Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* arch/sparc64/kernel/kprobes.c |
| 3 | * |
| 4 | * Copyright (C) 2004 David S. Miller <davem@davemloft.net> |
| 5 | */ |
| 6 | |
| 7 | #include <linux/kernel.h> |
| 8 | #include <linux/kprobes.h> |
| 9 | #include <linux/extable.h> |
| 10 | #include <linux/kdebug.h> |
| 11 | #include <linux/slab.h> |
| 12 | #include <linux/context_tracking.h> |
| 13 | #include <asm/signal.h> |
| 14 | #include <asm/cacheflush.h> |
| 15 | #include <linux/uaccess.h> |
| 16 | |
| 17 | /* We do not have hardware single-stepping on sparc64. |
| 18 | * So we implement software single-stepping with breakpoint |
| 19 | * traps. The top-level scheme is similar to that used |
| 20 | * in the x86 kprobes implementation. |
| 21 | * |
| 22 | * In the kprobe->ainsn.insn[] array we store the original |
| 23 | * instruction at index zero and a break instruction at |
| 24 | * index one. |
| 25 | * |
| 26 | * When we hit a kprobe we: |
| 27 | * - Run the pre-handler |
| 28 | * - Remember "regs->tnpc" and interrupt level stored in |
| 29 | * "regs->tstate" so we can restore them later |
| 30 | * - Disable PIL interrupts |
| 31 | * - Set regs->tpc to point to kprobe->ainsn.insn[0] |
| 32 | * - Set regs->tnpc to point to kprobe->ainsn.insn[1] |
| 33 | * - Mark that we are actively in a kprobe |
| 34 | * |
| 35 | * At this point we wait for the second breakpoint at |
| 36 | * kprobe->ainsn.insn[1] to hit. When it does we: |
| 37 | * - Run the post-handler |
| 38 | * - Set regs->tpc to "remembered" regs->tnpc stored above, |
| 39 | * restore the PIL interrupt level in "regs->tstate" as well |
| 40 | * - Make any adjustments necessary to regs->tnpc in order |
| 41 | * to handle relative branches correctly. See below. |
| 42 | * - Mark that we are no longer actively in a kprobe. |
| 43 | */ |
| 44 | |
| 45 | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; |
| 46 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| 47 | |
| 48 | struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; |
| 49 | |
| 50 | int __kprobes arch_prepare_kprobe(struct kprobe *p) |
| 51 | { |
| 52 | if ((unsigned long) p->addr & 0x3UL) |
| 53 | return -EILSEQ; |
| 54 | |
| 55 | p->ainsn.insn[0] = *p->addr; |
| 56 | flushi(&p->ainsn.insn[0]); |
| 57 | |
| 58 | p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2; |
| 59 | flushi(&p->ainsn.insn[1]); |
| 60 | |
| 61 | p->opcode = *p->addr; |
| 62 | return 0; |
| 63 | } |
| 64 | |
| 65 | void __kprobes arch_arm_kprobe(struct kprobe *p) |
| 66 | { |
| 67 | *p->addr = BREAKPOINT_INSTRUCTION; |
| 68 | flushi(p->addr); |
| 69 | } |
| 70 | |
| 71 | void __kprobes arch_disarm_kprobe(struct kprobe *p) |
| 72 | { |
| 73 | *p->addr = p->opcode; |
| 74 | flushi(p->addr); |
| 75 | } |
| 76 | |
| 77 | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| 78 | { |
| 79 | kcb->prev_kprobe.kp = kprobe_running(); |
| 80 | kcb->prev_kprobe.status = kcb->kprobe_status; |
| 81 | kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc; |
| 82 | kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil; |
| 83 | } |
| 84 | |
| 85 | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| 86 | { |
| 87 | __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); |
| 88 | kcb->kprobe_status = kcb->prev_kprobe.status; |
| 89 | kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc; |
| 90 | kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil; |
| 91 | } |
| 92 | |
| 93 | static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, |
| 94 | struct kprobe_ctlblk *kcb) |
| 95 | { |
| 96 | __this_cpu_write(current_kprobe, p); |
| 97 | kcb->kprobe_orig_tnpc = regs->tnpc; |
| 98 | kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL); |
| 99 | } |
| 100 | |
| 101 | static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs, |
| 102 | struct kprobe_ctlblk *kcb) |
| 103 | { |
| 104 | regs->tstate |= TSTATE_PIL; |
| 105 | |
| 106 | /*single step inline, if it a breakpoint instruction*/ |
| 107 | if (p->opcode == BREAKPOINT_INSTRUCTION) { |
| 108 | regs->tpc = (unsigned long) p->addr; |
| 109 | regs->tnpc = kcb->kprobe_orig_tnpc; |
| 110 | } else { |
| 111 | regs->tpc = (unsigned long) &p->ainsn.insn[0]; |
| 112 | regs->tnpc = (unsigned long) &p->ainsn.insn[1]; |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | static int __kprobes kprobe_handler(struct pt_regs *regs) |
| 117 | { |
| 118 | struct kprobe *p; |
| 119 | void *addr = (void *) regs->tpc; |
| 120 | int ret = 0; |
| 121 | struct kprobe_ctlblk *kcb; |
| 122 | |
| 123 | /* |
| 124 | * We don't want to be preempted for the entire |
| 125 | * duration of kprobe processing |
| 126 | */ |
| 127 | preempt_disable(); |
| 128 | kcb = get_kprobe_ctlblk(); |
| 129 | |
| 130 | if (kprobe_running()) { |
| 131 | p = get_kprobe(addr); |
| 132 | if (p) { |
| 133 | if (kcb->kprobe_status == KPROBE_HIT_SS) { |
| 134 | regs->tstate = ((regs->tstate & ~TSTATE_PIL) | |
| 135 | kcb->kprobe_orig_tstate_pil); |
| 136 | goto no_kprobe; |
| 137 | } |
| 138 | /* We have reentered the kprobe_handler(), since |
| 139 | * another probe was hit while within the handler. |
| 140 | * We here save the original kprobes variables and |
| 141 | * just single step on the instruction of the new probe |
| 142 | * without calling any user handlers. |
| 143 | */ |
| 144 | save_previous_kprobe(kcb); |
| 145 | set_current_kprobe(p, regs, kcb); |
| 146 | kprobes_inc_nmissed_count(p); |
| 147 | kcb->kprobe_status = KPROBE_REENTER; |
| 148 | prepare_singlestep(p, regs, kcb); |
| 149 | return 1; |
| 150 | } else if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) { |
| 151 | /* The breakpoint instruction was removed by |
| 152 | * another cpu right after we hit, no further |
| 153 | * handling of this interrupt is appropriate |
| 154 | */ |
| 155 | ret = 1; |
| 156 | } |
| 157 | goto no_kprobe; |
| 158 | } |
| 159 | |
| 160 | p = get_kprobe(addr); |
| 161 | if (!p) { |
| 162 | if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) { |
| 163 | /* |
| 164 | * The breakpoint instruction was removed right |
| 165 | * after we hit it. Another cpu has removed |
| 166 | * either a probepoint or a debugger breakpoint |
| 167 | * at this address. In either case, no further |
| 168 | * handling of this interrupt is appropriate. |
| 169 | */ |
| 170 | ret = 1; |
| 171 | } |
| 172 | /* Not one of ours: let kernel handle it */ |
| 173 | goto no_kprobe; |
| 174 | } |
| 175 | |
| 176 | set_current_kprobe(p, regs, kcb); |
| 177 | kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| 178 | if (p->pre_handler && p->pre_handler(p, regs)) { |
| 179 | reset_current_kprobe(); |
| 180 | preempt_enable_no_resched(); |
| 181 | return 1; |
| 182 | } |
| 183 | |
| 184 | prepare_singlestep(p, regs, kcb); |
| 185 | kcb->kprobe_status = KPROBE_HIT_SS; |
| 186 | return 1; |
| 187 | |
| 188 | no_kprobe: |
| 189 | preempt_enable_no_resched(); |
| 190 | return ret; |
| 191 | } |
| 192 | |
| 193 | /* If INSN is a relative control transfer instruction, |
| 194 | * return the corrected branch destination value. |
| 195 | * |
| 196 | * regs->tpc and regs->tnpc still hold the values of the |
| 197 | * program counters at the time of trap due to the execution |
| 198 | * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1] |
| 199 | * |
| 200 | */ |
| 201 | static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p, |
| 202 | struct pt_regs *regs) |
| 203 | { |
| 204 | unsigned long real_pc = (unsigned long) p->addr; |
| 205 | |
| 206 | /* Branch not taken, no mods necessary. */ |
| 207 | if (regs->tnpc == regs->tpc + 0x4UL) |
| 208 | return real_pc + 0x8UL; |
| 209 | |
| 210 | /* The three cases are call, branch w/prediction, |
| 211 | * and traditional branch. |
| 212 | */ |
| 213 | if ((insn & 0xc0000000) == 0x40000000 || |
| 214 | (insn & 0xc1c00000) == 0x00400000 || |
| 215 | (insn & 0xc1c00000) == 0x00800000) { |
| 216 | unsigned long ainsn_addr; |
| 217 | |
| 218 | ainsn_addr = (unsigned long) &p->ainsn.insn[0]; |
| 219 | |
| 220 | /* The instruction did all the work for us |
| 221 | * already, just apply the offset to the correct |
| 222 | * instruction location. |
| 223 | */ |
| 224 | return (real_pc + (regs->tnpc - ainsn_addr)); |
| 225 | } |
| 226 | |
| 227 | /* It is jmpl or some other absolute PC modification instruction, |
| 228 | * leave NPC as-is. |
| 229 | */ |
| 230 | return regs->tnpc; |
| 231 | } |
| 232 | |
| 233 | /* If INSN is an instruction which writes it's PC location |
| 234 | * into a destination register, fix that up. |
| 235 | */ |
| 236 | static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn, |
| 237 | unsigned long real_pc) |
| 238 | { |
| 239 | unsigned long *slot = NULL; |
| 240 | |
| 241 | /* Simplest case is 'call', which always uses %o7 */ |
| 242 | if ((insn & 0xc0000000) == 0x40000000) { |
| 243 | slot = ®s->u_regs[UREG_I7]; |
| 244 | } |
| 245 | |
| 246 | /* 'jmpl' encodes the register inside of the opcode */ |
| 247 | if ((insn & 0xc1f80000) == 0x81c00000) { |
| 248 | unsigned long rd = ((insn >> 25) & 0x1f); |
| 249 | |
| 250 | if (rd <= 15) { |
| 251 | slot = ®s->u_regs[rd]; |
| 252 | } else { |
| 253 | /* Hard case, it goes onto the stack. */ |
| 254 | flushw_all(); |
| 255 | |
| 256 | rd -= 16; |
| 257 | slot = (unsigned long *) |
| 258 | (regs->u_regs[UREG_FP] + STACK_BIAS); |
| 259 | slot += rd; |
| 260 | } |
| 261 | } |
| 262 | if (slot != NULL) |
| 263 | *slot = real_pc; |
| 264 | } |
| 265 | |
| 266 | /* |
| 267 | * Called after single-stepping. p->addr is the address of the |
| 268 | * instruction which has been replaced by the breakpoint |
| 269 | * instruction. To avoid the SMP problems that can occur when we |
| 270 | * temporarily put back the original opcode to single-step, we |
| 271 | * single-stepped a copy of the instruction. The address of this |
| 272 | * copy is &p->ainsn.insn[0]. |
| 273 | * |
| 274 | * This function prepares to return from the post-single-step |
| 275 | * breakpoint trap. |
| 276 | */ |
| 277 | static void __kprobes resume_execution(struct kprobe *p, |
| 278 | struct pt_regs *regs, struct kprobe_ctlblk *kcb) |
| 279 | { |
| 280 | u32 insn = p->ainsn.insn[0]; |
| 281 | |
| 282 | regs->tnpc = relbranch_fixup(insn, p, regs); |
| 283 | |
| 284 | /* This assignment must occur after relbranch_fixup() */ |
| 285 | regs->tpc = kcb->kprobe_orig_tnpc; |
| 286 | |
| 287 | retpc_fixup(regs, insn, (unsigned long) p->addr); |
| 288 | |
| 289 | regs->tstate = ((regs->tstate & ~TSTATE_PIL) | |
| 290 | kcb->kprobe_orig_tstate_pil); |
| 291 | } |
| 292 | |
| 293 | static int __kprobes post_kprobe_handler(struct pt_regs *regs) |
| 294 | { |
| 295 | struct kprobe *cur = kprobe_running(); |
| 296 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| 297 | |
| 298 | if (!cur) |
| 299 | return 0; |
| 300 | |
| 301 | if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { |
| 302 | kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| 303 | cur->post_handler(cur, regs, 0); |
| 304 | } |
| 305 | |
| 306 | resume_execution(cur, regs, kcb); |
| 307 | |
| 308 | /*Restore back the original saved kprobes variables and continue. */ |
| 309 | if (kcb->kprobe_status == KPROBE_REENTER) { |
| 310 | restore_previous_kprobe(kcb); |
| 311 | goto out; |
| 312 | } |
| 313 | reset_current_kprobe(); |
| 314 | out: |
| 315 | preempt_enable_no_resched(); |
| 316 | |
| 317 | return 1; |
| 318 | } |
| 319 | |
| 320 | int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| 321 | { |
| 322 | struct kprobe *cur = kprobe_running(); |
| 323 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| 324 | const struct exception_table_entry *entry; |
| 325 | |
| 326 | switch(kcb->kprobe_status) { |
| 327 | case KPROBE_HIT_SS: |
| 328 | case KPROBE_REENTER: |
| 329 | /* |
| 330 | * We are here because the instruction being single |
| 331 | * stepped caused a page fault. We reset the current |
| 332 | * kprobe and the tpc points back to the probe address |
| 333 | * and allow the page fault handler to continue as a |
| 334 | * normal page fault. |
| 335 | */ |
| 336 | regs->tpc = (unsigned long)cur->addr; |
| 337 | regs->tnpc = kcb->kprobe_orig_tnpc; |
| 338 | regs->tstate = ((regs->tstate & ~TSTATE_PIL) | |
| 339 | kcb->kprobe_orig_tstate_pil); |
| 340 | if (kcb->kprobe_status == KPROBE_REENTER) |
| 341 | restore_previous_kprobe(kcb); |
| 342 | else |
| 343 | reset_current_kprobe(); |
| 344 | preempt_enable_no_resched(); |
| 345 | break; |
| 346 | case KPROBE_HIT_ACTIVE: |
| 347 | case KPROBE_HIT_SSDONE: |
| 348 | /* |
| 349 | * We increment the nmissed count for accounting, |
| 350 | * we can also use npre/npostfault count for accounting |
| 351 | * these specific fault cases. |
| 352 | */ |
| 353 | kprobes_inc_nmissed_count(cur); |
| 354 | |
| 355 | /* |
| 356 | * We come here because instructions in the pre/post |
| 357 | * handler caused the page_fault, this could happen |
| 358 | * if handler tries to access user space by |
| 359 | * copy_from_user(), get_user() etc. Let the |
| 360 | * user-specified handler try to fix it first. |
| 361 | */ |
| 362 | if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) |
| 363 | return 1; |
| 364 | |
| 365 | /* |
| 366 | * In case the user-specified fault handler returned |
| 367 | * zero, try to fix up. |
| 368 | */ |
| 369 | |
| 370 | entry = search_exception_tables(regs->tpc); |
| 371 | if (entry) { |
| 372 | regs->tpc = entry->fixup; |
| 373 | regs->tnpc = regs->tpc + 4; |
| 374 | return 1; |
| 375 | } |
| 376 | |
| 377 | /* |
| 378 | * fixup_exception() could not handle it, |
| 379 | * Let do_page_fault() fix it. |
| 380 | */ |
| 381 | break; |
| 382 | default: |
| 383 | break; |
| 384 | } |
| 385 | |
| 386 | return 0; |
| 387 | } |
| 388 | |
| 389 | /* |
| 390 | * Wrapper routine to for handling exceptions. |
| 391 | */ |
| 392 | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, |
| 393 | unsigned long val, void *data) |
| 394 | { |
| 395 | struct die_args *args = (struct die_args *)data; |
| 396 | int ret = NOTIFY_DONE; |
| 397 | |
| 398 | if (args->regs && user_mode(args->regs)) |
| 399 | return ret; |
| 400 | |
| 401 | switch (val) { |
| 402 | case DIE_DEBUG: |
| 403 | if (kprobe_handler(args->regs)) |
| 404 | ret = NOTIFY_STOP; |
| 405 | break; |
| 406 | case DIE_DEBUG_2: |
| 407 | if (post_kprobe_handler(args->regs)) |
| 408 | ret = NOTIFY_STOP; |
| 409 | break; |
| 410 | default: |
| 411 | break; |
| 412 | } |
| 413 | return ret; |
| 414 | } |
| 415 | |
| 416 | asmlinkage void __kprobes kprobe_trap(unsigned long trap_level, |
| 417 | struct pt_regs *regs) |
| 418 | { |
| 419 | enum ctx_state prev_state = exception_enter(); |
| 420 | |
| 421 | BUG_ON(trap_level != 0x170 && trap_level != 0x171); |
| 422 | |
| 423 | if (user_mode(regs)) { |
| 424 | local_irq_enable(); |
| 425 | bad_trap(regs, trap_level); |
| 426 | goto out; |
| 427 | } |
| 428 | |
| 429 | /* trap_level == 0x170 --> ta 0x70 |
| 430 | * trap_level == 0x171 --> ta 0x71 |
| 431 | */ |
| 432 | if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2, |
| 433 | (trap_level == 0x170) ? "debug" : "debug_2", |
| 434 | regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP) |
| 435 | bad_trap(regs, trap_level); |
| 436 | out: |
| 437 | exception_exit(prev_state); |
| 438 | } |
| 439 | |
| 440 | /* The value stored in the return address register is actually 2 |
| 441 | * instructions before where the callee will return to. |
| 442 | * Sequences usually look something like this |
| 443 | * |
| 444 | * call some_function <--- return register points here |
| 445 | * nop <--- call delay slot |
| 446 | * whatever <--- where callee returns to |
| 447 | * |
| 448 | * To keep trampoline_probe_handler logic simpler, we normalize the |
| 449 | * value kept in ri->ret_addr so we don't need to keep adjusting it |
| 450 | * back and forth. |
| 451 | */ |
| 452 | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, |
| 453 | struct pt_regs *regs) |
| 454 | { |
| 455 | ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8); |
| 456 | |
| 457 | /* Replace the return addr with trampoline addr */ |
| 458 | regs->u_regs[UREG_RETPC] = |
| 459 | ((unsigned long)kretprobe_trampoline) - 8; |
| 460 | } |
| 461 | |
| 462 | /* |
| 463 | * Called when the probe at kretprobe trampoline is hit |
| 464 | */ |
| 465 | static int __kprobes trampoline_probe_handler(struct kprobe *p, |
| 466 | struct pt_regs *regs) |
| 467 | { |
| 468 | struct kretprobe_instance *ri = NULL; |
| 469 | struct hlist_head *head, empty_rp; |
| 470 | struct hlist_node *tmp; |
| 471 | unsigned long flags, orig_ret_address = 0; |
| 472 | unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; |
| 473 | |
| 474 | INIT_HLIST_HEAD(&empty_rp); |
| 475 | kretprobe_hash_lock(current, &head, &flags); |
| 476 | |
| 477 | /* |
| 478 | * It is possible to have multiple instances associated with a given |
| 479 | * task either because an multiple functions in the call path |
| 480 | * have a return probe installed on them, and/or more than one return |
| 481 | * return probe was registered for a target function. |
| 482 | * |
| 483 | * We can handle this because: |
| 484 | * - instances are always inserted at the head of the list |
| 485 | * - when multiple return probes are registered for the same |
| 486 | * function, the first instance's ret_addr will point to the |
| 487 | * real return address, and all the rest will point to |
| 488 | * kretprobe_trampoline |
| 489 | */ |
| 490 | hlist_for_each_entry_safe(ri, tmp, head, hlist) { |
| 491 | if (ri->task != current) |
| 492 | /* another task is sharing our hash bucket */ |
| 493 | continue; |
| 494 | |
| 495 | if (ri->rp && ri->rp->handler) |
| 496 | ri->rp->handler(ri, regs); |
| 497 | |
| 498 | orig_ret_address = (unsigned long)ri->ret_addr; |
| 499 | recycle_rp_inst(ri, &empty_rp); |
| 500 | |
| 501 | if (orig_ret_address != trampoline_address) |
| 502 | /* |
| 503 | * This is the real return address. Any other |
| 504 | * instances associated with this task are for |
| 505 | * other calls deeper on the call stack |
| 506 | */ |
| 507 | break; |
| 508 | } |
| 509 | |
| 510 | kretprobe_assert(ri, orig_ret_address, trampoline_address); |
| 511 | regs->tpc = orig_ret_address; |
| 512 | regs->tnpc = orig_ret_address + 4; |
| 513 | |
| 514 | kretprobe_hash_unlock(current, &flags); |
| 515 | |
| 516 | hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { |
| 517 | hlist_del(&ri->hlist); |
| 518 | kfree(ri); |
| 519 | } |
| 520 | /* |
| 521 | * By returning a non-zero value, we are telling |
| 522 | * kprobe_handler() that we don't want the post_handler |
| 523 | * to run (and have re-enabled preemption) |
| 524 | */ |
| 525 | return 1; |
| 526 | } |
| 527 | |
| 528 | static void __used kretprobe_trampoline_holder(void) |
| 529 | { |
| 530 | asm volatile(".global kretprobe_trampoline\n" |
| 531 | "kretprobe_trampoline:\n" |
| 532 | "\tnop\n" |
| 533 | "\tnop\n"); |
| 534 | } |
| 535 | static struct kprobe trampoline_p = { |
| 536 | .addr = (kprobe_opcode_t *) &kretprobe_trampoline, |
| 537 | .pre_handler = trampoline_probe_handler |
| 538 | }; |
| 539 | |
| 540 | int __init arch_init_kprobes(void) |
| 541 | { |
| 542 | return register_kprobe(&trampoline_p); |
| 543 | } |
| 544 | |
| 545 | int __kprobes arch_trampoline_kprobe(struct kprobe *p) |
| 546 | { |
| 547 | if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) |
| 548 | return 1; |
| 549 | |
| 550 | return 0; |
| 551 | } |