blob: f1d3fe5a0c657276d93d2df56ebafcd2955aa91e [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18#define pr_fmt(fmt) "SVM: " fmt
19
20#include <linux/kvm_host.h>
21
22#include "irq.h"
23#include "mmu.h"
24#include "kvm_cache_regs.h"
25#include "x86.h"
26#include "cpuid.h"
27#include "pmu.h"
28
29#include <linux/module.h>
30#include <linux/mod_devicetable.h>
31#include <linux/kernel.h>
32#include <linux/vmalloc.h>
33#include <linux/highmem.h>
34#include <linux/sched.h>
35#include <linux/trace_events.h>
36#include <linux/slab.h>
37#include <linux/amd-iommu.h>
38#include <linux/hashtable.h>
39#include <linux/frame.h>
40#include <linux/psp-sev.h>
41#include <linux/file.h>
42#include <linux/pagemap.h>
43#include <linux/swap.h>
44
45#include <asm/apic.h>
46#include <asm/perf_event.h>
47#include <asm/tlbflush.h>
48#include <asm/desc.h>
49#include <asm/debugreg.h>
50#include <asm/kvm_para.h>
51#include <asm/irq_remapping.h>
52#include <asm/spec-ctrl.h>
53
54#include <asm/virtext.h>
55#include "trace.h"
56
57#define __ex(x) __kvm_handle_fault_on_reboot(x)
58
59MODULE_AUTHOR("Qumranet");
60MODULE_LICENSE("GPL");
61
62static const struct x86_cpu_id svm_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_SVM),
64 {}
65};
66MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
67
68#define IOPM_ALLOC_ORDER 2
69#define MSRPM_ALLOC_ORDER 1
70
71#define SEG_TYPE_LDT 2
72#define SEG_TYPE_BUSY_TSS16 3
73
74#define SVM_FEATURE_NPT (1 << 0)
75#define SVM_FEATURE_LBRV (1 << 1)
76#define SVM_FEATURE_SVML (1 << 2)
77#define SVM_FEATURE_NRIP (1 << 3)
78#define SVM_FEATURE_TSC_RATE (1 << 4)
79#define SVM_FEATURE_VMCB_CLEAN (1 << 5)
80#define SVM_FEATURE_FLUSH_ASID (1 << 6)
81#define SVM_FEATURE_DECODE_ASSIST (1 << 7)
82#define SVM_FEATURE_PAUSE_FILTER (1 << 10)
83
84#define SVM_AVIC_DOORBELL 0xc001011b
85
86#define NESTED_EXIT_HOST 0 /* Exit handled on host level */
87#define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
88#define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
89
90#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
91
92#define TSC_RATIO_RSVD 0xffffff0000000000ULL
93#define TSC_RATIO_MIN 0x0000000000000001ULL
94#define TSC_RATIO_MAX 0x000000ffffffffffULL
95
96#define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
97
98/*
99 * 0xff is broadcast, so the max index allowed for physical APIC ID
100 * table is 0xfe. APIC IDs above 0xff are reserved.
101 */
102#define AVIC_MAX_PHYSICAL_ID_COUNT 255
103
104#define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
105#define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
106#define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
107
108/* AVIC GATAG is encoded using VM and VCPU IDs */
109#define AVIC_VCPU_ID_BITS 8
110#define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
111
112#define AVIC_VM_ID_BITS 24
113#define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
114#define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
115
116#define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
117 (y & AVIC_VCPU_ID_MASK))
118#define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
119#define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
120
121static bool erratum_383_found __read_mostly;
122
123static const u32 host_save_user_msrs[] = {
124#ifdef CONFIG_X86_64
125 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
126 MSR_FS_BASE,
127#endif
128 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
129 MSR_TSC_AUX,
130};
131
132#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
133
134struct kvm_sev_info {
135 bool active; /* SEV enabled guest */
136 unsigned int asid; /* ASID used for this guest */
137 unsigned int handle; /* SEV firmware handle */
138 int fd; /* SEV device fd */
139 unsigned long pages_locked; /* Number of pages locked */
140 struct list_head regions_list; /* List of registered regions */
141};
142
143struct kvm_svm {
144 struct kvm kvm;
145
146 /* Struct members for AVIC */
147 u32 avic_vm_id;
148 u32 ldr_mode;
149 struct page *avic_logical_id_table_page;
150 struct page *avic_physical_id_table_page;
151 struct hlist_node hnode;
152
153 struct kvm_sev_info sev_info;
154};
155
156struct kvm_vcpu;
157
158struct nested_state {
159 struct vmcb *hsave;
160 u64 hsave_msr;
161 u64 vm_cr_msr;
162 u64 vmcb;
163
164 /* These are the merged vectors */
165 u32 *msrpm;
166
167 /* gpa pointers to the real vectors */
168 u64 vmcb_msrpm;
169 u64 vmcb_iopm;
170
171 /* A VMEXIT is required but not yet emulated */
172 bool exit_required;
173
174 /* cache for intercepts of the guest */
175 u32 intercept_cr;
176 u32 intercept_dr;
177 u32 intercept_exceptions;
178 u64 intercept;
179
180 /* Nested Paging related state */
181 u64 nested_cr3;
182};
183
184#define MSRPM_OFFSETS 16
185static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
186
187/*
188 * Set osvw_len to higher value when updated Revision Guides
189 * are published and we know what the new status bits are
190 */
191static uint64_t osvw_len = 4, osvw_status;
192
193struct vcpu_svm {
194 struct kvm_vcpu vcpu;
195 struct vmcb *vmcb;
196 unsigned long vmcb_pa;
197 struct svm_cpu_data *svm_data;
198 uint64_t asid_generation;
199 uint64_t sysenter_esp;
200 uint64_t sysenter_eip;
201 uint64_t tsc_aux;
202
203 u64 msr_decfg;
204
205 u64 next_rip;
206
207 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
208 struct {
209 u16 fs;
210 u16 gs;
211 u16 ldt;
212 u64 gs_base;
213 } host;
214
215 u64 spec_ctrl;
216 /*
217 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
218 * translated into the appropriate L2_CFG bits on the host to
219 * perform speculative control.
220 */
221 u64 virt_spec_ctrl;
222
223 u32 *msrpm;
224
225 ulong nmi_iret_rip;
226
227 struct nested_state nested;
228
229 bool nmi_singlestep;
230 u64 nmi_singlestep_guest_rflags;
231
232 unsigned int3_injected;
233 unsigned long int3_rip;
234
235 /* cached guest cpuid flags for faster access */
236 bool nrips_enabled : 1;
237
238 u32 ldr_reg;
239 struct page *avic_backing_page;
240 u64 *avic_physical_id_cache;
241 bool avic_is_running;
242
243 /*
244 * Per-vcpu list of struct amd_svm_iommu_ir:
245 * This is used mainly to store interrupt remapping information used
246 * when update the vcpu affinity. This avoids the need to scan for
247 * IRTE and try to match ga_tag in the IOMMU driver.
248 */
249 struct list_head ir_list;
250 spinlock_t ir_list_lock;
251
252 /* which host CPU was used for running this vcpu */
253 unsigned int last_cpu;
254};
255
256/*
257 * This is a wrapper of struct amd_iommu_ir_data.
258 */
259struct amd_svm_iommu_ir {
260 struct list_head node; /* Used by SVM for per-vcpu ir_list */
261 void *data; /* Storing pointer to struct amd_ir_data */
262};
263
264#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
265#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
266
267#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
268#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
269#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
270#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
271
272static DEFINE_PER_CPU(u64, current_tsc_ratio);
273#define TSC_RATIO_DEFAULT 0x0100000000ULL
274
275#define MSR_INVALID 0xffffffffU
276
277static const struct svm_direct_access_msrs {
278 u32 index; /* Index of the MSR */
279 bool always; /* True if intercept is always on */
280} direct_access_msrs[] = {
281 { .index = MSR_STAR, .always = true },
282 { .index = MSR_IA32_SYSENTER_CS, .always = true },
283#ifdef CONFIG_X86_64
284 { .index = MSR_GS_BASE, .always = true },
285 { .index = MSR_FS_BASE, .always = true },
286 { .index = MSR_KERNEL_GS_BASE, .always = true },
287 { .index = MSR_LSTAR, .always = true },
288 { .index = MSR_CSTAR, .always = true },
289 { .index = MSR_SYSCALL_MASK, .always = true },
290#endif
291 { .index = MSR_IA32_SPEC_CTRL, .always = false },
292 { .index = MSR_IA32_PRED_CMD, .always = false },
293 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
294 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
295 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
296 { .index = MSR_IA32_LASTINTTOIP, .always = false },
297 { .index = MSR_INVALID, .always = false },
298};
299
300/* enable NPT for AMD64 and X86 with PAE */
301#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
302static bool npt_enabled = true;
303#else
304static bool npt_enabled;
305#endif
306
307/*
308 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
309 * pause_filter_count: On processors that support Pause filtering(indicated
310 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
311 * count value. On VMRUN this value is loaded into an internal counter.
312 * Each time a pause instruction is executed, this counter is decremented
313 * until it reaches zero at which time a #VMEXIT is generated if pause
314 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
315 * Intercept Filtering for more details.
316 * This also indicate if ple logic enabled.
317 *
318 * pause_filter_thresh: In addition, some processor families support advanced
319 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
320 * the amount of time a guest is allowed to execute in a pause loop.
321 * In this mode, a 16-bit pause filter threshold field is added in the
322 * VMCB. The threshold value is a cycle count that is used to reset the
323 * pause counter. As with simple pause filtering, VMRUN loads the pause
324 * count value from VMCB into an internal counter. Then, on each pause
325 * instruction the hardware checks the elapsed number of cycles since
326 * the most recent pause instruction against the pause filter threshold.
327 * If the elapsed cycle count is greater than the pause filter threshold,
328 * then the internal pause count is reloaded from the VMCB and execution
329 * continues. If the elapsed cycle count is less than the pause filter
330 * threshold, then the internal pause count is decremented. If the count
331 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
332 * triggered. If advanced pause filtering is supported and pause filter
333 * threshold field is set to zero, the filter will operate in the simpler,
334 * count only mode.
335 */
336
337static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
338module_param(pause_filter_thresh, ushort, 0444);
339
340static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
341module_param(pause_filter_count, ushort, 0444);
342
343/* Default doubles per-vcpu window every exit. */
344static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
345module_param(pause_filter_count_grow, ushort, 0444);
346
347/* Default resets per-vcpu window every exit to pause_filter_count. */
348static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
349module_param(pause_filter_count_shrink, ushort, 0444);
350
351/* Default is to compute the maximum so we can never overflow. */
352static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
353module_param(pause_filter_count_max, ushort, 0444);
354
355/* allow nested paging (virtualized MMU) for all guests */
356static int npt = true;
357module_param(npt, int, S_IRUGO);
358
359/* allow nested virtualization in KVM/SVM */
360static int nested = true;
361module_param(nested, int, S_IRUGO);
362
363/* enable / disable AVIC */
364static int avic;
365#ifdef CONFIG_X86_LOCAL_APIC
366module_param(avic, int, S_IRUGO);
367#endif
368
369/* enable/disable Virtual VMLOAD VMSAVE */
370static int vls = true;
371module_param(vls, int, 0444);
372
373/* enable/disable Virtual GIF */
374static int vgif = true;
375module_param(vgif, int, 0444);
376
377/* enable/disable SEV support */
378static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379module_param(sev, int, 0444);
380
381static u8 rsm_ins_bytes[] = "\x0f\xaa";
382
383static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
384static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
385static void svm_complete_interrupts(struct vcpu_svm *svm);
386
387static int nested_svm_exit_handled(struct vcpu_svm *svm);
388static int nested_svm_intercept(struct vcpu_svm *svm);
389static int nested_svm_vmexit(struct vcpu_svm *svm);
390static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
391 bool has_error_code, u32 error_code);
392
393enum {
394 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
395 pause filter count */
396 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
397 VMCB_ASID, /* ASID */
398 VMCB_INTR, /* int_ctl, int_vector */
399 VMCB_NPT, /* npt_en, nCR3, gPAT */
400 VMCB_CR, /* CR0, CR3, CR4, EFER */
401 VMCB_DR, /* DR6, DR7 */
402 VMCB_DT, /* GDT, IDT */
403 VMCB_SEG, /* CS, DS, SS, ES, CPL */
404 VMCB_CR2, /* CR2 only */
405 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
406 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
407 * AVIC PHYSICAL_TABLE pointer,
408 * AVIC LOGICAL_TABLE pointer
409 */
410 VMCB_DIRTY_MAX,
411};
412
413/* TPR and CR2 are always written before VMRUN */
414#define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
415
416#define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
417
418static unsigned int max_sev_asid;
419static unsigned int min_sev_asid;
420static unsigned long *sev_asid_bitmap;
421#define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
422
423struct enc_region {
424 struct list_head list;
425 unsigned long npages;
426 struct page **pages;
427 unsigned long uaddr;
428 unsigned long size;
429};
430
431
432static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
433{
434 return container_of(kvm, struct kvm_svm, kvm);
435}
436
437static inline bool svm_sev_enabled(void)
438{
439 return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
440}
441
442static inline bool sev_guest(struct kvm *kvm)
443{
444#ifdef CONFIG_KVM_AMD_SEV
445 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
446
447 return sev->active;
448#else
449 return false;
450#endif
451}
452
453static inline int sev_get_asid(struct kvm *kvm)
454{
455 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
456
457 return sev->asid;
458}
459
460static inline void mark_all_dirty(struct vmcb *vmcb)
461{
462 vmcb->control.clean = 0;
463}
464
465static inline void mark_all_clean(struct vmcb *vmcb)
466{
467 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
468 & ~VMCB_ALWAYS_DIRTY_MASK;
469}
470
471static inline void mark_dirty(struct vmcb *vmcb, int bit)
472{
473 vmcb->control.clean &= ~(1 << bit);
474}
475
476static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
477{
478 return container_of(vcpu, struct vcpu_svm, vcpu);
479}
480
481static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
482{
483 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
484 mark_dirty(svm->vmcb, VMCB_AVIC);
485}
486
487static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
488{
489 struct vcpu_svm *svm = to_svm(vcpu);
490 u64 *entry = svm->avic_physical_id_cache;
491
492 if (!entry)
493 return false;
494
495 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
496}
497
498static void recalc_intercepts(struct vcpu_svm *svm)
499{
500 struct vmcb_control_area *c, *h;
501 struct nested_state *g;
502
503 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
504
505 if (!is_guest_mode(&svm->vcpu))
506 return;
507
508 c = &svm->vmcb->control;
509 h = &svm->nested.hsave->control;
510 g = &svm->nested;
511
512 c->intercept_cr = h->intercept_cr | g->intercept_cr;
513 c->intercept_dr = h->intercept_dr | g->intercept_dr;
514 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
515 c->intercept = h->intercept | g->intercept;
516}
517
518static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
519{
520 if (is_guest_mode(&svm->vcpu))
521 return svm->nested.hsave;
522 else
523 return svm->vmcb;
524}
525
526static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
527{
528 struct vmcb *vmcb = get_host_vmcb(svm);
529
530 vmcb->control.intercept_cr |= (1U << bit);
531
532 recalc_intercepts(svm);
533}
534
535static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
536{
537 struct vmcb *vmcb = get_host_vmcb(svm);
538
539 vmcb->control.intercept_cr &= ~(1U << bit);
540
541 recalc_intercepts(svm);
542}
543
544static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
545{
546 struct vmcb *vmcb = get_host_vmcb(svm);
547
548 return vmcb->control.intercept_cr & (1U << bit);
549}
550
551static inline void set_dr_intercepts(struct vcpu_svm *svm)
552{
553 struct vmcb *vmcb = get_host_vmcb(svm);
554
555 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
556 | (1 << INTERCEPT_DR1_READ)
557 | (1 << INTERCEPT_DR2_READ)
558 | (1 << INTERCEPT_DR3_READ)
559 | (1 << INTERCEPT_DR4_READ)
560 | (1 << INTERCEPT_DR5_READ)
561 | (1 << INTERCEPT_DR6_READ)
562 | (1 << INTERCEPT_DR7_READ)
563 | (1 << INTERCEPT_DR0_WRITE)
564 | (1 << INTERCEPT_DR1_WRITE)
565 | (1 << INTERCEPT_DR2_WRITE)
566 | (1 << INTERCEPT_DR3_WRITE)
567 | (1 << INTERCEPT_DR4_WRITE)
568 | (1 << INTERCEPT_DR5_WRITE)
569 | (1 << INTERCEPT_DR6_WRITE)
570 | (1 << INTERCEPT_DR7_WRITE);
571
572 recalc_intercepts(svm);
573}
574
575static inline void clr_dr_intercepts(struct vcpu_svm *svm)
576{
577 struct vmcb *vmcb = get_host_vmcb(svm);
578
579 vmcb->control.intercept_dr = 0;
580
581 recalc_intercepts(svm);
582}
583
584static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
585{
586 struct vmcb *vmcb = get_host_vmcb(svm);
587
588 vmcb->control.intercept_exceptions |= (1U << bit);
589
590 recalc_intercepts(svm);
591}
592
593static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
594{
595 struct vmcb *vmcb = get_host_vmcb(svm);
596
597 vmcb->control.intercept_exceptions &= ~(1U << bit);
598
599 recalc_intercepts(svm);
600}
601
602static inline void set_intercept(struct vcpu_svm *svm, int bit)
603{
604 struct vmcb *vmcb = get_host_vmcb(svm);
605
606 vmcb->control.intercept |= (1ULL << bit);
607
608 recalc_intercepts(svm);
609}
610
611static inline void clr_intercept(struct vcpu_svm *svm, int bit)
612{
613 struct vmcb *vmcb = get_host_vmcb(svm);
614
615 vmcb->control.intercept &= ~(1ULL << bit);
616
617 recalc_intercepts(svm);
618}
619
620static inline bool vgif_enabled(struct vcpu_svm *svm)
621{
622 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
623}
624
625static inline void enable_gif(struct vcpu_svm *svm)
626{
627 if (vgif_enabled(svm))
628 svm->vmcb->control.int_ctl |= V_GIF_MASK;
629 else
630 svm->vcpu.arch.hflags |= HF_GIF_MASK;
631}
632
633static inline void disable_gif(struct vcpu_svm *svm)
634{
635 if (vgif_enabled(svm))
636 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
637 else
638 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
639}
640
641static inline bool gif_set(struct vcpu_svm *svm)
642{
643 if (vgif_enabled(svm))
644 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
645 else
646 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
647}
648
649static unsigned long iopm_base;
650
651struct kvm_ldttss_desc {
652 u16 limit0;
653 u16 base0;
654 unsigned base1:8, type:5, dpl:2, p:1;
655 unsigned limit1:4, zero0:3, g:1, base2:8;
656 u32 base3;
657 u32 zero1;
658} __attribute__((packed));
659
660struct svm_cpu_data {
661 int cpu;
662
663 u64 asid_generation;
664 u32 max_asid;
665 u32 next_asid;
666 u32 min_asid;
667 struct kvm_ldttss_desc *tss_desc;
668
669 struct page *save_area;
670 struct vmcb *current_vmcb;
671
672 /* index = sev_asid, value = vmcb pointer */
673 struct vmcb **sev_vmcbs;
674};
675
676static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
677
678struct svm_init_data {
679 int cpu;
680 int r;
681};
682
683static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
684
685#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
686#define MSRS_RANGE_SIZE 2048
687#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
688
689static u32 svm_msrpm_offset(u32 msr)
690{
691 u32 offset;
692 int i;
693
694 for (i = 0; i < NUM_MSR_MAPS; i++) {
695 if (msr < msrpm_ranges[i] ||
696 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
697 continue;
698
699 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
700 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
701
702 /* Now we have the u8 offset - but need the u32 offset */
703 return offset / 4;
704 }
705
706 /* MSR not in any range */
707 return MSR_INVALID;
708}
709
710#define MAX_INST_SIZE 15
711
712static inline void clgi(void)
713{
714 asm volatile (__ex(SVM_CLGI));
715}
716
717static inline void stgi(void)
718{
719 asm volatile (__ex(SVM_STGI));
720}
721
722static inline void invlpga(unsigned long addr, u32 asid)
723{
724 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
725}
726
727static int get_npt_level(struct kvm_vcpu *vcpu)
728{
729#ifdef CONFIG_X86_64
730 return PT64_ROOT_4LEVEL;
731#else
732 return PT32E_ROOT_LEVEL;
733#endif
734}
735
736static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
737{
738 vcpu->arch.efer = efer;
739 if (!npt_enabled && !(efer & EFER_LMA))
740 efer &= ~EFER_LME;
741
742 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
743 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
744}
745
746static int is_external_interrupt(u32 info)
747{
748 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
749 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
750}
751
752static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
753{
754 struct vcpu_svm *svm = to_svm(vcpu);
755 u32 ret = 0;
756
757 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
758 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
759 return ret;
760}
761
762static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
763{
764 struct vcpu_svm *svm = to_svm(vcpu);
765
766 if (mask == 0)
767 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
768 else
769 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
770
771}
772
773static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
774{
775 struct vcpu_svm *svm = to_svm(vcpu);
776
777 if (svm->vmcb->control.next_rip != 0) {
778 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
779 svm->next_rip = svm->vmcb->control.next_rip;
780 }
781
782 if (!svm->next_rip) {
783 if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
784 EMULATE_DONE)
785 printk(KERN_DEBUG "%s: NOP\n", __func__);
786 return;
787 }
788 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
789 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
790 __func__, kvm_rip_read(vcpu), svm->next_rip);
791
792 kvm_rip_write(vcpu, svm->next_rip);
793 svm_set_interrupt_shadow(vcpu, 0);
794}
795
796static void svm_queue_exception(struct kvm_vcpu *vcpu)
797{
798 struct vcpu_svm *svm = to_svm(vcpu);
799 unsigned nr = vcpu->arch.exception.nr;
800 bool has_error_code = vcpu->arch.exception.has_error_code;
801 bool reinject = vcpu->arch.exception.injected;
802 u32 error_code = vcpu->arch.exception.error_code;
803
804 /*
805 * If we are within a nested VM we'd better #VMEXIT and let the guest
806 * handle the exception
807 */
808 if (!reinject &&
809 nested_svm_check_exception(svm, nr, has_error_code, error_code))
810 return;
811
812 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
813 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
814
815 /*
816 * For guest debugging where we have to reinject #BP if some
817 * INT3 is guest-owned:
818 * Emulate nRIP by moving RIP forward. Will fail if injection
819 * raises a fault that is not intercepted. Still better than
820 * failing in all cases.
821 */
822 skip_emulated_instruction(&svm->vcpu);
823 rip = kvm_rip_read(&svm->vcpu);
824 svm->int3_rip = rip + svm->vmcb->save.cs.base;
825 svm->int3_injected = rip - old_rip;
826 }
827
828 svm->vmcb->control.event_inj = nr
829 | SVM_EVTINJ_VALID
830 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
831 | SVM_EVTINJ_TYPE_EXEPT;
832 svm->vmcb->control.event_inj_err = error_code;
833}
834
835static void svm_init_erratum_383(void)
836{
837 u32 low, high;
838 int err;
839 u64 val;
840
841 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
842 return;
843
844 /* Use _safe variants to not break nested virtualization */
845 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
846 if (err)
847 return;
848
849 val |= (1ULL << 47);
850
851 low = lower_32_bits(val);
852 high = upper_32_bits(val);
853
854 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
855
856 erratum_383_found = true;
857}
858
859static void svm_init_osvw(struct kvm_vcpu *vcpu)
860{
861 /*
862 * Guests should see errata 400 and 415 as fixed (assuming that
863 * HLT and IO instructions are intercepted).
864 */
865 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
866 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
867
868 /*
869 * By increasing VCPU's osvw.length to 3 we are telling the guest that
870 * all osvw.status bits inside that length, including bit 0 (which is
871 * reserved for erratum 298), are valid. However, if host processor's
872 * osvw_len is 0 then osvw_status[0] carries no information. We need to
873 * be conservative here and therefore we tell the guest that erratum 298
874 * is present (because we really don't know).
875 */
876 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
877 vcpu->arch.osvw.status |= 1;
878}
879
880static int has_svm(void)
881{
882 const char *msg;
883
884 if (!cpu_has_svm(&msg)) {
885 printk(KERN_INFO "has_svm: %s\n", msg);
886 return 0;
887 }
888
889 return 1;
890}
891
892static void svm_hardware_disable(void)
893{
894 /* Make sure we clean up behind us */
895 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
896 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
897
898 cpu_svm_disable();
899
900 amd_pmu_disable_virt();
901}
902
903static int svm_hardware_enable(void)
904{
905
906 struct svm_cpu_data *sd;
907 uint64_t efer;
908 struct desc_struct *gdt;
909 int me = raw_smp_processor_id();
910
911 rdmsrl(MSR_EFER, efer);
912 if (efer & EFER_SVME)
913 return -EBUSY;
914
915 if (!has_svm()) {
916 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
917 return -EINVAL;
918 }
919 sd = per_cpu(svm_data, me);
920 if (!sd) {
921 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
922 return -EINVAL;
923 }
924
925 sd->asid_generation = 1;
926 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
927 sd->next_asid = sd->max_asid + 1;
928 sd->min_asid = max_sev_asid + 1;
929
930 gdt = get_current_gdt_rw();
931 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
932
933 wrmsrl(MSR_EFER, efer | EFER_SVME);
934
935 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
936
937 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
938 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
939 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
940 }
941
942
943 /*
944 * Get OSVW bits.
945 *
946 * Note that it is possible to have a system with mixed processor
947 * revisions and therefore different OSVW bits. If bits are not the same
948 * on different processors then choose the worst case (i.e. if erratum
949 * is present on one processor and not on another then assume that the
950 * erratum is present everywhere).
951 */
952 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
953 uint64_t len, status = 0;
954 int err;
955
956 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
957 if (!err)
958 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
959 &err);
960
961 if (err)
962 osvw_status = osvw_len = 0;
963 else {
964 if (len < osvw_len)
965 osvw_len = len;
966 osvw_status |= status;
967 osvw_status &= (1ULL << osvw_len) - 1;
968 }
969 } else
970 osvw_status = osvw_len = 0;
971
972 svm_init_erratum_383();
973
974 amd_pmu_enable_virt();
975
976 return 0;
977}
978
979static void svm_cpu_uninit(int cpu)
980{
981 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
982
983 if (!sd)
984 return;
985
986 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
987 kfree(sd->sev_vmcbs);
988 __free_page(sd->save_area);
989 kfree(sd);
990}
991
992static int svm_cpu_init(int cpu)
993{
994 struct svm_cpu_data *sd;
995 int r;
996
997 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
998 if (!sd)
999 return -ENOMEM;
1000 sd->cpu = cpu;
1001 r = -ENOMEM;
1002 sd->save_area = alloc_page(GFP_KERNEL);
1003 if (!sd->save_area)
1004 goto err_1;
1005
1006 if (svm_sev_enabled()) {
1007 r = -ENOMEM;
1008 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1009 sizeof(void *),
1010 GFP_KERNEL);
1011 if (!sd->sev_vmcbs)
1012 goto err_1;
1013 }
1014
1015 per_cpu(svm_data, cpu) = sd;
1016
1017 return 0;
1018
1019err_1:
1020 kfree(sd);
1021 return r;
1022
1023}
1024
1025static bool valid_msr_intercept(u32 index)
1026{
1027 int i;
1028
1029 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1030 if (direct_access_msrs[i].index == index)
1031 return true;
1032
1033 return false;
1034}
1035
1036static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1037{
1038 u8 bit_write;
1039 unsigned long tmp;
1040 u32 offset;
1041 u32 *msrpm;
1042
1043 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1044 to_svm(vcpu)->msrpm;
1045
1046 offset = svm_msrpm_offset(msr);
1047 bit_write = 2 * (msr & 0x0f) + 1;
1048 tmp = msrpm[offset];
1049
1050 BUG_ON(offset == MSR_INVALID);
1051
1052 return !!test_bit(bit_write, &tmp);
1053}
1054
1055static void set_msr_interception(u32 *msrpm, unsigned msr,
1056 int read, int write)
1057{
1058 u8 bit_read, bit_write;
1059 unsigned long tmp;
1060 u32 offset;
1061
1062 /*
1063 * If this warning triggers extend the direct_access_msrs list at the
1064 * beginning of the file
1065 */
1066 WARN_ON(!valid_msr_intercept(msr));
1067
1068 offset = svm_msrpm_offset(msr);
1069 bit_read = 2 * (msr & 0x0f);
1070 bit_write = 2 * (msr & 0x0f) + 1;
1071 tmp = msrpm[offset];
1072
1073 BUG_ON(offset == MSR_INVALID);
1074
1075 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1076 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1077
1078 msrpm[offset] = tmp;
1079}
1080
1081static void svm_vcpu_init_msrpm(u32 *msrpm)
1082{
1083 int i;
1084
1085 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1086
1087 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1088 if (!direct_access_msrs[i].always)
1089 continue;
1090
1091 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1092 }
1093}
1094
1095static void add_msr_offset(u32 offset)
1096{
1097 int i;
1098
1099 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1100
1101 /* Offset already in list? */
1102 if (msrpm_offsets[i] == offset)
1103 return;
1104
1105 /* Slot used by another offset? */
1106 if (msrpm_offsets[i] != MSR_INVALID)
1107 continue;
1108
1109 /* Add offset to list */
1110 msrpm_offsets[i] = offset;
1111
1112 return;
1113 }
1114
1115 /*
1116 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1117 * increase MSRPM_OFFSETS in this case.
1118 */
1119 BUG();
1120}
1121
1122static void init_msrpm_offsets(void)
1123{
1124 int i;
1125
1126 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1127
1128 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1129 u32 offset;
1130
1131 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1132 BUG_ON(offset == MSR_INVALID);
1133
1134 add_msr_offset(offset);
1135 }
1136}
1137
1138static void svm_enable_lbrv(struct vcpu_svm *svm)
1139{
1140 u32 *msrpm = svm->msrpm;
1141
1142 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1143 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1144 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1145 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1146 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1147}
1148
1149static void svm_disable_lbrv(struct vcpu_svm *svm)
1150{
1151 u32 *msrpm = svm->msrpm;
1152
1153 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1154 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1155 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1156 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1157 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1158}
1159
1160static void disable_nmi_singlestep(struct vcpu_svm *svm)
1161{
1162 svm->nmi_singlestep = false;
1163
1164 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1165 /* Clear our flags if they were not set by the guest */
1166 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1167 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1168 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1169 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1170 }
1171}
1172
1173/* Note:
1174 * This hash table is used to map VM_ID to a struct kvm_svm,
1175 * when handling AMD IOMMU GALOG notification to schedule in
1176 * a particular vCPU.
1177 */
1178#define SVM_VM_DATA_HASH_BITS 8
1179static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1180static u32 next_vm_id = 0;
1181static bool next_vm_id_wrapped = 0;
1182static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1183
1184/* Note:
1185 * This function is called from IOMMU driver to notify
1186 * SVM to schedule in a particular vCPU of a particular VM.
1187 */
1188static int avic_ga_log_notifier(u32 ga_tag)
1189{
1190 unsigned long flags;
1191 struct kvm_svm *kvm_svm;
1192 struct kvm_vcpu *vcpu = NULL;
1193 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1194 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1195
1196 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1197
1198 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1199 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1200 if (kvm_svm->avic_vm_id != vm_id)
1201 continue;
1202 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1203 break;
1204 }
1205 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1206
1207 /* Note:
1208 * At this point, the IOMMU should have already set the pending
1209 * bit in the vAPIC backing page. So, we just need to schedule
1210 * in the vcpu.
1211 */
1212 if (vcpu)
1213 kvm_vcpu_wake_up(vcpu);
1214
1215 return 0;
1216}
1217
1218static __init int sev_hardware_setup(void)
1219{
1220 struct sev_user_data_status *status;
1221 int rc;
1222
1223 /* Maximum number of encrypted guests supported simultaneously */
1224 max_sev_asid = cpuid_ecx(0x8000001F);
1225
1226 if (!max_sev_asid)
1227 return 1;
1228
1229 /* Minimum ASID value that should be used for SEV guest */
1230 min_sev_asid = cpuid_edx(0x8000001F);
1231
1232 /* Initialize SEV ASID bitmap */
1233 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1234 if (!sev_asid_bitmap)
1235 return 1;
1236
1237 status = kmalloc(sizeof(*status), GFP_KERNEL);
1238 if (!status)
1239 return 1;
1240
1241 /*
1242 * Check SEV platform status.
1243 *
1244 * PLATFORM_STATUS can be called in any state, if we failed to query
1245 * the PLATFORM status then either PSP firmware does not support SEV
1246 * feature or SEV firmware is dead.
1247 */
1248 rc = sev_platform_status(status, NULL);
1249 if (rc)
1250 goto err;
1251
1252 pr_info("SEV supported\n");
1253
1254err:
1255 kfree(status);
1256 return rc;
1257}
1258
1259static void grow_ple_window(struct kvm_vcpu *vcpu)
1260{
1261 struct vcpu_svm *svm = to_svm(vcpu);
1262 struct vmcb_control_area *control = &svm->vmcb->control;
1263 int old = control->pause_filter_count;
1264
1265 control->pause_filter_count = __grow_ple_window(old,
1266 pause_filter_count,
1267 pause_filter_count_grow,
1268 pause_filter_count_max);
1269
1270 if (control->pause_filter_count != old)
1271 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1272
1273 trace_kvm_ple_window_grow(vcpu->vcpu_id,
1274 control->pause_filter_count, old);
1275}
1276
1277static void shrink_ple_window(struct kvm_vcpu *vcpu)
1278{
1279 struct vcpu_svm *svm = to_svm(vcpu);
1280 struct vmcb_control_area *control = &svm->vmcb->control;
1281 int old = control->pause_filter_count;
1282
1283 control->pause_filter_count =
1284 __shrink_ple_window(old,
1285 pause_filter_count,
1286 pause_filter_count_shrink,
1287 pause_filter_count);
1288 if (control->pause_filter_count != old)
1289 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1290
1291 trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1292 control->pause_filter_count, old);
1293}
1294
1295static __init int svm_hardware_setup(void)
1296{
1297 int cpu;
1298 struct page *iopm_pages;
1299 void *iopm_va;
1300 int r;
1301
1302 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1303
1304 if (!iopm_pages)
1305 return -ENOMEM;
1306
1307 iopm_va = page_address(iopm_pages);
1308 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1309 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1310
1311 init_msrpm_offsets();
1312
1313 if (boot_cpu_has(X86_FEATURE_NX))
1314 kvm_enable_efer_bits(EFER_NX);
1315
1316 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1317 kvm_enable_efer_bits(EFER_FFXSR);
1318
1319 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1320 kvm_has_tsc_control = true;
1321 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1322 kvm_tsc_scaling_ratio_frac_bits = 32;
1323 }
1324
1325 /* Check for pause filtering support */
1326 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1327 pause_filter_count = 0;
1328 pause_filter_thresh = 0;
1329 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1330 pause_filter_thresh = 0;
1331 }
1332
1333 if (nested) {
1334 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1335 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1336 }
1337
1338 if (sev) {
1339 if (boot_cpu_has(X86_FEATURE_SEV) &&
1340 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1341 r = sev_hardware_setup();
1342 if (r)
1343 sev = false;
1344 } else {
1345 sev = false;
1346 }
1347 }
1348
1349 for_each_possible_cpu(cpu) {
1350 r = svm_cpu_init(cpu);
1351 if (r)
1352 goto err;
1353 }
1354
1355 if (!boot_cpu_has(X86_FEATURE_NPT))
1356 npt_enabled = false;
1357
1358 if (npt_enabled && !npt) {
1359 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1360 npt_enabled = false;
1361 }
1362
1363 if (npt_enabled) {
1364 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1365 kvm_enable_tdp();
1366 } else
1367 kvm_disable_tdp();
1368
1369 if (avic) {
1370 if (!npt_enabled ||
1371 !boot_cpu_has(X86_FEATURE_AVIC) ||
1372 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1373 avic = false;
1374 } else {
1375 pr_info("AVIC enabled\n");
1376
1377 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1378 }
1379 }
1380
1381 if (vls) {
1382 if (!npt_enabled ||
1383 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1384 !IS_ENABLED(CONFIG_X86_64)) {
1385 vls = false;
1386 } else {
1387 pr_info("Virtual VMLOAD VMSAVE supported\n");
1388 }
1389 }
1390
1391 if (vgif) {
1392 if (!boot_cpu_has(X86_FEATURE_VGIF))
1393 vgif = false;
1394 else
1395 pr_info("Virtual GIF supported\n");
1396 }
1397
1398 return 0;
1399
1400err:
1401 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1402 iopm_base = 0;
1403 return r;
1404}
1405
1406static __exit void svm_hardware_unsetup(void)
1407{
1408 int cpu;
1409
1410 if (svm_sev_enabled())
1411 bitmap_free(sev_asid_bitmap);
1412
1413 for_each_possible_cpu(cpu)
1414 svm_cpu_uninit(cpu);
1415
1416 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1417 iopm_base = 0;
1418}
1419
1420static void init_seg(struct vmcb_seg *seg)
1421{
1422 seg->selector = 0;
1423 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1424 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1425 seg->limit = 0xffff;
1426 seg->base = 0;
1427}
1428
1429static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1430{
1431 seg->selector = 0;
1432 seg->attrib = SVM_SELECTOR_P_MASK | type;
1433 seg->limit = 0xffff;
1434 seg->base = 0;
1435}
1436
1437static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1438{
1439 struct vcpu_svm *svm = to_svm(vcpu);
1440
1441 if (is_guest_mode(vcpu))
1442 return svm->nested.hsave->control.tsc_offset;
1443
1444 return vcpu->arch.tsc_offset;
1445}
1446
1447static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1448{
1449 struct vcpu_svm *svm = to_svm(vcpu);
1450 u64 g_tsc_offset = 0;
1451
1452 if (is_guest_mode(vcpu)) {
1453 /* Write L1's TSC offset. */
1454 g_tsc_offset = svm->vmcb->control.tsc_offset -
1455 svm->nested.hsave->control.tsc_offset;
1456 svm->nested.hsave->control.tsc_offset = offset;
1457 } else
1458 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1459 svm->vmcb->control.tsc_offset,
1460 offset);
1461
1462 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1463
1464 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1465 return svm->vmcb->control.tsc_offset;
1466}
1467
1468static void avic_init_vmcb(struct vcpu_svm *svm)
1469{
1470 struct vmcb *vmcb = svm->vmcb;
1471 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1472 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1473 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1474 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1475
1476 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1477 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1478 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1479 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1480 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1481}
1482
1483static void init_vmcb(struct vcpu_svm *svm)
1484{
1485 struct vmcb_control_area *control = &svm->vmcb->control;
1486 struct vmcb_save_area *save = &svm->vmcb->save;
1487
1488 svm->vcpu.arch.hflags = 0;
1489
1490 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1491 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1492 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1493 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1494 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1495 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1496 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1497 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1498
1499 set_dr_intercepts(svm);
1500
1501 set_exception_intercept(svm, PF_VECTOR);
1502 set_exception_intercept(svm, UD_VECTOR);
1503 set_exception_intercept(svm, MC_VECTOR);
1504 set_exception_intercept(svm, AC_VECTOR);
1505 set_exception_intercept(svm, DB_VECTOR);
1506 /*
1507 * Guest access to VMware backdoor ports could legitimately
1508 * trigger #GP because of TSS I/O permission bitmap.
1509 * We intercept those #GP and allow access to them anyway
1510 * as VMware does.
1511 */
1512 if (enable_vmware_backdoor)
1513 set_exception_intercept(svm, GP_VECTOR);
1514
1515 set_intercept(svm, INTERCEPT_INTR);
1516 set_intercept(svm, INTERCEPT_NMI);
1517 set_intercept(svm, INTERCEPT_SMI);
1518 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1519 set_intercept(svm, INTERCEPT_RDPMC);
1520 set_intercept(svm, INTERCEPT_CPUID);
1521 set_intercept(svm, INTERCEPT_INVD);
1522 set_intercept(svm, INTERCEPT_INVLPG);
1523 set_intercept(svm, INTERCEPT_INVLPGA);
1524 set_intercept(svm, INTERCEPT_IOIO_PROT);
1525 set_intercept(svm, INTERCEPT_MSR_PROT);
1526 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1527 set_intercept(svm, INTERCEPT_SHUTDOWN);
1528 set_intercept(svm, INTERCEPT_VMRUN);
1529 set_intercept(svm, INTERCEPT_VMMCALL);
1530 set_intercept(svm, INTERCEPT_VMLOAD);
1531 set_intercept(svm, INTERCEPT_VMSAVE);
1532 set_intercept(svm, INTERCEPT_STGI);
1533 set_intercept(svm, INTERCEPT_CLGI);
1534 set_intercept(svm, INTERCEPT_SKINIT);
1535 set_intercept(svm, INTERCEPT_WBINVD);
1536 set_intercept(svm, INTERCEPT_XSETBV);
1537 set_intercept(svm, INTERCEPT_RSM);
1538
1539 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1540 set_intercept(svm, INTERCEPT_MONITOR);
1541 set_intercept(svm, INTERCEPT_MWAIT);
1542 }
1543
1544 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1545 set_intercept(svm, INTERCEPT_HLT);
1546
1547 control->iopm_base_pa = __sme_set(iopm_base);
1548 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1549 control->int_ctl = V_INTR_MASKING_MASK;
1550
1551 init_seg(&save->es);
1552 init_seg(&save->ss);
1553 init_seg(&save->ds);
1554 init_seg(&save->fs);
1555 init_seg(&save->gs);
1556
1557 save->cs.selector = 0xf000;
1558 save->cs.base = 0xffff0000;
1559 /* Executable/Readable Code Segment */
1560 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1561 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1562 save->cs.limit = 0xffff;
1563
1564 save->gdtr.limit = 0xffff;
1565 save->idtr.limit = 0xffff;
1566
1567 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1568 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1569
1570 svm_set_efer(&svm->vcpu, 0);
1571 save->dr6 = 0xffff0ff0;
1572 kvm_set_rflags(&svm->vcpu, 2);
1573 save->rip = 0x0000fff0;
1574 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1575
1576 /*
1577 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1578 * It also updates the guest-visible cr0 value.
1579 */
1580 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1581 kvm_mmu_reset_context(&svm->vcpu);
1582
1583 save->cr4 = X86_CR4_PAE;
1584 /* rdx = ?? */
1585
1586 if (npt_enabled) {
1587 /* Setup VMCB for Nested Paging */
1588 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1589 clr_intercept(svm, INTERCEPT_INVLPG);
1590 clr_exception_intercept(svm, PF_VECTOR);
1591 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1592 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1593 save->g_pat = svm->vcpu.arch.pat;
1594 save->cr3 = 0;
1595 save->cr4 = 0;
1596 }
1597 svm->asid_generation = 0;
1598
1599 svm->nested.vmcb = 0;
1600 svm->vcpu.arch.hflags = 0;
1601
1602 if (pause_filter_count) {
1603 control->pause_filter_count = pause_filter_count;
1604 if (pause_filter_thresh)
1605 control->pause_filter_thresh = pause_filter_thresh;
1606 set_intercept(svm, INTERCEPT_PAUSE);
1607 } else {
1608 clr_intercept(svm, INTERCEPT_PAUSE);
1609 }
1610
1611 if (kvm_vcpu_apicv_active(&svm->vcpu))
1612 avic_init_vmcb(svm);
1613
1614 /*
1615 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1616 * in VMCB and clear intercepts to avoid #VMEXIT.
1617 */
1618 if (vls) {
1619 clr_intercept(svm, INTERCEPT_VMLOAD);
1620 clr_intercept(svm, INTERCEPT_VMSAVE);
1621 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1622 }
1623
1624 if (vgif) {
1625 clr_intercept(svm, INTERCEPT_STGI);
1626 clr_intercept(svm, INTERCEPT_CLGI);
1627 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1628 }
1629
1630 if (sev_guest(svm->vcpu.kvm)) {
1631 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1632 clr_exception_intercept(svm, UD_VECTOR);
1633 }
1634
1635 mark_all_dirty(svm->vmcb);
1636
1637 enable_gif(svm);
1638
1639}
1640
1641static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1642 unsigned int index)
1643{
1644 u64 *avic_physical_id_table;
1645 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1646
1647 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1648 return NULL;
1649
1650 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1651
1652 return &avic_physical_id_table[index];
1653}
1654
1655/**
1656 * Note:
1657 * AVIC hardware walks the nested page table to check permissions,
1658 * but does not use the SPA address specified in the leaf page
1659 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1660 * field of the VMCB. Therefore, we set up the
1661 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1662 */
1663static int avic_init_access_page(struct kvm_vcpu *vcpu)
1664{
1665 struct kvm *kvm = vcpu->kvm;
1666 int ret = 0;
1667
1668 mutex_lock(&kvm->slots_lock);
1669 if (kvm->arch.apic_access_page_done)
1670 goto out;
1671
1672 ret = __x86_set_memory_region(kvm,
1673 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1674 APIC_DEFAULT_PHYS_BASE,
1675 PAGE_SIZE);
1676 if (ret)
1677 goto out;
1678
1679 kvm->arch.apic_access_page_done = true;
1680out:
1681 mutex_unlock(&kvm->slots_lock);
1682 return ret;
1683}
1684
1685static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1686{
1687 int ret;
1688 u64 *entry, new_entry;
1689 int id = vcpu->vcpu_id;
1690 struct vcpu_svm *svm = to_svm(vcpu);
1691
1692 ret = avic_init_access_page(vcpu);
1693 if (ret)
1694 return ret;
1695
1696 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1697 return -EINVAL;
1698
1699 if (!svm->vcpu.arch.apic->regs)
1700 return -EINVAL;
1701
1702 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1703
1704 /* Setting AVIC backing page address in the phy APIC ID table */
1705 entry = avic_get_physical_id_entry(vcpu, id);
1706 if (!entry)
1707 return -EINVAL;
1708
1709 new_entry = READ_ONCE(*entry);
1710 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1711 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1712 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1713 WRITE_ONCE(*entry, new_entry);
1714
1715 svm->avic_physical_id_cache = entry;
1716
1717 return 0;
1718}
1719
1720static void __sev_asid_free(int asid)
1721{
1722 struct svm_cpu_data *sd;
1723 int cpu, pos;
1724
1725 pos = asid - 1;
1726 clear_bit(pos, sev_asid_bitmap);
1727
1728 for_each_possible_cpu(cpu) {
1729 sd = per_cpu(svm_data, cpu);
1730 sd->sev_vmcbs[pos] = NULL;
1731 }
1732}
1733
1734static void sev_asid_free(struct kvm *kvm)
1735{
1736 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1737
1738 __sev_asid_free(sev->asid);
1739}
1740
1741static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1742{
1743 struct sev_data_decommission *decommission;
1744 struct sev_data_deactivate *data;
1745
1746 if (!handle)
1747 return;
1748
1749 data = kzalloc(sizeof(*data), GFP_KERNEL);
1750 if (!data)
1751 return;
1752
1753 /* deactivate handle */
1754 data->handle = handle;
1755 sev_guest_deactivate(data, NULL);
1756
1757 wbinvd_on_all_cpus();
1758 sev_guest_df_flush(NULL);
1759 kfree(data);
1760
1761 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1762 if (!decommission)
1763 return;
1764
1765 /* decommission handle */
1766 decommission->handle = handle;
1767 sev_guest_decommission(decommission, NULL);
1768
1769 kfree(decommission);
1770}
1771
1772static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1773 unsigned long ulen, unsigned long *n,
1774 int write)
1775{
1776 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1777 unsigned long npages, npinned, size;
1778 unsigned long locked, lock_limit;
1779 struct page **pages;
1780 unsigned long first, last;
1781
1782 if (ulen == 0 || uaddr + ulen < uaddr)
1783 return NULL;
1784
1785 /* Calculate number of pages. */
1786 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1787 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1788 npages = (last - first + 1);
1789
1790 locked = sev->pages_locked + npages;
1791 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1792 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1793 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1794 return NULL;
1795 }
1796
1797 /* Avoid using vmalloc for smaller buffers. */
1798 size = npages * sizeof(struct page *);
1799 if (size > PAGE_SIZE)
1800 pages = vmalloc(size);
1801 else
1802 pages = kmalloc(size, GFP_KERNEL);
1803
1804 if (!pages)
1805 return NULL;
1806
1807 /* Pin the user virtual address. */
1808 npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1809 if (npinned != npages) {
1810 pr_err("SEV: Failure locking %lu pages.\n", npages);
1811 goto err;
1812 }
1813
1814 *n = npages;
1815 sev->pages_locked = locked;
1816
1817 return pages;
1818
1819err:
1820 if (npinned > 0)
1821 release_pages(pages, npinned);
1822
1823 kvfree(pages);
1824 return NULL;
1825}
1826
1827static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1828 unsigned long npages)
1829{
1830 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1831
1832 release_pages(pages, npages);
1833 kvfree(pages);
1834 sev->pages_locked -= npages;
1835}
1836
1837static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1838{
1839 uint8_t *page_virtual;
1840 unsigned long i;
1841
1842 if (npages == 0 || pages == NULL)
1843 return;
1844
1845 for (i = 0; i < npages; i++) {
1846 page_virtual = kmap_atomic(pages[i]);
1847 clflush_cache_range(page_virtual, PAGE_SIZE);
1848 kunmap_atomic(page_virtual);
1849 }
1850}
1851
1852static void __unregister_enc_region_locked(struct kvm *kvm,
1853 struct enc_region *region)
1854{
1855 /*
1856 * The guest may change the memory encryption attribute from C=0 -> C=1
1857 * or vice versa for this memory range. Lets make sure caches are
1858 * flushed to ensure that guest data gets written into memory with
1859 * correct C-bit.
1860 */
1861 sev_clflush_pages(region->pages, region->npages);
1862
1863 sev_unpin_memory(kvm, region->pages, region->npages);
1864 list_del(&region->list);
1865 kfree(region);
1866}
1867
1868static struct kvm *svm_vm_alloc(void)
1869{
1870 struct kvm_svm *kvm_svm = vzalloc(sizeof(struct kvm_svm));
1871 return &kvm_svm->kvm;
1872}
1873
1874static void svm_vm_free(struct kvm *kvm)
1875{
1876 vfree(to_kvm_svm(kvm));
1877}
1878
1879static void sev_vm_destroy(struct kvm *kvm)
1880{
1881 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1882 struct list_head *head = &sev->regions_list;
1883 struct list_head *pos, *q;
1884
1885 if (!sev_guest(kvm))
1886 return;
1887
1888 mutex_lock(&kvm->lock);
1889
1890 /*
1891 * if userspace was terminated before unregistering the memory regions
1892 * then lets unpin all the registered memory.
1893 */
1894 if (!list_empty(head)) {
1895 list_for_each_safe(pos, q, head) {
1896 __unregister_enc_region_locked(kvm,
1897 list_entry(pos, struct enc_region, list));
1898 }
1899 }
1900
1901 mutex_unlock(&kvm->lock);
1902
1903 sev_unbind_asid(kvm, sev->handle);
1904 sev_asid_free(kvm);
1905}
1906
1907static void avic_vm_destroy(struct kvm *kvm)
1908{
1909 unsigned long flags;
1910 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1911
1912 if (!avic)
1913 return;
1914
1915 if (kvm_svm->avic_logical_id_table_page)
1916 __free_page(kvm_svm->avic_logical_id_table_page);
1917 if (kvm_svm->avic_physical_id_table_page)
1918 __free_page(kvm_svm->avic_physical_id_table_page);
1919
1920 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1921 hash_del(&kvm_svm->hnode);
1922 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1923}
1924
1925static void svm_vm_destroy(struct kvm *kvm)
1926{
1927 avic_vm_destroy(kvm);
1928 sev_vm_destroy(kvm);
1929}
1930
1931static int avic_vm_init(struct kvm *kvm)
1932{
1933 unsigned long flags;
1934 int err = -ENOMEM;
1935 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1936 struct kvm_svm *k2;
1937 struct page *p_page;
1938 struct page *l_page;
1939 u32 vm_id;
1940
1941 if (!avic)
1942 return 0;
1943
1944 /* Allocating physical APIC ID table (4KB) */
1945 p_page = alloc_page(GFP_KERNEL);
1946 if (!p_page)
1947 goto free_avic;
1948
1949 kvm_svm->avic_physical_id_table_page = p_page;
1950 clear_page(page_address(p_page));
1951
1952 /* Allocating logical APIC ID table (4KB) */
1953 l_page = alloc_page(GFP_KERNEL);
1954 if (!l_page)
1955 goto free_avic;
1956
1957 kvm_svm->avic_logical_id_table_page = l_page;
1958 clear_page(page_address(l_page));
1959
1960 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1961 again:
1962 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1963 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1964 next_vm_id_wrapped = 1;
1965 goto again;
1966 }
1967 /* Is it still in use? Only possible if wrapped at least once */
1968 if (next_vm_id_wrapped) {
1969 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1970 if (k2->avic_vm_id == vm_id)
1971 goto again;
1972 }
1973 }
1974 kvm_svm->avic_vm_id = vm_id;
1975 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1976 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1977
1978 return 0;
1979
1980free_avic:
1981 avic_vm_destroy(kvm);
1982 return err;
1983}
1984
1985static inline int
1986avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1987{
1988 int ret = 0;
1989 unsigned long flags;
1990 struct amd_svm_iommu_ir *ir;
1991 struct vcpu_svm *svm = to_svm(vcpu);
1992
1993 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1994 return 0;
1995
1996 /*
1997 * Here, we go through the per-vcpu ir_list to update all existing
1998 * interrupt remapping table entry targeting this vcpu.
1999 */
2000 spin_lock_irqsave(&svm->ir_list_lock, flags);
2001
2002 if (list_empty(&svm->ir_list))
2003 goto out;
2004
2005 list_for_each_entry(ir, &svm->ir_list, node) {
2006 ret = amd_iommu_update_ga(cpu, r, ir->data);
2007 if (ret)
2008 break;
2009 }
2010out:
2011 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2012 return ret;
2013}
2014
2015static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2016{
2017 u64 entry;
2018 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2019 int h_physical_id = kvm_cpu_get_apicid(cpu);
2020 struct vcpu_svm *svm = to_svm(vcpu);
2021
2022 if (!kvm_vcpu_apicv_active(vcpu))
2023 return;
2024
2025 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
2026 return;
2027
2028 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2029 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2030
2031 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2032 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2033
2034 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2035 if (svm->avic_is_running)
2036 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2037
2038 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2039 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2040 svm->avic_is_running);
2041}
2042
2043static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2044{
2045 u64 entry;
2046 struct vcpu_svm *svm = to_svm(vcpu);
2047
2048 if (!kvm_vcpu_apicv_active(vcpu))
2049 return;
2050
2051 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2052 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2053 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2054
2055 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2056 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2057}
2058
2059/**
2060 * This function is called during VCPU halt/unhalt.
2061 */
2062static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2063{
2064 struct vcpu_svm *svm = to_svm(vcpu);
2065
2066 svm->avic_is_running = is_run;
2067 if (is_run)
2068 avic_vcpu_load(vcpu, vcpu->cpu);
2069 else
2070 avic_vcpu_put(vcpu);
2071}
2072
2073static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2074{
2075 struct vcpu_svm *svm = to_svm(vcpu);
2076 u32 dummy;
2077 u32 eax = 1;
2078
2079 vcpu->arch.microcode_version = 0x01000065;
2080 svm->spec_ctrl = 0;
2081 svm->virt_spec_ctrl = 0;
2082
2083 if (!init_event) {
2084 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2085 MSR_IA32_APICBASE_ENABLE;
2086 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2087 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2088 }
2089 init_vmcb(svm);
2090
2091 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2092 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
2093
2094 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2095 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2096}
2097
2098static int avic_init_vcpu(struct vcpu_svm *svm)
2099{
2100 int ret;
2101
2102 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2103 return 0;
2104
2105 ret = avic_init_backing_page(&svm->vcpu);
2106 if (ret)
2107 return ret;
2108
2109 INIT_LIST_HEAD(&svm->ir_list);
2110 spin_lock_init(&svm->ir_list_lock);
2111
2112 return ret;
2113}
2114
2115static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2116{
2117 struct vcpu_svm *svm;
2118 struct page *page;
2119 struct page *msrpm_pages;
2120 struct page *hsave_page;
2121 struct page *nested_msrpm_pages;
2122 int err;
2123
2124 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2125 if (!svm) {
2126 err = -ENOMEM;
2127 goto out;
2128 }
2129
2130 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2131 if (err)
2132 goto free_svm;
2133
2134 err = -ENOMEM;
2135 page = alloc_page(GFP_KERNEL);
2136 if (!page)
2137 goto uninit;
2138
2139 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2140 if (!msrpm_pages)
2141 goto free_page1;
2142
2143 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2144 if (!nested_msrpm_pages)
2145 goto free_page2;
2146
2147 hsave_page = alloc_page(GFP_KERNEL);
2148 if (!hsave_page)
2149 goto free_page3;
2150
2151 err = avic_init_vcpu(svm);
2152 if (err)
2153 goto free_page4;
2154
2155 /* We initialize this flag to true to make sure that the is_running
2156 * bit would be set the first time the vcpu is loaded.
2157 */
2158 svm->avic_is_running = true;
2159
2160 svm->nested.hsave = page_address(hsave_page);
2161
2162 svm->msrpm = page_address(msrpm_pages);
2163 svm_vcpu_init_msrpm(svm->msrpm);
2164
2165 svm->nested.msrpm = page_address(nested_msrpm_pages);
2166 svm_vcpu_init_msrpm(svm->nested.msrpm);
2167
2168 svm->vmcb = page_address(page);
2169 clear_page(svm->vmcb);
2170 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2171 svm->asid_generation = 0;
2172 init_vmcb(svm);
2173
2174 svm_init_osvw(&svm->vcpu);
2175
2176 return &svm->vcpu;
2177
2178free_page4:
2179 __free_page(hsave_page);
2180free_page3:
2181 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2182free_page2:
2183 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2184free_page1:
2185 __free_page(page);
2186uninit:
2187 kvm_vcpu_uninit(&svm->vcpu);
2188free_svm:
2189 kmem_cache_free(kvm_vcpu_cache, svm);
2190out:
2191 return ERR_PTR(err);
2192}
2193
2194static void svm_clear_current_vmcb(struct vmcb *vmcb)
2195{
2196 int i;
2197
2198 for_each_online_cpu(i)
2199 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2200}
2201
2202static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2203{
2204 struct vcpu_svm *svm = to_svm(vcpu);
2205
2206 /*
2207 * The vmcb page can be recycled, causing a false negative in
2208 * svm_vcpu_load(). So, ensure that no logical CPU has this
2209 * vmcb page recorded as its current vmcb.
2210 */
2211 svm_clear_current_vmcb(svm->vmcb);
2212
2213 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2214 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2215 __free_page(virt_to_page(svm->nested.hsave));
2216 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2217 kvm_vcpu_uninit(vcpu);
2218 kmem_cache_free(kvm_vcpu_cache, svm);
2219}
2220
2221static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2222{
2223 struct vcpu_svm *svm = to_svm(vcpu);
2224 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2225 int i;
2226
2227 if (unlikely(cpu != vcpu->cpu)) {
2228 svm->asid_generation = 0;
2229 mark_all_dirty(svm->vmcb);
2230 }
2231
2232#ifdef CONFIG_X86_64
2233 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2234#endif
2235 savesegment(fs, svm->host.fs);
2236 savesegment(gs, svm->host.gs);
2237 svm->host.ldt = kvm_read_ldt();
2238
2239 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2240 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2241
2242 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2243 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2244 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2245 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2246 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2247 }
2248 }
2249 /* This assumes that the kernel never uses MSR_TSC_AUX */
2250 if (static_cpu_has(X86_FEATURE_RDTSCP))
2251 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2252
2253 if (sd->current_vmcb != svm->vmcb) {
2254 sd->current_vmcb = svm->vmcb;
2255 indirect_branch_prediction_barrier();
2256 }
2257 avic_vcpu_load(vcpu, cpu);
2258}
2259
2260static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2261{
2262 struct vcpu_svm *svm = to_svm(vcpu);
2263 int i;
2264
2265 avic_vcpu_put(vcpu);
2266
2267 ++vcpu->stat.host_state_reload;
2268 kvm_load_ldt(svm->host.ldt);
2269#ifdef CONFIG_X86_64
2270 loadsegment(fs, svm->host.fs);
2271 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2272 load_gs_index(svm->host.gs);
2273#else
2274#ifdef CONFIG_X86_32_LAZY_GS
2275 loadsegment(gs, svm->host.gs);
2276#endif
2277#endif
2278 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2279 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2280}
2281
2282static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2283{
2284 avic_set_running(vcpu, false);
2285}
2286
2287static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2288{
2289 avic_set_running(vcpu, true);
2290}
2291
2292static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2293{
2294 struct vcpu_svm *svm = to_svm(vcpu);
2295 unsigned long rflags = svm->vmcb->save.rflags;
2296
2297 if (svm->nmi_singlestep) {
2298 /* Hide our flags if they were not set by the guest */
2299 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2300 rflags &= ~X86_EFLAGS_TF;
2301 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2302 rflags &= ~X86_EFLAGS_RF;
2303 }
2304 return rflags;
2305}
2306
2307static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2308{
2309 if (to_svm(vcpu)->nmi_singlestep)
2310 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2311
2312 /*
2313 * Any change of EFLAGS.VM is accompanied by a reload of SS
2314 * (caused by either a task switch or an inter-privilege IRET),
2315 * so we do not need to update the CPL here.
2316 */
2317 to_svm(vcpu)->vmcb->save.rflags = rflags;
2318}
2319
2320static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2321{
2322 switch (reg) {
2323 case VCPU_EXREG_PDPTR:
2324 BUG_ON(!npt_enabled);
2325 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2326 break;
2327 default:
2328 BUG();
2329 }
2330}
2331
2332static void svm_set_vintr(struct vcpu_svm *svm)
2333{
2334 set_intercept(svm, INTERCEPT_VINTR);
2335}
2336
2337static void svm_clear_vintr(struct vcpu_svm *svm)
2338{
2339 clr_intercept(svm, INTERCEPT_VINTR);
2340}
2341
2342static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2343{
2344 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2345
2346 switch (seg) {
2347 case VCPU_SREG_CS: return &save->cs;
2348 case VCPU_SREG_DS: return &save->ds;
2349 case VCPU_SREG_ES: return &save->es;
2350 case VCPU_SREG_FS: return &save->fs;
2351 case VCPU_SREG_GS: return &save->gs;
2352 case VCPU_SREG_SS: return &save->ss;
2353 case VCPU_SREG_TR: return &save->tr;
2354 case VCPU_SREG_LDTR: return &save->ldtr;
2355 }
2356 BUG();
2357 return NULL;
2358}
2359
2360static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2361{
2362 struct vmcb_seg *s = svm_seg(vcpu, seg);
2363
2364 return s->base;
2365}
2366
2367static void svm_get_segment(struct kvm_vcpu *vcpu,
2368 struct kvm_segment *var, int seg)
2369{
2370 struct vmcb_seg *s = svm_seg(vcpu, seg);
2371
2372 var->base = s->base;
2373 var->limit = s->limit;
2374 var->selector = s->selector;
2375 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2376 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2377 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2378 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2379 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2380 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2381 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2382
2383 /*
2384 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2385 * However, the SVM spec states that the G bit is not observed by the
2386 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2387 * So let's synthesize a legal G bit for all segments, this helps
2388 * running KVM nested. It also helps cross-vendor migration, because
2389 * Intel's vmentry has a check on the 'G' bit.
2390 */
2391 var->g = s->limit > 0xfffff;
2392
2393 /*
2394 * AMD's VMCB does not have an explicit unusable field, so emulate it
2395 * for cross vendor migration purposes by "not present"
2396 */
2397 var->unusable = !var->present;
2398
2399 switch (seg) {
2400 case VCPU_SREG_TR:
2401 /*
2402 * Work around a bug where the busy flag in the tr selector
2403 * isn't exposed
2404 */
2405 var->type |= 0x2;
2406 break;
2407 case VCPU_SREG_DS:
2408 case VCPU_SREG_ES:
2409 case VCPU_SREG_FS:
2410 case VCPU_SREG_GS:
2411 /*
2412 * The accessed bit must always be set in the segment
2413 * descriptor cache, although it can be cleared in the
2414 * descriptor, the cached bit always remains at 1. Since
2415 * Intel has a check on this, set it here to support
2416 * cross-vendor migration.
2417 */
2418 if (!var->unusable)
2419 var->type |= 0x1;
2420 break;
2421 case VCPU_SREG_SS:
2422 /*
2423 * On AMD CPUs sometimes the DB bit in the segment
2424 * descriptor is left as 1, although the whole segment has
2425 * been made unusable. Clear it here to pass an Intel VMX
2426 * entry check when cross vendor migrating.
2427 */
2428 if (var->unusable)
2429 var->db = 0;
2430 /* This is symmetric with svm_set_segment() */
2431 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2432 break;
2433 }
2434}
2435
2436static int svm_get_cpl(struct kvm_vcpu *vcpu)
2437{
2438 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2439
2440 return save->cpl;
2441}
2442
2443static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2444{
2445 struct vcpu_svm *svm = to_svm(vcpu);
2446
2447 dt->size = svm->vmcb->save.idtr.limit;
2448 dt->address = svm->vmcb->save.idtr.base;
2449}
2450
2451static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2452{
2453 struct vcpu_svm *svm = to_svm(vcpu);
2454
2455 svm->vmcb->save.idtr.limit = dt->size;
2456 svm->vmcb->save.idtr.base = dt->address ;
2457 mark_dirty(svm->vmcb, VMCB_DT);
2458}
2459
2460static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2461{
2462 struct vcpu_svm *svm = to_svm(vcpu);
2463
2464 dt->size = svm->vmcb->save.gdtr.limit;
2465 dt->address = svm->vmcb->save.gdtr.base;
2466}
2467
2468static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2469{
2470 struct vcpu_svm *svm = to_svm(vcpu);
2471
2472 svm->vmcb->save.gdtr.limit = dt->size;
2473 svm->vmcb->save.gdtr.base = dt->address ;
2474 mark_dirty(svm->vmcb, VMCB_DT);
2475}
2476
2477static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2478{
2479}
2480
2481static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2482{
2483}
2484
2485static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2486{
2487}
2488
2489static void update_cr0_intercept(struct vcpu_svm *svm)
2490{
2491 ulong gcr0 = svm->vcpu.arch.cr0;
2492 u64 *hcr0 = &svm->vmcb->save.cr0;
2493
2494 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2495 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2496
2497 mark_dirty(svm->vmcb, VMCB_CR);
2498
2499 if (gcr0 == *hcr0) {
2500 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2501 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2502 } else {
2503 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2504 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2505 }
2506}
2507
2508static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2509{
2510 struct vcpu_svm *svm = to_svm(vcpu);
2511
2512#ifdef CONFIG_X86_64
2513 if (vcpu->arch.efer & EFER_LME) {
2514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2515 vcpu->arch.efer |= EFER_LMA;
2516 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2517 }
2518
2519 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2520 vcpu->arch.efer &= ~EFER_LMA;
2521 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2522 }
2523 }
2524#endif
2525 vcpu->arch.cr0 = cr0;
2526
2527 if (!npt_enabled)
2528 cr0 |= X86_CR0_PG | X86_CR0_WP;
2529
2530 /*
2531 * re-enable caching here because the QEMU bios
2532 * does not do it - this results in some delay at
2533 * reboot
2534 */
2535 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2536 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2537 svm->vmcb->save.cr0 = cr0;
2538 mark_dirty(svm->vmcb, VMCB_CR);
2539 update_cr0_intercept(svm);
2540}
2541
2542static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2543{
2544 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2545 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2546
2547 if (cr4 & X86_CR4_VMXE)
2548 return 1;
2549
2550 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2551 svm_flush_tlb(vcpu, true);
2552
2553 vcpu->arch.cr4 = cr4;
2554 if (!npt_enabled)
2555 cr4 |= X86_CR4_PAE;
2556 cr4 |= host_cr4_mce;
2557 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2558 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2559 return 0;
2560}
2561
2562static void svm_set_segment(struct kvm_vcpu *vcpu,
2563 struct kvm_segment *var, int seg)
2564{
2565 struct vcpu_svm *svm = to_svm(vcpu);
2566 struct vmcb_seg *s = svm_seg(vcpu, seg);
2567
2568 s->base = var->base;
2569 s->limit = var->limit;
2570 s->selector = var->selector;
2571 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2572 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2573 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2574 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2575 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2576 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2577 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2578 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2579
2580 /*
2581 * This is always accurate, except if SYSRET returned to a segment
2582 * with SS.DPL != 3. Intel does not have this quirk, and always
2583 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2584 * would entail passing the CPL to userspace and back.
2585 */
2586 if (seg == VCPU_SREG_SS)
2587 /* This is symmetric with svm_get_segment() */
2588 svm->vmcb->save.cpl = (var->dpl & 3);
2589
2590 mark_dirty(svm->vmcb, VMCB_SEG);
2591}
2592
2593static void update_bp_intercept(struct kvm_vcpu *vcpu)
2594{
2595 struct vcpu_svm *svm = to_svm(vcpu);
2596
2597 clr_exception_intercept(svm, BP_VECTOR);
2598
2599 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2600 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2601 set_exception_intercept(svm, BP_VECTOR);
2602 } else
2603 vcpu->guest_debug = 0;
2604}
2605
2606static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2607{
2608 if (sd->next_asid > sd->max_asid) {
2609 ++sd->asid_generation;
2610 sd->next_asid = sd->min_asid;
2611 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2612 }
2613
2614 svm->asid_generation = sd->asid_generation;
2615 svm->vmcb->control.asid = sd->next_asid++;
2616
2617 mark_dirty(svm->vmcb, VMCB_ASID);
2618}
2619
2620static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2621{
2622 return to_svm(vcpu)->vmcb->save.dr6;
2623}
2624
2625static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2626{
2627 struct vcpu_svm *svm = to_svm(vcpu);
2628
2629 svm->vmcb->save.dr6 = value;
2630 mark_dirty(svm->vmcb, VMCB_DR);
2631}
2632
2633static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2634{
2635 struct vcpu_svm *svm = to_svm(vcpu);
2636
2637 get_debugreg(vcpu->arch.db[0], 0);
2638 get_debugreg(vcpu->arch.db[1], 1);
2639 get_debugreg(vcpu->arch.db[2], 2);
2640 get_debugreg(vcpu->arch.db[3], 3);
2641 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2642 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2643
2644 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2645 set_dr_intercepts(svm);
2646}
2647
2648static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2649{
2650 struct vcpu_svm *svm = to_svm(vcpu);
2651
2652 svm->vmcb->save.dr7 = value;
2653 mark_dirty(svm->vmcb, VMCB_DR);
2654}
2655
2656static int pf_interception(struct vcpu_svm *svm)
2657{
2658 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2659 u64 error_code = svm->vmcb->control.exit_info_1;
2660
2661 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2662 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2663 svm->vmcb->control.insn_bytes : NULL,
2664 svm->vmcb->control.insn_len);
2665}
2666
2667static int npf_interception(struct vcpu_svm *svm)
2668{
2669 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2670 u64 error_code = svm->vmcb->control.exit_info_1;
2671
2672 trace_kvm_page_fault(fault_address, error_code);
2673 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2674 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2675 svm->vmcb->control.insn_bytes : NULL,
2676 svm->vmcb->control.insn_len);
2677}
2678
2679static int db_interception(struct vcpu_svm *svm)
2680{
2681 struct kvm_run *kvm_run = svm->vcpu.run;
2682
2683 if (!(svm->vcpu.guest_debug &
2684 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2685 !svm->nmi_singlestep) {
2686 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2687 return 1;
2688 }
2689
2690 if (svm->nmi_singlestep) {
2691 disable_nmi_singlestep(svm);
2692 }
2693
2694 if (svm->vcpu.guest_debug &
2695 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2696 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2697 kvm_run->debug.arch.pc =
2698 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2699 kvm_run->debug.arch.exception = DB_VECTOR;
2700 return 0;
2701 }
2702
2703 return 1;
2704}
2705
2706static int bp_interception(struct vcpu_svm *svm)
2707{
2708 struct kvm_run *kvm_run = svm->vcpu.run;
2709
2710 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2711 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2712 kvm_run->debug.arch.exception = BP_VECTOR;
2713 return 0;
2714}
2715
2716static int ud_interception(struct vcpu_svm *svm)
2717{
2718 return handle_ud(&svm->vcpu);
2719}
2720
2721static int ac_interception(struct vcpu_svm *svm)
2722{
2723 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2724 return 1;
2725}
2726
2727static int gp_interception(struct vcpu_svm *svm)
2728{
2729 struct kvm_vcpu *vcpu = &svm->vcpu;
2730 u32 error_code = svm->vmcb->control.exit_info_1;
2731 int er;
2732
2733 WARN_ON_ONCE(!enable_vmware_backdoor);
2734
2735 er = kvm_emulate_instruction(vcpu,
2736 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2737 if (er == EMULATE_USER_EXIT)
2738 return 0;
2739 else if (er != EMULATE_DONE)
2740 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2741 return 1;
2742}
2743
2744static bool is_erratum_383(void)
2745{
2746 int err, i;
2747 u64 value;
2748
2749 if (!erratum_383_found)
2750 return false;
2751
2752 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2753 if (err)
2754 return false;
2755
2756 /* Bit 62 may or may not be set for this mce */
2757 value &= ~(1ULL << 62);
2758
2759 if (value != 0xb600000000010015ULL)
2760 return false;
2761
2762 /* Clear MCi_STATUS registers */
2763 for (i = 0; i < 6; ++i)
2764 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2765
2766 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2767 if (!err) {
2768 u32 low, high;
2769
2770 value &= ~(1ULL << 2);
2771 low = lower_32_bits(value);
2772 high = upper_32_bits(value);
2773
2774 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2775 }
2776
2777 /* Flush tlb to evict multi-match entries */
2778 __flush_tlb_all();
2779
2780 return true;
2781}
2782
2783static void svm_handle_mce(struct vcpu_svm *svm)
2784{
2785 if (is_erratum_383()) {
2786 /*
2787 * Erratum 383 triggered. Guest state is corrupt so kill the
2788 * guest.
2789 */
2790 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2791
2792 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2793
2794 return;
2795 }
2796
2797 /*
2798 * On an #MC intercept the MCE handler is not called automatically in
2799 * the host. So do it by hand here.
2800 */
2801 asm volatile (
2802 "int $0x12\n");
2803 /* not sure if we ever come back to this point */
2804
2805 return;
2806}
2807
2808static int mc_interception(struct vcpu_svm *svm)
2809{
2810 return 1;
2811}
2812
2813static int shutdown_interception(struct vcpu_svm *svm)
2814{
2815 struct kvm_run *kvm_run = svm->vcpu.run;
2816
2817 /*
2818 * VMCB is undefined after a SHUTDOWN intercept
2819 * so reinitialize it.
2820 */
2821 clear_page(svm->vmcb);
2822 init_vmcb(svm);
2823
2824 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2825 return 0;
2826}
2827
2828static int io_interception(struct vcpu_svm *svm)
2829{
2830 struct kvm_vcpu *vcpu = &svm->vcpu;
2831 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2832 int size, in, string;
2833 unsigned port;
2834
2835 ++svm->vcpu.stat.io_exits;
2836 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2837 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2838 if (string)
2839 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
2840
2841 port = io_info >> 16;
2842 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2843 svm->next_rip = svm->vmcb->control.exit_info_2;
2844
2845 return kvm_fast_pio(&svm->vcpu, size, port, in);
2846}
2847
2848static int nmi_interception(struct vcpu_svm *svm)
2849{
2850 return 1;
2851}
2852
2853static int intr_interception(struct vcpu_svm *svm)
2854{
2855 ++svm->vcpu.stat.irq_exits;
2856 return 1;
2857}
2858
2859static int nop_on_interception(struct vcpu_svm *svm)
2860{
2861 return 1;
2862}
2863
2864static int halt_interception(struct vcpu_svm *svm)
2865{
2866 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2867 return kvm_emulate_halt(&svm->vcpu);
2868}
2869
2870static int vmmcall_interception(struct vcpu_svm *svm)
2871{
2872 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2873 return kvm_emulate_hypercall(&svm->vcpu);
2874}
2875
2876static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2877{
2878 struct vcpu_svm *svm = to_svm(vcpu);
2879
2880 return svm->nested.nested_cr3;
2881}
2882
2883static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2884{
2885 struct vcpu_svm *svm = to_svm(vcpu);
2886 u64 cr3 = svm->nested.nested_cr3;
2887 u64 pdpte;
2888 int ret;
2889
2890 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2891 offset_in_page(cr3) + index * 8, 8);
2892 if (ret)
2893 return 0;
2894 return pdpte;
2895}
2896
2897static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2898 unsigned long root)
2899{
2900 struct vcpu_svm *svm = to_svm(vcpu);
2901
2902 svm->vmcb->control.nested_cr3 = __sme_set(root);
2903 mark_dirty(svm->vmcb, VMCB_NPT);
2904}
2905
2906static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2907 struct x86_exception *fault)
2908{
2909 struct vcpu_svm *svm = to_svm(vcpu);
2910
2911 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2912 /*
2913 * TODO: track the cause of the nested page fault, and
2914 * correctly fill in the high bits of exit_info_1.
2915 */
2916 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2917 svm->vmcb->control.exit_code_hi = 0;
2918 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2919 svm->vmcb->control.exit_info_2 = fault->address;
2920 }
2921
2922 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2923 svm->vmcb->control.exit_info_1 |= fault->error_code;
2924
2925 /*
2926 * The present bit is always zero for page structure faults on real
2927 * hardware.
2928 */
2929 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2930 svm->vmcb->control.exit_info_1 &= ~1;
2931
2932 nested_svm_vmexit(svm);
2933}
2934
2935static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2936{
2937 WARN_ON(mmu_is_nested(vcpu));
2938 kvm_init_shadow_mmu(vcpu);
2939 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2940 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2941 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2942 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2943 vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2944 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2945 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2946}
2947
2948static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2949{
2950 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2951}
2952
2953static int nested_svm_check_permissions(struct vcpu_svm *svm)
2954{
2955 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2956 !is_paging(&svm->vcpu)) {
2957 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2958 return 1;
2959 }
2960
2961 if (svm->vmcb->save.cpl) {
2962 kvm_inject_gp(&svm->vcpu, 0);
2963 return 1;
2964 }
2965
2966 return 0;
2967}
2968
2969static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2970 bool has_error_code, u32 error_code)
2971{
2972 int vmexit;
2973
2974 if (!is_guest_mode(&svm->vcpu))
2975 return 0;
2976
2977 vmexit = nested_svm_intercept(svm);
2978 if (vmexit != NESTED_EXIT_DONE)
2979 return 0;
2980
2981 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2982 svm->vmcb->control.exit_code_hi = 0;
2983 svm->vmcb->control.exit_info_1 = error_code;
2984
2985 /*
2986 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2987 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2988 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2989 * written only when inject_pending_event runs (DR6 would written here
2990 * too). This should be conditional on a new capability---if the
2991 * capability is disabled, kvm_multiple_exception would write the
2992 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2993 */
2994 if (svm->vcpu.arch.exception.nested_apf)
2995 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2996 else
2997 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2998
2999 svm->nested.exit_required = true;
3000 return vmexit;
3001}
3002
3003/* This function returns true if it is save to enable the irq window */
3004static inline bool nested_svm_intr(struct vcpu_svm *svm)
3005{
3006 if (!is_guest_mode(&svm->vcpu))
3007 return true;
3008
3009 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3010 return true;
3011
3012 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3013 return false;
3014
3015 /*
3016 * if vmexit was already requested (by intercepted exception
3017 * for instance) do not overwrite it with "external interrupt"
3018 * vmexit.
3019 */
3020 if (svm->nested.exit_required)
3021 return false;
3022
3023 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3024 svm->vmcb->control.exit_info_1 = 0;
3025 svm->vmcb->control.exit_info_2 = 0;
3026
3027 if (svm->nested.intercept & 1ULL) {
3028 /*
3029 * The #vmexit can't be emulated here directly because this
3030 * code path runs with irqs and preemption disabled. A
3031 * #vmexit emulation might sleep. Only signal request for
3032 * the #vmexit here.
3033 */
3034 svm->nested.exit_required = true;
3035 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3036 return false;
3037 }
3038
3039 return true;
3040}
3041
3042/* This function returns true if it is save to enable the nmi window */
3043static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3044{
3045 if (!is_guest_mode(&svm->vcpu))
3046 return true;
3047
3048 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3049 return true;
3050
3051 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3052 svm->nested.exit_required = true;
3053
3054 return false;
3055}
3056
3057static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
3058{
3059 struct page *page;
3060
3061 might_sleep();
3062
3063 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
3064 if (is_error_page(page))
3065 goto error;
3066
3067 *_page = page;
3068
3069 return kmap(page);
3070
3071error:
3072 kvm_inject_gp(&svm->vcpu, 0);
3073
3074 return NULL;
3075}
3076
3077static void nested_svm_unmap(struct page *page)
3078{
3079 kunmap(page);
3080 kvm_release_page_dirty(page);
3081}
3082
3083static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3084{
3085 unsigned port, size, iopm_len;
3086 u16 val, mask;
3087 u8 start_bit;
3088 u64 gpa;
3089
3090 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3091 return NESTED_EXIT_HOST;
3092
3093 port = svm->vmcb->control.exit_info_1 >> 16;
3094 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3095 SVM_IOIO_SIZE_SHIFT;
3096 gpa = svm->nested.vmcb_iopm + (port / 8);
3097 start_bit = port % 8;
3098 iopm_len = (start_bit + size > 8) ? 2 : 1;
3099 mask = (0xf >> (4 - size)) << start_bit;
3100 val = 0;
3101
3102 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3103 return NESTED_EXIT_DONE;
3104
3105 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3106}
3107
3108static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3109{
3110 u32 offset, msr, value;
3111 int write, mask;
3112
3113 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3114 return NESTED_EXIT_HOST;
3115
3116 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3117 offset = svm_msrpm_offset(msr);
3118 write = svm->vmcb->control.exit_info_1 & 1;
3119 mask = 1 << ((2 * (msr & 0xf)) + write);
3120
3121 if (offset == MSR_INVALID)
3122 return NESTED_EXIT_DONE;
3123
3124 /* Offset is in 32 bit units but need in 8 bit units */
3125 offset *= 4;
3126
3127 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3128 return NESTED_EXIT_DONE;
3129
3130 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3131}
3132
3133/* DB exceptions for our internal use must not cause vmexit */
3134static int nested_svm_intercept_db(struct vcpu_svm *svm)
3135{
3136 unsigned long dr6;
3137
3138 /* if we're not singlestepping, it's not ours */
3139 if (!svm->nmi_singlestep)
3140 return NESTED_EXIT_DONE;
3141
3142 /* if it's not a singlestep exception, it's not ours */
3143 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3144 return NESTED_EXIT_DONE;
3145 if (!(dr6 & DR6_BS))
3146 return NESTED_EXIT_DONE;
3147
3148 /* if the guest is singlestepping, it should get the vmexit */
3149 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3150 disable_nmi_singlestep(svm);
3151 return NESTED_EXIT_DONE;
3152 }
3153
3154 /* it's ours, the nested hypervisor must not see this one */
3155 return NESTED_EXIT_HOST;
3156}
3157
3158static int nested_svm_exit_special(struct vcpu_svm *svm)
3159{
3160 u32 exit_code = svm->vmcb->control.exit_code;
3161
3162 switch (exit_code) {
3163 case SVM_EXIT_INTR:
3164 case SVM_EXIT_NMI:
3165 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3166 return NESTED_EXIT_HOST;
3167 case SVM_EXIT_NPF:
3168 /* For now we are always handling NPFs when using them */
3169 if (npt_enabled)
3170 return NESTED_EXIT_HOST;
3171 break;
3172 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3173 /* When we're shadowing, trap PFs, but not async PF */
3174 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3175 return NESTED_EXIT_HOST;
3176 break;
3177 default:
3178 break;
3179 }
3180
3181 return NESTED_EXIT_CONTINUE;
3182}
3183
3184/*
3185 * If this function returns true, this #vmexit was already handled
3186 */
3187static int nested_svm_intercept(struct vcpu_svm *svm)
3188{
3189 u32 exit_code = svm->vmcb->control.exit_code;
3190 int vmexit = NESTED_EXIT_HOST;
3191
3192 switch (exit_code) {
3193 case SVM_EXIT_MSR:
3194 vmexit = nested_svm_exit_handled_msr(svm);
3195 break;
3196 case SVM_EXIT_IOIO:
3197 vmexit = nested_svm_intercept_ioio(svm);
3198 break;
3199 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3200 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3201 if (svm->nested.intercept_cr & bit)
3202 vmexit = NESTED_EXIT_DONE;
3203 break;
3204 }
3205 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3206 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3207 if (svm->nested.intercept_dr & bit)
3208 vmexit = NESTED_EXIT_DONE;
3209 break;
3210 }
3211 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3212 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3213 if (svm->nested.intercept_exceptions & excp_bits) {
3214 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3215 vmexit = nested_svm_intercept_db(svm);
3216 else
3217 vmexit = NESTED_EXIT_DONE;
3218 }
3219 /* async page fault always cause vmexit */
3220 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3221 svm->vcpu.arch.exception.nested_apf != 0)
3222 vmexit = NESTED_EXIT_DONE;
3223 break;
3224 }
3225 case SVM_EXIT_ERR: {
3226 vmexit = NESTED_EXIT_DONE;
3227 break;
3228 }
3229 default: {
3230 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3231 if (svm->nested.intercept & exit_bits)
3232 vmexit = NESTED_EXIT_DONE;
3233 }
3234 }
3235
3236 return vmexit;
3237}
3238
3239static int nested_svm_exit_handled(struct vcpu_svm *svm)
3240{
3241 int vmexit;
3242
3243 vmexit = nested_svm_intercept(svm);
3244
3245 if (vmexit == NESTED_EXIT_DONE)
3246 nested_svm_vmexit(svm);
3247
3248 return vmexit;
3249}
3250
3251static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3252{
3253 struct vmcb_control_area *dst = &dst_vmcb->control;
3254 struct vmcb_control_area *from = &from_vmcb->control;
3255
3256 dst->intercept_cr = from->intercept_cr;
3257 dst->intercept_dr = from->intercept_dr;
3258 dst->intercept_exceptions = from->intercept_exceptions;
3259 dst->intercept = from->intercept;
3260 dst->iopm_base_pa = from->iopm_base_pa;
3261 dst->msrpm_base_pa = from->msrpm_base_pa;
3262 dst->tsc_offset = from->tsc_offset;
3263 dst->asid = from->asid;
3264 dst->tlb_ctl = from->tlb_ctl;
3265 dst->int_ctl = from->int_ctl;
3266 dst->int_vector = from->int_vector;
3267 dst->int_state = from->int_state;
3268 dst->exit_code = from->exit_code;
3269 dst->exit_code_hi = from->exit_code_hi;
3270 dst->exit_info_1 = from->exit_info_1;
3271 dst->exit_info_2 = from->exit_info_2;
3272 dst->exit_int_info = from->exit_int_info;
3273 dst->exit_int_info_err = from->exit_int_info_err;
3274 dst->nested_ctl = from->nested_ctl;
3275 dst->event_inj = from->event_inj;
3276 dst->event_inj_err = from->event_inj_err;
3277 dst->nested_cr3 = from->nested_cr3;
3278 dst->virt_ext = from->virt_ext;
3279}
3280
3281static int nested_svm_vmexit(struct vcpu_svm *svm)
3282{
3283 struct vmcb *nested_vmcb;
3284 struct vmcb *hsave = svm->nested.hsave;
3285 struct vmcb *vmcb = svm->vmcb;
3286 struct page *page;
3287
3288 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3289 vmcb->control.exit_info_1,
3290 vmcb->control.exit_info_2,
3291 vmcb->control.exit_int_info,
3292 vmcb->control.exit_int_info_err,
3293 KVM_ISA_SVM);
3294
3295 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3296 if (!nested_vmcb)
3297 return 1;
3298
3299 /* Exit Guest-Mode */
3300 leave_guest_mode(&svm->vcpu);
3301 svm->nested.vmcb = 0;
3302
3303 /* Give the current vmcb to the guest */
3304 disable_gif(svm);
3305
3306 nested_vmcb->save.es = vmcb->save.es;
3307 nested_vmcb->save.cs = vmcb->save.cs;
3308 nested_vmcb->save.ss = vmcb->save.ss;
3309 nested_vmcb->save.ds = vmcb->save.ds;
3310 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3311 nested_vmcb->save.idtr = vmcb->save.idtr;
3312 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3313 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3314 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3315 nested_vmcb->save.cr2 = vmcb->save.cr2;
3316 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3317 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3318 nested_vmcb->save.rip = vmcb->save.rip;
3319 nested_vmcb->save.rsp = vmcb->save.rsp;
3320 nested_vmcb->save.rax = vmcb->save.rax;
3321 nested_vmcb->save.dr7 = vmcb->save.dr7;
3322 nested_vmcb->save.dr6 = vmcb->save.dr6;
3323 nested_vmcb->save.cpl = vmcb->save.cpl;
3324
3325 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3326 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3327 nested_vmcb->control.int_state = vmcb->control.int_state;
3328 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3329 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3330 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3331 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3332 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3333 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3334
3335 if (svm->nrips_enabled)
3336 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3337
3338 /*
3339 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3340 * to make sure that we do not lose injected events. So check event_inj
3341 * here and copy it to exit_int_info if it is valid.
3342 * Exit_int_info and event_inj can't be both valid because the case
3343 * below only happens on a VMRUN instruction intercept which has
3344 * no valid exit_int_info set.
3345 */
3346 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3347 struct vmcb_control_area *nc = &nested_vmcb->control;
3348
3349 nc->exit_int_info = vmcb->control.event_inj;
3350 nc->exit_int_info_err = vmcb->control.event_inj_err;
3351 }
3352
3353 nested_vmcb->control.tlb_ctl = 0;
3354 nested_vmcb->control.event_inj = 0;
3355 nested_vmcb->control.event_inj_err = 0;
3356
3357 /* We always set V_INTR_MASKING and remember the old value in hflags */
3358 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3359 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3360
3361 /* Restore the original control entries */
3362 copy_vmcb_control_area(vmcb, hsave);
3363
3364 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3365 kvm_clear_exception_queue(&svm->vcpu);
3366 kvm_clear_interrupt_queue(&svm->vcpu);
3367
3368 svm->nested.nested_cr3 = 0;
3369
3370 /* Restore selected save entries */
3371 svm->vmcb->save.es = hsave->save.es;
3372 svm->vmcb->save.cs = hsave->save.cs;
3373 svm->vmcb->save.ss = hsave->save.ss;
3374 svm->vmcb->save.ds = hsave->save.ds;
3375 svm->vmcb->save.gdtr = hsave->save.gdtr;
3376 svm->vmcb->save.idtr = hsave->save.idtr;
3377 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3378 svm_set_efer(&svm->vcpu, hsave->save.efer);
3379 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3380 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3381 if (npt_enabled) {
3382 svm->vmcb->save.cr3 = hsave->save.cr3;
3383 svm->vcpu.arch.cr3 = hsave->save.cr3;
3384 } else {
3385 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3386 }
3387 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3388 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3389 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3390 svm->vmcb->save.dr7 = 0;
3391 svm->vmcb->save.cpl = 0;
3392 svm->vmcb->control.exit_int_info = 0;
3393
3394 mark_all_dirty(svm->vmcb);
3395
3396 nested_svm_unmap(page);
3397
3398 nested_svm_uninit_mmu_context(&svm->vcpu);
3399 kvm_mmu_reset_context(&svm->vcpu);
3400 kvm_mmu_load(&svm->vcpu);
3401
3402 return 0;
3403}
3404
3405static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3406{
3407 /*
3408 * This function merges the msr permission bitmaps of kvm and the
3409 * nested vmcb. It is optimized in that it only merges the parts where
3410 * the kvm msr permission bitmap may contain zero bits
3411 */
3412 int i;
3413
3414 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3415 return true;
3416
3417 for (i = 0; i < MSRPM_OFFSETS; i++) {
3418 u32 value, p;
3419 u64 offset;
3420
3421 if (msrpm_offsets[i] == 0xffffffff)
3422 break;
3423
3424 p = msrpm_offsets[i];
3425 offset = svm->nested.vmcb_msrpm + (p * 4);
3426
3427 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3428 return false;
3429
3430 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3431 }
3432
3433 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3434
3435 return true;
3436}
3437
3438static bool nested_vmcb_checks(struct vmcb *vmcb)
3439{
3440 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3441 return false;
3442
3443 if (vmcb->control.asid == 0)
3444 return false;
3445
3446 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3447 !npt_enabled)
3448 return false;
3449
3450 return true;
3451}
3452
3453static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3454 struct vmcb *nested_vmcb, struct page *page)
3455{
3456 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3457 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3458 else
3459 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3460
3461 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3462 kvm_mmu_unload(&svm->vcpu);
3463 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3464 nested_svm_init_mmu_context(&svm->vcpu);
3465 }
3466
3467 /* Load the nested guest state */
3468 svm->vmcb->save.es = nested_vmcb->save.es;
3469 svm->vmcb->save.cs = nested_vmcb->save.cs;
3470 svm->vmcb->save.ss = nested_vmcb->save.ss;
3471 svm->vmcb->save.ds = nested_vmcb->save.ds;
3472 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3473 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3474 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3475 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3476 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3477 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3478 if (npt_enabled) {
3479 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3480 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3481 } else
3482 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3483
3484 /* Guest paging mode is active - reset mmu */
3485 kvm_mmu_reset_context(&svm->vcpu);
3486
3487 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3488 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3489 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3490 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3491
3492 /* In case we don't even reach vcpu_run, the fields are not updated */
3493 svm->vmcb->save.rax = nested_vmcb->save.rax;
3494 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3495 svm->vmcb->save.rip = nested_vmcb->save.rip;
3496 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3497 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3498 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3499
3500 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3501 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3502
3503 /* cache intercepts */
3504 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3505 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3506 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3507 svm->nested.intercept = nested_vmcb->control.intercept;
3508
3509 svm_flush_tlb(&svm->vcpu, true);
3510 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3511 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3512 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3513 else
3514 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3515
3516 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3517 /* We only want the cr8 intercept bits of the guest */
3518 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3519 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3520 }
3521
3522 /* We don't want to see VMMCALLs from a nested guest */
3523 clr_intercept(svm, INTERCEPT_VMMCALL);
3524
3525 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3526 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3527
3528 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3529 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3530 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3531 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3532 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3533
3534 nested_svm_unmap(page);
3535
3536 /* Enter Guest-Mode */
3537 enter_guest_mode(&svm->vcpu);
3538
3539 /*
3540 * Merge guest and host intercepts - must be called with vcpu in
3541 * guest-mode to take affect here
3542 */
3543 recalc_intercepts(svm);
3544
3545 svm->nested.vmcb = vmcb_gpa;
3546
3547 enable_gif(svm);
3548
3549 mark_all_dirty(svm->vmcb);
3550}
3551
3552static bool nested_svm_vmrun(struct vcpu_svm *svm)
3553{
3554 struct vmcb *nested_vmcb;
3555 struct vmcb *hsave = svm->nested.hsave;
3556 struct vmcb *vmcb = svm->vmcb;
3557 struct page *page;
3558 u64 vmcb_gpa;
3559
3560 vmcb_gpa = svm->vmcb->save.rax;
3561
3562 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3563 if (!nested_vmcb)
3564 return false;
3565
3566 if (!nested_vmcb_checks(nested_vmcb)) {
3567 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3568 nested_vmcb->control.exit_code_hi = 0;
3569 nested_vmcb->control.exit_info_1 = 0;
3570 nested_vmcb->control.exit_info_2 = 0;
3571
3572 nested_svm_unmap(page);
3573
3574 return false;
3575 }
3576
3577 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3578 nested_vmcb->save.rip,
3579 nested_vmcb->control.int_ctl,
3580 nested_vmcb->control.event_inj,
3581 nested_vmcb->control.nested_ctl);
3582
3583 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3584 nested_vmcb->control.intercept_cr >> 16,
3585 nested_vmcb->control.intercept_exceptions,
3586 nested_vmcb->control.intercept);
3587
3588 /* Clear internal status */
3589 kvm_clear_exception_queue(&svm->vcpu);
3590 kvm_clear_interrupt_queue(&svm->vcpu);
3591
3592 /*
3593 * Save the old vmcb, so we don't need to pick what we save, but can
3594 * restore everything when a VMEXIT occurs
3595 */
3596 hsave->save.es = vmcb->save.es;
3597 hsave->save.cs = vmcb->save.cs;
3598 hsave->save.ss = vmcb->save.ss;
3599 hsave->save.ds = vmcb->save.ds;
3600 hsave->save.gdtr = vmcb->save.gdtr;
3601 hsave->save.idtr = vmcb->save.idtr;
3602 hsave->save.efer = svm->vcpu.arch.efer;
3603 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3604 hsave->save.cr4 = svm->vcpu.arch.cr4;
3605 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3606 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3607 hsave->save.rsp = vmcb->save.rsp;
3608 hsave->save.rax = vmcb->save.rax;
3609 if (npt_enabled)
3610 hsave->save.cr3 = vmcb->save.cr3;
3611 else
3612 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3613
3614 copy_vmcb_control_area(hsave, vmcb);
3615
3616 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3617
3618 return true;
3619}
3620
3621static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3622{
3623 to_vmcb->save.fs = from_vmcb->save.fs;
3624 to_vmcb->save.gs = from_vmcb->save.gs;
3625 to_vmcb->save.tr = from_vmcb->save.tr;
3626 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3627 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3628 to_vmcb->save.star = from_vmcb->save.star;
3629 to_vmcb->save.lstar = from_vmcb->save.lstar;
3630 to_vmcb->save.cstar = from_vmcb->save.cstar;
3631 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3632 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3633 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3634 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3635}
3636
3637static int vmload_interception(struct vcpu_svm *svm)
3638{
3639 struct vmcb *nested_vmcb;
3640 struct page *page;
3641 int ret;
3642
3643 if (nested_svm_check_permissions(svm))
3644 return 1;
3645
3646 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3647 if (!nested_vmcb)
3648 return 1;
3649
3650 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3651 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3652
3653 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3654 nested_svm_unmap(page);
3655
3656 return ret;
3657}
3658
3659static int vmsave_interception(struct vcpu_svm *svm)
3660{
3661 struct vmcb *nested_vmcb;
3662 struct page *page;
3663 int ret;
3664
3665 if (nested_svm_check_permissions(svm))
3666 return 1;
3667
3668 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3669 if (!nested_vmcb)
3670 return 1;
3671
3672 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3673 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3674
3675 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3676 nested_svm_unmap(page);
3677
3678 return ret;
3679}
3680
3681static int vmrun_interception(struct vcpu_svm *svm)
3682{
3683 if (nested_svm_check_permissions(svm))
3684 return 1;
3685
3686 /* Save rip after vmrun instruction */
3687 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3688
3689 if (!nested_svm_vmrun(svm))
3690 return 1;
3691
3692 if (!nested_svm_vmrun_msrpm(svm))
3693 goto failed;
3694
3695 return 1;
3696
3697failed:
3698
3699 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3700 svm->vmcb->control.exit_code_hi = 0;
3701 svm->vmcb->control.exit_info_1 = 0;
3702 svm->vmcb->control.exit_info_2 = 0;
3703
3704 nested_svm_vmexit(svm);
3705
3706 return 1;
3707}
3708
3709static int stgi_interception(struct vcpu_svm *svm)
3710{
3711 int ret;
3712
3713 if (nested_svm_check_permissions(svm))
3714 return 1;
3715
3716 /*
3717 * If VGIF is enabled, the STGI intercept is only added to
3718 * detect the opening of the SMI/NMI window; remove it now.
3719 */
3720 if (vgif_enabled(svm))
3721 clr_intercept(svm, INTERCEPT_STGI);
3722
3723 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3724 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3725 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3726
3727 enable_gif(svm);
3728
3729 return ret;
3730}
3731
3732static int clgi_interception(struct vcpu_svm *svm)
3733{
3734 int ret;
3735
3736 if (nested_svm_check_permissions(svm))
3737 return 1;
3738
3739 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3740 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3741
3742 disable_gif(svm);
3743
3744 /* After a CLGI no interrupts should come */
3745 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3746 svm_clear_vintr(svm);
3747 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3748 mark_dirty(svm->vmcb, VMCB_INTR);
3749 }
3750
3751 return ret;
3752}
3753
3754static int invlpga_interception(struct vcpu_svm *svm)
3755{
3756 struct kvm_vcpu *vcpu = &svm->vcpu;
3757
3758 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3759 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3760
3761 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3762 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3763
3764 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3765 return kvm_skip_emulated_instruction(&svm->vcpu);
3766}
3767
3768static int skinit_interception(struct vcpu_svm *svm)
3769{
3770 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3771
3772 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3773 return 1;
3774}
3775
3776static int wbinvd_interception(struct vcpu_svm *svm)
3777{
3778 return kvm_emulate_wbinvd(&svm->vcpu);
3779}
3780
3781static int xsetbv_interception(struct vcpu_svm *svm)
3782{
3783 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3784 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3785
3786 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3787 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3788 return kvm_skip_emulated_instruction(&svm->vcpu);
3789 }
3790
3791 return 1;
3792}
3793
3794static int task_switch_interception(struct vcpu_svm *svm)
3795{
3796 u16 tss_selector;
3797 int reason;
3798 int int_type = svm->vmcb->control.exit_int_info &
3799 SVM_EXITINTINFO_TYPE_MASK;
3800 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3801 uint32_t type =
3802 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3803 uint32_t idt_v =
3804 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3805 bool has_error_code = false;
3806 u32 error_code = 0;
3807
3808 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3809
3810 if (svm->vmcb->control.exit_info_2 &
3811 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3812 reason = TASK_SWITCH_IRET;
3813 else if (svm->vmcb->control.exit_info_2 &
3814 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3815 reason = TASK_SWITCH_JMP;
3816 else if (idt_v)
3817 reason = TASK_SWITCH_GATE;
3818 else
3819 reason = TASK_SWITCH_CALL;
3820
3821 if (reason == TASK_SWITCH_GATE) {
3822 switch (type) {
3823 case SVM_EXITINTINFO_TYPE_NMI:
3824 svm->vcpu.arch.nmi_injected = false;
3825 break;
3826 case SVM_EXITINTINFO_TYPE_EXEPT:
3827 if (svm->vmcb->control.exit_info_2 &
3828 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3829 has_error_code = true;
3830 error_code =
3831 (u32)svm->vmcb->control.exit_info_2;
3832 }
3833 kvm_clear_exception_queue(&svm->vcpu);
3834 break;
3835 case SVM_EXITINTINFO_TYPE_INTR:
3836 kvm_clear_interrupt_queue(&svm->vcpu);
3837 break;
3838 default:
3839 break;
3840 }
3841 }
3842
3843 if (reason != TASK_SWITCH_GATE ||
3844 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3845 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3846 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3847 skip_emulated_instruction(&svm->vcpu);
3848
3849 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3850 int_vec = -1;
3851
3852 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3853 has_error_code, error_code) == EMULATE_FAIL) {
3854 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3855 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3856 svm->vcpu.run->internal.ndata = 0;
3857 return 0;
3858 }
3859 return 1;
3860}
3861
3862static int cpuid_interception(struct vcpu_svm *svm)
3863{
3864 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3865 return kvm_emulate_cpuid(&svm->vcpu);
3866}
3867
3868static int iret_interception(struct vcpu_svm *svm)
3869{
3870 ++svm->vcpu.stat.nmi_window_exits;
3871 clr_intercept(svm, INTERCEPT_IRET);
3872 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3873 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3874 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3875 return 1;
3876}
3877
3878static int invlpg_interception(struct vcpu_svm *svm)
3879{
3880 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3881 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3882
3883 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3884 return kvm_skip_emulated_instruction(&svm->vcpu);
3885}
3886
3887static int emulate_on_interception(struct vcpu_svm *svm)
3888{
3889 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3890}
3891
3892static int rsm_interception(struct vcpu_svm *svm)
3893{
3894 return kvm_emulate_instruction_from_buffer(&svm->vcpu,
3895 rsm_ins_bytes, 2) == EMULATE_DONE;
3896}
3897
3898static int rdpmc_interception(struct vcpu_svm *svm)
3899{
3900 int err;
3901
3902 if (!static_cpu_has(X86_FEATURE_NRIPS))
3903 return emulate_on_interception(svm);
3904
3905 err = kvm_rdpmc(&svm->vcpu);
3906 return kvm_complete_insn_gp(&svm->vcpu, err);
3907}
3908
3909static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3910 unsigned long val)
3911{
3912 unsigned long cr0 = svm->vcpu.arch.cr0;
3913 bool ret = false;
3914 u64 intercept;
3915
3916 intercept = svm->nested.intercept;
3917
3918 if (!is_guest_mode(&svm->vcpu) ||
3919 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3920 return false;
3921
3922 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3923 val &= ~SVM_CR0_SELECTIVE_MASK;
3924
3925 if (cr0 ^ val) {
3926 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3927 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3928 }
3929
3930 return ret;
3931}
3932
3933#define CR_VALID (1ULL << 63)
3934
3935static int cr_interception(struct vcpu_svm *svm)
3936{
3937 int reg, cr;
3938 unsigned long val;
3939 int err;
3940
3941 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3942 return emulate_on_interception(svm);
3943
3944 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3945 return emulate_on_interception(svm);
3946
3947 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3948 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3949 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3950 else
3951 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3952
3953 err = 0;
3954 if (cr >= 16) { /* mov to cr */
3955 cr -= 16;
3956 val = kvm_register_read(&svm->vcpu, reg);
3957 switch (cr) {
3958 case 0:
3959 if (!check_selective_cr0_intercepted(svm, val))
3960 err = kvm_set_cr0(&svm->vcpu, val);
3961 else
3962 return 1;
3963
3964 break;
3965 case 3:
3966 err = kvm_set_cr3(&svm->vcpu, val);
3967 break;
3968 case 4:
3969 err = kvm_set_cr4(&svm->vcpu, val);
3970 break;
3971 case 8:
3972 err = kvm_set_cr8(&svm->vcpu, val);
3973 break;
3974 default:
3975 WARN(1, "unhandled write to CR%d", cr);
3976 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3977 return 1;
3978 }
3979 } else { /* mov from cr */
3980 switch (cr) {
3981 case 0:
3982 val = kvm_read_cr0(&svm->vcpu);
3983 break;
3984 case 2:
3985 val = svm->vcpu.arch.cr2;
3986 break;
3987 case 3:
3988 val = kvm_read_cr3(&svm->vcpu);
3989 break;
3990 case 4:
3991 val = kvm_read_cr4(&svm->vcpu);
3992 break;
3993 case 8:
3994 val = kvm_get_cr8(&svm->vcpu);
3995 break;
3996 default:
3997 WARN(1, "unhandled read from CR%d", cr);
3998 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3999 return 1;
4000 }
4001 kvm_register_write(&svm->vcpu, reg, val);
4002 }
4003 return kvm_complete_insn_gp(&svm->vcpu, err);
4004}
4005
4006static int dr_interception(struct vcpu_svm *svm)
4007{
4008 int reg, dr;
4009 unsigned long val;
4010
4011 if (svm->vcpu.guest_debug == 0) {
4012 /*
4013 * No more DR vmexits; force a reload of the debug registers
4014 * and reenter on this instruction. The next vmexit will
4015 * retrieve the full state of the debug registers.
4016 */
4017 clr_dr_intercepts(svm);
4018 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4019 return 1;
4020 }
4021
4022 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4023 return emulate_on_interception(svm);
4024
4025 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4026 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4027
4028 if (dr >= 16) { /* mov to DRn */
4029 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4030 return 1;
4031 val = kvm_register_read(&svm->vcpu, reg);
4032 kvm_set_dr(&svm->vcpu, dr - 16, val);
4033 } else {
4034 if (!kvm_require_dr(&svm->vcpu, dr))
4035 return 1;
4036 kvm_get_dr(&svm->vcpu, dr, &val);
4037 kvm_register_write(&svm->vcpu, reg, val);
4038 }
4039
4040 return kvm_skip_emulated_instruction(&svm->vcpu);
4041}
4042
4043static int cr8_write_interception(struct vcpu_svm *svm)
4044{
4045 struct kvm_run *kvm_run = svm->vcpu.run;
4046 int r;
4047
4048 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4049 /* instruction emulation calls kvm_set_cr8() */
4050 r = cr_interception(svm);
4051 if (lapic_in_kernel(&svm->vcpu))
4052 return r;
4053 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4054 return r;
4055 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4056 return 0;
4057}
4058
4059static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4060{
4061 msr->data = 0;
4062
4063 switch (msr->index) {
4064 case MSR_F10H_DECFG:
4065 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4066 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4067 break;
4068 default:
4069 return 1;
4070 }
4071
4072 return 0;
4073}
4074
4075static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4076{
4077 struct vcpu_svm *svm = to_svm(vcpu);
4078
4079 switch (msr_info->index) {
4080 case MSR_STAR:
4081 msr_info->data = svm->vmcb->save.star;
4082 break;
4083#ifdef CONFIG_X86_64
4084 case MSR_LSTAR:
4085 msr_info->data = svm->vmcb->save.lstar;
4086 break;
4087 case MSR_CSTAR:
4088 msr_info->data = svm->vmcb->save.cstar;
4089 break;
4090 case MSR_KERNEL_GS_BASE:
4091 msr_info->data = svm->vmcb->save.kernel_gs_base;
4092 break;
4093 case MSR_SYSCALL_MASK:
4094 msr_info->data = svm->vmcb->save.sfmask;
4095 break;
4096#endif
4097 case MSR_IA32_SYSENTER_CS:
4098 msr_info->data = svm->vmcb->save.sysenter_cs;
4099 break;
4100 case MSR_IA32_SYSENTER_EIP:
4101 msr_info->data = svm->sysenter_eip;
4102 break;
4103 case MSR_IA32_SYSENTER_ESP:
4104 msr_info->data = svm->sysenter_esp;
4105 break;
4106 case MSR_TSC_AUX:
4107 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4108 return 1;
4109 msr_info->data = svm->tsc_aux;
4110 break;
4111 /*
4112 * Nobody will change the following 5 values in the VMCB so we can
4113 * safely return them on rdmsr. They will always be 0 until LBRV is
4114 * implemented.
4115 */
4116 case MSR_IA32_DEBUGCTLMSR:
4117 msr_info->data = svm->vmcb->save.dbgctl;
4118 break;
4119 case MSR_IA32_LASTBRANCHFROMIP:
4120 msr_info->data = svm->vmcb->save.br_from;
4121 break;
4122 case MSR_IA32_LASTBRANCHTOIP:
4123 msr_info->data = svm->vmcb->save.br_to;
4124 break;
4125 case MSR_IA32_LASTINTFROMIP:
4126 msr_info->data = svm->vmcb->save.last_excp_from;
4127 break;
4128 case MSR_IA32_LASTINTTOIP:
4129 msr_info->data = svm->vmcb->save.last_excp_to;
4130 break;
4131 case MSR_VM_HSAVE_PA:
4132 msr_info->data = svm->nested.hsave_msr;
4133 break;
4134 case MSR_VM_CR:
4135 msr_info->data = svm->nested.vm_cr_msr;
4136 break;
4137 case MSR_IA32_SPEC_CTRL:
4138 if (!msr_info->host_initiated &&
4139 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4140 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4141 return 1;
4142
4143 msr_info->data = svm->spec_ctrl;
4144 break;
4145 case MSR_AMD64_VIRT_SPEC_CTRL:
4146 if (!msr_info->host_initiated &&
4147 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4148 return 1;
4149
4150 msr_info->data = svm->virt_spec_ctrl;
4151 break;
4152 case MSR_F15H_IC_CFG: {
4153
4154 int family, model;
4155
4156 family = guest_cpuid_family(vcpu);
4157 model = guest_cpuid_model(vcpu);
4158
4159 if (family < 0 || model < 0)
4160 return kvm_get_msr_common(vcpu, msr_info);
4161
4162 msr_info->data = 0;
4163
4164 if (family == 0x15 &&
4165 (model >= 0x2 && model < 0x20))
4166 msr_info->data = 0x1E;
4167 }
4168 break;
4169 case MSR_F10H_DECFG:
4170 msr_info->data = svm->msr_decfg;
4171 break;
4172 default:
4173 return kvm_get_msr_common(vcpu, msr_info);
4174 }
4175 return 0;
4176}
4177
4178static int rdmsr_interception(struct vcpu_svm *svm)
4179{
4180 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4181 struct msr_data msr_info;
4182
4183 msr_info.index = ecx;
4184 msr_info.host_initiated = false;
4185 if (svm_get_msr(&svm->vcpu, &msr_info)) {
4186 trace_kvm_msr_read_ex(ecx);
4187 kvm_inject_gp(&svm->vcpu, 0);
4188 return 1;
4189 } else {
4190 trace_kvm_msr_read(ecx, msr_info.data);
4191
4192 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4193 msr_info.data & 0xffffffff);
4194 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4195 msr_info.data >> 32);
4196 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4197 return kvm_skip_emulated_instruction(&svm->vcpu);
4198 }
4199}
4200
4201static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4202{
4203 struct vcpu_svm *svm = to_svm(vcpu);
4204 int svm_dis, chg_mask;
4205
4206 if (data & ~SVM_VM_CR_VALID_MASK)
4207 return 1;
4208
4209 chg_mask = SVM_VM_CR_VALID_MASK;
4210
4211 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4212 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4213
4214 svm->nested.vm_cr_msr &= ~chg_mask;
4215 svm->nested.vm_cr_msr |= (data & chg_mask);
4216
4217 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4218
4219 /* check for svm_disable while efer.svme is set */
4220 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4221 return 1;
4222
4223 return 0;
4224}
4225
4226static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4227{
4228 struct vcpu_svm *svm = to_svm(vcpu);
4229
4230 u32 ecx = msr->index;
4231 u64 data = msr->data;
4232 switch (ecx) {
4233 case MSR_IA32_CR_PAT:
4234 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4235 return 1;
4236 vcpu->arch.pat = data;
4237 svm->vmcb->save.g_pat = data;
4238 mark_dirty(svm->vmcb, VMCB_NPT);
4239 break;
4240 case MSR_IA32_SPEC_CTRL:
4241 if (!msr->host_initiated &&
4242 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4243 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4244 return 1;
4245
4246 /* The STIBP bit doesn't fault even if it's not advertised */
4247 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4248 return 1;
4249
4250 svm->spec_ctrl = data;
4251
4252 if (!data)
4253 break;
4254
4255 /*
4256 * For non-nested:
4257 * When it's written (to non-zero) for the first time, pass
4258 * it through.
4259 *
4260 * For nested:
4261 * The handling of the MSR bitmap for L2 guests is done in
4262 * nested_svm_vmrun_msrpm.
4263 * We update the L1 MSR bit as well since it will end up
4264 * touching the MSR anyway now.
4265 */
4266 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4267 break;
4268 case MSR_IA32_PRED_CMD:
4269 if (!msr->host_initiated &&
4270 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4271 return 1;
4272
4273 if (data & ~PRED_CMD_IBPB)
4274 return 1;
4275
4276 if (!data)
4277 break;
4278
4279 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4280 if (is_guest_mode(vcpu))
4281 break;
4282 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4283 break;
4284 case MSR_AMD64_VIRT_SPEC_CTRL:
4285 if (!msr->host_initiated &&
4286 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4287 return 1;
4288
4289 if (data & ~SPEC_CTRL_SSBD)
4290 return 1;
4291
4292 svm->virt_spec_ctrl = data;
4293 break;
4294 case MSR_STAR:
4295 svm->vmcb->save.star = data;
4296 break;
4297#ifdef CONFIG_X86_64
4298 case MSR_LSTAR:
4299 svm->vmcb->save.lstar = data;
4300 break;
4301 case MSR_CSTAR:
4302 svm->vmcb->save.cstar = data;
4303 break;
4304 case MSR_KERNEL_GS_BASE:
4305 svm->vmcb->save.kernel_gs_base = data;
4306 break;
4307 case MSR_SYSCALL_MASK:
4308 svm->vmcb->save.sfmask = data;
4309 break;
4310#endif
4311 case MSR_IA32_SYSENTER_CS:
4312 svm->vmcb->save.sysenter_cs = data;
4313 break;
4314 case MSR_IA32_SYSENTER_EIP:
4315 svm->sysenter_eip = data;
4316 svm->vmcb->save.sysenter_eip = data;
4317 break;
4318 case MSR_IA32_SYSENTER_ESP:
4319 svm->sysenter_esp = data;
4320 svm->vmcb->save.sysenter_esp = data;
4321 break;
4322 case MSR_TSC_AUX:
4323 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4324 return 1;
4325
4326 /*
4327 * This is rare, so we update the MSR here instead of using
4328 * direct_access_msrs. Doing that would require a rdmsr in
4329 * svm_vcpu_put.
4330 */
4331 svm->tsc_aux = data;
4332 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4333 break;
4334 case MSR_IA32_DEBUGCTLMSR:
4335 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4336 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4337 __func__, data);
4338 break;
4339 }
4340 if (data & DEBUGCTL_RESERVED_BITS)
4341 return 1;
4342
4343 svm->vmcb->save.dbgctl = data;
4344 mark_dirty(svm->vmcb, VMCB_LBR);
4345 if (data & (1ULL<<0))
4346 svm_enable_lbrv(svm);
4347 else
4348 svm_disable_lbrv(svm);
4349 break;
4350 case MSR_VM_HSAVE_PA:
4351 svm->nested.hsave_msr = data;
4352 break;
4353 case MSR_VM_CR:
4354 return svm_set_vm_cr(vcpu, data);
4355 case MSR_VM_IGNNE:
4356 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4357 break;
4358 case MSR_F10H_DECFG: {
4359 struct kvm_msr_entry msr_entry;
4360
4361 msr_entry.index = msr->index;
4362 if (svm_get_msr_feature(&msr_entry))
4363 return 1;
4364
4365 /* Check the supported bits */
4366 if (data & ~msr_entry.data)
4367 return 1;
4368
4369 /* Don't allow the guest to change a bit, #GP */
4370 if (!msr->host_initiated && (data ^ msr_entry.data))
4371 return 1;
4372
4373 svm->msr_decfg = data;
4374 break;
4375 }
4376 case MSR_IA32_APICBASE:
4377 if (kvm_vcpu_apicv_active(vcpu))
4378 avic_update_vapic_bar(to_svm(vcpu), data);
4379 /* Follow through */
4380 default:
4381 return kvm_set_msr_common(vcpu, msr);
4382 }
4383 return 0;
4384}
4385
4386static int wrmsr_interception(struct vcpu_svm *svm)
4387{
4388 struct msr_data msr;
4389 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4390 u64 data = kvm_read_edx_eax(&svm->vcpu);
4391
4392 msr.data = data;
4393 msr.index = ecx;
4394 msr.host_initiated = false;
4395
4396 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4397 if (kvm_set_msr(&svm->vcpu, &msr)) {
4398 trace_kvm_msr_write_ex(ecx, data);
4399 kvm_inject_gp(&svm->vcpu, 0);
4400 return 1;
4401 } else {
4402 trace_kvm_msr_write(ecx, data);
4403 return kvm_skip_emulated_instruction(&svm->vcpu);
4404 }
4405}
4406
4407static int msr_interception(struct vcpu_svm *svm)
4408{
4409 if (svm->vmcb->control.exit_info_1)
4410 return wrmsr_interception(svm);
4411 else
4412 return rdmsr_interception(svm);
4413}
4414
4415static int interrupt_window_interception(struct vcpu_svm *svm)
4416{
4417 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4418 svm_clear_vintr(svm);
4419 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4420 mark_dirty(svm->vmcb, VMCB_INTR);
4421 ++svm->vcpu.stat.irq_window_exits;
4422 return 1;
4423}
4424
4425static int pause_interception(struct vcpu_svm *svm)
4426{
4427 struct kvm_vcpu *vcpu = &svm->vcpu;
4428 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4429
4430 if (pause_filter_thresh)
4431 grow_ple_window(vcpu);
4432
4433 kvm_vcpu_on_spin(vcpu, in_kernel);
4434 return 1;
4435}
4436
4437static int nop_interception(struct vcpu_svm *svm)
4438{
4439 return kvm_skip_emulated_instruction(&(svm->vcpu));
4440}
4441
4442static int monitor_interception(struct vcpu_svm *svm)
4443{
4444 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4445 return nop_interception(svm);
4446}
4447
4448static int mwait_interception(struct vcpu_svm *svm)
4449{
4450 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4451 return nop_interception(svm);
4452}
4453
4454enum avic_ipi_failure_cause {
4455 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4456 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4457 AVIC_IPI_FAILURE_INVALID_TARGET,
4458 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4459};
4460
4461static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4462{
4463 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4464 u32 icrl = svm->vmcb->control.exit_info_1;
4465 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4466 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4467 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4468
4469 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4470
4471 switch (id) {
4472 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4473 /*
4474 * AVIC hardware handles the generation of
4475 * IPIs when the specified Message Type is Fixed
4476 * (also known as fixed delivery mode) and
4477 * the Trigger Mode is edge-triggered. The hardware
4478 * also supports self and broadcast delivery modes
4479 * specified via the Destination Shorthand(DSH)
4480 * field of the ICRL. Logical and physical APIC ID
4481 * formats are supported. All other IPI types cause
4482 * a #VMEXIT, which needs to emulated.
4483 */
4484 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4485 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4486 break;
4487 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4488 int i;
4489 struct kvm_vcpu *vcpu;
4490 struct kvm *kvm = svm->vcpu.kvm;
4491 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4492
4493 /*
4494 * At this point, we expect that the AVIC HW has already
4495 * set the appropriate IRR bits on the valid target
4496 * vcpus. So, we just need to kick the appropriate vcpu.
4497 */
4498 kvm_for_each_vcpu(i, vcpu, kvm) {
4499 bool m = kvm_apic_match_dest(vcpu, apic,
4500 icrl & KVM_APIC_SHORT_MASK,
4501 GET_APIC_DEST_FIELD(icrh),
4502 icrl & KVM_APIC_DEST_MASK);
4503
4504 if (m && !avic_vcpu_is_running(vcpu))
4505 kvm_vcpu_wake_up(vcpu);
4506 }
4507 break;
4508 }
4509 case AVIC_IPI_FAILURE_INVALID_TARGET:
4510 break;
4511 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4512 WARN_ONCE(1, "Invalid backing page\n");
4513 break;
4514 default:
4515 pr_err("Unknown IPI interception\n");
4516 }
4517
4518 return 1;
4519}
4520
4521static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4522{
4523 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4524 int index;
4525 u32 *logical_apic_id_table;
4526 int dlid = GET_APIC_LOGICAL_ID(ldr);
4527
4528 if (!dlid)
4529 return NULL;
4530
4531 if (flat) { /* flat */
4532 index = ffs(dlid) - 1;
4533 if (index > 7)
4534 return NULL;
4535 } else { /* cluster */
4536 int cluster = (dlid & 0xf0) >> 4;
4537 int apic = ffs(dlid & 0x0f) - 1;
4538
4539 if ((apic < 0) || (apic > 7) ||
4540 (cluster >= 0xf))
4541 return NULL;
4542 index = (cluster << 2) + apic;
4543 }
4544
4545 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4546
4547 return &logical_apic_id_table[index];
4548}
4549
4550static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4551 bool valid)
4552{
4553 bool flat;
4554 u32 *entry, new_entry;
4555
4556 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4557 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4558 if (!entry)
4559 return -EINVAL;
4560
4561 new_entry = READ_ONCE(*entry);
4562 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4563 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4564 if (valid)
4565 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4566 else
4567 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4568 WRITE_ONCE(*entry, new_entry);
4569
4570 return 0;
4571}
4572
4573static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4574{
4575 int ret;
4576 struct vcpu_svm *svm = to_svm(vcpu);
4577 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4578
4579 if (!ldr)
4580 return 1;
4581
4582 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4583 if (ret && svm->ldr_reg) {
4584 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4585 svm->ldr_reg = 0;
4586 } else {
4587 svm->ldr_reg = ldr;
4588 }
4589 return ret;
4590}
4591
4592static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4593{
4594 u64 *old, *new;
4595 struct vcpu_svm *svm = to_svm(vcpu);
4596 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4597 u32 id = (apic_id_reg >> 24) & 0xff;
4598
4599 if (vcpu->vcpu_id == id)
4600 return 0;
4601
4602 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4603 new = avic_get_physical_id_entry(vcpu, id);
4604 if (!new || !old)
4605 return 1;
4606
4607 /* We need to move physical_id_entry to new offset */
4608 *new = *old;
4609 *old = 0ULL;
4610 to_svm(vcpu)->avic_physical_id_cache = new;
4611
4612 /*
4613 * Also update the guest physical APIC ID in the logical
4614 * APIC ID table entry if already setup the LDR.
4615 */
4616 if (svm->ldr_reg)
4617 avic_handle_ldr_update(vcpu);
4618
4619 return 0;
4620}
4621
4622static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4623{
4624 struct vcpu_svm *svm = to_svm(vcpu);
4625 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4626 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4627 u32 mod = (dfr >> 28) & 0xf;
4628
4629 /*
4630 * We assume that all local APICs are using the same type.
4631 * If this changes, we need to flush the AVIC logical
4632 * APID id table.
4633 */
4634 if (kvm_svm->ldr_mode == mod)
4635 return 0;
4636
4637 clear_page(page_address(kvm_svm->avic_logical_id_table_page));
4638 kvm_svm->ldr_mode = mod;
4639
4640 if (svm->ldr_reg)
4641 avic_handle_ldr_update(vcpu);
4642 return 0;
4643}
4644
4645static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4646{
4647 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4648 u32 offset = svm->vmcb->control.exit_info_1 &
4649 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4650
4651 switch (offset) {
4652 case APIC_ID:
4653 if (avic_handle_apic_id_update(&svm->vcpu))
4654 return 0;
4655 break;
4656 case APIC_LDR:
4657 if (avic_handle_ldr_update(&svm->vcpu))
4658 return 0;
4659 break;
4660 case APIC_DFR:
4661 avic_handle_dfr_update(&svm->vcpu);
4662 break;
4663 default:
4664 break;
4665 }
4666
4667 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4668
4669 return 1;
4670}
4671
4672static bool is_avic_unaccelerated_access_trap(u32 offset)
4673{
4674 bool ret = false;
4675
4676 switch (offset) {
4677 case APIC_ID:
4678 case APIC_EOI:
4679 case APIC_RRR:
4680 case APIC_LDR:
4681 case APIC_DFR:
4682 case APIC_SPIV:
4683 case APIC_ESR:
4684 case APIC_ICR:
4685 case APIC_LVTT:
4686 case APIC_LVTTHMR:
4687 case APIC_LVTPC:
4688 case APIC_LVT0:
4689 case APIC_LVT1:
4690 case APIC_LVTERR:
4691 case APIC_TMICT:
4692 case APIC_TDCR:
4693 ret = true;
4694 break;
4695 default:
4696 break;
4697 }
4698 return ret;
4699}
4700
4701static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4702{
4703 int ret = 0;
4704 u32 offset = svm->vmcb->control.exit_info_1 &
4705 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4706 u32 vector = svm->vmcb->control.exit_info_2 &
4707 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4708 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4709 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4710 bool trap = is_avic_unaccelerated_access_trap(offset);
4711
4712 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4713 trap, write, vector);
4714 if (trap) {
4715 /* Handling Trap */
4716 WARN_ONCE(!write, "svm: Handling trap read.\n");
4717 ret = avic_unaccel_trap_write(svm);
4718 } else {
4719 /* Handling Fault */
4720 ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4721 }
4722
4723 return ret;
4724}
4725
4726static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4727 [SVM_EXIT_READ_CR0] = cr_interception,
4728 [SVM_EXIT_READ_CR3] = cr_interception,
4729 [SVM_EXIT_READ_CR4] = cr_interception,
4730 [SVM_EXIT_READ_CR8] = cr_interception,
4731 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4732 [SVM_EXIT_WRITE_CR0] = cr_interception,
4733 [SVM_EXIT_WRITE_CR3] = cr_interception,
4734 [SVM_EXIT_WRITE_CR4] = cr_interception,
4735 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4736 [SVM_EXIT_READ_DR0] = dr_interception,
4737 [SVM_EXIT_READ_DR1] = dr_interception,
4738 [SVM_EXIT_READ_DR2] = dr_interception,
4739 [SVM_EXIT_READ_DR3] = dr_interception,
4740 [SVM_EXIT_READ_DR4] = dr_interception,
4741 [SVM_EXIT_READ_DR5] = dr_interception,
4742 [SVM_EXIT_READ_DR6] = dr_interception,
4743 [SVM_EXIT_READ_DR7] = dr_interception,
4744 [SVM_EXIT_WRITE_DR0] = dr_interception,
4745 [SVM_EXIT_WRITE_DR1] = dr_interception,
4746 [SVM_EXIT_WRITE_DR2] = dr_interception,
4747 [SVM_EXIT_WRITE_DR3] = dr_interception,
4748 [SVM_EXIT_WRITE_DR4] = dr_interception,
4749 [SVM_EXIT_WRITE_DR5] = dr_interception,
4750 [SVM_EXIT_WRITE_DR6] = dr_interception,
4751 [SVM_EXIT_WRITE_DR7] = dr_interception,
4752 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4753 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4754 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4755 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4756 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4757 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4758 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4759 [SVM_EXIT_INTR] = intr_interception,
4760 [SVM_EXIT_NMI] = nmi_interception,
4761 [SVM_EXIT_SMI] = nop_on_interception,
4762 [SVM_EXIT_INIT] = nop_on_interception,
4763 [SVM_EXIT_VINTR] = interrupt_window_interception,
4764 [SVM_EXIT_RDPMC] = rdpmc_interception,
4765 [SVM_EXIT_CPUID] = cpuid_interception,
4766 [SVM_EXIT_IRET] = iret_interception,
4767 [SVM_EXIT_INVD] = emulate_on_interception,
4768 [SVM_EXIT_PAUSE] = pause_interception,
4769 [SVM_EXIT_HLT] = halt_interception,
4770 [SVM_EXIT_INVLPG] = invlpg_interception,
4771 [SVM_EXIT_INVLPGA] = invlpga_interception,
4772 [SVM_EXIT_IOIO] = io_interception,
4773 [SVM_EXIT_MSR] = msr_interception,
4774 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4775 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4776 [SVM_EXIT_VMRUN] = vmrun_interception,
4777 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4778 [SVM_EXIT_VMLOAD] = vmload_interception,
4779 [SVM_EXIT_VMSAVE] = vmsave_interception,
4780 [SVM_EXIT_STGI] = stgi_interception,
4781 [SVM_EXIT_CLGI] = clgi_interception,
4782 [SVM_EXIT_SKINIT] = skinit_interception,
4783 [SVM_EXIT_WBINVD] = wbinvd_interception,
4784 [SVM_EXIT_MONITOR] = monitor_interception,
4785 [SVM_EXIT_MWAIT] = mwait_interception,
4786 [SVM_EXIT_XSETBV] = xsetbv_interception,
4787 [SVM_EXIT_NPF] = npf_interception,
4788 [SVM_EXIT_RSM] = rsm_interception,
4789 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4790 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4791};
4792
4793static void dump_vmcb(struct kvm_vcpu *vcpu)
4794{
4795 struct vcpu_svm *svm = to_svm(vcpu);
4796 struct vmcb_control_area *control = &svm->vmcb->control;
4797 struct vmcb_save_area *save = &svm->vmcb->save;
4798
4799 pr_err("VMCB Control Area:\n");
4800 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4801 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4802 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4803 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4804 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4805 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4806 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4807 pr_err("%-20s%d\n", "pause filter threshold:",
4808 control->pause_filter_thresh);
4809 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4810 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4811 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4812 pr_err("%-20s%d\n", "asid:", control->asid);
4813 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4814 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4815 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4816 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4817 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4818 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4819 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4820 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4821 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4822 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4823 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4824 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4825 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4826 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4827 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4828 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4829 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4830 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4831 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4832 pr_err("VMCB State Save Area:\n");
4833 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4834 "es:",
4835 save->es.selector, save->es.attrib,
4836 save->es.limit, save->es.base);
4837 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4838 "cs:",
4839 save->cs.selector, save->cs.attrib,
4840 save->cs.limit, save->cs.base);
4841 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4842 "ss:",
4843 save->ss.selector, save->ss.attrib,
4844 save->ss.limit, save->ss.base);
4845 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4846 "ds:",
4847 save->ds.selector, save->ds.attrib,
4848 save->ds.limit, save->ds.base);
4849 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4850 "fs:",
4851 save->fs.selector, save->fs.attrib,
4852 save->fs.limit, save->fs.base);
4853 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4854 "gs:",
4855 save->gs.selector, save->gs.attrib,
4856 save->gs.limit, save->gs.base);
4857 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4858 "gdtr:",
4859 save->gdtr.selector, save->gdtr.attrib,
4860 save->gdtr.limit, save->gdtr.base);
4861 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4862 "ldtr:",
4863 save->ldtr.selector, save->ldtr.attrib,
4864 save->ldtr.limit, save->ldtr.base);
4865 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4866 "idtr:",
4867 save->idtr.selector, save->idtr.attrib,
4868 save->idtr.limit, save->idtr.base);
4869 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4870 "tr:",
4871 save->tr.selector, save->tr.attrib,
4872 save->tr.limit, save->tr.base);
4873 pr_err("cpl: %d efer: %016llx\n",
4874 save->cpl, save->efer);
4875 pr_err("%-15s %016llx %-13s %016llx\n",
4876 "cr0:", save->cr0, "cr2:", save->cr2);
4877 pr_err("%-15s %016llx %-13s %016llx\n",
4878 "cr3:", save->cr3, "cr4:", save->cr4);
4879 pr_err("%-15s %016llx %-13s %016llx\n",
4880 "dr6:", save->dr6, "dr7:", save->dr7);
4881 pr_err("%-15s %016llx %-13s %016llx\n",
4882 "rip:", save->rip, "rflags:", save->rflags);
4883 pr_err("%-15s %016llx %-13s %016llx\n",
4884 "rsp:", save->rsp, "rax:", save->rax);
4885 pr_err("%-15s %016llx %-13s %016llx\n",
4886 "star:", save->star, "lstar:", save->lstar);
4887 pr_err("%-15s %016llx %-13s %016llx\n",
4888 "cstar:", save->cstar, "sfmask:", save->sfmask);
4889 pr_err("%-15s %016llx %-13s %016llx\n",
4890 "kernel_gs_base:", save->kernel_gs_base,
4891 "sysenter_cs:", save->sysenter_cs);
4892 pr_err("%-15s %016llx %-13s %016llx\n",
4893 "sysenter_esp:", save->sysenter_esp,
4894 "sysenter_eip:", save->sysenter_eip);
4895 pr_err("%-15s %016llx %-13s %016llx\n",
4896 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4897 pr_err("%-15s %016llx %-13s %016llx\n",
4898 "br_from:", save->br_from, "br_to:", save->br_to);
4899 pr_err("%-15s %016llx %-13s %016llx\n",
4900 "excp_from:", save->last_excp_from,
4901 "excp_to:", save->last_excp_to);
4902}
4903
4904static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4905{
4906 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4907
4908 *info1 = control->exit_info_1;
4909 *info2 = control->exit_info_2;
4910}
4911
4912static int handle_exit(struct kvm_vcpu *vcpu)
4913{
4914 struct vcpu_svm *svm = to_svm(vcpu);
4915 struct kvm_run *kvm_run = vcpu->run;
4916 u32 exit_code = svm->vmcb->control.exit_code;
4917
4918 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4919
4920 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4921 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4922 if (npt_enabled)
4923 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4924
4925 if (unlikely(svm->nested.exit_required)) {
4926 nested_svm_vmexit(svm);
4927 svm->nested.exit_required = false;
4928
4929 return 1;
4930 }
4931
4932 if (is_guest_mode(vcpu)) {
4933 int vmexit;
4934
4935 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4936 svm->vmcb->control.exit_info_1,
4937 svm->vmcb->control.exit_info_2,
4938 svm->vmcb->control.exit_int_info,
4939 svm->vmcb->control.exit_int_info_err,
4940 KVM_ISA_SVM);
4941
4942 vmexit = nested_svm_exit_special(svm);
4943
4944 if (vmexit == NESTED_EXIT_CONTINUE)
4945 vmexit = nested_svm_exit_handled(svm);
4946
4947 if (vmexit == NESTED_EXIT_DONE)
4948 return 1;
4949 }
4950
4951 svm_complete_interrupts(svm);
4952
4953 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4954 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4955 kvm_run->fail_entry.hardware_entry_failure_reason
4956 = svm->vmcb->control.exit_code;
4957 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4958 dump_vmcb(vcpu);
4959 return 0;
4960 }
4961
4962 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4963 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4964 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4965 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4966 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4967 "exit_code 0x%x\n",
4968 __func__, svm->vmcb->control.exit_int_info,
4969 exit_code);
4970
4971 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4972 || !svm_exit_handlers[exit_code]) {
4973 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4974 kvm_queue_exception(vcpu, UD_VECTOR);
4975 return 1;
4976 }
4977
4978 return svm_exit_handlers[exit_code](svm);
4979}
4980
4981static void reload_tss(struct kvm_vcpu *vcpu)
4982{
4983 int cpu = raw_smp_processor_id();
4984
4985 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4986 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4987 load_TR_desc();
4988}
4989
4990static void pre_sev_run(struct vcpu_svm *svm, int cpu)
4991{
4992 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4993 int asid = sev_get_asid(svm->vcpu.kvm);
4994
4995 /* Assign the asid allocated with this SEV guest */
4996 svm->vmcb->control.asid = asid;
4997
4998 /*
4999 * Flush guest TLB:
5000 *
5001 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5002 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5003 */
5004 if (sd->sev_vmcbs[asid] == svm->vmcb &&
5005 svm->last_cpu == cpu)
5006 return;
5007
5008 svm->last_cpu = cpu;
5009 sd->sev_vmcbs[asid] = svm->vmcb;
5010 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5011 mark_dirty(svm->vmcb, VMCB_ASID);
5012}
5013
5014static void pre_svm_run(struct vcpu_svm *svm)
5015{
5016 int cpu = raw_smp_processor_id();
5017
5018 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5019
5020 if (sev_guest(svm->vcpu.kvm))
5021 return pre_sev_run(svm, cpu);
5022
5023 /* FIXME: handle wraparound of asid_generation */
5024 if (svm->asid_generation != sd->asid_generation)
5025 new_asid(svm, sd);
5026}
5027
5028static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5029{
5030 struct vcpu_svm *svm = to_svm(vcpu);
5031
5032 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5033 vcpu->arch.hflags |= HF_NMI_MASK;
5034 set_intercept(svm, INTERCEPT_IRET);
5035 ++vcpu->stat.nmi_injections;
5036}
5037
5038static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5039{
5040 struct vmcb_control_area *control;
5041
5042 /* The following fields are ignored when AVIC is enabled */
5043 control = &svm->vmcb->control;
5044 control->int_vector = irq;
5045 control->int_ctl &= ~V_INTR_PRIO_MASK;
5046 control->int_ctl |= V_IRQ_MASK |
5047 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5048 mark_dirty(svm->vmcb, VMCB_INTR);
5049}
5050
5051static void svm_set_irq(struct kvm_vcpu *vcpu)
5052{
5053 struct vcpu_svm *svm = to_svm(vcpu);
5054
5055 BUG_ON(!(gif_set(svm)));
5056
5057 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5058 ++vcpu->stat.irq_injections;
5059
5060 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5061 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5062}
5063
5064static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5065{
5066 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5067}
5068
5069static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5070{
5071 struct vcpu_svm *svm = to_svm(vcpu);
5072
5073 if (svm_nested_virtualize_tpr(vcpu) ||
5074 kvm_vcpu_apicv_active(vcpu))
5075 return;
5076
5077 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5078
5079 if (irr == -1)
5080 return;
5081
5082 if (tpr >= irr)
5083 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5084}
5085
5086static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5087{
5088 return;
5089}
5090
5091static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5092{
5093 return avic && irqchip_split(vcpu->kvm);
5094}
5095
5096static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5097{
5098}
5099
5100static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5101{
5102}
5103
5104/* Note: Currently only used by Hyper-V. */
5105static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5106{
5107 struct vcpu_svm *svm = to_svm(vcpu);
5108 struct vmcb *vmcb = svm->vmcb;
5109
5110 if (!kvm_vcpu_apicv_active(&svm->vcpu))
5111 return;
5112
5113 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5114 mark_dirty(vmcb, VMCB_INTR);
5115}
5116
5117static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5118{
5119 return;
5120}
5121
5122static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5123{
5124 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5125 smp_mb__after_atomic();
5126
5127 if (avic_vcpu_is_running(vcpu))
5128 wrmsrl(SVM_AVIC_DOORBELL,
5129 kvm_cpu_get_apicid(vcpu->cpu));
5130 else
5131 kvm_vcpu_wake_up(vcpu);
5132}
5133
5134static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5135{
5136 unsigned long flags;
5137 struct amd_svm_iommu_ir *cur;
5138
5139 spin_lock_irqsave(&svm->ir_list_lock, flags);
5140 list_for_each_entry(cur, &svm->ir_list, node) {
5141 if (cur->data != pi->ir_data)
5142 continue;
5143 list_del(&cur->node);
5144 kfree(cur);
5145 break;
5146 }
5147 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5148}
5149
5150static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5151{
5152 int ret = 0;
5153 unsigned long flags;
5154 struct amd_svm_iommu_ir *ir;
5155
5156 /**
5157 * In some cases, the existing irte is updaed and re-set,
5158 * so we need to check here if it's already been * added
5159 * to the ir_list.
5160 */
5161 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5162 struct kvm *kvm = svm->vcpu.kvm;
5163 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5164 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5165 struct vcpu_svm *prev_svm;
5166
5167 if (!prev_vcpu) {
5168 ret = -EINVAL;
5169 goto out;
5170 }
5171
5172 prev_svm = to_svm(prev_vcpu);
5173 svm_ir_list_del(prev_svm, pi);
5174 }
5175
5176 /**
5177 * Allocating new amd_iommu_pi_data, which will get
5178 * add to the per-vcpu ir_list.
5179 */
5180 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
5181 if (!ir) {
5182 ret = -ENOMEM;
5183 goto out;
5184 }
5185 ir->data = pi->ir_data;
5186
5187 spin_lock_irqsave(&svm->ir_list_lock, flags);
5188 list_add(&ir->node, &svm->ir_list);
5189 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5190out:
5191 return ret;
5192}
5193
5194/**
5195 * Note:
5196 * The HW cannot support posting multicast/broadcast
5197 * interrupts to a vCPU. So, we still use legacy interrupt
5198 * remapping for these kind of interrupts.
5199 *
5200 * For lowest-priority interrupts, we only support
5201 * those with single CPU as the destination, e.g. user
5202 * configures the interrupts via /proc/irq or uses
5203 * irqbalance to make the interrupts single-CPU.
5204 */
5205static int
5206get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5207 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5208{
5209 struct kvm_lapic_irq irq;
5210 struct kvm_vcpu *vcpu = NULL;
5211
5212 kvm_set_msi_irq(kvm, e, &irq);
5213
5214 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5215 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5216 __func__, irq.vector);
5217 return -1;
5218 }
5219
5220 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5221 irq.vector);
5222 *svm = to_svm(vcpu);
5223 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5224 vcpu_info->vector = irq.vector;
5225
5226 return 0;
5227}
5228
5229/*
5230 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5231 *
5232 * @kvm: kvm
5233 * @host_irq: host irq of the interrupt
5234 * @guest_irq: gsi of the interrupt
5235 * @set: set or unset PI
5236 * returns 0 on success, < 0 on failure
5237 */
5238static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5239 uint32_t guest_irq, bool set)
5240{
5241 struct kvm_kernel_irq_routing_entry *e;
5242 struct kvm_irq_routing_table *irq_rt;
5243 int idx, ret = -EINVAL;
5244
5245 if (!kvm_arch_has_assigned_device(kvm) ||
5246 !irq_remapping_cap(IRQ_POSTING_CAP))
5247 return 0;
5248
5249 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5250 __func__, host_irq, guest_irq, set);
5251
5252 idx = srcu_read_lock(&kvm->irq_srcu);
5253 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5254 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5255
5256 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5257 struct vcpu_data vcpu_info;
5258 struct vcpu_svm *svm = NULL;
5259
5260 if (e->type != KVM_IRQ_ROUTING_MSI)
5261 continue;
5262
5263 /**
5264 * Here, we setup with legacy mode in the following cases:
5265 * 1. When cannot target interrupt to a specific vcpu.
5266 * 2. Unsetting posted interrupt.
5267 * 3. APIC virtialization is disabled for the vcpu.
5268 */
5269 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5270 kvm_vcpu_apicv_active(&svm->vcpu)) {
5271 struct amd_iommu_pi_data pi;
5272
5273 /* Try to enable guest_mode in IRTE */
5274 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5275 AVIC_HPA_MASK);
5276 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5277 svm->vcpu.vcpu_id);
5278 pi.is_guest_mode = true;
5279 pi.vcpu_data = &vcpu_info;
5280 ret = irq_set_vcpu_affinity(host_irq, &pi);
5281
5282 /**
5283 * Here, we successfully setting up vcpu affinity in
5284 * IOMMU guest mode. Now, we need to store the posted
5285 * interrupt information in a per-vcpu ir_list so that
5286 * we can reference to them directly when we update vcpu
5287 * scheduling information in IOMMU irte.
5288 */
5289 if (!ret && pi.is_guest_mode)
5290 svm_ir_list_add(svm, &pi);
5291 } else {
5292 /* Use legacy mode in IRTE */
5293 struct amd_iommu_pi_data pi;
5294
5295 /**
5296 * Here, pi is used to:
5297 * - Tell IOMMU to use legacy mode for this interrupt.
5298 * - Retrieve ga_tag of prior interrupt remapping data.
5299 */
5300 pi.is_guest_mode = false;
5301 ret = irq_set_vcpu_affinity(host_irq, &pi);
5302
5303 /**
5304 * Check if the posted interrupt was previously
5305 * setup with the guest_mode by checking if the ga_tag
5306 * was cached. If so, we need to clean up the per-vcpu
5307 * ir_list.
5308 */
5309 if (!ret && pi.prev_ga_tag) {
5310 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5311 struct kvm_vcpu *vcpu;
5312
5313 vcpu = kvm_get_vcpu_by_id(kvm, id);
5314 if (vcpu)
5315 svm_ir_list_del(to_svm(vcpu), &pi);
5316 }
5317 }
5318
5319 if (!ret && svm) {
5320 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5321 e->gsi, vcpu_info.vector,
5322 vcpu_info.pi_desc_addr, set);
5323 }
5324
5325 if (ret < 0) {
5326 pr_err("%s: failed to update PI IRTE\n", __func__);
5327 goto out;
5328 }
5329 }
5330
5331 ret = 0;
5332out:
5333 srcu_read_unlock(&kvm->irq_srcu, idx);
5334 return ret;
5335}
5336
5337static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5338{
5339 struct vcpu_svm *svm = to_svm(vcpu);
5340 struct vmcb *vmcb = svm->vmcb;
5341 int ret;
5342 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5343 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5344 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5345
5346 return ret;
5347}
5348
5349static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5350{
5351 struct vcpu_svm *svm = to_svm(vcpu);
5352
5353 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5354}
5355
5356static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5357{
5358 struct vcpu_svm *svm = to_svm(vcpu);
5359
5360 if (masked) {
5361 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5362 set_intercept(svm, INTERCEPT_IRET);
5363 } else {
5364 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5365 clr_intercept(svm, INTERCEPT_IRET);
5366 }
5367}
5368
5369static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5370{
5371 struct vcpu_svm *svm = to_svm(vcpu);
5372 struct vmcb *vmcb = svm->vmcb;
5373 int ret;
5374
5375 if (!gif_set(svm) ||
5376 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5377 return 0;
5378
5379 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5380
5381 if (is_guest_mode(vcpu))
5382 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5383
5384 return ret;
5385}
5386
5387static void enable_irq_window(struct kvm_vcpu *vcpu)
5388{
5389 struct vcpu_svm *svm = to_svm(vcpu);
5390
5391 if (kvm_vcpu_apicv_active(vcpu))
5392 return;
5393
5394 /*
5395 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5396 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5397 * get that intercept, this function will be called again though and
5398 * we'll get the vintr intercept. However, if the vGIF feature is
5399 * enabled, the STGI interception will not occur. Enable the irq
5400 * window under the assumption that the hardware will set the GIF.
5401 */
5402 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5403 svm_set_vintr(svm);
5404 svm_inject_irq(svm, 0x0);
5405 }
5406}
5407
5408static void enable_nmi_window(struct kvm_vcpu *vcpu)
5409{
5410 struct vcpu_svm *svm = to_svm(vcpu);
5411
5412 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5413 == HF_NMI_MASK)
5414 return; /* IRET will cause a vm exit */
5415
5416 if (!gif_set(svm)) {
5417 if (vgif_enabled(svm))
5418 set_intercept(svm, INTERCEPT_STGI);
5419 return; /* STGI will cause a vm exit */
5420 }
5421
5422 if (svm->nested.exit_required)
5423 return; /* we're not going to run the guest yet */
5424
5425 /*
5426 * Something prevents NMI from been injected. Single step over possible
5427 * problem (IRET or exception injection or interrupt shadow)
5428 */
5429 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5430 svm->nmi_singlestep = true;
5431 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5432}
5433
5434static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5435{
5436 return 0;
5437}
5438
5439static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5440{
5441 return 0;
5442}
5443
5444static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5445{
5446 struct vcpu_svm *svm = to_svm(vcpu);
5447
5448 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5449 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5450 else
5451 svm->asid_generation--;
5452}
5453
5454static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5455{
5456 struct vcpu_svm *svm = to_svm(vcpu);
5457
5458 invlpga(gva, svm->vmcb->control.asid);
5459}
5460
5461static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5462{
5463}
5464
5465static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5466{
5467 struct vcpu_svm *svm = to_svm(vcpu);
5468
5469 if (svm_nested_virtualize_tpr(vcpu))
5470 return;
5471
5472 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5473 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5474 kvm_set_cr8(vcpu, cr8);
5475 }
5476}
5477
5478static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5479{
5480 struct vcpu_svm *svm = to_svm(vcpu);
5481 u64 cr8;
5482
5483 if (svm_nested_virtualize_tpr(vcpu) ||
5484 kvm_vcpu_apicv_active(vcpu))
5485 return;
5486
5487 cr8 = kvm_get_cr8(vcpu);
5488 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5489 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5490}
5491
5492static void svm_complete_interrupts(struct vcpu_svm *svm)
5493{
5494 u8 vector;
5495 int type;
5496 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5497 unsigned int3_injected = svm->int3_injected;
5498
5499 svm->int3_injected = 0;
5500
5501 /*
5502 * If we've made progress since setting HF_IRET_MASK, we've
5503 * executed an IRET and can allow NMI injection.
5504 */
5505 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5506 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5507 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5508 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5509 }
5510
5511 svm->vcpu.arch.nmi_injected = false;
5512 kvm_clear_exception_queue(&svm->vcpu);
5513 kvm_clear_interrupt_queue(&svm->vcpu);
5514
5515 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5516 return;
5517
5518 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5519
5520 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5521 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5522
5523 switch (type) {
5524 case SVM_EXITINTINFO_TYPE_NMI:
5525 svm->vcpu.arch.nmi_injected = true;
5526 break;
5527 case SVM_EXITINTINFO_TYPE_EXEPT:
5528 /*
5529 * In case of software exceptions, do not reinject the vector,
5530 * but re-execute the instruction instead. Rewind RIP first
5531 * if we emulated INT3 before.
5532 */
5533 if (kvm_exception_is_soft(vector)) {
5534 if (vector == BP_VECTOR && int3_injected &&
5535 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5536 kvm_rip_write(&svm->vcpu,
5537 kvm_rip_read(&svm->vcpu) -
5538 int3_injected);
5539 break;
5540 }
5541 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5542 u32 err = svm->vmcb->control.exit_int_info_err;
5543 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5544
5545 } else
5546 kvm_requeue_exception(&svm->vcpu, vector);
5547 break;
5548 case SVM_EXITINTINFO_TYPE_INTR:
5549 kvm_queue_interrupt(&svm->vcpu, vector, false);
5550 break;
5551 default:
5552 break;
5553 }
5554}
5555
5556static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5557{
5558 struct vcpu_svm *svm = to_svm(vcpu);
5559 struct vmcb_control_area *control = &svm->vmcb->control;
5560
5561 control->exit_int_info = control->event_inj;
5562 control->exit_int_info_err = control->event_inj_err;
5563 control->event_inj = 0;
5564 svm_complete_interrupts(svm);
5565}
5566
5567static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5568{
5569 struct vcpu_svm *svm = to_svm(vcpu);
5570
5571 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5572 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5573 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5574
5575 /*
5576 * A vmexit emulation is required before the vcpu can be executed
5577 * again.
5578 */
5579 if (unlikely(svm->nested.exit_required))
5580 return;
5581
5582 /*
5583 * Disable singlestep if we're injecting an interrupt/exception.
5584 * We don't want our modified rflags to be pushed on the stack where
5585 * we might not be able to easily reset them if we disabled NMI
5586 * singlestep later.
5587 */
5588 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5589 /*
5590 * Event injection happens before external interrupts cause a
5591 * vmexit and interrupts are disabled here, so smp_send_reschedule
5592 * is enough to force an immediate vmexit.
5593 */
5594 disable_nmi_singlestep(svm);
5595 smp_send_reschedule(vcpu->cpu);
5596 }
5597
5598 pre_svm_run(svm);
5599
5600 sync_lapic_to_cr8(vcpu);
5601
5602 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5603
5604 clgi();
5605
5606 /*
5607 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5608 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5609 * is no need to worry about the conditional branch over the wrmsr
5610 * being speculatively taken.
5611 */
5612 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5613
5614 local_irq_enable();
5615
5616 asm volatile (
5617 "push %%" _ASM_BP "; \n\t"
5618 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5619 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5620 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5621 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5622 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5623 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5624#ifdef CONFIG_X86_64
5625 "mov %c[r8](%[svm]), %%r8 \n\t"
5626 "mov %c[r9](%[svm]), %%r9 \n\t"
5627 "mov %c[r10](%[svm]), %%r10 \n\t"
5628 "mov %c[r11](%[svm]), %%r11 \n\t"
5629 "mov %c[r12](%[svm]), %%r12 \n\t"
5630 "mov %c[r13](%[svm]), %%r13 \n\t"
5631 "mov %c[r14](%[svm]), %%r14 \n\t"
5632 "mov %c[r15](%[svm]), %%r15 \n\t"
5633#endif
5634
5635 /* Enter guest mode */
5636 "push %%" _ASM_AX " \n\t"
5637 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5638 __ex(SVM_VMLOAD) "\n\t"
5639 __ex(SVM_VMRUN) "\n\t"
5640 __ex(SVM_VMSAVE) "\n\t"
5641 "pop %%" _ASM_AX " \n\t"
5642
5643 /* Save guest registers, load host registers */
5644 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5645 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5646 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5647 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5648 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5649 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5650#ifdef CONFIG_X86_64
5651 "mov %%r8, %c[r8](%[svm]) \n\t"
5652 "mov %%r9, %c[r9](%[svm]) \n\t"
5653 "mov %%r10, %c[r10](%[svm]) \n\t"
5654 "mov %%r11, %c[r11](%[svm]) \n\t"
5655 "mov %%r12, %c[r12](%[svm]) \n\t"
5656 "mov %%r13, %c[r13](%[svm]) \n\t"
5657 "mov %%r14, %c[r14](%[svm]) \n\t"
5658 "mov %%r15, %c[r15](%[svm]) \n\t"
5659#endif
5660 /*
5661 * Clear host registers marked as clobbered to prevent
5662 * speculative use.
5663 */
5664 "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
5665 "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
5666 "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
5667 "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
5668 "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
5669#ifdef CONFIG_X86_64
5670 "xor %%r8, %%r8 \n\t"
5671 "xor %%r9, %%r9 \n\t"
5672 "xor %%r10, %%r10 \n\t"
5673 "xor %%r11, %%r11 \n\t"
5674 "xor %%r12, %%r12 \n\t"
5675 "xor %%r13, %%r13 \n\t"
5676 "xor %%r14, %%r14 \n\t"
5677 "xor %%r15, %%r15 \n\t"
5678#endif
5679 "pop %%" _ASM_BP
5680 :
5681 : [svm]"a"(svm),
5682 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5683 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5684 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5685 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5686 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5687 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5688 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5689#ifdef CONFIG_X86_64
5690 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5691 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5692 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5693 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5694 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5695 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5696 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5697 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5698#endif
5699 : "cc", "memory"
5700#ifdef CONFIG_X86_64
5701 , "rbx", "rcx", "rdx", "rsi", "rdi"
5702 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5703#else
5704 , "ebx", "ecx", "edx", "esi", "edi"
5705#endif
5706 );
5707
5708 /* Eliminate branch target predictions from guest mode */
5709 vmexit_fill_RSB();
5710
5711#ifdef CONFIG_X86_64
5712 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5713#else
5714 loadsegment(fs, svm->host.fs);
5715#ifndef CONFIG_X86_32_LAZY_GS
5716 loadsegment(gs, svm->host.gs);
5717#endif
5718#endif
5719
5720 /*
5721 * We do not use IBRS in the kernel. If this vCPU has used the
5722 * SPEC_CTRL MSR it may have left it on; save the value and
5723 * turn it off. This is much more efficient than blindly adding
5724 * it to the atomic save/restore list. Especially as the former
5725 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5726 *
5727 * For non-nested case:
5728 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5729 * save it.
5730 *
5731 * For nested case:
5732 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5733 * save it.
5734 */
5735 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5736 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5737
5738 reload_tss(vcpu);
5739
5740 local_irq_disable();
5741
5742 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5743
5744 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5745 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5746 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5747 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5748
5749 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5750 kvm_before_interrupt(&svm->vcpu);
5751
5752 stgi();
5753
5754 /* Any pending NMI will happen here */
5755
5756 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5757 kvm_after_interrupt(&svm->vcpu);
5758
5759 sync_cr8_to_lapic(vcpu);
5760
5761 svm->next_rip = 0;
5762
5763 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5764
5765 /* if exit due to PF check for async PF */
5766 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5767 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5768
5769 if (npt_enabled) {
5770 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5771 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5772 }
5773
5774 /*
5775 * We need to handle MC intercepts here before the vcpu has a chance to
5776 * change the physical cpu
5777 */
5778 if (unlikely(svm->vmcb->control.exit_code ==
5779 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5780 svm_handle_mce(svm);
5781
5782 mark_all_clean(svm->vmcb);
5783}
5784STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5785
5786static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5787{
5788 struct vcpu_svm *svm = to_svm(vcpu);
5789
5790 svm->vmcb->save.cr3 = __sme_set(root);
5791 mark_dirty(svm->vmcb, VMCB_CR);
5792}
5793
5794static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5795{
5796 struct vcpu_svm *svm = to_svm(vcpu);
5797
5798 svm->vmcb->control.nested_cr3 = __sme_set(root);
5799 mark_dirty(svm->vmcb, VMCB_NPT);
5800
5801 /* Also sync guest cr3 here in case we live migrate */
5802 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5803 mark_dirty(svm->vmcb, VMCB_CR);
5804}
5805
5806static int is_disabled(void)
5807{
5808 u64 vm_cr;
5809
5810 rdmsrl(MSR_VM_CR, vm_cr);
5811 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5812 return 1;
5813
5814 return 0;
5815}
5816
5817static void
5818svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5819{
5820 /*
5821 * Patch in the VMMCALL instruction:
5822 */
5823 hypercall[0] = 0x0f;
5824 hypercall[1] = 0x01;
5825 hypercall[2] = 0xd9;
5826}
5827
5828static void svm_check_processor_compat(void *rtn)
5829{
5830 *(int *)rtn = 0;
5831}
5832
5833static bool svm_cpu_has_accelerated_tpr(void)
5834{
5835 return false;
5836}
5837
5838static bool svm_has_emulated_msr(int index)
5839{
5840 return true;
5841}
5842
5843static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5844{
5845 return 0;
5846}
5847
5848static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5849{
5850 struct vcpu_svm *svm = to_svm(vcpu);
5851
5852 /* Update nrips enabled cache */
5853 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5854
5855 if (!kvm_vcpu_apicv_active(vcpu))
5856 return;
5857
5858 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5859}
5860
5861static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5862{
5863 switch (func) {
5864 case 0x1:
5865 if (avic)
5866 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5867 break;
5868 case 0x80000001:
5869 if (nested)
5870 entry->ecx |= (1 << 2); /* Set SVM bit */
5871 break;
5872 case 0x8000000A:
5873 entry->eax = 1; /* SVM revision 1 */
5874 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5875 ASID emulation to nested SVM */
5876 entry->ecx = 0; /* Reserved */
5877 entry->edx = 0; /* Per default do not support any
5878 additional features */
5879
5880 /* Support next_rip if host supports it */
5881 if (boot_cpu_has(X86_FEATURE_NRIPS))
5882 entry->edx |= SVM_FEATURE_NRIP;
5883
5884 /* Support NPT for the guest if enabled */
5885 if (npt_enabled)
5886 entry->edx |= SVM_FEATURE_NPT;
5887
5888 break;
5889 case 0x8000001F:
5890 /* Support memory encryption cpuid if host supports it */
5891 if (boot_cpu_has(X86_FEATURE_SEV))
5892 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5893 &entry->ecx, &entry->edx);
5894
5895 }
5896}
5897
5898static int svm_get_lpage_level(void)
5899{
5900 return PT_PDPE_LEVEL;
5901}
5902
5903static bool svm_rdtscp_supported(void)
5904{
5905 return boot_cpu_has(X86_FEATURE_RDTSCP);
5906}
5907
5908static bool svm_invpcid_supported(void)
5909{
5910 return false;
5911}
5912
5913static bool svm_mpx_supported(void)
5914{
5915 return false;
5916}
5917
5918static bool svm_xsaves_supported(void)
5919{
5920 return false;
5921}
5922
5923static bool svm_umip_emulated(void)
5924{
5925 return false;
5926}
5927
5928static bool svm_has_wbinvd_exit(void)
5929{
5930 return true;
5931}
5932
5933#define PRE_EX(exit) { .exit_code = (exit), \
5934 .stage = X86_ICPT_PRE_EXCEPT, }
5935#define POST_EX(exit) { .exit_code = (exit), \
5936 .stage = X86_ICPT_POST_EXCEPT, }
5937#define POST_MEM(exit) { .exit_code = (exit), \
5938 .stage = X86_ICPT_POST_MEMACCESS, }
5939
5940static const struct __x86_intercept {
5941 u32 exit_code;
5942 enum x86_intercept_stage stage;
5943} x86_intercept_map[] = {
5944 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5945 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5946 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5947 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5948 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5949 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5950 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5951 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5952 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5953 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5954 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5955 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5956 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5957 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5958 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5959 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5960 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5961 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5962 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5963 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5964 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5965 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5966 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5967 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5968 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5969 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5970 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5971 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5972 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5973 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5974 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5975 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5976 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5977 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5978 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5979 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5980 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5981 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5982 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5983 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5984 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5985 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5986 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5987 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5988 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5989 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5990};
5991
5992#undef PRE_EX
5993#undef POST_EX
5994#undef POST_MEM
5995
5996static int svm_check_intercept(struct kvm_vcpu *vcpu,
5997 struct x86_instruction_info *info,
5998 enum x86_intercept_stage stage)
5999{
6000 struct vcpu_svm *svm = to_svm(vcpu);
6001 int vmexit, ret = X86EMUL_CONTINUE;
6002 struct __x86_intercept icpt_info;
6003 struct vmcb *vmcb = svm->vmcb;
6004
6005 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6006 goto out;
6007
6008 icpt_info = x86_intercept_map[info->intercept];
6009
6010 if (stage != icpt_info.stage)
6011 goto out;
6012
6013 switch (icpt_info.exit_code) {
6014 case SVM_EXIT_READ_CR0:
6015 if (info->intercept == x86_intercept_cr_read)
6016 icpt_info.exit_code += info->modrm_reg;
6017 break;
6018 case SVM_EXIT_WRITE_CR0: {
6019 unsigned long cr0, val;
6020 u64 intercept;
6021
6022 if (info->intercept == x86_intercept_cr_write)
6023 icpt_info.exit_code += info->modrm_reg;
6024
6025 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6026 info->intercept == x86_intercept_clts)
6027 break;
6028
6029 intercept = svm->nested.intercept;
6030
6031 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6032 break;
6033
6034 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6035 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6036
6037 if (info->intercept == x86_intercept_lmsw) {
6038 cr0 &= 0xfUL;
6039 val &= 0xfUL;
6040 /* lmsw can't clear PE - catch this here */
6041 if (cr0 & X86_CR0_PE)
6042 val |= X86_CR0_PE;
6043 }
6044
6045 if (cr0 ^ val)
6046 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6047
6048 break;
6049 }
6050 case SVM_EXIT_READ_DR0:
6051 case SVM_EXIT_WRITE_DR0:
6052 icpt_info.exit_code += info->modrm_reg;
6053 break;
6054 case SVM_EXIT_MSR:
6055 if (info->intercept == x86_intercept_wrmsr)
6056 vmcb->control.exit_info_1 = 1;
6057 else
6058 vmcb->control.exit_info_1 = 0;
6059 break;
6060 case SVM_EXIT_PAUSE:
6061 /*
6062 * We get this for NOP only, but pause
6063 * is rep not, check this here
6064 */
6065 if (info->rep_prefix != REPE_PREFIX)
6066 goto out;
6067 break;
6068 case SVM_EXIT_IOIO: {
6069 u64 exit_info;
6070 u32 bytes;
6071
6072 if (info->intercept == x86_intercept_in ||
6073 info->intercept == x86_intercept_ins) {
6074 exit_info = ((info->src_val & 0xffff) << 16) |
6075 SVM_IOIO_TYPE_MASK;
6076 bytes = info->dst_bytes;
6077 } else {
6078 exit_info = (info->dst_val & 0xffff) << 16;
6079 bytes = info->src_bytes;
6080 }
6081
6082 if (info->intercept == x86_intercept_outs ||
6083 info->intercept == x86_intercept_ins)
6084 exit_info |= SVM_IOIO_STR_MASK;
6085
6086 if (info->rep_prefix)
6087 exit_info |= SVM_IOIO_REP_MASK;
6088
6089 bytes = min(bytes, 4u);
6090
6091 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6092
6093 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6094
6095 vmcb->control.exit_info_1 = exit_info;
6096 vmcb->control.exit_info_2 = info->next_rip;
6097
6098 break;
6099 }
6100 default:
6101 break;
6102 }
6103
6104 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6105 if (static_cpu_has(X86_FEATURE_NRIPS))
6106 vmcb->control.next_rip = info->next_rip;
6107 vmcb->control.exit_code = icpt_info.exit_code;
6108 vmexit = nested_svm_exit_handled(svm);
6109
6110 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6111 : X86EMUL_CONTINUE;
6112
6113out:
6114 return ret;
6115}
6116
6117static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6118{
6119 local_irq_enable();
6120 /*
6121 * We must have an instruction with interrupts enabled, so
6122 * the timer interrupt isn't delayed by the interrupt shadow.
6123 */
6124 asm("nop");
6125 local_irq_disable();
6126}
6127
6128static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6129{
6130 if (pause_filter_thresh)
6131 shrink_ple_window(vcpu);
6132}
6133
6134static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6135{
6136 if (avic_handle_apic_id_update(vcpu) != 0)
6137 return;
6138 if (avic_handle_dfr_update(vcpu) != 0)
6139 return;
6140 avic_handle_ldr_update(vcpu);
6141}
6142
6143static void svm_setup_mce(struct kvm_vcpu *vcpu)
6144{
6145 /* [63:9] are reserved. */
6146 vcpu->arch.mcg_cap &= 0x1ff;
6147}
6148
6149static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6150{
6151 struct vcpu_svm *svm = to_svm(vcpu);
6152
6153 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6154 if (!gif_set(svm))
6155 return 0;
6156
6157 if (is_guest_mode(&svm->vcpu) &&
6158 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6159 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6160 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6161 svm->nested.exit_required = true;
6162 return 0;
6163 }
6164
6165 return 1;
6166}
6167
6168static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6169{
6170 struct vcpu_svm *svm = to_svm(vcpu);
6171 int ret;
6172
6173 if (is_guest_mode(vcpu)) {
6174 /* FED8h - SVM Guest */
6175 put_smstate(u64, smstate, 0x7ed8, 1);
6176 /* FEE0h - SVM Guest VMCB Physical Address */
6177 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6178
6179 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6180 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6181 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6182
6183 ret = nested_svm_vmexit(svm);
6184 if (ret)
6185 return ret;
6186 }
6187 return 0;
6188}
6189
6190static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
6191{
6192 struct vcpu_svm *svm = to_svm(vcpu);
6193 struct vmcb *nested_vmcb;
6194 struct page *page;
6195 struct {
6196 u64 guest;
6197 u64 vmcb;
6198 } svm_state_save;
6199 int ret;
6200
6201 ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
6202 sizeof(svm_state_save));
6203 if (ret)
6204 return ret;
6205
6206 if (svm_state_save.guest) {
6207 vcpu->arch.hflags &= ~HF_SMM_MASK;
6208 nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
6209 if (nested_vmcb)
6210 enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
6211 else
6212 ret = 1;
6213 vcpu->arch.hflags |= HF_SMM_MASK;
6214 }
6215 return ret;
6216}
6217
6218static int enable_smi_window(struct kvm_vcpu *vcpu)
6219{
6220 struct vcpu_svm *svm = to_svm(vcpu);
6221
6222 if (!gif_set(svm)) {
6223 if (vgif_enabled(svm))
6224 set_intercept(svm, INTERCEPT_STGI);
6225 /* STGI will cause a vm exit */
6226 return 1;
6227 }
6228 return 0;
6229}
6230
6231static int sev_asid_new(void)
6232{
6233 int pos;
6234
6235 /*
6236 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6237 */
6238 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6239 if (pos >= max_sev_asid)
6240 return -EBUSY;
6241
6242 set_bit(pos, sev_asid_bitmap);
6243 return pos + 1;
6244}
6245
6246static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6247{
6248 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6249 int asid, ret;
6250
6251 ret = -EBUSY;
6252 asid = sev_asid_new();
6253 if (asid < 0)
6254 return ret;
6255
6256 ret = sev_platform_init(&argp->error);
6257 if (ret)
6258 goto e_free;
6259
6260 sev->active = true;
6261 sev->asid = asid;
6262 INIT_LIST_HEAD(&sev->regions_list);
6263
6264 return 0;
6265
6266e_free:
6267 __sev_asid_free(asid);
6268 return ret;
6269}
6270
6271static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6272{
6273 struct sev_data_activate *data;
6274 int asid = sev_get_asid(kvm);
6275 int ret;
6276
6277 wbinvd_on_all_cpus();
6278
6279 ret = sev_guest_df_flush(error);
6280 if (ret)
6281 return ret;
6282
6283 data = kzalloc(sizeof(*data), GFP_KERNEL);
6284 if (!data)
6285 return -ENOMEM;
6286
6287 /* activate ASID on the given handle */
6288 data->handle = handle;
6289 data->asid = asid;
6290 ret = sev_guest_activate(data, error);
6291 kfree(data);
6292
6293 return ret;
6294}
6295
6296static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6297{
6298 struct fd f;
6299 int ret;
6300
6301 f = fdget(fd);
6302 if (!f.file)
6303 return -EBADF;
6304
6305 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6306
6307 fdput(f);
6308 return ret;
6309}
6310
6311static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6312{
6313 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6314
6315 return __sev_issue_cmd(sev->fd, id, data, error);
6316}
6317
6318static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6319{
6320 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6321 struct sev_data_launch_start *start;
6322 struct kvm_sev_launch_start params;
6323 void *dh_blob, *session_blob;
6324 int *error = &argp->error;
6325 int ret;
6326
6327 if (!sev_guest(kvm))
6328 return -ENOTTY;
6329
6330 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6331 return -EFAULT;
6332
6333 start = kzalloc(sizeof(*start), GFP_KERNEL);
6334 if (!start)
6335 return -ENOMEM;
6336
6337 dh_blob = NULL;
6338 if (params.dh_uaddr) {
6339 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6340 if (IS_ERR(dh_blob)) {
6341 ret = PTR_ERR(dh_blob);
6342 goto e_free;
6343 }
6344
6345 start->dh_cert_address = __sme_set(__pa(dh_blob));
6346 start->dh_cert_len = params.dh_len;
6347 }
6348
6349 session_blob = NULL;
6350 if (params.session_uaddr) {
6351 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6352 if (IS_ERR(session_blob)) {
6353 ret = PTR_ERR(session_blob);
6354 goto e_free_dh;
6355 }
6356
6357 start->session_address = __sme_set(__pa(session_blob));
6358 start->session_len = params.session_len;
6359 }
6360
6361 start->handle = params.handle;
6362 start->policy = params.policy;
6363
6364 /* create memory encryption context */
6365 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6366 if (ret)
6367 goto e_free_session;
6368
6369 /* Bind ASID to this guest */
6370 ret = sev_bind_asid(kvm, start->handle, error);
6371 if (ret)
6372 goto e_free_session;
6373
6374 /* return handle to userspace */
6375 params.handle = start->handle;
6376 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6377 sev_unbind_asid(kvm, start->handle);
6378 ret = -EFAULT;
6379 goto e_free_session;
6380 }
6381
6382 sev->handle = start->handle;
6383 sev->fd = argp->sev_fd;
6384
6385e_free_session:
6386 kfree(session_blob);
6387e_free_dh:
6388 kfree(dh_blob);
6389e_free:
6390 kfree(start);
6391 return ret;
6392}
6393
6394static int get_num_contig_pages(int idx, struct page **inpages,
6395 unsigned long npages)
6396{
6397 unsigned long paddr, next_paddr;
6398 int i = idx + 1, pages = 1;
6399
6400 /* find the number of contiguous pages starting from idx */
6401 paddr = __sme_page_pa(inpages[idx]);
6402 while (i < npages) {
6403 next_paddr = __sme_page_pa(inpages[i++]);
6404 if ((paddr + PAGE_SIZE) == next_paddr) {
6405 pages++;
6406 paddr = next_paddr;
6407 continue;
6408 }
6409 break;
6410 }
6411
6412 return pages;
6413}
6414
6415static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6416{
6417 unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
6418 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6419 struct kvm_sev_launch_update_data params;
6420 struct sev_data_launch_update_data *data;
6421 struct page **inpages;
6422 int i, ret, pages;
6423
6424 if (!sev_guest(kvm))
6425 return -ENOTTY;
6426
6427 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6428 return -EFAULT;
6429
6430 data = kzalloc(sizeof(*data), GFP_KERNEL);
6431 if (!data)
6432 return -ENOMEM;
6433
6434 vaddr = params.uaddr;
6435 size = params.len;
6436 vaddr_end = vaddr + size;
6437
6438 /* Lock the user memory. */
6439 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6440 if (!inpages) {
6441 ret = -ENOMEM;
6442 goto e_free;
6443 }
6444
6445 /*
6446 * The LAUNCH_UPDATE command will perform in-place encryption of the
6447 * memory content (i.e it will write the same memory region with C=1).
6448 * It's possible that the cache may contain the data with C=0, i.e.,
6449 * unencrypted so invalidate it first.
6450 */
6451 sev_clflush_pages(inpages, npages);
6452
6453 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6454 int offset, len;
6455
6456 /*
6457 * If the user buffer is not page-aligned, calculate the offset
6458 * within the page.
6459 */
6460 offset = vaddr & (PAGE_SIZE - 1);
6461
6462 /* Calculate the number of pages that can be encrypted in one go. */
6463 pages = get_num_contig_pages(i, inpages, npages);
6464
6465 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6466
6467 data->handle = sev->handle;
6468 data->len = len;
6469 data->address = __sme_page_pa(inpages[i]) + offset;
6470 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6471 if (ret)
6472 goto e_unpin;
6473
6474 size -= len;
6475 next_vaddr = vaddr + len;
6476 }
6477
6478e_unpin:
6479 /* content of memory is updated, mark pages dirty */
6480 for (i = 0; i < npages; i++) {
6481 set_page_dirty_lock(inpages[i]);
6482 mark_page_accessed(inpages[i]);
6483 }
6484 /* unlock the user pages */
6485 sev_unpin_memory(kvm, inpages, npages);
6486e_free:
6487 kfree(data);
6488 return ret;
6489}
6490
6491static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6492{
6493 void __user *measure = (void __user *)(uintptr_t)argp->data;
6494 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6495 struct sev_data_launch_measure *data;
6496 struct kvm_sev_launch_measure params;
6497 void __user *p = NULL;
6498 void *blob = NULL;
6499 int ret;
6500
6501 if (!sev_guest(kvm))
6502 return -ENOTTY;
6503
6504 if (copy_from_user(&params, measure, sizeof(params)))
6505 return -EFAULT;
6506
6507 data = kzalloc(sizeof(*data), GFP_KERNEL);
6508 if (!data)
6509 return -ENOMEM;
6510
6511 /* User wants to query the blob length */
6512 if (!params.len)
6513 goto cmd;
6514
6515 p = (void __user *)(uintptr_t)params.uaddr;
6516 if (p) {
6517 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6518 ret = -EINVAL;
6519 goto e_free;
6520 }
6521
6522 ret = -ENOMEM;
6523 blob = kmalloc(params.len, GFP_KERNEL);
6524 if (!blob)
6525 goto e_free;
6526
6527 data->address = __psp_pa(blob);
6528 data->len = params.len;
6529 }
6530
6531cmd:
6532 data->handle = sev->handle;
6533 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6534
6535 /*
6536 * If we query the session length, FW responded with expected data.
6537 */
6538 if (!params.len)
6539 goto done;
6540
6541 if (ret)
6542 goto e_free_blob;
6543
6544 if (blob) {
6545 if (copy_to_user(p, blob, params.len))
6546 ret = -EFAULT;
6547 }
6548
6549done:
6550 params.len = data->len;
6551 if (copy_to_user(measure, &params, sizeof(params)))
6552 ret = -EFAULT;
6553e_free_blob:
6554 kfree(blob);
6555e_free:
6556 kfree(data);
6557 return ret;
6558}
6559
6560static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6561{
6562 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6563 struct sev_data_launch_finish *data;
6564 int ret;
6565
6566 if (!sev_guest(kvm))
6567 return -ENOTTY;
6568
6569 data = kzalloc(sizeof(*data), GFP_KERNEL);
6570 if (!data)
6571 return -ENOMEM;
6572
6573 data->handle = sev->handle;
6574 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6575
6576 kfree(data);
6577 return ret;
6578}
6579
6580static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6581{
6582 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6583 struct kvm_sev_guest_status params;
6584 struct sev_data_guest_status *data;
6585 int ret;
6586
6587 if (!sev_guest(kvm))
6588 return -ENOTTY;
6589
6590 data = kzalloc(sizeof(*data), GFP_KERNEL);
6591 if (!data)
6592 return -ENOMEM;
6593
6594 data->handle = sev->handle;
6595 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6596 if (ret)
6597 goto e_free;
6598
6599 params.policy = data->policy;
6600 params.state = data->state;
6601 params.handle = data->handle;
6602
6603 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6604 ret = -EFAULT;
6605e_free:
6606 kfree(data);
6607 return ret;
6608}
6609
6610static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6611 unsigned long dst, int size,
6612 int *error, bool enc)
6613{
6614 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6615 struct sev_data_dbg *data;
6616 int ret;
6617
6618 data = kzalloc(sizeof(*data), GFP_KERNEL);
6619 if (!data)
6620 return -ENOMEM;
6621
6622 data->handle = sev->handle;
6623 data->dst_addr = dst;
6624 data->src_addr = src;
6625 data->len = size;
6626
6627 ret = sev_issue_cmd(kvm,
6628 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6629 data, error);
6630 kfree(data);
6631 return ret;
6632}
6633
6634static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6635 unsigned long dst_paddr, int sz, int *err)
6636{
6637 int offset;
6638
6639 /*
6640 * Its safe to read more than we are asked, caller should ensure that
6641 * destination has enough space.
6642 */
6643 src_paddr = round_down(src_paddr, 16);
6644 offset = src_paddr & 15;
6645 sz = round_up(sz + offset, 16);
6646
6647 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6648}
6649
6650static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6651 unsigned long __user dst_uaddr,
6652 unsigned long dst_paddr,
6653 int size, int *err)
6654{
6655 struct page *tpage = NULL;
6656 int ret, offset;
6657
6658 /* if inputs are not 16-byte then use intermediate buffer */
6659 if (!IS_ALIGNED(dst_paddr, 16) ||
6660 !IS_ALIGNED(paddr, 16) ||
6661 !IS_ALIGNED(size, 16)) {
6662 tpage = (void *)alloc_page(GFP_KERNEL);
6663 if (!tpage)
6664 return -ENOMEM;
6665
6666 dst_paddr = __sme_page_pa(tpage);
6667 }
6668
6669 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6670 if (ret)
6671 goto e_free;
6672
6673 if (tpage) {
6674 offset = paddr & 15;
6675 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6676 page_address(tpage) + offset, size))
6677 ret = -EFAULT;
6678 }
6679
6680e_free:
6681 if (tpage)
6682 __free_page(tpage);
6683
6684 return ret;
6685}
6686
6687static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6688 unsigned long __user vaddr,
6689 unsigned long dst_paddr,
6690 unsigned long __user dst_vaddr,
6691 int size, int *error)
6692{
6693 struct page *src_tpage = NULL;
6694 struct page *dst_tpage = NULL;
6695 int ret, len = size;
6696
6697 /* If source buffer is not aligned then use an intermediate buffer */
6698 if (!IS_ALIGNED(vaddr, 16)) {
6699 src_tpage = alloc_page(GFP_KERNEL);
6700 if (!src_tpage)
6701 return -ENOMEM;
6702
6703 if (copy_from_user(page_address(src_tpage),
6704 (void __user *)(uintptr_t)vaddr, size)) {
6705 __free_page(src_tpage);
6706 return -EFAULT;
6707 }
6708
6709 paddr = __sme_page_pa(src_tpage);
6710 }
6711
6712 /*
6713 * If destination buffer or length is not aligned then do read-modify-write:
6714 * - decrypt destination in an intermediate buffer
6715 * - copy the source buffer in an intermediate buffer
6716 * - use the intermediate buffer as source buffer
6717 */
6718 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6719 int dst_offset;
6720
6721 dst_tpage = alloc_page(GFP_KERNEL);
6722 if (!dst_tpage) {
6723 ret = -ENOMEM;
6724 goto e_free;
6725 }
6726
6727 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6728 __sme_page_pa(dst_tpage), size, error);
6729 if (ret)
6730 goto e_free;
6731
6732 /*
6733 * If source is kernel buffer then use memcpy() otherwise
6734 * copy_from_user().
6735 */
6736 dst_offset = dst_paddr & 15;
6737
6738 if (src_tpage)
6739 memcpy(page_address(dst_tpage) + dst_offset,
6740 page_address(src_tpage), size);
6741 else {
6742 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6743 (void __user *)(uintptr_t)vaddr, size)) {
6744 ret = -EFAULT;
6745 goto e_free;
6746 }
6747 }
6748
6749 paddr = __sme_page_pa(dst_tpage);
6750 dst_paddr = round_down(dst_paddr, 16);
6751 len = round_up(size, 16);
6752 }
6753
6754 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6755
6756e_free:
6757 if (src_tpage)
6758 __free_page(src_tpage);
6759 if (dst_tpage)
6760 __free_page(dst_tpage);
6761 return ret;
6762}
6763
6764static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6765{
6766 unsigned long vaddr, vaddr_end, next_vaddr;
6767 unsigned long dst_vaddr;
6768 struct page **src_p, **dst_p;
6769 struct kvm_sev_dbg debug;
6770 unsigned long n;
6771 int ret, size;
6772
6773 if (!sev_guest(kvm))
6774 return -ENOTTY;
6775
6776 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6777 return -EFAULT;
6778
6779 vaddr = debug.src_uaddr;
6780 size = debug.len;
6781 vaddr_end = vaddr + size;
6782 dst_vaddr = debug.dst_uaddr;
6783
6784 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6785 int len, s_off, d_off;
6786
6787 /* lock userspace source and destination page */
6788 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6789 if (!src_p)
6790 return -EFAULT;
6791
6792 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6793 if (!dst_p) {
6794 sev_unpin_memory(kvm, src_p, n);
6795 return -EFAULT;
6796 }
6797
6798 /*
6799 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6800 * memory content (i.e it will write the same memory region with C=1).
6801 * It's possible that the cache may contain the data with C=0, i.e.,
6802 * unencrypted so invalidate it first.
6803 */
6804 sev_clflush_pages(src_p, 1);
6805 sev_clflush_pages(dst_p, 1);
6806
6807 /*
6808 * Since user buffer may not be page aligned, calculate the
6809 * offset within the page.
6810 */
6811 s_off = vaddr & ~PAGE_MASK;
6812 d_off = dst_vaddr & ~PAGE_MASK;
6813 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6814
6815 if (dec)
6816 ret = __sev_dbg_decrypt_user(kvm,
6817 __sme_page_pa(src_p[0]) + s_off,
6818 dst_vaddr,
6819 __sme_page_pa(dst_p[0]) + d_off,
6820 len, &argp->error);
6821 else
6822 ret = __sev_dbg_encrypt_user(kvm,
6823 __sme_page_pa(src_p[0]) + s_off,
6824 vaddr,
6825 __sme_page_pa(dst_p[0]) + d_off,
6826 dst_vaddr,
6827 len, &argp->error);
6828
6829 sev_unpin_memory(kvm, src_p, 1);
6830 sev_unpin_memory(kvm, dst_p, 1);
6831
6832 if (ret)
6833 goto err;
6834
6835 next_vaddr = vaddr + len;
6836 dst_vaddr = dst_vaddr + len;
6837 size -= len;
6838 }
6839err:
6840 return ret;
6841}
6842
6843static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6844{
6845 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6846 struct sev_data_launch_secret *data;
6847 struct kvm_sev_launch_secret params;
6848 struct page **pages;
6849 void *blob, *hdr;
6850 unsigned long n;
6851 int ret, offset;
6852
6853 if (!sev_guest(kvm))
6854 return -ENOTTY;
6855
6856 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6857 return -EFAULT;
6858
6859 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6860 if (!pages)
6861 return -ENOMEM;
6862
6863 /*
6864 * The secret must be copied into contiguous memory region, lets verify
6865 * that userspace memory pages are contiguous before we issue command.
6866 */
6867 if (get_num_contig_pages(0, pages, n) != n) {
6868 ret = -EINVAL;
6869 goto e_unpin_memory;
6870 }
6871
6872 ret = -ENOMEM;
6873 data = kzalloc(sizeof(*data), GFP_KERNEL);
6874 if (!data)
6875 goto e_unpin_memory;
6876
6877 offset = params.guest_uaddr & (PAGE_SIZE - 1);
6878 data->guest_address = __sme_page_pa(pages[0]) + offset;
6879 data->guest_len = params.guest_len;
6880
6881 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6882 if (IS_ERR(blob)) {
6883 ret = PTR_ERR(blob);
6884 goto e_free;
6885 }
6886
6887 data->trans_address = __psp_pa(blob);
6888 data->trans_len = params.trans_len;
6889
6890 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6891 if (IS_ERR(hdr)) {
6892 ret = PTR_ERR(hdr);
6893 goto e_free_blob;
6894 }
6895 data->hdr_address = __psp_pa(hdr);
6896 data->hdr_len = params.hdr_len;
6897
6898 data->handle = sev->handle;
6899 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6900
6901 kfree(hdr);
6902
6903e_free_blob:
6904 kfree(blob);
6905e_free:
6906 kfree(data);
6907e_unpin_memory:
6908 sev_unpin_memory(kvm, pages, n);
6909 return ret;
6910}
6911
6912static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6913{
6914 struct kvm_sev_cmd sev_cmd;
6915 int r;
6916
6917 if (!svm_sev_enabled())
6918 return -ENOTTY;
6919
6920 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6921 return -EFAULT;
6922
6923 mutex_lock(&kvm->lock);
6924
6925 switch (sev_cmd.id) {
6926 case KVM_SEV_INIT:
6927 r = sev_guest_init(kvm, &sev_cmd);
6928 break;
6929 case KVM_SEV_LAUNCH_START:
6930 r = sev_launch_start(kvm, &sev_cmd);
6931 break;
6932 case KVM_SEV_LAUNCH_UPDATE_DATA:
6933 r = sev_launch_update_data(kvm, &sev_cmd);
6934 break;
6935 case KVM_SEV_LAUNCH_MEASURE:
6936 r = sev_launch_measure(kvm, &sev_cmd);
6937 break;
6938 case KVM_SEV_LAUNCH_FINISH:
6939 r = sev_launch_finish(kvm, &sev_cmd);
6940 break;
6941 case KVM_SEV_GUEST_STATUS:
6942 r = sev_guest_status(kvm, &sev_cmd);
6943 break;
6944 case KVM_SEV_DBG_DECRYPT:
6945 r = sev_dbg_crypt(kvm, &sev_cmd, true);
6946 break;
6947 case KVM_SEV_DBG_ENCRYPT:
6948 r = sev_dbg_crypt(kvm, &sev_cmd, false);
6949 break;
6950 case KVM_SEV_LAUNCH_SECRET:
6951 r = sev_launch_secret(kvm, &sev_cmd);
6952 break;
6953 default:
6954 r = -EINVAL;
6955 goto out;
6956 }
6957
6958 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6959 r = -EFAULT;
6960
6961out:
6962 mutex_unlock(&kvm->lock);
6963 return r;
6964}
6965
6966static int svm_register_enc_region(struct kvm *kvm,
6967 struct kvm_enc_region *range)
6968{
6969 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6970 struct enc_region *region;
6971 int ret = 0;
6972
6973 if (!sev_guest(kvm))
6974 return -ENOTTY;
6975
6976 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
6977 return -EINVAL;
6978
6979 region = kzalloc(sizeof(*region), GFP_KERNEL);
6980 if (!region)
6981 return -ENOMEM;
6982
6983 region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
6984 if (!region->pages) {
6985 ret = -ENOMEM;
6986 goto e_free;
6987 }
6988
6989 /*
6990 * The guest may change the memory encryption attribute from C=0 -> C=1
6991 * or vice versa for this memory range. Lets make sure caches are
6992 * flushed to ensure that guest data gets written into memory with
6993 * correct C-bit.
6994 */
6995 sev_clflush_pages(region->pages, region->npages);
6996
6997 region->uaddr = range->addr;
6998 region->size = range->size;
6999
7000 mutex_lock(&kvm->lock);
7001 list_add_tail(&region->list, &sev->regions_list);
7002 mutex_unlock(&kvm->lock);
7003
7004 return ret;
7005
7006e_free:
7007 kfree(region);
7008 return ret;
7009}
7010
7011static struct enc_region *
7012find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7013{
7014 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7015 struct list_head *head = &sev->regions_list;
7016 struct enc_region *i;
7017
7018 list_for_each_entry(i, head, list) {
7019 if (i->uaddr == range->addr &&
7020 i->size == range->size)
7021 return i;
7022 }
7023
7024 return NULL;
7025}
7026
7027
7028static int svm_unregister_enc_region(struct kvm *kvm,
7029 struct kvm_enc_region *range)
7030{
7031 struct enc_region *region;
7032 int ret;
7033
7034 mutex_lock(&kvm->lock);
7035
7036 if (!sev_guest(kvm)) {
7037 ret = -ENOTTY;
7038 goto failed;
7039 }
7040
7041 region = find_enc_region(kvm, range);
7042 if (!region) {
7043 ret = -EINVAL;
7044 goto failed;
7045 }
7046
7047 __unregister_enc_region_locked(kvm, region);
7048
7049 mutex_unlock(&kvm->lock);
7050 return 0;
7051
7052failed:
7053 mutex_unlock(&kvm->lock);
7054 return ret;
7055}
7056
7057static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7058 .cpu_has_kvm_support = has_svm,
7059 .disabled_by_bios = is_disabled,
7060 .hardware_setup = svm_hardware_setup,
7061 .hardware_unsetup = svm_hardware_unsetup,
7062 .check_processor_compatibility = svm_check_processor_compat,
7063 .hardware_enable = svm_hardware_enable,
7064 .hardware_disable = svm_hardware_disable,
7065 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7066 .has_emulated_msr = svm_has_emulated_msr,
7067
7068 .vcpu_create = svm_create_vcpu,
7069 .vcpu_free = svm_free_vcpu,
7070 .vcpu_reset = svm_vcpu_reset,
7071
7072 .vm_alloc = svm_vm_alloc,
7073 .vm_free = svm_vm_free,
7074 .vm_init = avic_vm_init,
7075 .vm_destroy = svm_vm_destroy,
7076
7077 .prepare_guest_switch = svm_prepare_guest_switch,
7078 .vcpu_load = svm_vcpu_load,
7079 .vcpu_put = svm_vcpu_put,
7080 .vcpu_blocking = svm_vcpu_blocking,
7081 .vcpu_unblocking = svm_vcpu_unblocking,
7082
7083 .update_bp_intercept = update_bp_intercept,
7084 .get_msr_feature = svm_get_msr_feature,
7085 .get_msr = svm_get_msr,
7086 .set_msr = svm_set_msr,
7087 .get_segment_base = svm_get_segment_base,
7088 .get_segment = svm_get_segment,
7089 .set_segment = svm_set_segment,
7090 .get_cpl = svm_get_cpl,
7091 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7092 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7093 .decache_cr3 = svm_decache_cr3,
7094 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7095 .set_cr0 = svm_set_cr0,
7096 .set_cr3 = svm_set_cr3,
7097 .set_cr4 = svm_set_cr4,
7098 .set_efer = svm_set_efer,
7099 .get_idt = svm_get_idt,
7100 .set_idt = svm_set_idt,
7101 .get_gdt = svm_get_gdt,
7102 .set_gdt = svm_set_gdt,
7103 .get_dr6 = svm_get_dr6,
7104 .set_dr6 = svm_set_dr6,
7105 .set_dr7 = svm_set_dr7,
7106 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7107 .cache_reg = svm_cache_reg,
7108 .get_rflags = svm_get_rflags,
7109 .set_rflags = svm_set_rflags,
7110
7111 .tlb_flush = svm_flush_tlb,
7112 .tlb_flush_gva = svm_flush_tlb_gva,
7113
7114 .run = svm_vcpu_run,
7115 .handle_exit = handle_exit,
7116 .skip_emulated_instruction = skip_emulated_instruction,
7117 .set_interrupt_shadow = svm_set_interrupt_shadow,
7118 .get_interrupt_shadow = svm_get_interrupt_shadow,
7119 .patch_hypercall = svm_patch_hypercall,
7120 .set_irq = svm_set_irq,
7121 .set_nmi = svm_inject_nmi,
7122 .queue_exception = svm_queue_exception,
7123 .cancel_injection = svm_cancel_injection,
7124 .interrupt_allowed = svm_interrupt_allowed,
7125 .nmi_allowed = svm_nmi_allowed,
7126 .get_nmi_mask = svm_get_nmi_mask,
7127 .set_nmi_mask = svm_set_nmi_mask,
7128 .enable_nmi_window = enable_nmi_window,
7129 .enable_irq_window = enable_irq_window,
7130 .update_cr8_intercept = update_cr8_intercept,
7131 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7132 .get_enable_apicv = svm_get_enable_apicv,
7133 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7134 .load_eoi_exitmap = svm_load_eoi_exitmap,
7135 .hwapic_irr_update = svm_hwapic_irr_update,
7136 .hwapic_isr_update = svm_hwapic_isr_update,
7137 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7138 .apicv_post_state_restore = avic_post_state_restore,
7139
7140 .set_tss_addr = svm_set_tss_addr,
7141 .set_identity_map_addr = svm_set_identity_map_addr,
7142 .get_tdp_level = get_npt_level,
7143 .get_mt_mask = svm_get_mt_mask,
7144
7145 .get_exit_info = svm_get_exit_info,
7146
7147 .get_lpage_level = svm_get_lpage_level,
7148
7149 .cpuid_update = svm_cpuid_update,
7150
7151 .rdtscp_supported = svm_rdtscp_supported,
7152 .invpcid_supported = svm_invpcid_supported,
7153 .mpx_supported = svm_mpx_supported,
7154 .xsaves_supported = svm_xsaves_supported,
7155 .umip_emulated = svm_umip_emulated,
7156
7157 .set_supported_cpuid = svm_set_supported_cpuid,
7158
7159 .has_wbinvd_exit = svm_has_wbinvd_exit,
7160
7161 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7162 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7163
7164 .set_tdp_cr3 = set_tdp_cr3,
7165
7166 .check_intercept = svm_check_intercept,
7167 .handle_external_intr = svm_handle_external_intr,
7168
7169 .request_immediate_exit = __kvm_request_immediate_exit,
7170
7171 .sched_in = svm_sched_in,
7172
7173 .pmu_ops = &amd_pmu_ops,
7174 .deliver_posted_interrupt = svm_deliver_avic_intr,
7175 .update_pi_irte = svm_update_pi_irte,
7176 .setup_mce = svm_setup_mce,
7177
7178 .smi_allowed = svm_smi_allowed,
7179 .pre_enter_smm = svm_pre_enter_smm,
7180 .pre_leave_smm = svm_pre_leave_smm,
7181 .enable_smi_window = enable_smi_window,
7182
7183 .mem_enc_op = svm_mem_enc_op,
7184 .mem_enc_reg_region = svm_register_enc_region,
7185 .mem_enc_unreg_region = svm_unregister_enc_region,
7186};
7187
7188static int __init svm_init(void)
7189{
7190 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7191 __alignof__(struct vcpu_svm), THIS_MODULE);
7192}
7193
7194static void __exit svm_exit(void)
7195{
7196 kvm_exit();
7197}
7198
7199module_init(svm_init)
7200module_exit(svm_exit)