |
| 7143 | .get_mt_mask = svm_get_mt_mask, |
| 7144 | |
| 7145 | .get_exit_info = svm_get_exit_info, |
| 7146 | |
| 7147 | .get_lpage_level = svm_get_lpage_level, |
| 7148 | |
| 7149 | .cpuid_update = svm_cpuid_update, |
| 7150 | |
| 7151 | .rdtscp_supported = svm_rdtscp_supported, |
| 7152 | .invpcid_supported = svm_invpcid_supported, |
| 7153 | .mpx_supported = svm_mpx_supported, |
| 7154 | .xsaves_supported = svm_xsaves_supported, |
| 7155 | .umip_emulated = svm_umip_emulated, |
| 7156 | |
| 7157 | .set_supported_cpuid = svm_set_supported_cpuid, |
| 7158 | |
| 7159 | .has_wbinvd_exit = svm_has_wbinvd_exit, |
| 7160 | |
| 7161 | .read_l1_tsc_offset = svm_read_l1_tsc_offset, |
| 7162 | .write_l1_tsc_offset = svm_write_l1_tsc_offset, |
| 7163 | |
| 7164 | .set_tdp_cr3 = set_tdp_cr3, |
| 7165 | |
| 7166 | .check_intercept = svm_check_intercept, |
| 7167 | .handle_external_intr = svm_handle_external_intr, |
| 7168 | |
| 7169 | .request_immediate_exit = __kvm_request_immediate_exit, |
| 7170 | |
| 7171 | .sched_in = svm_sched_in, |
| 7172 | |
| 7173 | .pmu_ops = &amd_pmu_ops, |
| 7174 | .deliver_posted_interrupt = svm_deliver_avic_intr, |
| 7175 | .update_pi_irte = svm_update_pi_irte, |
| 7176 | .setup_mce = svm_setup_mce, |
| 7177 | |
| 7178 | .smi_allowed = svm_smi_allowed, |
| 7179 | .pre_enter_smm = svm_pre_enter_smm, |
| 7180 | .pre_leave_smm = svm_pre_leave_smm, |
| 7181 | .enable_smi_window = enable_smi_window, |
| 7182 | |
| 7183 | .mem_enc_op = svm_mem_enc_op, |
| 7184 | .mem_enc_reg_region = svm_register_enc_region, |
| 7185 | .mem_enc_unreg_region = svm_unregister_enc_region, |
| 7186 | }; |
| 7187 | |
| 7188 | static int __init svm_init(void) |
| 7189 | { |
| 7190 | return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm), |
| 7191 | __alignof__(struct vcpu_svm), THIS_MODULE); |
| 7192 | } |
| 7193 | |
| 7194 | static void __exit svm_exit(void) |
| 7195 | { |
| 7196 | kvm_exit(); |
| 7197 | } |
| 7198 | |
| 7199 | module_init(svm_init) |
| 7200 | module_exit(svm_exit) |