Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * hosting IBM Z kernel virtual machines (s390x) |
| 4 | * |
| 5 | * Copyright IBM Corp. 2008, 2018 |
| 6 | * |
| 7 | * Author(s): Carsten Otte <cotte@de.ibm.com> |
| 8 | * Christian Borntraeger <borntraeger@de.ibm.com> |
| 9 | * Heiko Carstens <heiko.carstens@de.ibm.com> |
| 10 | * Christian Ehrhardt <ehrhardt@de.ibm.com> |
| 11 | * Jason J. Herne <jjherne@us.ibm.com> |
| 12 | */ |
| 13 | |
| 14 | #include <linux/compiler.h> |
| 15 | #include <linux/err.h> |
| 16 | #include <linux/fs.h> |
| 17 | #include <linux/hrtimer.h> |
| 18 | #include <linux/init.h> |
| 19 | #include <linux/kvm.h> |
| 20 | #include <linux/kvm_host.h> |
| 21 | #include <linux/mman.h> |
| 22 | #include <linux/module.h> |
| 23 | #include <linux/moduleparam.h> |
| 24 | #include <linux/random.h> |
| 25 | #include <linux/slab.h> |
| 26 | #include <linux/timer.h> |
| 27 | #include <linux/vmalloc.h> |
| 28 | #include <linux/bitmap.h> |
| 29 | #include <linux/sched/signal.h> |
| 30 | #include <linux/string.h> |
| 31 | |
| 32 | #include <asm/asm-offsets.h> |
| 33 | #include <asm/lowcore.h> |
| 34 | #include <asm/stp.h> |
| 35 | #include <asm/pgtable.h> |
| 36 | #include <asm/gmap.h> |
| 37 | #include <asm/nmi.h> |
| 38 | #include <asm/switch_to.h> |
| 39 | #include <asm/isc.h> |
| 40 | #include <asm/sclp.h> |
| 41 | #include <asm/cpacf.h> |
| 42 | #include <asm/timex.h> |
| 43 | #include "kvm-s390.h" |
| 44 | #include "gaccess.h" |
| 45 | |
| 46 | #define KMSG_COMPONENT "kvm-s390" |
| 47 | #undef pr_fmt |
| 48 | #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| 49 | |
| 50 | #define CREATE_TRACE_POINTS |
| 51 | #include "trace.h" |
| 52 | #include "trace-s390.h" |
| 53 | |
| 54 | #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ |
| 55 | #define LOCAL_IRQS 32 |
| 56 | #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ |
| 57 | (KVM_MAX_VCPUS + LOCAL_IRQS)) |
| 58 | |
| 59 | #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU |
| 60 | #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM |
| 61 | |
| 62 | struct kvm_stats_debugfs_item debugfs_entries[] = { |
| 63 | { "userspace_handled", VCPU_STAT(exit_userspace) }, |
| 64 | { "exit_null", VCPU_STAT(exit_null) }, |
| 65 | { "exit_validity", VCPU_STAT(exit_validity) }, |
| 66 | { "exit_stop_request", VCPU_STAT(exit_stop_request) }, |
| 67 | { "exit_external_request", VCPU_STAT(exit_external_request) }, |
| 68 | { "exit_io_request", VCPU_STAT(exit_io_request) }, |
| 69 | { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) }, |
| 70 | { "exit_instruction", VCPU_STAT(exit_instruction) }, |
| 71 | { "exit_pei", VCPU_STAT(exit_pei) }, |
| 72 | { "exit_program_interruption", VCPU_STAT(exit_program_interruption) }, |
| 73 | { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) }, |
| 74 | { "exit_operation_exception", VCPU_STAT(exit_operation_exception) }, |
| 75 | { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, |
| 76 | { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, |
| 77 | { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, |
| 78 | { "halt_wakeup", VCPU_STAT(halt_wakeup) }, |
| 79 | { "instruction_lctlg", VCPU_STAT(instruction_lctlg) }, |
| 80 | { "instruction_lctl", VCPU_STAT(instruction_lctl) }, |
| 81 | { "instruction_stctl", VCPU_STAT(instruction_stctl) }, |
| 82 | { "instruction_stctg", VCPU_STAT(instruction_stctg) }, |
| 83 | { "deliver_ckc", VCPU_STAT(deliver_ckc) }, |
| 84 | { "deliver_cputm", VCPU_STAT(deliver_cputm) }, |
| 85 | { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) }, |
| 86 | { "deliver_external_call", VCPU_STAT(deliver_external_call) }, |
| 87 | { "deliver_service_signal", VCPU_STAT(deliver_service_signal) }, |
| 88 | { "deliver_virtio", VCPU_STAT(deliver_virtio) }, |
| 89 | { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) }, |
| 90 | { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) }, |
| 91 | { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) }, |
| 92 | { "deliver_program", VCPU_STAT(deliver_program) }, |
| 93 | { "deliver_io", VCPU_STAT(deliver_io) }, |
| 94 | { "deliver_machine_check", VCPU_STAT(deliver_machine_check) }, |
| 95 | { "exit_wait_state", VCPU_STAT(exit_wait_state) }, |
| 96 | { "inject_ckc", VCPU_STAT(inject_ckc) }, |
| 97 | { "inject_cputm", VCPU_STAT(inject_cputm) }, |
| 98 | { "inject_external_call", VCPU_STAT(inject_external_call) }, |
| 99 | { "inject_float_mchk", VM_STAT(inject_float_mchk) }, |
| 100 | { "inject_emergency_signal", VCPU_STAT(inject_emergency_signal) }, |
| 101 | { "inject_io", VM_STAT(inject_io) }, |
| 102 | { "inject_mchk", VCPU_STAT(inject_mchk) }, |
| 103 | { "inject_pfault_done", VM_STAT(inject_pfault_done) }, |
| 104 | { "inject_program", VCPU_STAT(inject_program) }, |
| 105 | { "inject_restart", VCPU_STAT(inject_restart) }, |
| 106 | { "inject_service_signal", VM_STAT(inject_service_signal) }, |
| 107 | { "inject_set_prefix", VCPU_STAT(inject_set_prefix) }, |
| 108 | { "inject_stop_signal", VCPU_STAT(inject_stop_signal) }, |
| 109 | { "inject_pfault_init", VCPU_STAT(inject_pfault_init) }, |
| 110 | { "inject_virtio", VM_STAT(inject_virtio) }, |
| 111 | { "instruction_epsw", VCPU_STAT(instruction_epsw) }, |
| 112 | { "instruction_gs", VCPU_STAT(instruction_gs) }, |
| 113 | { "instruction_io_other", VCPU_STAT(instruction_io_other) }, |
| 114 | { "instruction_lpsw", VCPU_STAT(instruction_lpsw) }, |
| 115 | { "instruction_lpswe", VCPU_STAT(instruction_lpswe) }, |
| 116 | { "instruction_pfmf", VCPU_STAT(instruction_pfmf) }, |
| 117 | { "instruction_ptff", VCPU_STAT(instruction_ptff) }, |
| 118 | { "instruction_stidp", VCPU_STAT(instruction_stidp) }, |
| 119 | { "instruction_sck", VCPU_STAT(instruction_sck) }, |
| 120 | { "instruction_sckpf", VCPU_STAT(instruction_sckpf) }, |
| 121 | { "instruction_spx", VCPU_STAT(instruction_spx) }, |
| 122 | { "instruction_stpx", VCPU_STAT(instruction_stpx) }, |
| 123 | { "instruction_stap", VCPU_STAT(instruction_stap) }, |
| 124 | { "instruction_iske", VCPU_STAT(instruction_iske) }, |
| 125 | { "instruction_ri", VCPU_STAT(instruction_ri) }, |
| 126 | { "instruction_rrbe", VCPU_STAT(instruction_rrbe) }, |
| 127 | { "instruction_sske", VCPU_STAT(instruction_sske) }, |
| 128 | { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) }, |
| 129 | { "instruction_essa", VCPU_STAT(instruction_essa) }, |
| 130 | { "instruction_stsi", VCPU_STAT(instruction_stsi) }, |
| 131 | { "instruction_stfl", VCPU_STAT(instruction_stfl) }, |
| 132 | { "instruction_tb", VCPU_STAT(instruction_tb) }, |
| 133 | { "instruction_tpi", VCPU_STAT(instruction_tpi) }, |
| 134 | { "instruction_tprot", VCPU_STAT(instruction_tprot) }, |
| 135 | { "instruction_tsch", VCPU_STAT(instruction_tsch) }, |
| 136 | { "instruction_sthyi", VCPU_STAT(instruction_sthyi) }, |
| 137 | { "instruction_sie", VCPU_STAT(instruction_sie) }, |
| 138 | { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) }, |
| 139 | { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) }, |
| 140 | { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) }, |
| 141 | { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) }, |
| 142 | { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) }, |
| 143 | { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) }, |
| 144 | { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) }, |
| 145 | { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) }, |
| 146 | { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) }, |
| 147 | { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) }, |
| 148 | { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) }, |
| 149 | { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) }, |
| 150 | { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) }, |
| 151 | { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) }, |
| 152 | { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) }, |
| 153 | { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) }, |
| 154 | { "instruction_diag_10", VCPU_STAT(diagnose_10) }, |
| 155 | { "instruction_diag_44", VCPU_STAT(diagnose_44) }, |
| 156 | { "instruction_diag_9c", VCPU_STAT(diagnose_9c) }, |
| 157 | { "instruction_diag_258", VCPU_STAT(diagnose_258) }, |
| 158 | { "instruction_diag_308", VCPU_STAT(diagnose_308) }, |
| 159 | { "instruction_diag_500", VCPU_STAT(diagnose_500) }, |
| 160 | { "instruction_diag_other", VCPU_STAT(diagnose_other) }, |
| 161 | { NULL } |
| 162 | }; |
| 163 | |
| 164 | struct kvm_s390_tod_clock_ext { |
| 165 | __u8 epoch_idx; |
| 166 | __u64 tod; |
| 167 | __u8 reserved[7]; |
| 168 | } __packed; |
| 169 | |
| 170 | /* allow nested virtualization in KVM (if enabled by user space) */ |
| 171 | static int nested; |
| 172 | module_param(nested, int, S_IRUGO); |
| 173 | MODULE_PARM_DESC(nested, "Nested virtualization support"); |
| 174 | |
| 175 | /* allow 1m huge page guest backing, if !nested */ |
| 176 | static int hpage; |
| 177 | module_param(hpage, int, 0444); |
| 178 | MODULE_PARM_DESC(hpage, "1m huge page backing support"); |
| 179 | |
| 180 | /* |
| 181 | * For now we handle at most 16 double words as this is what the s390 base |
| 182 | * kernel handles and stores in the prefix page. If we ever need to go beyond |
| 183 | * this, this requires changes to code, but the external uapi can stay. |
| 184 | */ |
| 185 | #define SIZE_INTERNAL 16 |
| 186 | |
| 187 | /* |
| 188 | * Base feature mask that defines default mask for facilities. Consists of the |
| 189 | * defines in FACILITIES_KVM and the non-hypervisor managed bits. |
| 190 | */ |
| 191 | static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; |
| 192 | /* |
| 193 | * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL |
| 194 | * and defines the facilities that can be enabled via a cpu model. |
| 195 | */ |
| 196 | static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; |
| 197 | |
| 198 | static unsigned long kvm_s390_fac_size(void) |
| 199 | { |
| 200 | BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); |
| 201 | BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); |
| 202 | BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > |
| 203 | sizeof(S390_lowcore.stfle_fac_list)); |
| 204 | |
| 205 | return SIZE_INTERNAL; |
| 206 | } |
| 207 | |
| 208 | /* available cpu features supported by kvm */ |
| 209 | static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); |
| 210 | /* available subfunctions indicated via query / "test bit" */ |
| 211 | static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; |
| 212 | |
| 213 | static struct gmap_notifier gmap_notifier; |
| 214 | static struct gmap_notifier vsie_gmap_notifier; |
| 215 | debug_info_t *kvm_s390_dbf; |
| 216 | |
| 217 | /* Section: not file related */ |
| 218 | int kvm_arch_hardware_enable(void) |
| 219 | { |
| 220 | /* every s390 is virtualization enabled ;-) */ |
| 221 | return 0; |
| 222 | } |
| 223 | |
| 224 | static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, |
| 225 | unsigned long end); |
| 226 | |
| 227 | static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) |
| 228 | { |
| 229 | u8 delta_idx = 0; |
| 230 | |
| 231 | /* |
| 232 | * The TOD jumps by delta, we have to compensate this by adding |
| 233 | * -delta to the epoch. |
| 234 | */ |
| 235 | delta = -delta; |
| 236 | |
| 237 | /* sign-extension - we're adding to signed values below */ |
| 238 | if ((s64)delta < 0) |
| 239 | delta_idx = -1; |
| 240 | |
| 241 | scb->epoch += delta; |
| 242 | if (scb->ecd & ECD_MEF) { |
| 243 | scb->epdx += delta_idx; |
| 244 | if (scb->epoch < delta) |
| 245 | scb->epdx += 1; |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | /* |
| 250 | * This callback is executed during stop_machine(). All CPUs are therefore |
| 251 | * temporarily stopped. In order not to change guest behavior, we have to |
| 252 | * disable preemption whenever we touch the epoch of kvm and the VCPUs, |
| 253 | * so a CPU won't be stopped while calculating with the epoch. |
| 254 | */ |
| 255 | static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, |
| 256 | void *v) |
| 257 | { |
| 258 | struct kvm *kvm; |
| 259 | struct kvm_vcpu *vcpu; |
| 260 | int i; |
| 261 | unsigned long long *delta = v; |
| 262 | |
| 263 | list_for_each_entry(kvm, &vm_list, vm_list) { |
| 264 | kvm_for_each_vcpu(i, vcpu, kvm) { |
| 265 | kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); |
| 266 | if (i == 0) { |
| 267 | kvm->arch.epoch = vcpu->arch.sie_block->epoch; |
| 268 | kvm->arch.epdx = vcpu->arch.sie_block->epdx; |
| 269 | } |
| 270 | if (vcpu->arch.cputm_enabled) |
| 271 | vcpu->arch.cputm_start += *delta; |
| 272 | if (vcpu->arch.vsie_block) |
| 273 | kvm_clock_sync_scb(vcpu->arch.vsie_block, |
| 274 | *delta); |
| 275 | } |
| 276 | } |
| 277 | return NOTIFY_OK; |
| 278 | } |
| 279 | |
| 280 | static struct notifier_block kvm_clock_notifier = { |
| 281 | .notifier_call = kvm_clock_sync, |
| 282 | }; |
| 283 | |
| 284 | int kvm_arch_hardware_setup(void) |
| 285 | { |
| 286 | gmap_notifier.notifier_call = kvm_gmap_notifier; |
| 287 | gmap_register_pte_notifier(&gmap_notifier); |
| 288 | vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; |
| 289 | gmap_register_pte_notifier(&vsie_gmap_notifier); |
| 290 | atomic_notifier_chain_register(&s390_epoch_delta_notifier, |
| 291 | &kvm_clock_notifier); |
| 292 | return 0; |
| 293 | } |
| 294 | |
| 295 | void kvm_arch_hardware_unsetup(void) |
| 296 | { |
| 297 | gmap_unregister_pte_notifier(&gmap_notifier); |
| 298 | gmap_unregister_pte_notifier(&vsie_gmap_notifier); |
| 299 | atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, |
| 300 | &kvm_clock_notifier); |
| 301 | } |
| 302 | |
| 303 | static void allow_cpu_feat(unsigned long nr) |
| 304 | { |
| 305 | set_bit_inv(nr, kvm_s390_available_cpu_feat); |
| 306 | } |
| 307 | |
| 308 | static inline int plo_test_bit(unsigned char nr) |
| 309 | { |
| 310 | register unsigned long r0 asm("0") = (unsigned long) nr | 0x100; |
| 311 | int cc; |
| 312 | |
| 313 | asm volatile( |
| 314 | /* Parameter registers are ignored for "test bit" */ |
| 315 | " plo 0,0,0,0(0)\n" |
| 316 | " ipm %0\n" |
| 317 | " srl %0,28\n" |
| 318 | : "=d" (cc) |
| 319 | : "d" (r0) |
| 320 | : "cc"); |
| 321 | return cc == 0; |
| 322 | } |
| 323 | |
| 324 | static void kvm_s390_cpu_feat_init(void) |
| 325 | { |
| 326 | int i; |
| 327 | |
| 328 | for (i = 0; i < 256; ++i) { |
| 329 | if (plo_test_bit(i)) |
| 330 | kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); |
| 331 | } |
| 332 | |
| 333 | if (test_facility(28)) /* TOD-clock steering */ |
| 334 | ptff(kvm_s390_available_subfunc.ptff, |
| 335 | sizeof(kvm_s390_available_subfunc.ptff), |
| 336 | PTFF_QAF); |
| 337 | |
| 338 | if (test_facility(17)) { /* MSA */ |
| 339 | __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) |
| 340 | kvm_s390_available_subfunc.kmac); |
| 341 | __cpacf_query(CPACF_KMC, (cpacf_mask_t *) |
| 342 | kvm_s390_available_subfunc.kmc); |
| 343 | __cpacf_query(CPACF_KM, (cpacf_mask_t *) |
| 344 | kvm_s390_available_subfunc.km); |
| 345 | __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) |
| 346 | kvm_s390_available_subfunc.kimd); |
| 347 | __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) |
| 348 | kvm_s390_available_subfunc.klmd); |
| 349 | } |
| 350 | if (test_facility(76)) /* MSA3 */ |
| 351 | __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) |
| 352 | kvm_s390_available_subfunc.pckmo); |
| 353 | if (test_facility(77)) { /* MSA4 */ |
| 354 | __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) |
| 355 | kvm_s390_available_subfunc.kmctr); |
| 356 | __cpacf_query(CPACF_KMF, (cpacf_mask_t *) |
| 357 | kvm_s390_available_subfunc.kmf); |
| 358 | __cpacf_query(CPACF_KMO, (cpacf_mask_t *) |
| 359 | kvm_s390_available_subfunc.kmo); |
| 360 | __cpacf_query(CPACF_PCC, (cpacf_mask_t *) |
| 361 | kvm_s390_available_subfunc.pcc); |
| 362 | } |
| 363 | if (test_facility(57)) /* MSA5 */ |
| 364 | __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) |
| 365 | kvm_s390_available_subfunc.ppno); |
| 366 | |
| 367 | if (test_facility(146)) /* MSA8 */ |
| 368 | __cpacf_query(CPACF_KMA, (cpacf_mask_t *) |
| 369 | kvm_s390_available_subfunc.kma); |
| 370 | |
| 371 | if (MACHINE_HAS_ESOP) |
| 372 | allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); |
| 373 | /* |
| 374 | * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), |
| 375 | * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). |
| 376 | */ |
| 377 | if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || |
| 378 | !test_facility(3) || !nested) |
| 379 | return; |
| 380 | allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); |
| 381 | if (sclp.has_64bscao) |
| 382 | allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); |
| 383 | if (sclp.has_siif) |
| 384 | allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); |
| 385 | if (sclp.has_gpere) |
| 386 | allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); |
| 387 | if (sclp.has_gsls) |
| 388 | allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); |
| 389 | if (sclp.has_ib) |
| 390 | allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); |
| 391 | if (sclp.has_cei) |
| 392 | allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); |
| 393 | if (sclp.has_ibs) |
| 394 | allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); |
| 395 | if (sclp.has_kss) |
| 396 | allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); |
| 397 | /* |
| 398 | * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make |
| 399 | * all skey handling functions read/set the skey from the PGSTE |
| 400 | * instead of the real storage key. |
| 401 | * |
| 402 | * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make |
| 403 | * pages being detected as preserved although they are resident. |
| 404 | * |
| 405 | * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will |
| 406 | * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. |
| 407 | * |
| 408 | * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and |
| 409 | * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be |
| 410 | * correctly shadowed. We can do that for the PGSTE but not for PTE.I. |
| 411 | * |
| 412 | * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We |
| 413 | * cannot easily shadow the SCA because of the ipte lock. |
| 414 | */ |
| 415 | } |
| 416 | |
| 417 | int kvm_arch_init(void *opaque) |
| 418 | { |
| 419 | kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); |
| 420 | if (!kvm_s390_dbf) |
| 421 | return -ENOMEM; |
| 422 | |
| 423 | if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) { |
| 424 | debug_unregister(kvm_s390_dbf); |
| 425 | return -ENOMEM; |
| 426 | } |
| 427 | |
| 428 | kvm_s390_cpu_feat_init(); |
| 429 | |
| 430 | /* Register floating interrupt controller interface. */ |
| 431 | return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); |
| 432 | } |
| 433 | |
| 434 | void kvm_arch_exit(void) |
| 435 | { |
| 436 | debug_unregister(kvm_s390_dbf); |
| 437 | } |
| 438 | |
| 439 | /* Section: device related */ |
| 440 | long kvm_arch_dev_ioctl(struct file *filp, |
| 441 | unsigned int ioctl, unsigned long arg) |
| 442 | { |
| 443 | if (ioctl == KVM_S390_ENABLE_SIE) |
| 444 | return s390_enable_sie(); |
| 445 | return -EINVAL; |
| 446 | } |
| 447 | |
| 448 | int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) |
| 449 | { |
| 450 | int r; |
| 451 | |
| 452 | switch (ext) { |
| 453 | case KVM_CAP_S390_PSW: |
| 454 | case KVM_CAP_S390_GMAP: |
| 455 | case KVM_CAP_SYNC_MMU: |
| 456 | #ifdef CONFIG_KVM_S390_UCONTROL |
| 457 | case KVM_CAP_S390_UCONTROL: |
| 458 | #endif |
| 459 | case KVM_CAP_ASYNC_PF: |
| 460 | case KVM_CAP_SYNC_REGS: |
| 461 | case KVM_CAP_ONE_REG: |
| 462 | case KVM_CAP_ENABLE_CAP: |
| 463 | case KVM_CAP_S390_CSS_SUPPORT: |
| 464 | case KVM_CAP_IOEVENTFD: |
| 465 | case KVM_CAP_DEVICE_CTRL: |
| 466 | case KVM_CAP_ENABLE_CAP_VM: |
| 467 | case KVM_CAP_S390_IRQCHIP: |
| 468 | case KVM_CAP_VM_ATTRIBUTES: |
| 469 | case KVM_CAP_MP_STATE: |
| 470 | case KVM_CAP_IMMEDIATE_EXIT: |
| 471 | case KVM_CAP_S390_INJECT_IRQ: |
| 472 | case KVM_CAP_S390_USER_SIGP: |
| 473 | case KVM_CAP_S390_USER_STSI: |
| 474 | case KVM_CAP_S390_SKEYS: |
| 475 | case KVM_CAP_S390_IRQ_STATE: |
| 476 | case KVM_CAP_S390_USER_INSTR0: |
| 477 | case KVM_CAP_S390_CMMA_MIGRATION: |
| 478 | case KVM_CAP_S390_AIS: |
| 479 | case KVM_CAP_S390_AIS_MIGRATION: |
| 480 | r = 1; |
| 481 | break; |
| 482 | case KVM_CAP_S390_HPAGE_1M: |
| 483 | r = 0; |
| 484 | if (hpage && !kvm_is_ucontrol(kvm)) |
| 485 | r = 1; |
| 486 | break; |
| 487 | case KVM_CAP_S390_MEM_OP: |
| 488 | r = MEM_OP_MAX_SIZE; |
| 489 | break; |
| 490 | case KVM_CAP_NR_VCPUS: |
| 491 | case KVM_CAP_MAX_VCPUS: |
| 492 | r = KVM_S390_BSCA_CPU_SLOTS; |
| 493 | if (!kvm_s390_use_sca_entries()) |
| 494 | r = KVM_MAX_VCPUS; |
| 495 | else if (sclp.has_esca && sclp.has_64bscao) |
| 496 | r = KVM_S390_ESCA_CPU_SLOTS; |
| 497 | break; |
| 498 | case KVM_CAP_NR_MEMSLOTS: |
| 499 | r = KVM_USER_MEM_SLOTS; |
| 500 | break; |
| 501 | case KVM_CAP_S390_COW: |
| 502 | r = MACHINE_HAS_ESOP; |
| 503 | break; |
| 504 | case KVM_CAP_S390_VECTOR_REGISTERS: |
| 505 | r = MACHINE_HAS_VX; |
| 506 | break; |
| 507 | case KVM_CAP_S390_RI: |
| 508 | r = test_facility(64); |
| 509 | break; |
| 510 | case KVM_CAP_S390_GS: |
| 511 | r = test_facility(133); |
| 512 | break; |
| 513 | case KVM_CAP_S390_BPB: |
| 514 | r = test_facility(82); |
| 515 | break; |
| 516 | default: |
| 517 | r = 0; |
| 518 | } |
| 519 | return r; |
| 520 | } |
| 521 | |
| 522 | static void kvm_s390_sync_dirty_log(struct kvm *kvm, |
| 523 | struct kvm_memory_slot *memslot) |
| 524 | { |
| 525 | int i; |
| 526 | gfn_t cur_gfn, last_gfn; |
| 527 | unsigned long gaddr, vmaddr; |
| 528 | struct gmap *gmap = kvm->arch.gmap; |
| 529 | DECLARE_BITMAP(bitmap, _PAGE_ENTRIES); |
| 530 | |
| 531 | /* Loop over all guest segments */ |
| 532 | cur_gfn = memslot->base_gfn; |
| 533 | last_gfn = memslot->base_gfn + memslot->npages; |
| 534 | for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) { |
| 535 | gaddr = gfn_to_gpa(cur_gfn); |
| 536 | vmaddr = gfn_to_hva_memslot(memslot, cur_gfn); |
| 537 | if (kvm_is_error_hva(vmaddr)) |
| 538 | continue; |
| 539 | |
| 540 | bitmap_zero(bitmap, _PAGE_ENTRIES); |
| 541 | gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr); |
| 542 | for (i = 0; i < _PAGE_ENTRIES; i++) { |
| 543 | if (test_bit(i, bitmap)) |
| 544 | mark_page_dirty(kvm, cur_gfn + i); |
| 545 | } |
| 546 | |
| 547 | if (fatal_signal_pending(current)) |
| 548 | return; |
| 549 | cond_resched(); |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | /* Section: vm related */ |
| 554 | static void sca_del_vcpu(struct kvm_vcpu *vcpu); |
| 555 | |
| 556 | /* |
| 557 | * Get (and clear) the dirty memory log for a memory slot. |
| 558 | */ |
| 559 | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, |
| 560 | struct kvm_dirty_log *log) |
| 561 | { |
| 562 | int r; |
| 563 | unsigned long n; |
| 564 | struct kvm_memslots *slots; |
| 565 | struct kvm_memory_slot *memslot; |
| 566 | int is_dirty = 0; |
| 567 | |
| 568 | if (kvm_is_ucontrol(kvm)) |
| 569 | return -EINVAL; |
| 570 | |
| 571 | mutex_lock(&kvm->slots_lock); |
| 572 | |
| 573 | r = -EINVAL; |
| 574 | if (log->slot >= KVM_USER_MEM_SLOTS) |
| 575 | goto out; |
| 576 | |
| 577 | slots = kvm_memslots(kvm); |
| 578 | memslot = id_to_memslot(slots, log->slot); |
| 579 | r = -ENOENT; |
| 580 | if (!memslot->dirty_bitmap) |
| 581 | goto out; |
| 582 | |
| 583 | kvm_s390_sync_dirty_log(kvm, memslot); |
| 584 | r = kvm_get_dirty_log(kvm, log, &is_dirty); |
| 585 | if (r) |
| 586 | goto out; |
| 587 | |
| 588 | /* Clear the dirty log */ |
| 589 | if (is_dirty) { |
| 590 | n = kvm_dirty_bitmap_bytes(memslot); |
| 591 | memset(memslot->dirty_bitmap, 0, n); |
| 592 | } |
| 593 | r = 0; |
| 594 | out: |
| 595 | mutex_unlock(&kvm->slots_lock); |
| 596 | return r; |
| 597 | } |
| 598 | |
| 599 | static void icpt_operexc_on_all_vcpus(struct kvm *kvm) |
| 600 | { |
| 601 | unsigned int i; |
| 602 | struct kvm_vcpu *vcpu; |
| 603 | |
| 604 | kvm_for_each_vcpu(i, vcpu, kvm) { |
| 605 | kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) |
| 610 | { |
| 611 | int r; |
| 612 | |
| 613 | if (cap->flags) |
| 614 | return -EINVAL; |
| 615 | |
| 616 | switch (cap->cap) { |
| 617 | case KVM_CAP_S390_IRQCHIP: |
| 618 | VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); |
| 619 | kvm->arch.use_irqchip = 1; |
| 620 | r = 0; |
| 621 | break; |
| 622 | case KVM_CAP_S390_USER_SIGP: |
| 623 | VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); |
| 624 | kvm->arch.user_sigp = 1; |
| 625 | r = 0; |
| 626 | break; |
| 627 | case KVM_CAP_S390_VECTOR_REGISTERS: |
| 628 | mutex_lock(&kvm->lock); |
| 629 | if (kvm->created_vcpus) { |
| 630 | r = -EBUSY; |
| 631 | } else if (MACHINE_HAS_VX) { |
| 632 | set_kvm_facility(kvm->arch.model.fac_mask, 129); |
| 633 | set_kvm_facility(kvm->arch.model.fac_list, 129); |
| 634 | if (test_facility(134)) { |
| 635 | set_kvm_facility(kvm->arch.model.fac_mask, 134); |
| 636 | set_kvm_facility(kvm->arch.model.fac_list, 134); |
| 637 | } |
| 638 | if (test_facility(135)) { |
| 639 | set_kvm_facility(kvm->arch.model.fac_mask, 135); |
| 640 | set_kvm_facility(kvm->arch.model.fac_list, 135); |
| 641 | } |
| 642 | r = 0; |
| 643 | } else |
| 644 | r = -EINVAL; |
| 645 | mutex_unlock(&kvm->lock); |
| 646 | VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", |
| 647 | r ? "(not available)" : "(success)"); |
| 648 | break; |
| 649 | case KVM_CAP_S390_RI: |
| 650 | r = -EINVAL; |
| 651 | mutex_lock(&kvm->lock); |
| 652 | if (kvm->created_vcpus) { |
| 653 | r = -EBUSY; |
| 654 | } else if (test_facility(64)) { |
| 655 | set_kvm_facility(kvm->arch.model.fac_mask, 64); |
| 656 | set_kvm_facility(kvm->arch.model.fac_list, 64); |
| 657 | r = 0; |
| 658 | } |
| 659 | mutex_unlock(&kvm->lock); |
| 660 | VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", |
| 661 | r ? "(not available)" : "(success)"); |
| 662 | break; |
| 663 | case KVM_CAP_S390_AIS: |
| 664 | mutex_lock(&kvm->lock); |
| 665 | if (kvm->created_vcpus) { |
| 666 | r = -EBUSY; |
| 667 | } else { |
| 668 | set_kvm_facility(kvm->arch.model.fac_mask, 72); |
| 669 | set_kvm_facility(kvm->arch.model.fac_list, 72); |
| 670 | r = 0; |
| 671 | } |
| 672 | mutex_unlock(&kvm->lock); |
| 673 | VM_EVENT(kvm, 3, "ENABLE: AIS %s", |
| 674 | r ? "(not available)" : "(success)"); |
| 675 | break; |
| 676 | case KVM_CAP_S390_GS: |
| 677 | r = -EINVAL; |
| 678 | mutex_lock(&kvm->lock); |
| 679 | if (kvm->created_vcpus) { |
| 680 | r = -EBUSY; |
| 681 | } else if (test_facility(133)) { |
| 682 | set_kvm_facility(kvm->arch.model.fac_mask, 133); |
| 683 | set_kvm_facility(kvm->arch.model.fac_list, 133); |
| 684 | r = 0; |
| 685 | } |
| 686 | mutex_unlock(&kvm->lock); |
| 687 | VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", |
| 688 | r ? "(not available)" : "(success)"); |
| 689 | break; |
| 690 | case KVM_CAP_S390_HPAGE_1M: |
| 691 | mutex_lock(&kvm->lock); |
| 692 | if (kvm->created_vcpus) |
| 693 | r = -EBUSY; |
| 694 | else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm)) |
| 695 | r = -EINVAL; |
| 696 | else { |
| 697 | r = 0; |
| 698 | down_write(&kvm->mm->mmap_sem); |
| 699 | kvm->mm->context.allow_gmap_hpage_1m = 1; |
| 700 | up_write(&kvm->mm->mmap_sem); |
| 701 | /* |
| 702 | * We might have to create fake 4k page |
| 703 | * tables. To avoid that the hardware works on |
| 704 | * stale PGSTEs, we emulate these instructions. |
| 705 | */ |
| 706 | kvm->arch.use_skf = 0; |
| 707 | kvm->arch.use_pfmfi = 0; |
| 708 | } |
| 709 | mutex_unlock(&kvm->lock); |
| 710 | VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s", |
| 711 | r ? "(not available)" : "(success)"); |
| 712 | break; |
| 713 | case KVM_CAP_S390_USER_STSI: |
| 714 | VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); |
| 715 | kvm->arch.user_stsi = 1; |
| 716 | r = 0; |
| 717 | break; |
| 718 | case KVM_CAP_S390_USER_INSTR0: |
| 719 | VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); |
| 720 | kvm->arch.user_instr0 = 1; |
| 721 | icpt_operexc_on_all_vcpus(kvm); |
| 722 | r = 0; |
| 723 | break; |
| 724 | default: |
| 725 | r = -EINVAL; |
| 726 | break; |
| 727 | } |
| 728 | return r; |
| 729 | } |
| 730 | |
| 731 | static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) |
| 732 | { |
| 733 | int ret; |
| 734 | |
| 735 | switch (attr->attr) { |
| 736 | case KVM_S390_VM_MEM_LIMIT_SIZE: |
| 737 | ret = 0; |
| 738 | VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", |
| 739 | kvm->arch.mem_limit); |
| 740 | if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) |
| 741 | ret = -EFAULT; |
| 742 | break; |
| 743 | default: |
| 744 | ret = -ENXIO; |
| 745 | break; |
| 746 | } |
| 747 | return ret; |
| 748 | } |
| 749 | |
| 750 | static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) |
| 751 | { |
| 752 | int ret; |
| 753 | unsigned int idx; |
| 754 | switch (attr->attr) { |
| 755 | case KVM_S390_VM_MEM_ENABLE_CMMA: |
| 756 | ret = -ENXIO; |
| 757 | if (!sclp.has_cmma) |
| 758 | break; |
| 759 | |
| 760 | VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); |
| 761 | mutex_lock(&kvm->lock); |
| 762 | if (kvm->created_vcpus) |
| 763 | ret = -EBUSY; |
| 764 | else if (kvm->mm->context.allow_gmap_hpage_1m) |
| 765 | ret = -EINVAL; |
| 766 | else { |
| 767 | kvm->arch.use_cmma = 1; |
| 768 | /* Not compatible with cmma. */ |
| 769 | kvm->arch.use_pfmfi = 0; |
| 770 | ret = 0; |
| 771 | } |
| 772 | mutex_unlock(&kvm->lock); |
| 773 | break; |
| 774 | case KVM_S390_VM_MEM_CLR_CMMA: |
| 775 | ret = -ENXIO; |
| 776 | if (!sclp.has_cmma) |
| 777 | break; |
| 778 | ret = -EINVAL; |
| 779 | if (!kvm->arch.use_cmma) |
| 780 | break; |
| 781 | |
| 782 | VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); |
| 783 | mutex_lock(&kvm->lock); |
| 784 | idx = srcu_read_lock(&kvm->srcu); |
| 785 | s390_reset_cmma(kvm->arch.gmap->mm); |
| 786 | srcu_read_unlock(&kvm->srcu, idx); |
| 787 | mutex_unlock(&kvm->lock); |
| 788 | ret = 0; |
| 789 | break; |
| 790 | case KVM_S390_VM_MEM_LIMIT_SIZE: { |
| 791 | unsigned long new_limit; |
| 792 | |
| 793 | if (kvm_is_ucontrol(kvm)) |
| 794 | return -EINVAL; |
| 795 | |
| 796 | if (get_user(new_limit, (u64 __user *)attr->addr)) |
| 797 | return -EFAULT; |
| 798 | |
| 799 | if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && |
| 800 | new_limit > kvm->arch.mem_limit) |
| 801 | return -E2BIG; |
| 802 | |
| 803 | if (!new_limit) |
| 804 | return -EINVAL; |
| 805 | |
| 806 | /* gmap_create takes last usable address */ |
| 807 | if (new_limit != KVM_S390_NO_MEM_LIMIT) |
| 808 | new_limit -= 1; |
| 809 | |
| 810 | ret = -EBUSY; |
| 811 | mutex_lock(&kvm->lock); |
| 812 | if (!kvm->created_vcpus) { |
| 813 | /* gmap_create will round the limit up */ |
| 814 | struct gmap *new = gmap_create(current->mm, new_limit); |
| 815 | |
| 816 | if (!new) { |
| 817 | ret = -ENOMEM; |
| 818 | } else { |
| 819 | gmap_remove(kvm->arch.gmap); |
| 820 | new->private = kvm; |
| 821 | kvm->arch.gmap = new; |
| 822 | ret = 0; |
| 823 | } |
| 824 | } |
| 825 | mutex_unlock(&kvm->lock); |
| 826 | VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); |
| 827 | VM_EVENT(kvm, 3, "New guest asce: 0x%pK", |
| 828 | (void *) kvm->arch.gmap->asce); |
| 829 | break; |
| 830 | } |
| 831 | default: |
| 832 | ret = -ENXIO; |
| 833 | break; |
| 834 | } |
| 835 | return ret; |
| 836 | } |
| 837 | |
| 838 | static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); |
| 839 | |
| 840 | void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm) |
| 841 | { |
| 842 | struct kvm_vcpu *vcpu; |
| 843 | int i; |
| 844 | |
| 845 | kvm_s390_vcpu_block_all(kvm); |
| 846 | |
| 847 | kvm_for_each_vcpu(i, vcpu, kvm) |
| 848 | kvm_s390_vcpu_crypto_setup(vcpu); |
| 849 | |
| 850 | kvm_s390_vcpu_unblock_all(kvm); |
| 851 | } |
| 852 | |
| 853 | static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) |
| 854 | { |
| 855 | if (!test_kvm_facility(kvm, 76)) |
| 856 | return -EINVAL; |
| 857 | |
| 858 | mutex_lock(&kvm->lock); |
| 859 | switch (attr->attr) { |
| 860 | case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: |
| 861 | get_random_bytes( |
| 862 | kvm->arch.crypto.crycb->aes_wrapping_key_mask, |
| 863 | sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); |
| 864 | kvm->arch.crypto.aes_kw = 1; |
| 865 | VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); |
| 866 | break; |
| 867 | case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: |
| 868 | get_random_bytes( |
| 869 | kvm->arch.crypto.crycb->dea_wrapping_key_mask, |
| 870 | sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); |
| 871 | kvm->arch.crypto.dea_kw = 1; |
| 872 | VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); |
| 873 | break; |
| 874 | case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: |
| 875 | kvm->arch.crypto.aes_kw = 0; |
| 876 | memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, |
| 877 | sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); |
| 878 | VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); |
| 879 | break; |
| 880 | case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: |
| 881 | kvm->arch.crypto.dea_kw = 0; |
| 882 | memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, |
| 883 | sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); |
| 884 | VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); |
| 885 | break; |
| 886 | default: |
| 887 | mutex_unlock(&kvm->lock); |
| 888 | return -ENXIO; |
| 889 | } |
| 890 | |
| 891 | kvm_s390_vcpu_crypto_reset_all(kvm); |
| 892 | mutex_unlock(&kvm->lock); |
| 893 | return 0; |
| 894 | } |
| 895 | |
| 896 | static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) |
| 897 | { |
| 898 | int cx; |
| 899 | struct kvm_vcpu *vcpu; |
| 900 | |
| 901 | kvm_for_each_vcpu(cx, vcpu, kvm) |
| 902 | kvm_s390_sync_request(req, vcpu); |
| 903 | } |
| 904 | |
| 905 | /* |
| 906 | * Must be called with kvm->srcu held to avoid races on memslots, and with |
| 907 | * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. |
| 908 | */ |
| 909 | static int kvm_s390_vm_start_migration(struct kvm *kvm) |
| 910 | { |
| 911 | struct kvm_memory_slot *ms; |
| 912 | struct kvm_memslots *slots; |
| 913 | unsigned long ram_pages = 0; |
| 914 | int slotnr; |
| 915 | |
| 916 | /* migration mode already enabled */ |
| 917 | if (kvm->arch.migration_mode) |
| 918 | return 0; |
| 919 | slots = kvm_memslots(kvm); |
| 920 | if (!slots || !slots->used_slots) |
| 921 | return -EINVAL; |
| 922 | |
| 923 | if (!kvm->arch.use_cmma) { |
| 924 | kvm->arch.migration_mode = 1; |
| 925 | return 0; |
| 926 | } |
| 927 | /* mark all the pages in active slots as dirty */ |
| 928 | for (slotnr = 0; slotnr < slots->used_slots; slotnr++) { |
| 929 | ms = slots->memslots + slotnr; |
| 930 | /* |
| 931 | * The second half of the bitmap is only used on x86, |
| 932 | * and would be wasted otherwise, so we put it to good |
| 933 | * use here to keep track of the state of the storage |
| 934 | * attributes. |
| 935 | */ |
| 936 | memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms)); |
| 937 | ram_pages += ms->npages; |
| 938 | } |
| 939 | atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages); |
| 940 | kvm->arch.migration_mode = 1; |
| 941 | kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); |
| 942 | return 0; |
| 943 | } |
| 944 | |
| 945 | /* |
| 946 | * Must be called with kvm->slots_lock to avoid races with ourselves and |
| 947 | * kvm_s390_vm_start_migration. |
| 948 | */ |
| 949 | static int kvm_s390_vm_stop_migration(struct kvm *kvm) |
| 950 | { |
| 951 | /* migration mode already disabled */ |
| 952 | if (!kvm->arch.migration_mode) |
| 953 | return 0; |
| 954 | kvm->arch.migration_mode = 0; |
| 955 | if (kvm->arch.use_cmma) |
| 956 | kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); |
| 957 | return 0; |
| 958 | } |
| 959 | |
| 960 | static int kvm_s390_vm_set_migration(struct kvm *kvm, |
| 961 | struct kvm_device_attr *attr) |
| 962 | { |
| 963 | int res = -ENXIO; |
| 964 | |
| 965 | mutex_lock(&kvm->slots_lock); |
| 966 | switch (attr->attr) { |
| 967 | case KVM_S390_VM_MIGRATION_START: |
| 968 | res = kvm_s390_vm_start_migration(kvm); |
| 969 | break; |
| 970 | case KVM_S390_VM_MIGRATION_STOP: |
| 971 | res = kvm_s390_vm_stop_migration(kvm); |
| 972 | break; |
| 973 | default: |
| 974 | break; |
| 975 | } |
| 976 | mutex_unlock(&kvm->slots_lock); |
| 977 | |
| 978 | return res; |
| 979 | } |
| 980 | |
| 981 | static int kvm_s390_vm_get_migration(struct kvm *kvm, |
| 982 | struct kvm_device_attr *attr) |
| 983 | { |
| 984 | u64 mig = kvm->arch.migration_mode; |
| 985 | |
| 986 | if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) |
| 987 | return -ENXIO; |
| 988 | |
| 989 | if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) |
| 990 | return -EFAULT; |
| 991 | return 0; |
| 992 | } |
| 993 | |
| 994 | static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) |
| 995 | { |
| 996 | struct kvm_s390_vm_tod_clock gtod; |
| 997 | |
| 998 | if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) |
| 999 | return -EFAULT; |
| 1000 | |
| 1001 | if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) |
| 1002 | return -EINVAL; |
| 1003 | kvm_s390_set_tod_clock(kvm, >od); |
| 1004 | |
| 1005 | VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", |
| 1006 | gtod.epoch_idx, gtod.tod); |
| 1007 | |
| 1008 | return 0; |
| 1009 | } |
| 1010 | |
| 1011 | static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1012 | { |
| 1013 | u8 gtod_high; |
| 1014 | |
| 1015 | if (copy_from_user(>od_high, (void __user *)attr->addr, |
| 1016 | sizeof(gtod_high))) |
| 1017 | return -EFAULT; |
| 1018 | |
| 1019 | if (gtod_high != 0) |
| 1020 | return -EINVAL; |
| 1021 | VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); |
| 1022 | |
| 1023 | return 0; |
| 1024 | } |
| 1025 | |
| 1026 | static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1027 | { |
| 1028 | struct kvm_s390_vm_tod_clock gtod = { 0 }; |
| 1029 | |
| 1030 | if (copy_from_user(>od.tod, (void __user *)attr->addr, |
| 1031 | sizeof(gtod.tod))) |
| 1032 | return -EFAULT; |
| 1033 | |
| 1034 | kvm_s390_set_tod_clock(kvm, >od); |
| 1035 | VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); |
| 1036 | return 0; |
| 1037 | } |
| 1038 | |
| 1039 | static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1040 | { |
| 1041 | int ret; |
| 1042 | |
| 1043 | if (attr->flags) |
| 1044 | return -EINVAL; |
| 1045 | |
| 1046 | switch (attr->attr) { |
| 1047 | case KVM_S390_VM_TOD_EXT: |
| 1048 | ret = kvm_s390_set_tod_ext(kvm, attr); |
| 1049 | break; |
| 1050 | case KVM_S390_VM_TOD_HIGH: |
| 1051 | ret = kvm_s390_set_tod_high(kvm, attr); |
| 1052 | break; |
| 1053 | case KVM_S390_VM_TOD_LOW: |
| 1054 | ret = kvm_s390_set_tod_low(kvm, attr); |
| 1055 | break; |
| 1056 | default: |
| 1057 | ret = -ENXIO; |
| 1058 | break; |
| 1059 | } |
| 1060 | return ret; |
| 1061 | } |
| 1062 | |
| 1063 | static void kvm_s390_get_tod_clock(struct kvm *kvm, |
| 1064 | struct kvm_s390_vm_tod_clock *gtod) |
| 1065 | { |
| 1066 | struct kvm_s390_tod_clock_ext htod; |
| 1067 | |
| 1068 | preempt_disable(); |
| 1069 | |
| 1070 | get_tod_clock_ext((char *)&htod); |
| 1071 | |
| 1072 | gtod->tod = htod.tod + kvm->arch.epoch; |
| 1073 | gtod->epoch_idx = 0; |
| 1074 | if (test_kvm_facility(kvm, 139)) { |
| 1075 | gtod->epoch_idx = htod.epoch_idx + kvm->arch.epdx; |
| 1076 | if (gtod->tod < htod.tod) |
| 1077 | gtod->epoch_idx += 1; |
| 1078 | } |
| 1079 | |
| 1080 | preempt_enable(); |
| 1081 | } |
| 1082 | |
| 1083 | static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1084 | { |
| 1085 | struct kvm_s390_vm_tod_clock gtod; |
| 1086 | |
| 1087 | memset(>od, 0, sizeof(gtod)); |
| 1088 | kvm_s390_get_tod_clock(kvm, >od); |
| 1089 | if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) |
| 1090 | return -EFAULT; |
| 1091 | |
| 1092 | VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", |
| 1093 | gtod.epoch_idx, gtod.tod); |
| 1094 | return 0; |
| 1095 | } |
| 1096 | |
| 1097 | static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1098 | { |
| 1099 | u8 gtod_high = 0; |
| 1100 | |
| 1101 | if (copy_to_user((void __user *)attr->addr, >od_high, |
| 1102 | sizeof(gtod_high))) |
| 1103 | return -EFAULT; |
| 1104 | VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); |
| 1105 | |
| 1106 | return 0; |
| 1107 | } |
| 1108 | |
| 1109 | static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1110 | { |
| 1111 | u64 gtod; |
| 1112 | |
| 1113 | gtod = kvm_s390_get_tod_clock_fast(kvm); |
| 1114 | if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) |
| 1115 | return -EFAULT; |
| 1116 | VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); |
| 1117 | |
| 1118 | return 0; |
| 1119 | } |
| 1120 | |
| 1121 | static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1122 | { |
| 1123 | int ret; |
| 1124 | |
| 1125 | if (attr->flags) |
| 1126 | return -EINVAL; |
| 1127 | |
| 1128 | switch (attr->attr) { |
| 1129 | case KVM_S390_VM_TOD_EXT: |
| 1130 | ret = kvm_s390_get_tod_ext(kvm, attr); |
| 1131 | break; |
| 1132 | case KVM_S390_VM_TOD_HIGH: |
| 1133 | ret = kvm_s390_get_tod_high(kvm, attr); |
| 1134 | break; |
| 1135 | case KVM_S390_VM_TOD_LOW: |
| 1136 | ret = kvm_s390_get_tod_low(kvm, attr); |
| 1137 | break; |
| 1138 | default: |
| 1139 | ret = -ENXIO; |
| 1140 | break; |
| 1141 | } |
| 1142 | return ret; |
| 1143 | } |
| 1144 | |
| 1145 | static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1146 | { |
| 1147 | struct kvm_s390_vm_cpu_processor *proc; |
| 1148 | u16 lowest_ibc, unblocked_ibc; |
| 1149 | int ret = 0; |
| 1150 | |
| 1151 | mutex_lock(&kvm->lock); |
| 1152 | if (kvm->created_vcpus) { |
| 1153 | ret = -EBUSY; |
| 1154 | goto out; |
| 1155 | } |
| 1156 | proc = kzalloc(sizeof(*proc), GFP_KERNEL); |
| 1157 | if (!proc) { |
| 1158 | ret = -ENOMEM; |
| 1159 | goto out; |
| 1160 | } |
| 1161 | if (!copy_from_user(proc, (void __user *)attr->addr, |
| 1162 | sizeof(*proc))) { |
| 1163 | kvm->arch.model.cpuid = proc->cpuid; |
| 1164 | lowest_ibc = sclp.ibc >> 16 & 0xfff; |
| 1165 | unblocked_ibc = sclp.ibc & 0xfff; |
| 1166 | if (lowest_ibc && proc->ibc) { |
| 1167 | if (proc->ibc > unblocked_ibc) |
| 1168 | kvm->arch.model.ibc = unblocked_ibc; |
| 1169 | else if (proc->ibc < lowest_ibc) |
| 1170 | kvm->arch.model.ibc = lowest_ibc; |
| 1171 | else |
| 1172 | kvm->arch.model.ibc = proc->ibc; |
| 1173 | } |
| 1174 | memcpy(kvm->arch.model.fac_list, proc->fac_list, |
| 1175 | S390_ARCH_FAC_LIST_SIZE_BYTE); |
| 1176 | VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", |
| 1177 | kvm->arch.model.ibc, |
| 1178 | kvm->arch.model.cpuid); |
| 1179 | VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", |
| 1180 | kvm->arch.model.fac_list[0], |
| 1181 | kvm->arch.model.fac_list[1], |
| 1182 | kvm->arch.model.fac_list[2]); |
| 1183 | } else |
| 1184 | ret = -EFAULT; |
| 1185 | kfree(proc); |
| 1186 | out: |
| 1187 | mutex_unlock(&kvm->lock); |
| 1188 | return ret; |
| 1189 | } |
| 1190 | |
| 1191 | static int kvm_s390_set_processor_feat(struct kvm *kvm, |
| 1192 | struct kvm_device_attr *attr) |
| 1193 | { |
| 1194 | struct kvm_s390_vm_cpu_feat data; |
| 1195 | |
| 1196 | if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) |
| 1197 | return -EFAULT; |
| 1198 | if (!bitmap_subset((unsigned long *) data.feat, |
| 1199 | kvm_s390_available_cpu_feat, |
| 1200 | KVM_S390_VM_CPU_FEAT_NR_BITS)) |
| 1201 | return -EINVAL; |
| 1202 | |
| 1203 | mutex_lock(&kvm->lock); |
| 1204 | if (kvm->created_vcpus) { |
| 1205 | mutex_unlock(&kvm->lock); |
| 1206 | return -EBUSY; |
| 1207 | } |
| 1208 | bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat, |
| 1209 | KVM_S390_VM_CPU_FEAT_NR_BITS); |
| 1210 | mutex_unlock(&kvm->lock); |
| 1211 | VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", |
| 1212 | data.feat[0], |
| 1213 | data.feat[1], |
| 1214 | data.feat[2]); |
| 1215 | return 0; |
| 1216 | } |
| 1217 | |
| 1218 | static int kvm_s390_set_processor_subfunc(struct kvm *kvm, |
| 1219 | struct kvm_device_attr *attr) |
| 1220 | { |
| 1221 | /* |
| 1222 | * Once supported by kernel + hw, we have to store the subfunctions |
| 1223 | * in kvm->arch and remember that user space configured them. |
| 1224 | */ |
| 1225 | return -ENXIO; |
| 1226 | } |
| 1227 | |
| 1228 | static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1229 | { |
| 1230 | int ret = -ENXIO; |
| 1231 | |
| 1232 | switch (attr->attr) { |
| 1233 | case KVM_S390_VM_CPU_PROCESSOR: |
| 1234 | ret = kvm_s390_set_processor(kvm, attr); |
| 1235 | break; |
| 1236 | case KVM_S390_VM_CPU_PROCESSOR_FEAT: |
| 1237 | ret = kvm_s390_set_processor_feat(kvm, attr); |
| 1238 | break; |
| 1239 | case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: |
| 1240 | ret = kvm_s390_set_processor_subfunc(kvm, attr); |
| 1241 | break; |
| 1242 | } |
| 1243 | return ret; |
| 1244 | } |
| 1245 | |
| 1246 | static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1247 | { |
| 1248 | struct kvm_s390_vm_cpu_processor *proc; |
| 1249 | int ret = 0; |
| 1250 | |
| 1251 | proc = kzalloc(sizeof(*proc), GFP_KERNEL); |
| 1252 | if (!proc) { |
| 1253 | ret = -ENOMEM; |
| 1254 | goto out; |
| 1255 | } |
| 1256 | proc->cpuid = kvm->arch.model.cpuid; |
| 1257 | proc->ibc = kvm->arch.model.ibc; |
| 1258 | memcpy(&proc->fac_list, kvm->arch.model.fac_list, |
| 1259 | S390_ARCH_FAC_LIST_SIZE_BYTE); |
| 1260 | VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", |
| 1261 | kvm->arch.model.ibc, |
| 1262 | kvm->arch.model.cpuid); |
| 1263 | VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", |
| 1264 | kvm->arch.model.fac_list[0], |
| 1265 | kvm->arch.model.fac_list[1], |
| 1266 | kvm->arch.model.fac_list[2]); |
| 1267 | if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) |
| 1268 | ret = -EFAULT; |
| 1269 | kfree(proc); |
| 1270 | out: |
| 1271 | return ret; |
| 1272 | } |
| 1273 | |
| 1274 | static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1275 | { |
| 1276 | struct kvm_s390_vm_cpu_machine *mach; |
| 1277 | int ret = 0; |
| 1278 | |
| 1279 | mach = kzalloc(sizeof(*mach), GFP_KERNEL); |
| 1280 | if (!mach) { |
| 1281 | ret = -ENOMEM; |
| 1282 | goto out; |
| 1283 | } |
| 1284 | get_cpu_id((struct cpuid *) &mach->cpuid); |
| 1285 | mach->ibc = sclp.ibc; |
| 1286 | memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, |
| 1287 | S390_ARCH_FAC_LIST_SIZE_BYTE); |
| 1288 | memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list, |
| 1289 | sizeof(S390_lowcore.stfle_fac_list)); |
| 1290 | VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", |
| 1291 | kvm->arch.model.ibc, |
| 1292 | kvm->arch.model.cpuid); |
| 1293 | VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", |
| 1294 | mach->fac_mask[0], |
| 1295 | mach->fac_mask[1], |
| 1296 | mach->fac_mask[2]); |
| 1297 | VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", |
| 1298 | mach->fac_list[0], |
| 1299 | mach->fac_list[1], |
| 1300 | mach->fac_list[2]); |
| 1301 | if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) |
| 1302 | ret = -EFAULT; |
| 1303 | kfree(mach); |
| 1304 | out: |
| 1305 | return ret; |
| 1306 | } |
| 1307 | |
| 1308 | static int kvm_s390_get_processor_feat(struct kvm *kvm, |
| 1309 | struct kvm_device_attr *attr) |
| 1310 | { |
| 1311 | struct kvm_s390_vm_cpu_feat data; |
| 1312 | |
| 1313 | bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat, |
| 1314 | KVM_S390_VM_CPU_FEAT_NR_BITS); |
| 1315 | if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) |
| 1316 | return -EFAULT; |
| 1317 | VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", |
| 1318 | data.feat[0], |
| 1319 | data.feat[1], |
| 1320 | data.feat[2]); |
| 1321 | return 0; |
| 1322 | } |
| 1323 | |
| 1324 | static int kvm_s390_get_machine_feat(struct kvm *kvm, |
| 1325 | struct kvm_device_attr *attr) |
| 1326 | { |
| 1327 | struct kvm_s390_vm_cpu_feat data; |
| 1328 | |
| 1329 | bitmap_copy((unsigned long *) data.feat, |
| 1330 | kvm_s390_available_cpu_feat, |
| 1331 | KVM_S390_VM_CPU_FEAT_NR_BITS); |
| 1332 | if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) |
| 1333 | return -EFAULT; |
| 1334 | VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", |
| 1335 | data.feat[0], |
| 1336 | data.feat[1], |
| 1337 | data.feat[2]); |
| 1338 | return 0; |
| 1339 | } |
| 1340 | |
| 1341 | static int kvm_s390_get_processor_subfunc(struct kvm *kvm, |
| 1342 | struct kvm_device_attr *attr) |
| 1343 | { |
| 1344 | /* |
| 1345 | * Once we can actually configure subfunctions (kernel + hw support), |
| 1346 | * we have to check if they were already set by user space, if so copy |
| 1347 | * them from kvm->arch. |
| 1348 | */ |
| 1349 | return -ENXIO; |
| 1350 | } |
| 1351 | |
| 1352 | static int kvm_s390_get_machine_subfunc(struct kvm *kvm, |
| 1353 | struct kvm_device_attr *attr) |
| 1354 | { |
| 1355 | if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, |
| 1356 | sizeof(struct kvm_s390_vm_cpu_subfunc))) |
| 1357 | return -EFAULT; |
| 1358 | return 0; |
| 1359 | } |
| 1360 | static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1361 | { |
| 1362 | int ret = -ENXIO; |
| 1363 | |
| 1364 | switch (attr->attr) { |
| 1365 | case KVM_S390_VM_CPU_PROCESSOR: |
| 1366 | ret = kvm_s390_get_processor(kvm, attr); |
| 1367 | break; |
| 1368 | case KVM_S390_VM_CPU_MACHINE: |
| 1369 | ret = kvm_s390_get_machine(kvm, attr); |
| 1370 | break; |
| 1371 | case KVM_S390_VM_CPU_PROCESSOR_FEAT: |
| 1372 | ret = kvm_s390_get_processor_feat(kvm, attr); |
| 1373 | break; |
| 1374 | case KVM_S390_VM_CPU_MACHINE_FEAT: |
| 1375 | ret = kvm_s390_get_machine_feat(kvm, attr); |
| 1376 | break; |
| 1377 | case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: |
| 1378 | ret = kvm_s390_get_processor_subfunc(kvm, attr); |
| 1379 | break; |
| 1380 | case KVM_S390_VM_CPU_MACHINE_SUBFUNC: |
| 1381 | ret = kvm_s390_get_machine_subfunc(kvm, attr); |
| 1382 | break; |
| 1383 | } |
| 1384 | return ret; |
| 1385 | } |
| 1386 | |
| 1387 | static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1388 | { |
| 1389 | int ret; |
| 1390 | |
| 1391 | switch (attr->group) { |
| 1392 | case KVM_S390_VM_MEM_CTRL: |
| 1393 | ret = kvm_s390_set_mem_control(kvm, attr); |
| 1394 | break; |
| 1395 | case KVM_S390_VM_TOD: |
| 1396 | ret = kvm_s390_set_tod(kvm, attr); |
| 1397 | break; |
| 1398 | case KVM_S390_VM_CPU_MODEL: |
| 1399 | ret = kvm_s390_set_cpu_model(kvm, attr); |
| 1400 | break; |
| 1401 | case KVM_S390_VM_CRYPTO: |
| 1402 | ret = kvm_s390_vm_set_crypto(kvm, attr); |
| 1403 | break; |
| 1404 | case KVM_S390_VM_MIGRATION: |
| 1405 | ret = kvm_s390_vm_set_migration(kvm, attr); |
| 1406 | break; |
| 1407 | default: |
| 1408 | ret = -ENXIO; |
| 1409 | break; |
| 1410 | } |
| 1411 | |
| 1412 | return ret; |
| 1413 | } |
| 1414 | |
| 1415 | static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1416 | { |
| 1417 | int ret; |
| 1418 | |
| 1419 | switch (attr->group) { |
| 1420 | case KVM_S390_VM_MEM_CTRL: |
| 1421 | ret = kvm_s390_get_mem_control(kvm, attr); |
| 1422 | break; |
| 1423 | case KVM_S390_VM_TOD: |
| 1424 | ret = kvm_s390_get_tod(kvm, attr); |
| 1425 | break; |
| 1426 | case KVM_S390_VM_CPU_MODEL: |
| 1427 | ret = kvm_s390_get_cpu_model(kvm, attr); |
| 1428 | break; |
| 1429 | case KVM_S390_VM_MIGRATION: |
| 1430 | ret = kvm_s390_vm_get_migration(kvm, attr); |
| 1431 | break; |
| 1432 | default: |
| 1433 | ret = -ENXIO; |
| 1434 | break; |
| 1435 | } |
| 1436 | |
| 1437 | return ret; |
| 1438 | } |
| 1439 | |
| 1440 | static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) |
| 1441 | { |
| 1442 | int ret; |
| 1443 | |
| 1444 | switch (attr->group) { |
| 1445 | case KVM_S390_VM_MEM_CTRL: |
| 1446 | switch (attr->attr) { |
| 1447 | case KVM_S390_VM_MEM_ENABLE_CMMA: |
| 1448 | case KVM_S390_VM_MEM_CLR_CMMA: |
| 1449 | ret = sclp.has_cmma ? 0 : -ENXIO; |
| 1450 | break; |
| 1451 | case KVM_S390_VM_MEM_LIMIT_SIZE: |
| 1452 | ret = 0; |
| 1453 | break; |
| 1454 | default: |
| 1455 | ret = -ENXIO; |
| 1456 | break; |
| 1457 | } |
| 1458 | break; |
| 1459 | case KVM_S390_VM_TOD: |
| 1460 | switch (attr->attr) { |
| 1461 | case KVM_S390_VM_TOD_LOW: |
| 1462 | case KVM_S390_VM_TOD_HIGH: |
| 1463 | ret = 0; |
| 1464 | break; |
| 1465 | default: |
| 1466 | ret = -ENXIO; |
| 1467 | break; |
| 1468 | } |
| 1469 | break; |
| 1470 | case KVM_S390_VM_CPU_MODEL: |
| 1471 | switch (attr->attr) { |
| 1472 | case KVM_S390_VM_CPU_PROCESSOR: |
| 1473 | case KVM_S390_VM_CPU_MACHINE: |
| 1474 | case KVM_S390_VM_CPU_PROCESSOR_FEAT: |
| 1475 | case KVM_S390_VM_CPU_MACHINE_FEAT: |
| 1476 | case KVM_S390_VM_CPU_MACHINE_SUBFUNC: |
| 1477 | ret = 0; |
| 1478 | break; |
| 1479 | /* configuring subfunctions is not supported yet */ |
| 1480 | case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: |
| 1481 | default: |
| 1482 | ret = -ENXIO; |
| 1483 | break; |
| 1484 | } |
| 1485 | break; |
| 1486 | case KVM_S390_VM_CRYPTO: |
| 1487 | switch (attr->attr) { |
| 1488 | case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: |
| 1489 | case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: |
| 1490 | case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: |
| 1491 | case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: |
| 1492 | ret = 0; |
| 1493 | break; |
| 1494 | default: |
| 1495 | ret = -ENXIO; |
| 1496 | break; |
| 1497 | } |
| 1498 | break; |
| 1499 | case KVM_S390_VM_MIGRATION: |
| 1500 | ret = 0; |
| 1501 | break; |
| 1502 | default: |
| 1503 | ret = -ENXIO; |
| 1504 | break; |
| 1505 | } |
| 1506 | |
| 1507 | return ret; |
| 1508 | } |
| 1509 | |
| 1510 | static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) |
| 1511 | { |
| 1512 | uint8_t *keys; |
| 1513 | uint64_t hva; |
| 1514 | int srcu_idx, i, r = 0; |
| 1515 | |
| 1516 | if (args->flags != 0) |
| 1517 | return -EINVAL; |
| 1518 | |
| 1519 | /* Is this guest using storage keys? */ |
| 1520 | if (!mm_uses_skeys(current->mm)) |
| 1521 | return KVM_S390_GET_SKEYS_NONE; |
| 1522 | |
| 1523 | /* Enforce sane limit on memory allocation */ |
| 1524 | if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) |
| 1525 | return -EINVAL; |
| 1526 | |
| 1527 | keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL); |
| 1528 | if (!keys) |
| 1529 | return -ENOMEM; |
| 1530 | |
| 1531 | down_read(¤t->mm->mmap_sem); |
| 1532 | srcu_idx = srcu_read_lock(&kvm->srcu); |
| 1533 | for (i = 0; i < args->count; i++) { |
| 1534 | hva = gfn_to_hva(kvm, args->start_gfn + i); |
| 1535 | if (kvm_is_error_hva(hva)) { |
| 1536 | r = -EFAULT; |
| 1537 | break; |
| 1538 | } |
| 1539 | |
| 1540 | r = get_guest_storage_key(current->mm, hva, &keys[i]); |
| 1541 | if (r) |
| 1542 | break; |
| 1543 | } |
| 1544 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
| 1545 | up_read(¤t->mm->mmap_sem); |
| 1546 | |
| 1547 | if (!r) { |
| 1548 | r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, |
| 1549 | sizeof(uint8_t) * args->count); |
| 1550 | if (r) |
| 1551 | r = -EFAULT; |
| 1552 | } |
| 1553 | |
| 1554 | kvfree(keys); |
| 1555 | return r; |
| 1556 | } |
| 1557 | |
| 1558 | static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) |
| 1559 | { |
| 1560 | uint8_t *keys; |
| 1561 | uint64_t hva; |
| 1562 | int srcu_idx, i, r = 0; |
| 1563 | bool unlocked; |
| 1564 | |
| 1565 | if (args->flags != 0) |
| 1566 | return -EINVAL; |
| 1567 | |
| 1568 | /* Enforce sane limit on memory allocation */ |
| 1569 | if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) |
| 1570 | return -EINVAL; |
| 1571 | |
| 1572 | keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL); |
| 1573 | if (!keys) |
| 1574 | return -ENOMEM; |
| 1575 | |
| 1576 | r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, |
| 1577 | sizeof(uint8_t) * args->count); |
| 1578 | if (r) { |
| 1579 | r = -EFAULT; |
| 1580 | goto out; |
| 1581 | } |
| 1582 | |
| 1583 | /* Enable storage key handling for the guest */ |
| 1584 | r = s390_enable_skey(); |
| 1585 | if (r) |
| 1586 | goto out; |
| 1587 | |
| 1588 | i = 0; |
| 1589 | down_read(¤t->mm->mmap_sem); |
| 1590 | srcu_idx = srcu_read_lock(&kvm->srcu); |
| 1591 | while (i < args->count) { |
| 1592 | unlocked = false; |
| 1593 | hva = gfn_to_hva(kvm, args->start_gfn + i); |
| 1594 | if (kvm_is_error_hva(hva)) { |
| 1595 | r = -EFAULT; |
| 1596 | break; |
| 1597 | } |
| 1598 | |
| 1599 | /* Lowest order bit is reserved */ |
| 1600 | if (keys[i] & 0x01) { |
| 1601 | r = -EINVAL; |
| 1602 | break; |
| 1603 | } |
| 1604 | |
| 1605 | r = set_guest_storage_key(current->mm, hva, keys[i], 0); |
| 1606 | if (r) { |
| 1607 | r = fixup_user_fault(current, current->mm, hva, |
| 1608 | FAULT_FLAG_WRITE, &unlocked); |
| 1609 | if (r) |
| 1610 | break; |
| 1611 | } |
| 1612 | if (!r) |
| 1613 | i++; |
| 1614 | } |
| 1615 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
| 1616 | up_read(¤t->mm->mmap_sem); |
| 1617 | out: |
| 1618 | kvfree(keys); |
| 1619 | return r; |
| 1620 | } |
| 1621 | |
| 1622 | /* |
| 1623 | * Base address and length must be sent at the start of each block, therefore |
| 1624 | * it's cheaper to send some clean data, as long as it's less than the size of |
| 1625 | * two longs. |
| 1626 | */ |
| 1627 | #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) |
| 1628 | /* for consistency */ |
| 1629 | #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) |
| 1630 | |
| 1631 | /* |
| 1632 | * Similar to gfn_to_memslot, but returns the index of a memslot also when the |
| 1633 | * address falls in a hole. In that case the index of one of the memslots |
| 1634 | * bordering the hole is returned. |
| 1635 | */ |
| 1636 | static int gfn_to_memslot_approx(struct kvm_memslots *slots, gfn_t gfn) |
| 1637 | { |
| 1638 | int start = 0, end = slots->used_slots; |
| 1639 | int slot = atomic_read(&slots->lru_slot); |
| 1640 | struct kvm_memory_slot *memslots = slots->memslots; |
| 1641 | |
| 1642 | if (gfn >= memslots[slot].base_gfn && |
| 1643 | gfn < memslots[slot].base_gfn + memslots[slot].npages) |
| 1644 | return slot; |
| 1645 | |
| 1646 | while (start < end) { |
| 1647 | slot = start + (end - start) / 2; |
| 1648 | |
| 1649 | if (gfn >= memslots[slot].base_gfn) |
| 1650 | end = slot; |
| 1651 | else |
| 1652 | start = slot + 1; |
| 1653 | } |
| 1654 | |
| 1655 | if (gfn >= memslots[start].base_gfn && |
| 1656 | gfn < memslots[start].base_gfn + memslots[start].npages) { |
| 1657 | atomic_set(&slots->lru_slot, start); |
| 1658 | } |
| 1659 | |
| 1660 | return start; |
| 1661 | } |
| 1662 | |
| 1663 | static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, |
| 1664 | u8 *res, unsigned long bufsize) |
| 1665 | { |
| 1666 | unsigned long pgstev, hva, cur_gfn = args->start_gfn; |
| 1667 | |
| 1668 | args->count = 0; |
| 1669 | while (args->count < bufsize) { |
| 1670 | hva = gfn_to_hva(kvm, cur_gfn); |
| 1671 | /* |
| 1672 | * We return an error if the first value was invalid, but we |
| 1673 | * return successfully if at least one value was copied. |
| 1674 | */ |
| 1675 | if (kvm_is_error_hva(hva)) |
| 1676 | return args->count ? 0 : -EFAULT; |
| 1677 | if (get_pgste(kvm->mm, hva, &pgstev) < 0) |
| 1678 | pgstev = 0; |
| 1679 | res[args->count++] = (pgstev >> 24) & 0x43; |
| 1680 | cur_gfn++; |
| 1681 | } |
| 1682 | |
| 1683 | return 0; |
| 1684 | } |
| 1685 | |
| 1686 | static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots, |
| 1687 | unsigned long cur_gfn) |
| 1688 | { |
| 1689 | int slotidx = gfn_to_memslot_approx(slots, cur_gfn); |
| 1690 | struct kvm_memory_slot *ms = slots->memslots + slotidx; |
| 1691 | unsigned long ofs = cur_gfn - ms->base_gfn; |
| 1692 | |
| 1693 | if (ms->base_gfn + ms->npages <= cur_gfn) { |
| 1694 | slotidx--; |
| 1695 | /* If we are above the highest slot, wrap around */ |
| 1696 | if (slotidx < 0) |
| 1697 | slotidx = slots->used_slots - 1; |
| 1698 | |
| 1699 | ms = slots->memslots + slotidx; |
| 1700 | ofs = 0; |
| 1701 | } |
| 1702 | ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs); |
| 1703 | while ((slotidx > 0) && (ofs >= ms->npages)) { |
| 1704 | slotidx--; |
| 1705 | ms = slots->memslots + slotidx; |
| 1706 | ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, 0); |
| 1707 | } |
| 1708 | return ms->base_gfn + ofs; |
| 1709 | } |
| 1710 | |
| 1711 | static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, |
| 1712 | u8 *res, unsigned long bufsize) |
| 1713 | { |
| 1714 | unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev; |
| 1715 | struct kvm_memslots *slots = kvm_memslots(kvm); |
| 1716 | struct kvm_memory_slot *ms; |
| 1717 | |
| 1718 | cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn); |
| 1719 | ms = gfn_to_memslot(kvm, cur_gfn); |
| 1720 | args->count = 0; |
| 1721 | args->start_gfn = cur_gfn; |
| 1722 | if (!ms) |
| 1723 | return 0; |
| 1724 | next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); |
| 1725 | mem_end = slots->memslots[0].base_gfn + slots->memslots[0].npages; |
| 1726 | |
| 1727 | while (args->count < bufsize) { |
| 1728 | hva = gfn_to_hva(kvm, cur_gfn); |
| 1729 | if (kvm_is_error_hva(hva)) |
| 1730 | return 0; |
| 1731 | /* Decrement only if we actually flipped the bit to 0 */ |
| 1732 | if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) |
| 1733 | atomic64_dec(&kvm->arch.cmma_dirty_pages); |
| 1734 | if (get_pgste(kvm->mm, hva, &pgstev) < 0) |
| 1735 | pgstev = 0; |
| 1736 | /* Save the value */ |
| 1737 | res[args->count++] = (pgstev >> 24) & 0x43; |
| 1738 | /* If the next bit is too far away, stop. */ |
| 1739 | if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE) |
| 1740 | return 0; |
| 1741 | /* If we reached the previous "next", find the next one */ |
| 1742 | if (cur_gfn == next_gfn) |
| 1743 | next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); |
| 1744 | /* Reached the end of memory or of the buffer, stop */ |
| 1745 | if ((next_gfn >= mem_end) || |
| 1746 | (next_gfn - args->start_gfn >= bufsize)) |
| 1747 | return 0; |
| 1748 | cur_gfn++; |
| 1749 | /* Reached the end of the current memslot, take the next one. */ |
| 1750 | if (cur_gfn - ms->base_gfn >= ms->npages) { |
| 1751 | ms = gfn_to_memslot(kvm, cur_gfn); |
| 1752 | if (!ms) |
| 1753 | return 0; |
| 1754 | } |
| 1755 | } |
| 1756 | return 0; |
| 1757 | } |
| 1758 | |
| 1759 | /* |
| 1760 | * This function searches for the next page with dirty CMMA attributes, and |
| 1761 | * saves the attributes in the buffer up to either the end of the buffer or |
| 1762 | * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; |
| 1763 | * no trailing clean bytes are saved. |
| 1764 | * In case no dirty bits were found, or if CMMA was not enabled or used, the |
| 1765 | * output buffer will indicate 0 as length. |
| 1766 | */ |
| 1767 | static int kvm_s390_get_cmma_bits(struct kvm *kvm, |
| 1768 | struct kvm_s390_cmma_log *args) |
| 1769 | { |
| 1770 | unsigned long bufsize; |
| 1771 | int srcu_idx, peek, ret; |
| 1772 | u8 *values; |
| 1773 | |
| 1774 | if (!kvm->arch.use_cmma) |
| 1775 | return -ENXIO; |
| 1776 | /* Invalid/unsupported flags were specified */ |
| 1777 | if (args->flags & ~KVM_S390_CMMA_PEEK) |
| 1778 | return -EINVAL; |
| 1779 | /* Migration mode query, and we are not doing a migration */ |
| 1780 | peek = !!(args->flags & KVM_S390_CMMA_PEEK); |
| 1781 | if (!peek && !kvm->arch.migration_mode) |
| 1782 | return -EINVAL; |
| 1783 | /* CMMA is disabled or was not used, or the buffer has length zero */ |
| 1784 | bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); |
| 1785 | if (!bufsize || !kvm->mm->context.uses_cmm) { |
| 1786 | memset(args, 0, sizeof(*args)); |
| 1787 | return 0; |
| 1788 | } |
| 1789 | /* We are not peeking, and there are no dirty pages */ |
| 1790 | if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) { |
| 1791 | memset(args, 0, sizeof(*args)); |
| 1792 | return 0; |
| 1793 | } |
| 1794 | |
| 1795 | values = vmalloc(bufsize); |
| 1796 | if (!values) |
| 1797 | return -ENOMEM; |
| 1798 | |
| 1799 | down_read(&kvm->mm->mmap_sem); |
| 1800 | srcu_idx = srcu_read_lock(&kvm->srcu); |
| 1801 | if (peek) |
| 1802 | ret = kvm_s390_peek_cmma(kvm, args, values, bufsize); |
| 1803 | else |
| 1804 | ret = kvm_s390_get_cmma(kvm, args, values, bufsize); |
| 1805 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
| 1806 | up_read(&kvm->mm->mmap_sem); |
| 1807 | |
| 1808 | if (kvm->arch.migration_mode) |
| 1809 | args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages); |
| 1810 | else |
| 1811 | args->remaining = 0; |
| 1812 | |
| 1813 | if (copy_to_user((void __user *)args->values, values, args->count)) |
| 1814 | ret = -EFAULT; |
| 1815 | |
| 1816 | vfree(values); |
| 1817 | return ret; |
| 1818 | } |
| 1819 | |
| 1820 | /* |
| 1821 | * This function sets the CMMA attributes for the given pages. If the input |
| 1822 | * buffer has zero length, no action is taken, otherwise the attributes are |
| 1823 | * set and the mm->context.uses_cmm flag is set. |
| 1824 | */ |
| 1825 | static int kvm_s390_set_cmma_bits(struct kvm *kvm, |
| 1826 | const struct kvm_s390_cmma_log *args) |
| 1827 | { |
| 1828 | unsigned long hva, mask, pgstev, i; |
| 1829 | uint8_t *bits; |
| 1830 | int srcu_idx, r = 0; |
| 1831 | |
| 1832 | mask = args->mask; |
| 1833 | |
| 1834 | if (!kvm->arch.use_cmma) |
| 1835 | return -ENXIO; |
| 1836 | /* invalid/unsupported flags */ |
| 1837 | if (args->flags != 0) |
| 1838 | return -EINVAL; |
| 1839 | /* Enforce sane limit on memory allocation */ |
| 1840 | if (args->count > KVM_S390_CMMA_SIZE_MAX) |
| 1841 | return -EINVAL; |
| 1842 | /* Nothing to do */ |
| 1843 | if (args->count == 0) |
| 1844 | return 0; |
| 1845 | |
| 1846 | bits = vmalloc(array_size(sizeof(*bits), args->count)); |
| 1847 | if (!bits) |
| 1848 | return -ENOMEM; |
| 1849 | |
| 1850 | r = copy_from_user(bits, (void __user *)args->values, args->count); |
| 1851 | if (r) { |
| 1852 | r = -EFAULT; |
| 1853 | goto out; |
| 1854 | } |
| 1855 | |
| 1856 | down_read(&kvm->mm->mmap_sem); |
| 1857 | srcu_idx = srcu_read_lock(&kvm->srcu); |
| 1858 | for (i = 0; i < args->count; i++) { |
| 1859 | hva = gfn_to_hva(kvm, args->start_gfn + i); |
| 1860 | if (kvm_is_error_hva(hva)) { |
| 1861 | r = -EFAULT; |
| 1862 | break; |
| 1863 | } |
| 1864 | |
| 1865 | pgstev = bits[i]; |
| 1866 | pgstev = pgstev << 24; |
| 1867 | mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; |
| 1868 | set_pgste_bits(kvm->mm, hva, mask, pgstev); |
| 1869 | } |
| 1870 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
| 1871 | up_read(&kvm->mm->mmap_sem); |
| 1872 | |
| 1873 | if (!kvm->mm->context.uses_cmm) { |
| 1874 | down_write(&kvm->mm->mmap_sem); |
| 1875 | kvm->mm->context.uses_cmm = 1; |
| 1876 | up_write(&kvm->mm->mmap_sem); |
| 1877 | } |
| 1878 | out: |
| 1879 | vfree(bits); |
| 1880 | return r; |
| 1881 | } |
| 1882 | |
| 1883 | long kvm_arch_vm_ioctl(struct file *filp, |
| 1884 | unsigned int ioctl, unsigned long arg) |
| 1885 | { |
| 1886 | struct kvm *kvm = filp->private_data; |
| 1887 | void __user *argp = (void __user *)arg; |
| 1888 | struct kvm_device_attr attr; |
| 1889 | int r; |
| 1890 | |
| 1891 | switch (ioctl) { |
| 1892 | case KVM_S390_INTERRUPT: { |
| 1893 | struct kvm_s390_interrupt s390int; |
| 1894 | |
| 1895 | r = -EFAULT; |
| 1896 | if (copy_from_user(&s390int, argp, sizeof(s390int))) |
| 1897 | break; |
| 1898 | r = kvm_s390_inject_vm(kvm, &s390int); |
| 1899 | break; |
| 1900 | } |
| 1901 | case KVM_ENABLE_CAP: { |
| 1902 | struct kvm_enable_cap cap; |
| 1903 | r = -EFAULT; |
| 1904 | if (copy_from_user(&cap, argp, sizeof(cap))) |
| 1905 | break; |
| 1906 | r = kvm_vm_ioctl_enable_cap(kvm, &cap); |
| 1907 | break; |
| 1908 | } |
| 1909 | case KVM_CREATE_IRQCHIP: { |
| 1910 | struct kvm_irq_routing_entry routing; |
| 1911 | |
| 1912 | r = -EINVAL; |
| 1913 | if (kvm->arch.use_irqchip) { |
| 1914 | /* Set up dummy routing. */ |
| 1915 | memset(&routing, 0, sizeof(routing)); |
| 1916 | r = kvm_set_irq_routing(kvm, &routing, 0, 0); |
| 1917 | } |
| 1918 | break; |
| 1919 | } |
| 1920 | case KVM_SET_DEVICE_ATTR: { |
| 1921 | r = -EFAULT; |
| 1922 | if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) |
| 1923 | break; |
| 1924 | r = kvm_s390_vm_set_attr(kvm, &attr); |
| 1925 | break; |
| 1926 | } |
| 1927 | case KVM_GET_DEVICE_ATTR: { |
| 1928 | r = -EFAULT; |
| 1929 | if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) |
| 1930 | break; |
| 1931 | r = kvm_s390_vm_get_attr(kvm, &attr); |
| 1932 | break; |
| 1933 | } |
| 1934 | case KVM_HAS_DEVICE_ATTR: { |
| 1935 | r = -EFAULT; |
| 1936 | if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) |
| 1937 | break; |
| 1938 | r = kvm_s390_vm_has_attr(kvm, &attr); |
| 1939 | break; |
| 1940 | } |
| 1941 | case KVM_S390_GET_SKEYS: { |
| 1942 | struct kvm_s390_skeys args; |
| 1943 | |
| 1944 | r = -EFAULT; |
| 1945 | if (copy_from_user(&args, argp, |
| 1946 | sizeof(struct kvm_s390_skeys))) |
| 1947 | break; |
| 1948 | r = kvm_s390_get_skeys(kvm, &args); |
| 1949 | break; |
| 1950 | } |
| 1951 | case KVM_S390_SET_SKEYS: { |
| 1952 | struct kvm_s390_skeys args; |
| 1953 | |
| 1954 | r = -EFAULT; |
| 1955 | if (copy_from_user(&args, argp, |
| 1956 | sizeof(struct kvm_s390_skeys))) |
| 1957 | break; |
| 1958 | r = kvm_s390_set_skeys(kvm, &args); |
| 1959 | break; |
| 1960 | } |
| 1961 | case KVM_S390_GET_CMMA_BITS: { |
| 1962 | struct kvm_s390_cmma_log args; |
| 1963 | |
| 1964 | r = -EFAULT; |
| 1965 | if (copy_from_user(&args, argp, sizeof(args))) |
| 1966 | break; |
| 1967 | mutex_lock(&kvm->slots_lock); |
| 1968 | r = kvm_s390_get_cmma_bits(kvm, &args); |
| 1969 | mutex_unlock(&kvm->slots_lock); |
| 1970 | if (!r) { |
| 1971 | r = copy_to_user(argp, &args, sizeof(args)); |
| 1972 | if (r) |
| 1973 | r = -EFAULT; |
| 1974 | } |
| 1975 | break; |
| 1976 | } |
| 1977 | case KVM_S390_SET_CMMA_BITS: { |
| 1978 | struct kvm_s390_cmma_log args; |
| 1979 | |
| 1980 | r = -EFAULT; |
| 1981 | if (copy_from_user(&args, argp, sizeof(args))) |
| 1982 | break; |
| 1983 | mutex_lock(&kvm->slots_lock); |
| 1984 | r = kvm_s390_set_cmma_bits(kvm, &args); |
| 1985 | mutex_unlock(&kvm->slots_lock); |
| 1986 | break; |
| 1987 | } |
| 1988 | default: |
| 1989 | r = -ENOTTY; |
| 1990 | } |
| 1991 | |
| 1992 | return r; |
| 1993 | } |
| 1994 | |
| 1995 | static int kvm_s390_query_ap_config(u8 *config) |
| 1996 | { |
| 1997 | u32 fcn_code = 0x04000000UL; |
| 1998 | u32 cc = 0; |
| 1999 | |
| 2000 | memset(config, 0, 128); |
| 2001 | asm volatile( |
| 2002 | "lgr 0,%1\n" |
| 2003 | "lgr 2,%2\n" |
| 2004 | ".long 0xb2af0000\n" /* PQAP(QCI) */ |
| 2005 | "0: ipm %0\n" |
| 2006 | "srl %0,28\n" |
| 2007 | "1:\n" |
| 2008 | EX_TABLE(0b, 1b) |
| 2009 | : "+r" (cc) |
| 2010 | : "r" (fcn_code), "r" (config) |
| 2011 | : "cc", "0", "2", "memory" |
| 2012 | ); |
| 2013 | |
| 2014 | return cc; |
| 2015 | } |
| 2016 | |
| 2017 | static int kvm_s390_apxa_installed(void) |
| 2018 | { |
| 2019 | u8 config[128]; |
| 2020 | int cc; |
| 2021 | |
| 2022 | if (test_facility(12)) { |
| 2023 | cc = kvm_s390_query_ap_config(config); |
| 2024 | |
| 2025 | if (cc) |
| 2026 | pr_err("PQAP(QCI) failed with cc=%d", cc); |
| 2027 | else |
| 2028 | return config[0] & 0x40; |
| 2029 | } |
| 2030 | |
| 2031 | return 0; |
| 2032 | } |
| 2033 | |
| 2034 | static void kvm_s390_set_crycb_format(struct kvm *kvm) |
| 2035 | { |
| 2036 | kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb; |
| 2037 | |
| 2038 | if (kvm_s390_apxa_installed()) |
| 2039 | kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; |
| 2040 | else |
| 2041 | kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; |
| 2042 | } |
| 2043 | |
| 2044 | static u64 kvm_s390_get_initial_cpuid(void) |
| 2045 | { |
| 2046 | struct cpuid cpuid; |
| 2047 | |
| 2048 | get_cpu_id(&cpuid); |
| 2049 | cpuid.version = 0xff; |
| 2050 | return *((u64 *) &cpuid); |
| 2051 | } |
| 2052 | |
| 2053 | static void kvm_s390_crypto_init(struct kvm *kvm) |
| 2054 | { |
| 2055 | if (!test_kvm_facility(kvm, 76)) |
| 2056 | return; |
| 2057 | |
| 2058 | kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; |
| 2059 | kvm_s390_set_crycb_format(kvm); |
| 2060 | |
| 2061 | /* Enable AES/DEA protected key functions by default */ |
| 2062 | kvm->arch.crypto.aes_kw = 1; |
| 2063 | kvm->arch.crypto.dea_kw = 1; |
| 2064 | get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, |
| 2065 | sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); |
| 2066 | get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, |
| 2067 | sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); |
| 2068 | } |
| 2069 | |
| 2070 | static void sca_dispose(struct kvm *kvm) |
| 2071 | { |
| 2072 | if (kvm->arch.use_esca) |
| 2073 | free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); |
| 2074 | else |
| 2075 | free_page((unsigned long)(kvm->arch.sca)); |
| 2076 | kvm->arch.sca = NULL; |
| 2077 | } |
| 2078 | |
| 2079 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
| 2080 | { |
| 2081 | gfp_t alloc_flags = GFP_KERNEL; |
| 2082 | int i, rc; |
| 2083 | char debug_name[16]; |
| 2084 | static unsigned long sca_offset; |
| 2085 | |
| 2086 | rc = -EINVAL; |
| 2087 | #ifdef CONFIG_KVM_S390_UCONTROL |
| 2088 | if (type & ~KVM_VM_S390_UCONTROL) |
| 2089 | goto out_err; |
| 2090 | if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) |
| 2091 | goto out_err; |
| 2092 | #else |
| 2093 | if (type) |
| 2094 | goto out_err; |
| 2095 | #endif |
| 2096 | |
| 2097 | rc = s390_enable_sie(); |
| 2098 | if (rc) |
| 2099 | goto out_err; |
| 2100 | |
| 2101 | rc = -ENOMEM; |
| 2102 | |
| 2103 | if (!sclp.has_64bscao) |
| 2104 | alloc_flags |= GFP_DMA; |
| 2105 | rwlock_init(&kvm->arch.sca_lock); |
| 2106 | /* start with basic SCA */ |
| 2107 | kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); |
| 2108 | if (!kvm->arch.sca) |
| 2109 | goto out_err; |
| 2110 | spin_lock(&kvm_lock); |
| 2111 | sca_offset += 16; |
| 2112 | if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) |
| 2113 | sca_offset = 0; |
| 2114 | kvm->arch.sca = (struct bsca_block *) |
| 2115 | ((char *) kvm->arch.sca + sca_offset); |
| 2116 | spin_unlock(&kvm_lock); |
| 2117 | |
| 2118 | sprintf(debug_name, "kvm-%u", current->pid); |
| 2119 | |
| 2120 | kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); |
| 2121 | if (!kvm->arch.dbf) |
| 2122 | goto out_err; |
| 2123 | |
| 2124 | BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); |
| 2125 | kvm->arch.sie_page2 = |
| 2126 | (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA); |
| 2127 | if (!kvm->arch.sie_page2) |
| 2128 | goto out_err; |
| 2129 | |
| 2130 | kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; |
| 2131 | |
| 2132 | for (i = 0; i < kvm_s390_fac_size(); i++) { |
| 2133 | kvm->arch.model.fac_mask[i] = S390_lowcore.stfle_fac_list[i] & |
| 2134 | (kvm_s390_fac_base[i] | |
| 2135 | kvm_s390_fac_ext[i]); |
| 2136 | kvm->arch.model.fac_list[i] = S390_lowcore.stfle_fac_list[i] & |
| 2137 | kvm_s390_fac_base[i]; |
| 2138 | } |
| 2139 | |
| 2140 | /* we are always in czam mode - even on pre z14 machines */ |
| 2141 | set_kvm_facility(kvm->arch.model.fac_mask, 138); |
| 2142 | set_kvm_facility(kvm->arch.model.fac_list, 138); |
| 2143 | /* we emulate STHYI in kvm */ |
| 2144 | set_kvm_facility(kvm->arch.model.fac_mask, 74); |
| 2145 | set_kvm_facility(kvm->arch.model.fac_list, 74); |
| 2146 | if (MACHINE_HAS_TLB_GUEST) { |
| 2147 | set_kvm_facility(kvm->arch.model.fac_mask, 147); |
| 2148 | set_kvm_facility(kvm->arch.model.fac_list, 147); |
| 2149 | } |
| 2150 | |
| 2151 | kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); |
| 2152 | kvm->arch.model.ibc = sclp.ibc & 0x0fff; |
| 2153 | |
| 2154 | kvm_s390_crypto_init(kvm); |
| 2155 | |
| 2156 | mutex_init(&kvm->arch.float_int.ais_lock); |
| 2157 | spin_lock_init(&kvm->arch.float_int.lock); |
| 2158 | for (i = 0; i < FIRQ_LIST_COUNT; i++) |
| 2159 | INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); |
| 2160 | init_waitqueue_head(&kvm->arch.ipte_wq); |
| 2161 | mutex_init(&kvm->arch.ipte_mutex); |
| 2162 | |
| 2163 | debug_register_view(kvm->arch.dbf, &debug_sprintf_view); |
| 2164 | VM_EVENT(kvm, 3, "vm created with type %lu", type); |
| 2165 | |
| 2166 | if (type & KVM_VM_S390_UCONTROL) { |
| 2167 | kvm->arch.gmap = NULL; |
| 2168 | kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; |
| 2169 | } else { |
| 2170 | if (sclp.hamax == U64_MAX) |
| 2171 | kvm->arch.mem_limit = TASK_SIZE_MAX; |
| 2172 | else |
| 2173 | kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, |
| 2174 | sclp.hamax + 1); |
| 2175 | kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); |
| 2176 | if (!kvm->arch.gmap) |
| 2177 | goto out_err; |
| 2178 | kvm->arch.gmap->private = kvm; |
| 2179 | kvm->arch.gmap->pfault_enabled = 0; |
| 2180 | } |
| 2181 | |
| 2182 | kvm->arch.use_pfmfi = sclp.has_pfmfi; |
| 2183 | kvm->arch.use_skf = sclp.has_skey; |
| 2184 | spin_lock_init(&kvm->arch.start_stop_lock); |
| 2185 | kvm_s390_vsie_init(kvm); |
| 2186 | kvm_s390_gisa_init(kvm); |
| 2187 | KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); |
| 2188 | |
| 2189 | return 0; |
| 2190 | out_err: |
| 2191 | free_page((unsigned long)kvm->arch.sie_page2); |
| 2192 | debug_unregister(kvm->arch.dbf); |
| 2193 | sca_dispose(kvm); |
| 2194 | KVM_EVENT(3, "creation of vm failed: %d", rc); |
| 2195 | return rc; |
| 2196 | } |
| 2197 | |
| 2198 | bool kvm_arch_has_vcpu_debugfs(void) |
| 2199 | { |
| 2200 | return false; |
| 2201 | } |
| 2202 | |
| 2203 | int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) |
| 2204 | { |
| 2205 | return 0; |
| 2206 | } |
| 2207 | |
| 2208 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
| 2209 | { |
| 2210 | VCPU_EVENT(vcpu, 3, "%s", "free cpu"); |
| 2211 | trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); |
| 2212 | kvm_s390_clear_local_irqs(vcpu); |
| 2213 | kvm_clear_async_pf_completion_queue(vcpu); |
| 2214 | if (!kvm_is_ucontrol(vcpu->kvm)) |
| 2215 | sca_del_vcpu(vcpu); |
| 2216 | |
| 2217 | if (kvm_is_ucontrol(vcpu->kvm)) |
| 2218 | gmap_remove(vcpu->arch.gmap); |
| 2219 | |
| 2220 | if (vcpu->kvm->arch.use_cmma) |
| 2221 | kvm_s390_vcpu_unsetup_cmma(vcpu); |
| 2222 | free_page((unsigned long)(vcpu->arch.sie_block)); |
| 2223 | |
| 2224 | kvm_vcpu_uninit(vcpu); |
| 2225 | kmem_cache_free(kvm_vcpu_cache, vcpu); |
| 2226 | } |
| 2227 | |
| 2228 | static void kvm_free_vcpus(struct kvm *kvm) |
| 2229 | { |
| 2230 | unsigned int i; |
| 2231 | struct kvm_vcpu *vcpu; |
| 2232 | |
| 2233 | kvm_for_each_vcpu(i, vcpu, kvm) |
| 2234 | kvm_arch_vcpu_destroy(vcpu); |
| 2235 | |
| 2236 | mutex_lock(&kvm->lock); |
| 2237 | for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) |
| 2238 | kvm->vcpus[i] = NULL; |
| 2239 | |
| 2240 | atomic_set(&kvm->online_vcpus, 0); |
| 2241 | mutex_unlock(&kvm->lock); |
| 2242 | } |
| 2243 | |
| 2244 | void kvm_arch_destroy_vm(struct kvm *kvm) |
| 2245 | { |
| 2246 | kvm_free_vcpus(kvm); |
| 2247 | sca_dispose(kvm); |
| 2248 | debug_unregister(kvm->arch.dbf); |
| 2249 | kvm_s390_gisa_destroy(kvm); |
| 2250 | free_page((unsigned long)kvm->arch.sie_page2); |
| 2251 | if (!kvm_is_ucontrol(kvm)) |
| 2252 | gmap_remove(kvm->arch.gmap); |
| 2253 | kvm_s390_destroy_adapters(kvm); |
| 2254 | kvm_s390_clear_float_irqs(kvm); |
| 2255 | kvm_s390_vsie_destroy(kvm); |
| 2256 | KVM_EVENT(3, "vm 0x%pK destroyed", kvm); |
| 2257 | } |
| 2258 | |
| 2259 | /* Section: vcpu related */ |
| 2260 | static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) |
| 2261 | { |
| 2262 | vcpu->arch.gmap = gmap_create(current->mm, -1UL); |
| 2263 | if (!vcpu->arch.gmap) |
| 2264 | return -ENOMEM; |
| 2265 | vcpu->arch.gmap->private = vcpu->kvm; |
| 2266 | |
| 2267 | return 0; |
| 2268 | } |
| 2269 | |
| 2270 | static void sca_del_vcpu(struct kvm_vcpu *vcpu) |
| 2271 | { |
| 2272 | if (!kvm_s390_use_sca_entries()) |
| 2273 | return; |
| 2274 | read_lock(&vcpu->kvm->arch.sca_lock); |
| 2275 | if (vcpu->kvm->arch.use_esca) { |
| 2276 | struct esca_block *sca = vcpu->kvm->arch.sca; |
| 2277 | |
| 2278 | clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); |
| 2279 | sca->cpu[vcpu->vcpu_id].sda = 0; |
| 2280 | } else { |
| 2281 | struct bsca_block *sca = vcpu->kvm->arch.sca; |
| 2282 | |
| 2283 | clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); |
| 2284 | sca->cpu[vcpu->vcpu_id].sda = 0; |
| 2285 | } |
| 2286 | read_unlock(&vcpu->kvm->arch.sca_lock); |
| 2287 | } |
| 2288 | |
| 2289 | static void sca_add_vcpu(struct kvm_vcpu *vcpu) |
| 2290 | { |
| 2291 | if (!kvm_s390_use_sca_entries()) { |
| 2292 | struct bsca_block *sca = vcpu->kvm->arch.sca; |
| 2293 | |
| 2294 | /* we still need the basic sca for the ipte control */ |
| 2295 | vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); |
| 2296 | vcpu->arch.sie_block->scaol = (__u32)(__u64)sca; |
| 2297 | return; |
| 2298 | } |
| 2299 | read_lock(&vcpu->kvm->arch.sca_lock); |
| 2300 | if (vcpu->kvm->arch.use_esca) { |
| 2301 | struct esca_block *sca = vcpu->kvm->arch.sca; |
| 2302 | |
| 2303 | sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block; |
| 2304 | vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); |
| 2305 | vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU; |
| 2306 | vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; |
| 2307 | set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); |
| 2308 | } else { |
| 2309 | struct bsca_block *sca = vcpu->kvm->arch.sca; |
| 2310 | |
| 2311 | sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block; |
| 2312 | vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); |
| 2313 | vcpu->arch.sie_block->scaol = (__u32)(__u64)sca; |
| 2314 | set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); |
| 2315 | } |
| 2316 | read_unlock(&vcpu->kvm->arch.sca_lock); |
| 2317 | } |
| 2318 | |
| 2319 | /* Basic SCA to Extended SCA data copy routines */ |
| 2320 | static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) |
| 2321 | { |
| 2322 | d->sda = s->sda; |
| 2323 | d->sigp_ctrl.c = s->sigp_ctrl.c; |
| 2324 | d->sigp_ctrl.scn = s->sigp_ctrl.scn; |
| 2325 | } |
| 2326 | |
| 2327 | static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) |
| 2328 | { |
| 2329 | int i; |
| 2330 | |
| 2331 | d->ipte_control = s->ipte_control; |
| 2332 | d->mcn[0] = s->mcn; |
| 2333 | for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) |
| 2334 | sca_copy_entry(&d->cpu[i], &s->cpu[i]); |
| 2335 | } |
| 2336 | |
| 2337 | static int sca_switch_to_extended(struct kvm *kvm) |
| 2338 | { |
| 2339 | struct bsca_block *old_sca = kvm->arch.sca; |
| 2340 | struct esca_block *new_sca; |
| 2341 | struct kvm_vcpu *vcpu; |
| 2342 | unsigned int vcpu_idx; |
| 2343 | u32 scaol, scaoh; |
| 2344 | |
| 2345 | new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO); |
| 2346 | if (!new_sca) |
| 2347 | return -ENOMEM; |
| 2348 | |
| 2349 | scaoh = (u32)((u64)(new_sca) >> 32); |
| 2350 | scaol = (u32)(u64)(new_sca) & ~0x3fU; |
| 2351 | |
| 2352 | kvm_s390_vcpu_block_all(kvm); |
| 2353 | write_lock(&kvm->arch.sca_lock); |
| 2354 | |
| 2355 | sca_copy_b_to_e(new_sca, old_sca); |
| 2356 | |
| 2357 | kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { |
| 2358 | vcpu->arch.sie_block->scaoh = scaoh; |
| 2359 | vcpu->arch.sie_block->scaol = scaol; |
| 2360 | vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; |
| 2361 | } |
| 2362 | kvm->arch.sca = new_sca; |
| 2363 | kvm->arch.use_esca = 1; |
| 2364 | |
| 2365 | write_unlock(&kvm->arch.sca_lock); |
| 2366 | kvm_s390_vcpu_unblock_all(kvm); |
| 2367 | |
| 2368 | free_page((unsigned long)old_sca); |
| 2369 | |
| 2370 | VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", |
| 2371 | old_sca, kvm->arch.sca); |
| 2372 | return 0; |
| 2373 | } |
| 2374 | |
| 2375 | static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) |
| 2376 | { |
| 2377 | int rc; |
| 2378 | |
| 2379 | if (!kvm_s390_use_sca_entries()) { |
| 2380 | if (id < KVM_MAX_VCPUS) |
| 2381 | return true; |
| 2382 | return false; |
| 2383 | } |
| 2384 | if (id < KVM_S390_BSCA_CPU_SLOTS) |
| 2385 | return true; |
| 2386 | if (!sclp.has_esca || !sclp.has_64bscao) |
| 2387 | return false; |
| 2388 | |
| 2389 | mutex_lock(&kvm->lock); |
| 2390 | rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); |
| 2391 | mutex_unlock(&kvm->lock); |
| 2392 | |
| 2393 | return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; |
| 2394 | } |
| 2395 | |
| 2396 | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
| 2397 | { |
| 2398 | vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; |
| 2399 | kvm_clear_async_pf_completion_queue(vcpu); |
| 2400 | vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | |
| 2401 | KVM_SYNC_GPRS | |
| 2402 | KVM_SYNC_ACRS | |
| 2403 | KVM_SYNC_CRS | |
| 2404 | KVM_SYNC_ARCH0 | |
| 2405 | KVM_SYNC_PFAULT; |
| 2406 | kvm_s390_set_prefix(vcpu, 0); |
| 2407 | if (test_kvm_facility(vcpu->kvm, 64)) |
| 2408 | vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; |
| 2409 | if (test_kvm_facility(vcpu->kvm, 82)) |
| 2410 | vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; |
| 2411 | if (test_kvm_facility(vcpu->kvm, 133)) |
| 2412 | vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; |
| 2413 | if (test_kvm_facility(vcpu->kvm, 156)) |
| 2414 | vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN; |
| 2415 | /* fprs can be synchronized via vrs, even if the guest has no vx. With |
| 2416 | * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format. |
| 2417 | */ |
| 2418 | if (MACHINE_HAS_VX) |
| 2419 | vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; |
| 2420 | else |
| 2421 | vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; |
| 2422 | |
| 2423 | if (kvm_is_ucontrol(vcpu->kvm)) |
| 2424 | return __kvm_ucontrol_vcpu_init(vcpu); |
| 2425 | |
| 2426 | return 0; |
| 2427 | } |
| 2428 | |
| 2429 | /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ |
| 2430 | static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) |
| 2431 | { |
| 2432 | WARN_ON_ONCE(vcpu->arch.cputm_start != 0); |
| 2433 | raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); |
| 2434 | vcpu->arch.cputm_start = get_tod_clock_fast(); |
| 2435 | raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); |
| 2436 | } |
| 2437 | |
| 2438 | /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ |
| 2439 | static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) |
| 2440 | { |
| 2441 | WARN_ON_ONCE(vcpu->arch.cputm_start == 0); |
| 2442 | raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); |
| 2443 | vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; |
| 2444 | vcpu->arch.cputm_start = 0; |
| 2445 | raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); |
| 2446 | } |
| 2447 | |
| 2448 | /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ |
| 2449 | static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) |
| 2450 | { |
| 2451 | WARN_ON_ONCE(vcpu->arch.cputm_enabled); |
| 2452 | vcpu->arch.cputm_enabled = true; |
| 2453 | __start_cpu_timer_accounting(vcpu); |
| 2454 | } |
| 2455 | |
| 2456 | /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ |
| 2457 | static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) |
| 2458 | { |
| 2459 | WARN_ON_ONCE(!vcpu->arch.cputm_enabled); |
| 2460 | __stop_cpu_timer_accounting(vcpu); |
| 2461 | vcpu->arch.cputm_enabled = false; |
| 2462 | } |
| 2463 | |
| 2464 | static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) |
| 2465 | { |
| 2466 | preempt_disable(); /* protect from TOD sync and vcpu_load/put */ |
| 2467 | __enable_cpu_timer_accounting(vcpu); |
| 2468 | preempt_enable(); |
| 2469 | } |
| 2470 | |
| 2471 | static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) |
| 2472 | { |
| 2473 | preempt_disable(); /* protect from TOD sync and vcpu_load/put */ |
| 2474 | __disable_cpu_timer_accounting(vcpu); |
| 2475 | preempt_enable(); |
| 2476 | } |
| 2477 | |
| 2478 | /* set the cpu timer - may only be called from the VCPU thread itself */ |
| 2479 | void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) |
| 2480 | { |
| 2481 | preempt_disable(); /* protect from TOD sync and vcpu_load/put */ |
| 2482 | raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); |
| 2483 | if (vcpu->arch.cputm_enabled) |
| 2484 | vcpu->arch.cputm_start = get_tod_clock_fast(); |
| 2485 | vcpu->arch.sie_block->cputm = cputm; |
| 2486 | raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); |
| 2487 | preempt_enable(); |
| 2488 | } |
| 2489 | |
| 2490 | /* update and get the cpu timer - can also be called from other VCPU threads */ |
| 2491 | __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) |
| 2492 | { |
| 2493 | unsigned int seq; |
| 2494 | __u64 value; |
| 2495 | |
| 2496 | if (unlikely(!vcpu->arch.cputm_enabled)) |
| 2497 | return vcpu->arch.sie_block->cputm; |
| 2498 | |
| 2499 | preempt_disable(); /* protect from TOD sync and vcpu_load/put */ |
| 2500 | do { |
| 2501 | seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); |
| 2502 | /* |
| 2503 | * If the writer would ever execute a read in the critical |
| 2504 | * section, e.g. in irq context, we have a deadlock. |
| 2505 | */ |
| 2506 | WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); |
| 2507 | value = vcpu->arch.sie_block->cputm; |
| 2508 | /* if cputm_start is 0, accounting is being started/stopped */ |
| 2509 | if (likely(vcpu->arch.cputm_start)) |
| 2510 | value -= get_tod_clock_fast() - vcpu->arch.cputm_start; |
| 2511 | } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); |
| 2512 | preempt_enable(); |
| 2513 | return value; |
| 2514 | } |
| 2515 | |
| 2516 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| 2517 | { |
| 2518 | |
| 2519 | gmap_enable(vcpu->arch.enabled_gmap); |
| 2520 | kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); |
| 2521 | if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) |
| 2522 | __start_cpu_timer_accounting(vcpu); |
| 2523 | vcpu->cpu = cpu; |
| 2524 | } |
| 2525 | |
| 2526 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
| 2527 | { |
| 2528 | vcpu->cpu = -1; |
| 2529 | if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) |
| 2530 | __stop_cpu_timer_accounting(vcpu); |
| 2531 | kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); |
| 2532 | vcpu->arch.enabled_gmap = gmap_get_enabled(); |
| 2533 | gmap_disable(vcpu->arch.enabled_gmap); |
| 2534 | |
| 2535 | } |
| 2536 | |
| 2537 | static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu) |
| 2538 | { |
| 2539 | /* this equals initial cpu reset in pop, but we don't switch to ESA */ |
| 2540 | vcpu->arch.sie_block->gpsw.mask = 0UL; |
| 2541 | vcpu->arch.sie_block->gpsw.addr = 0UL; |
| 2542 | kvm_s390_set_prefix(vcpu, 0); |
| 2543 | kvm_s390_set_cpu_timer(vcpu, 0); |
| 2544 | vcpu->arch.sie_block->ckc = 0UL; |
| 2545 | vcpu->arch.sie_block->todpr = 0; |
| 2546 | memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64)); |
| 2547 | vcpu->arch.sie_block->gcr[0] = CR0_UNUSED_56 | |
| 2548 | CR0_INTERRUPT_KEY_SUBMASK | |
| 2549 | CR0_MEASUREMENT_ALERT_SUBMASK; |
| 2550 | vcpu->arch.sie_block->gcr[14] = CR14_UNUSED_32 | |
| 2551 | CR14_UNUSED_33 | |
| 2552 | CR14_EXTERNAL_DAMAGE_SUBMASK; |
| 2553 | /* make sure the new fpc will be lazily loaded */ |
| 2554 | save_fpu_regs(); |
| 2555 | current->thread.fpu.fpc = 0; |
| 2556 | vcpu->arch.sie_block->gbea = 1; |
| 2557 | vcpu->arch.sie_block->pp = 0; |
| 2558 | vcpu->arch.sie_block->fpf &= ~FPF_BPBC; |
| 2559 | vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; |
| 2560 | kvm_clear_async_pf_completion_queue(vcpu); |
| 2561 | if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) |
| 2562 | kvm_s390_vcpu_stop(vcpu); |
| 2563 | kvm_s390_clear_local_irqs(vcpu); |
| 2564 | } |
| 2565 | |
| 2566 | void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
| 2567 | { |
| 2568 | mutex_lock(&vcpu->kvm->lock); |
| 2569 | preempt_disable(); |
| 2570 | vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; |
| 2571 | vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; |
| 2572 | preempt_enable(); |
| 2573 | mutex_unlock(&vcpu->kvm->lock); |
| 2574 | if (!kvm_is_ucontrol(vcpu->kvm)) { |
| 2575 | vcpu->arch.gmap = vcpu->kvm->arch.gmap; |
| 2576 | sca_add_vcpu(vcpu); |
| 2577 | } |
| 2578 | if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) |
| 2579 | vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; |
| 2580 | /* make vcpu_load load the right gmap on the first trigger */ |
| 2581 | vcpu->arch.enabled_gmap = vcpu->arch.gmap; |
| 2582 | } |
| 2583 | |
| 2584 | static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) |
| 2585 | { |
| 2586 | if (!test_kvm_facility(vcpu->kvm, 76)) |
| 2587 | return; |
| 2588 | |
| 2589 | vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); |
| 2590 | |
| 2591 | if (vcpu->kvm->arch.crypto.aes_kw) |
| 2592 | vcpu->arch.sie_block->ecb3 |= ECB3_AES; |
| 2593 | if (vcpu->kvm->arch.crypto.dea_kw) |
| 2594 | vcpu->arch.sie_block->ecb3 |= ECB3_DEA; |
| 2595 | |
| 2596 | vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; |
| 2597 | } |
| 2598 | |
| 2599 | void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) |
| 2600 | { |
| 2601 | free_page(vcpu->arch.sie_block->cbrlo); |
| 2602 | vcpu->arch.sie_block->cbrlo = 0; |
| 2603 | } |
| 2604 | |
| 2605 | int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) |
| 2606 | { |
| 2607 | vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL); |
| 2608 | if (!vcpu->arch.sie_block->cbrlo) |
| 2609 | return -ENOMEM; |
| 2610 | return 0; |
| 2611 | } |
| 2612 | |
| 2613 | static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) |
| 2614 | { |
| 2615 | struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; |
| 2616 | |
| 2617 | vcpu->arch.sie_block->ibc = model->ibc; |
| 2618 | if (test_kvm_facility(vcpu->kvm, 7)) |
| 2619 | vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list; |
| 2620 | } |
| 2621 | |
| 2622 | int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) |
| 2623 | { |
| 2624 | int rc = 0; |
| 2625 | |
| 2626 | atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | |
| 2627 | CPUSTAT_SM | |
| 2628 | CPUSTAT_STOPPED); |
| 2629 | |
| 2630 | if (test_kvm_facility(vcpu->kvm, 78)) |
| 2631 | kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); |
| 2632 | else if (test_kvm_facility(vcpu->kvm, 8)) |
| 2633 | kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); |
| 2634 | |
| 2635 | kvm_s390_vcpu_setup_model(vcpu); |
| 2636 | |
| 2637 | /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ |
| 2638 | if (MACHINE_HAS_ESOP) |
| 2639 | vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; |
| 2640 | if (test_kvm_facility(vcpu->kvm, 9)) |
| 2641 | vcpu->arch.sie_block->ecb |= ECB_SRSI; |
| 2642 | if (test_kvm_facility(vcpu->kvm, 73)) |
| 2643 | vcpu->arch.sie_block->ecb |= ECB_TE; |
| 2644 | |
| 2645 | if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) |
| 2646 | vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; |
| 2647 | if (test_kvm_facility(vcpu->kvm, 130)) |
| 2648 | vcpu->arch.sie_block->ecb2 |= ECB2_IEP; |
| 2649 | vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; |
| 2650 | if (sclp.has_cei) |
| 2651 | vcpu->arch.sie_block->eca |= ECA_CEI; |
| 2652 | if (sclp.has_ib) |
| 2653 | vcpu->arch.sie_block->eca |= ECA_IB; |
| 2654 | if (sclp.has_siif) |
| 2655 | vcpu->arch.sie_block->eca |= ECA_SII; |
| 2656 | if (sclp.has_sigpif) |
| 2657 | vcpu->arch.sie_block->eca |= ECA_SIGPI; |
| 2658 | if (test_kvm_facility(vcpu->kvm, 129)) { |
| 2659 | vcpu->arch.sie_block->eca |= ECA_VX; |
| 2660 | vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; |
| 2661 | } |
| 2662 | if (test_kvm_facility(vcpu->kvm, 139)) |
| 2663 | vcpu->arch.sie_block->ecd |= ECD_MEF; |
| 2664 | if (test_kvm_facility(vcpu->kvm, 156)) |
| 2665 | vcpu->arch.sie_block->ecd |= ECD_ETOKENF; |
| 2666 | if (vcpu->arch.sie_block->gd) { |
| 2667 | vcpu->arch.sie_block->eca |= ECA_AIV; |
| 2668 | VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", |
| 2669 | vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); |
| 2670 | } |
| 2671 | vcpu->arch.sie_block->sdnxo = ((unsigned long) &vcpu->run->s.regs.sdnx) |
| 2672 | | SDNXC; |
| 2673 | vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb; |
| 2674 | |
| 2675 | if (sclp.has_kss) |
| 2676 | kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); |
| 2677 | else |
| 2678 | vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; |
| 2679 | |
| 2680 | if (vcpu->kvm->arch.use_cmma) { |
| 2681 | rc = kvm_s390_vcpu_setup_cmma(vcpu); |
| 2682 | if (rc) |
| 2683 | return rc; |
| 2684 | } |
| 2685 | hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| 2686 | vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; |
| 2687 | |
| 2688 | kvm_s390_vcpu_crypto_setup(vcpu); |
| 2689 | |
| 2690 | return rc; |
| 2691 | } |
| 2692 | |
| 2693 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, |
| 2694 | unsigned int id) |
| 2695 | { |
| 2696 | struct kvm_vcpu *vcpu; |
| 2697 | struct sie_page *sie_page; |
| 2698 | int rc = -EINVAL; |
| 2699 | |
| 2700 | if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) |
| 2701 | goto out; |
| 2702 | |
| 2703 | rc = -ENOMEM; |
| 2704 | |
| 2705 | vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); |
| 2706 | if (!vcpu) |
| 2707 | goto out; |
| 2708 | |
| 2709 | BUILD_BUG_ON(sizeof(struct sie_page) != 4096); |
| 2710 | sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL); |
| 2711 | if (!sie_page) |
| 2712 | goto out_free_cpu; |
| 2713 | |
| 2714 | vcpu->arch.sie_block = &sie_page->sie_block; |
| 2715 | vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb; |
| 2716 | |
| 2717 | /* the real guest size will always be smaller than msl */ |
| 2718 | vcpu->arch.sie_block->mso = 0; |
| 2719 | vcpu->arch.sie_block->msl = sclp.hamax; |
| 2720 | |
| 2721 | vcpu->arch.sie_block->icpua = id; |
| 2722 | spin_lock_init(&vcpu->arch.local_int.lock); |
| 2723 | vcpu->arch.sie_block->gd = (u32)(u64)kvm->arch.gisa; |
| 2724 | if (vcpu->arch.sie_block->gd && sclp.has_gisaf) |
| 2725 | vcpu->arch.sie_block->gd |= GISA_FORMAT1; |
| 2726 | seqcount_init(&vcpu->arch.cputm_seqcount); |
| 2727 | |
| 2728 | rc = kvm_vcpu_init(vcpu, kvm, id); |
| 2729 | if (rc) |
| 2730 | goto out_free_sie_block; |
| 2731 | VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu, |
| 2732 | vcpu->arch.sie_block); |
| 2733 | trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block); |
| 2734 | |
| 2735 | return vcpu; |
| 2736 | out_free_sie_block: |
| 2737 | free_page((unsigned long)(vcpu->arch.sie_block)); |
| 2738 | out_free_cpu: |
| 2739 | kmem_cache_free(kvm_vcpu_cache, vcpu); |
| 2740 | out: |
| 2741 | return ERR_PTR(rc); |
| 2742 | } |
| 2743 | |
| 2744 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) |
| 2745 | { |
| 2746 | return kvm_s390_vcpu_has_irq(vcpu, 0); |
| 2747 | } |
| 2748 | |
| 2749 | bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) |
| 2750 | { |
| 2751 | return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); |
| 2752 | } |
| 2753 | |
| 2754 | void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) |
| 2755 | { |
| 2756 | atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); |
| 2757 | exit_sie(vcpu); |
| 2758 | } |
| 2759 | |
| 2760 | void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) |
| 2761 | { |
| 2762 | atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); |
| 2763 | } |
| 2764 | |
| 2765 | static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) |
| 2766 | { |
| 2767 | atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); |
| 2768 | exit_sie(vcpu); |
| 2769 | } |
| 2770 | |
| 2771 | static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) |
| 2772 | { |
| 2773 | atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); |
| 2774 | } |
| 2775 | |
| 2776 | /* |
| 2777 | * Kick a guest cpu out of SIE and wait until SIE is not running. |
| 2778 | * If the CPU is not running (e.g. waiting as idle) the function will |
| 2779 | * return immediately. */ |
| 2780 | void exit_sie(struct kvm_vcpu *vcpu) |
| 2781 | { |
| 2782 | kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); |
| 2783 | while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) |
| 2784 | cpu_relax(); |
| 2785 | } |
| 2786 | |
| 2787 | /* Kick a guest cpu out of SIE to process a request synchronously */ |
| 2788 | void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) |
| 2789 | { |
| 2790 | kvm_make_request(req, vcpu); |
| 2791 | kvm_s390_vcpu_request(vcpu); |
| 2792 | } |
| 2793 | |
| 2794 | static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, |
| 2795 | unsigned long end) |
| 2796 | { |
| 2797 | struct kvm *kvm = gmap->private; |
| 2798 | struct kvm_vcpu *vcpu; |
| 2799 | unsigned long prefix; |
| 2800 | int i; |
| 2801 | |
| 2802 | if (gmap_is_shadow(gmap)) |
| 2803 | return; |
| 2804 | if (start >= 1UL << 31) |
| 2805 | /* We are only interested in prefix pages */ |
| 2806 | return; |
| 2807 | kvm_for_each_vcpu(i, vcpu, kvm) { |
| 2808 | /* match against both prefix pages */ |
| 2809 | prefix = kvm_s390_get_prefix(vcpu); |
| 2810 | if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { |
| 2811 | VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", |
| 2812 | start, end); |
| 2813 | kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu); |
| 2814 | } |
| 2815 | } |
| 2816 | } |
| 2817 | |
| 2818 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
| 2819 | { |
| 2820 | /* kvm common code refers to this, but never calls it */ |
| 2821 | BUG(); |
| 2822 | return 0; |
| 2823 | } |
| 2824 | |
| 2825 | static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, |
| 2826 | struct kvm_one_reg *reg) |
| 2827 | { |
| 2828 | int r = -EINVAL; |
| 2829 | |
| 2830 | switch (reg->id) { |
| 2831 | case KVM_REG_S390_TODPR: |
| 2832 | r = put_user(vcpu->arch.sie_block->todpr, |
| 2833 | (u32 __user *)reg->addr); |
| 2834 | break; |
| 2835 | case KVM_REG_S390_EPOCHDIFF: |
| 2836 | r = put_user(vcpu->arch.sie_block->epoch, |
| 2837 | (u64 __user *)reg->addr); |
| 2838 | break; |
| 2839 | case KVM_REG_S390_CPU_TIMER: |
| 2840 | r = put_user(kvm_s390_get_cpu_timer(vcpu), |
| 2841 | (u64 __user *)reg->addr); |
| 2842 | break; |
| 2843 | case KVM_REG_S390_CLOCK_COMP: |
| 2844 | r = put_user(vcpu->arch.sie_block->ckc, |
| 2845 | (u64 __user *)reg->addr); |
| 2846 | break; |
| 2847 | case KVM_REG_S390_PFTOKEN: |
| 2848 | r = put_user(vcpu->arch.pfault_token, |
| 2849 | (u64 __user *)reg->addr); |
| 2850 | break; |
| 2851 | case KVM_REG_S390_PFCOMPARE: |
| 2852 | r = put_user(vcpu->arch.pfault_compare, |
| 2853 | (u64 __user *)reg->addr); |
| 2854 | break; |
| 2855 | case KVM_REG_S390_PFSELECT: |
| 2856 | r = put_user(vcpu->arch.pfault_select, |
| 2857 | (u64 __user *)reg->addr); |
| 2858 | break; |
| 2859 | case KVM_REG_S390_PP: |
| 2860 | r = put_user(vcpu->arch.sie_block->pp, |
| 2861 | (u64 __user *)reg->addr); |
| 2862 | break; |
| 2863 | case KVM_REG_S390_GBEA: |
| 2864 | r = put_user(vcpu->arch.sie_block->gbea, |
| 2865 | (u64 __user *)reg->addr); |
| 2866 | break; |
| 2867 | default: |
| 2868 | break; |
| 2869 | } |
| 2870 | |
| 2871 | return r; |
| 2872 | } |
| 2873 | |
| 2874 | static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, |
| 2875 | struct kvm_one_reg *reg) |
| 2876 | { |
| 2877 | int r = -EINVAL; |
| 2878 | __u64 val; |
| 2879 | |
| 2880 | switch (reg->id) { |
| 2881 | case KVM_REG_S390_TODPR: |
| 2882 | r = get_user(vcpu->arch.sie_block->todpr, |
| 2883 | (u32 __user *)reg->addr); |
| 2884 | break; |
| 2885 | case KVM_REG_S390_EPOCHDIFF: |
| 2886 | r = get_user(vcpu->arch.sie_block->epoch, |
| 2887 | (u64 __user *)reg->addr); |
| 2888 | break; |
| 2889 | case KVM_REG_S390_CPU_TIMER: |
| 2890 | r = get_user(val, (u64 __user *)reg->addr); |
| 2891 | if (!r) |
| 2892 | kvm_s390_set_cpu_timer(vcpu, val); |
| 2893 | break; |
| 2894 | case KVM_REG_S390_CLOCK_COMP: |
| 2895 | r = get_user(vcpu->arch.sie_block->ckc, |
| 2896 | (u64 __user *)reg->addr); |
| 2897 | break; |
| 2898 | case KVM_REG_S390_PFTOKEN: |
| 2899 | r = get_user(vcpu->arch.pfault_token, |
| 2900 | (u64 __user *)reg->addr); |
| 2901 | if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) |
| 2902 | kvm_clear_async_pf_completion_queue(vcpu); |
| 2903 | break; |
| 2904 | case KVM_REG_S390_PFCOMPARE: |
| 2905 | r = get_user(vcpu->arch.pfault_compare, |
| 2906 | (u64 __user *)reg->addr); |
| 2907 | break; |
| 2908 | case KVM_REG_S390_PFSELECT: |
| 2909 | r = get_user(vcpu->arch.pfault_select, |
| 2910 | (u64 __user *)reg->addr); |
| 2911 | break; |
| 2912 | case KVM_REG_S390_PP: |
| 2913 | r = get_user(vcpu->arch.sie_block->pp, |
| 2914 | (u64 __user *)reg->addr); |
| 2915 | break; |
| 2916 | case KVM_REG_S390_GBEA: |
| 2917 | r = get_user(vcpu->arch.sie_block->gbea, |
| 2918 | (u64 __user *)reg->addr); |
| 2919 | break; |
| 2920 | default: |
| 2921 | break; |
| 2922 | } |
| 2923 | |
| 2924 | return r; |
| 2925 | } |
| 2926 | |
| 2927 | static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) |
| 2928 | { |
| 2929 | kvm_s390_vcpu_initial_reset(vcpu); |
| 2930 | return 0; |
| 2931 | } |
| 2932 | |
| 2933 | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| 2934 | { |
| 2935 | vcpu_load(vcpu); |
| 2936 | memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); |
| 2937 | vcpu_put(vcpu); |
| 2938 | return 0; |
| 2939 | } |
| 2940 | |
| 2941 | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| 2942 | { |
| 2943 | vcpu_load(vcpu); |
| 2944 | memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); |
| 2945 | vcpu_put(vcpu); |
| 2946 | return 0; |
| 2947 | } |
| 2948 | |
| 2949 | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| 2950 | struct kvm_sregs *sregs) |
| 2951 | { |
| 2952 | vcpu_load(vcpu); |
| 2953 | |
| 2954 | memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); |
| 2955 | memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); |
| 2956 | |
| 2957 | vcpu_put(vcpu); |
| 2958 | return 0; |
| 2959 | } |
| 2960 | |
| 2961 | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| 2962 | struct kvm_sregs *sregs) |
| 2963 | { |
| 2964 | vcpu_load(vcpu); |
| 2965 | |
| 2966 | memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); |
| 2967 | memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); |
| 2968 | |
| 2969 | vcpu_put(vcpu); |
| 2970 | return 0; |
| 2971 | } |
| 2972 | |
| 2973 | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| 2974 | { |
| 2975 | int ret = 0; |
| 2976 | |
| 2977 | vcpu_load(vcpu); |
| 2978 | |
| 2979 | if (test_fp_ctl(fpu->fpc)) { |
| 2980 | ret = -EINVAL; |
| 2981 | goto out; |
| 2982 | } |
| 2983 | vcpu->run->s.regs.fpc = fpu->fpc; |
| 2984 | if (MACHINE_HAS_VX) |
| 2985 | convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, |
| 2986 | (freg_t *) fpu->fprs); |
| 2987 | else |
| 2988 | memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); |
| 2989 | |
| 2990 | out: |
| 2991 | vcpu_put(vcpu); |
| 2992 | return ret; |
| 2993 | } |
| 2994 | |
| 2995 | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| 2996 | { |
| 2997 | vcpu_load(vcpu); |
| 2998 | |
| 2999 | /* make sure we have the latest values */ |
| 3000 | save_fpu_regs(); |
| 3001 | if (MACHINE_HAS_VX) |
| 3002 | convert_vx_to_fp((freg_t *) fpu->fprs, |
| 3003 | (__vector128 *) vcpu->run->s.regs.vrs); |
| 3004 | else |
| 3005 | memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); |
| 3006 | fpu->fpc = vcpu->run->s.regs.fpc; |
| 3007 | |
| 3008 | vcpu_put(vcpu); |
| 3009 | return 0; |
| 3010 | } |
| 3011 | |
| 3012 | static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) |
| 3013 | { |
| 3014 | int rc = 0; |
| 3015 | |
| 3016 | if (!is_vcpu_stopped(vcpu)) |
| 3017 | rc = -EBUSY; |
| 3018 | else { |
| 3019 | vcpu->run->psw_mask = psw.mask; |
| 3020 | vcpu->run->psw_addr = psw.addr; |
| 3021 | } |
| 3022 | return rc; |
| 3023 | } |
| 3024 | |
| 3025 | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, |
| 3026 | struct kvm_translation *tr) |
| 3027 | { |
| 3028 | return -EINVAL; /* not implemented yet */ |
| 3029 | } |
| 3030 | |
| 3031 | #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ |
| 3032 | KVM_GUESTDBG_USE_HW_BP | \ |
| 3033 | KVM_GUESTDBG_ENABLE) |
| 3034 | |
| 3035 | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
| 3036 | struct kvm_guest_debug *dbg) |
| 3037 | { |
| 3038 | int rc = 0; |
| 3039 | |
| 3040 | vcpu_load(vcpu); |
| 3041 | |
| 3042 | vcpu->guest_debug = 0; |
| 3043 | kvm_s390_clear_bp_data(vcpu); |
| 3044 | |
| 3045 | if (dbg->control & ~VALID_GUESTDBG_FLAGS) { |
| 3046 | rc = -EINVAL; |
| 3047 | goto out; |
| 3048 | } |
| 3049 | if (!sclp.has_gpere) { |
| 3050 | rc = -EINVAL; |
| 3051 | goto out; |
| 3052 | } |
| 3053 | |
| 3054 | if (dbg->control & KVM_GUESTDBG_ENABLE) { |
| 3055 | vcpu->guest_debug = dbg->control; |
| 3056 | /* enforce guest PER */ |
| 3057 | kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); |
| 3058 | |
| 3059 | if (dbg->control & KVM_GUESTDBG_USE_HW_BP) |
| 3060 | rc = kvm_s390_import_bp_data(vcpu, dbg); |
| 3061 | } else { |
| 3062 | kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); |
| 3063 | vcpu->arch.guestdbg.last_bp = 0; |
| 3064 | } |
| 3065 | |
| 3066 | if (rc) { |
| 3067 | vcpu->guest_debug = 0; |
| 3068 | kvm_s390_clear_bp_data(vcpu); |
| 3069 | kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); |
| 3070 | } |
| 3071 | |
| 3072 | out: |
| 3073 | vcpu_put(vcpu); |
| 3074 | return rc; |
| 3075 | } |
| 3076 | |
| 3077 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
| 3078 | struct kvm_mp_state *mp_state) |
| 3079 | { |
| 3080 | int ret; |
| 3081 | |
| 3082 | vcpu_load(vcpu); |
| 3083 | |
| 3084 | /* CHECK_STOP and LOAD are not supported yet */ |
| 3085 | ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : |
| 3086 | KVM_MP_STATE_OPERATING; |
| 3087 | |
| 3088 | vcpu_put(vcpu); |
| 3089 | return ret; |
| 3090 | } |
| 3091 | |
| 3092 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
| 3093 | struct kvm_mp_state *mp_state) |
| 3094 | { |
| 3095 | int rc = 0; |
| 3096 | |
| 3097 | vcpu_load(vcpu); |
| 3098 | |
| 3099 | /* user space knows about this interface - let it control the state */ |
| 3100 | vcpu->kvm->arch.user_cpu_state_ctrl = 1; |
| 3101 | |
| 3102 | switch (mp_state->mp_state) { |
| 3103 | case KVM_MP_STATE_STOPPED: |
| 3104 | kvm_s390_vcpu_stop(vcpu); |
| 3105 | break; |
| 3106 | case KVM_MP_STATE_OPERATING: |
| 3107 | kvm_s390_vcpu_start(vcpu); |
| 3108 | break; |
| 3109 | case KVM_MP_STATE_LOAD: |
| 3110 | case KVM_MP_STATE_CHECK_STOP: |
| 3111 | /* fall through - CHECK_STOP and LOAD are not supported yet */ |
| 3112 | default: |
| 3113 | rc = -ENXIO; |
| 3114 | } |
| 3115 | |
| 3116 | vcpu_put(vcpu); |
| 3117 | return rc; |
| 3118 | } |
| 3119 | |
| 3120 | static bool ibs_enabled(struct kvm_vcpu *vcpu) |
| 3121 | { |
| 3122 | return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); |
| 3123 | } |
| 3124 | |
| 3125 | static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) |
| 3126 | { |
| 3127 | retry: |
| 3128 | kvm_s390_vcpu_request_handled(vcpu); |
| 3129 | if (!kvm_request_pending(vcpu)) |
| 3130 | return 0; |
| 3131 | /* |
| 3132 | * We use MMU_RELOAD just to re-arm the ipte notifier for the |
| 3133 | * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. |
| 3134 | * This ensures that the ipte instruction for this request has |
| 3135 | * already finished. We might race against a second unmapper that |
| 3136 | * wants to set the blocking bit. Lets just retry the request loop. |
| 3137 | */ |
| 3138 | if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) { |
| 3139 | int rc; |
| 3140 | rc = gmap_mprotect_notify(vcpu->arch.gmap, |
| 3141 | kvm_s390_get_prefix(vcpu), |
| 3142 | PAGE_SIZE * 2, PROT_WRITE); |
| 3143 | if (rc) { |
| 3144 | kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu); |
| 3145 | return rc; |
| 3146 | } |
| 3147 | goto retry; |
| 3148 | } |
| 3149 | |
| 3150 | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { |
| 3151 | vcpu->arch.sie_block->ihcpu = 0xffff; |
| 3152 | goto retry; |
| 3153 | } |
| 3154 | |
| 3155 | if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { |
| 3156 | if (!ibs_enabled(vcpu)) { |
| 3157 | trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); |
| 3158 | kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); |
| 3159 | } |
| 3160 | goto retry; |
| 3161 | } |
| 3162 | |
| 3163 | if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { |
| 3164 | if (ibs_enabled(vcpu)) { |
| 3165 | trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); |
| 3166 | kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); |
| 3167 | } |
| 3168 | goto retry; |
| 3169 | } |
| 3170 | |
| 3171 | if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { |
| 3172 | vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; |
| 3173 | goto retry; |
| 3174 | } |
| 3175 | |
| 3176 | if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { |
| 3177 | /* |
| 3178 | * Disable CMM virtualization; we will emulate the ESSA |
| 3179 | * instruction manually, in order to provide additional |
| 3180 | * functionalities needed for live migration. |
| 3181 | */ |
| 3182 | vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; |
| 3183 | goto retry; |
| 3184 | } |
| 3185 | |
| 3186 | if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { |
| 3187 | /* |
| 3188 | * Re-enable CMM virtualization if CMMA is available and |
| 3189 | * CMM has been used. |
| 3190 | */ |
| 3191 | if ((vcpu->kvm->arch.use_cmma) && |
| 3192 | (vcpu->kvm->mm->context.uses_cmm)) |
| 3193 | vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; |
| 3194 | goto retry; |
| 3195 | } |
| 3196 | |
| 3197 | /* nothing to do, just clear the request */ |
| 3198 | kvm_clear_request(KVM_REQ_UNHALT, vcpu); |
| 3199 | |
| 3200 | return 0; |
| 3201 | } |
| 3202 | |
| 3203 | void kvm_s390_set_tod_clock(struct kvm *kvm, |
| 3204 | const struct kvm_s390_vm_tod_clock *gtod) |
| 3205 | { |
| 3206 | struct kvm_vcpu *vcpu; |
| 3207 | struct kvm_s390_tod_clock_ext htod; |
| 3208 | int i; |
| 3209 | |
| 3210 | mutex_lock(&kvm->lock); |
| 3211 | preempt_disable(); |
| 3212 | |
| 3213 | get_tod_clock_ext((char *)&htod); |
| 3214 | |
| 3215 | kvm->arch.epoch = gtod->tod - htod.tod; |
| 3216 | kvm->arch.epdx = 0; |
| 3217 | if (test_kvm_facility(kvm, 139)) { |
| 3218 | kvm->arch.epdx = gtod->epoch_idx - htod.epoch_idx; |
| 3219 | if (kvm->arch.epoch > gtod->tod) |
| 3220 | kvm->arch.epdx -= 1; |
| 3221 | } |
| 3222 | |
| 3223 | kvm_s390_vcpu_block_all(kvm); |
| 3224 | kvm_for_each_vcpu(i, vcpu, kvm) { |
| 3225 | vcpu->arch.sie_block->epoch = kvm->arch.epoch; |
| 3226 | vcpu->arch.sie_block->epdx = kvm->arch.epdx; |
| 3227 | } |
| 3228 | |
| 3229 | kvm_s390_vcpu_unblock_all(kvm); |
| 3230 | preempt_enable(); |
| 3231 | mutex_unlock(&kvm->lock); |
| 3232 | } |
| 3233 | |
| 3234 | /** |
| 3235 | * kvm_arch_fault_in_page - fault-in guest page if necessary |
| 3236 | * @vcpu: The corresponding virtual cpu |
| 3237 | * @gpa: Guest physical address |
| 3238 | * @writable: Whether the page should be writable or not |
| 3239 | * |
| 3240 | * Make sure that a guest page has been faulted-in on the host. |
| 3241 | * |
| 3242 | * Return: Zero on success, negative error code otherwise. |
| 3243 | */ |
| 3244 | long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) |
| 3245 | { |
| 3246 | return gmap_fault(vcpu->arch.gmap, gpa, |
| 3247 | writable ? FAULT_FLAG_WRITE : 0); |
| 3248 | } |
| 3249 | |
| 3250 | static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, |
| 3251 | unsigned long token) |
| 3252 | { |
| 3253 | struct kvm_s390_interrupt inti; |
| 3254 | struct kvm_s390_irq irq; |
| 3255 | |
| 3256 | if (start_token) { |
| 3257 | irq.u.ext.ext_params2 = token; |
| 3258 | irq.type = KVM_S390_INT_PFAULT_INIT; |
| 3259 | WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); |
| 3260 | } else { |
| 3261 | inti.type = KVM_S390_INT_PFAULT_DONE; |
| 3262 | inti.parm64 = token; |
| 3263 | WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); |
| 3264 | } |
| 3265 | } |
| 3266 | |
| 3267 | void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, |
| 3268 | struct kvm_async_pf *work) |
| 3269 | { |
| 3270 | trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); |
| 3271 | __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); |
| 3272 | } |
| 3273 | |
| 3274 | void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, |
| 3275 | struct kvm_async_pf *work) |
| 3276 | { |
| 3277 | trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); |
| 3278 | __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); |
| 3279 | } |
| 3280 | |
| 3281 | void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, |
| 3282 | struct kvm_async_pf *work) |
| 3283 | { |
| 3284 | /* s390 will always inject the page directly */ |
| 3285 | } |
| 3286 | |
| 3287 | bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) |
| 3288 | { |
| 3289 | /* |
| 3290 | * s390 will always inject the page directly, |
| 3291 | * but we still want check_async_completion to cleanup |
| 3292 | */ |
| 3293 | return true; |
| 3294 | } |
| 3295 | |
| 3296 | static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) |
| 3297 | { |
| 3298 | hva_t hva; |
| 3299 | struct kvm_arch_async_pf arch; |
| 3300 | int rc; |
| 3301 | |
| 3302 | if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) |
| 3303 | return 0; |
| 3304 | if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != |
| 3305 | vcpu->arch.pfault_compare) |
| 3306 | return 0; |
| 3307 | if (psw_extint_disabled(vcpu)) |
| 3308 | return 0; |
| 3309 | if (kvm_s390_vcpu_has_irq(vcpu, 0)) |
| 3310 | return 0; |
| 3311 | if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) |
| 3312 | return 0; |
| 3313 | if (!vcpu->arch.gmap->pfault_enabled) |
| 3314 | return 0; |
| 3315 | |
| 3316 | hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); |
| 3317 | hva += current->thread.gmap_addr & ~PAGE_MASK; |
| 3318 | if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) |
| 3319 | return 0; |
| 3320 | |
| 3321 | rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); |
| 3322 | return rc; |
| 3323 | } |
| 3324 | |
| 3325 | static int vcpu_pre_run(struct kvm_vcpu *vcpu) |
| 3326 | { |
| 3327 | int rc, cpuflags; |
| 3328 | |
| 3329 | /* |
| 3330 | * On s390 notifications for arriving pages will be delivered directly |
| 3331 | * to the guest but the house keeping for completed pfaults is |
| 3332 | * handled outside the worker. |
| 3333 | */ |
| 3334 | kvm_check_async_pf_completion(vcpu); |
| 3335 | |
| 3336 | vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; |
| 3337 | vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; |
| 3338 | |
| 3339 | if (need_resched()) |
| 3340 | schedule(); |
| 3341 | |
| 3342 | if (test_cpu_flag(CIF_MCCK_PENDING)) |
| 3343 | s390_handle_mcck(); |
| 3344 | |
| 3345 | if (!kvm_is_ucontrol(vcpu->kvm)) { |
| 3346 | rc = kvm_s390_deliver_pending_interrupts(vcpu); |
| 3347 | if (rc) |
| 3348 | return rc; |
| 3349 | } |
| 3350 | |
| 3351 | rc = kvm_s390_handle_requests(vcpu); |
| 3352 | if (rc) |
| 3353 | return rc; |
| 3354 | |
| 3355 | if (guestdbg_enabled(vcpu)) { |
| 3356 | kvm_s390_backup_guest_per_regs(vcpu); |
| 3357 | kvm_s390_patch_guest_per_regs(vcpu); |
| 3358 | } |
| 3359 | |
| 3360 | vcpu->arch.sie_block->icptcode = 0; |
| 3361 | cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); |
| 3362 | VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); |
| 3363 | trace_kvm_s390_sie_enter(vcpu, cpuflags); |
| 3364 | |
| 3365 | return 0; |
| 3366 | } |
| 3367 | |
| 3368 | static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) |
| 3369 | { |
| 3370 | struct kvm_s390_pgm_info pgm_info = { |
| 3371 | .code = PGM_ADDRESSING, |
| 3372 | }; |
| 3373 | u8 opcode, ilen; |
| 3374 | int rc; |
| 3375 | |
| 3376 | VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); |
| 3377 | trace_kvm_s390_sie_fault(vcpu); |
| 3378 | |
| 3379 | /* |
| 3380 | * We want to inject an addressing exception, which is defined as a |
| 3381 | * suppressing or terminating exception. However, since we came here |
| 3382 | * by a DAT access exception, the PSW still points to the faulting |
| 3383 | * instruction since DAT exceptions are nullifying. So we've got |
| 3384 | * to look up the current opcode to get the length of the instruction |
| 3385 | * to be able to forward the PSW. |
| 3386 | */ |
| 3387 | rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); |
| 3388 | ilen = insn_length(opcode); |
| 3389 | if (rc < 0) { |
| 3390 | return rc; |
| 3391 | } else if (rc) { |
| 3392 | /* Instruction-Fetching Exceptions - we can't detect the ilen. |
| 3393 | * Forward by arbitrary ilc, injection will take care of |
| 3394 | * nullification if necessary. |
| 3395 | */ |
| 3396 | pgm_info = vcpu->arch.pgm; |
| 3397 | ilen = 4; |
| 3398 | } |
| 3399 | pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; |
| 3400 | kvm_s390_forward_psw(vcpu, ilen); |
| 3401 | return kvm_s390_inject_prog_irq(vcpu, &pgm_info); |
| 3402 | } |
| 3403 | |
| 3404 | static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) |
| 3405 | { |
| 3406 | struct mcck_volatile_info *mcck_info; |
| 3407 | struct sie_page *sie_page; |
| 3408 | |
| 3409 | VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", |
| 3410 | vcpu->arch.sie_block->icptcode); |
| 3411 | trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); |
| 3412 | |
| 3413 | if (guestdbg_enabled(vcpu)) |
| 3414 | kvm_s390_restore_guest_per_regs(vcpu); |
| 3415 | |
| 3416 | vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; |
| 3417 | vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; |
| 3418 | |
| 3419 | if (exit_reason == -EINTR) { |
| 3420 | VCPU_EVENT(vcpu, 3, "%s", "machine check"); |
| 3421 | sie_page = container_of(vcpu->arch.sie_block, |
| 3422 | struct sie_page, sie_block); |
| 3423 | mcck_info = &sie_page->mcck_info; |
| 3424 | kvm_s390_reinject_machine_check(vcpu, mcck_info); |
| 3425 | return 0; |
| 3426 | } |
| 3427 | |
| 3428 | if (vcpu->arch.sie_block->icptcode > 0) { |
| 3429 | int rc = kvm_handle_sie_intercept(vcpu); |
| 3430 | |
| 3431 | if (rc != -EOPNOTSUPP) |
| 3432 | return rc; |
| 3433 | vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; |
| 3434 | vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; |
| 3435 | vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; |
| 3436 | vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; |
| 3437 | return -EREMOTE; |
| 3438 | } else if (exit_reason != -EFAULT) { |
| 3439 | vcpu->stat.exit_null++; |
| 3440 | return 0; |
| 3441 | } else if (kvm_is_ucontrol(vcpu->kvm)) { |
| 3442 | vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; |
| 3443 | vcpu->run->s390_ucontrol.trans_exc_code = |
| 3444 | current->thread.gmap_addr; |
| 3445 | vcpu->run->s390_ucontrol.pgm_code = 0x10; |
| 3446 | return -EREMOTE; |
| 3447 | } else if (current->thread.gmap_pfault) { |
| 3448 | trace_kvm_s390_major_guest_pfault(vcpu); |
| 3449 | current->thread.gmap_pfault = 0; |
| 3450 | if (kvm_arch_setup_async_pf(vcpu)) |
| 3451 | return 0; |
| 3452 | return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1); |
| 3453 | } |
| 3454 | return vcpu_post_run_fault_in_sie(vcpu); |
| 3455 | } |
| 3456 | |
| 3457 | static int __vcpu_run(struct kvm_vcpu *vcpu) |
| 3458 | { |
| 3459 | int rc, exit_reason; |
| 3460 | |
| 3461 | /* |
| 3462 | * We try to hold kvm->srcu during most of vcpu_run (except when run- |
| 3463 | * ning the guest), so that memslots (and other stuff) are protected |
| 3464 | */ |
| 3465 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
| 3466 | |
| 3467 | do { |
| 3468 | rc = vcpu_pre_run(vcpu); |
| 3469 | if (rc) |
| 3470 | break; |
| 3471 | |
| 3472 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
| 3473 | /* |
| 3474 | * As PF_VCPU will be used in fault handler, between |
| 3475 | * guest_enter and guest_exit should be no uaccess. |
| 3476 | */ |
| 3477 | local_irq_disable(); |
| 3478 | guest_enter_irqoff(); |
| 3479 | __disable_cpu_timer_accounting(vcpu); |
| 3480 | local_irq_enable(); |
| 3481 | exit_reason = sie64a(vcpu->arch.sie_block, |
| 3482 | vcpu->run->s.regs.gprs); |
| 3483 | local_irq_disable(); |
| 3484 | __enable_cpu_timer_accounting(vcpu); |
| 3485 | guest_exit_irqoff(); |
| 3486 | local_irq_enable(); |
| 3487 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
| 3488 | |
| 3489 | rc = vcpu_post_run(vcpu, exit_reason); |
| 3490 | } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); |
| 3491 | |
| 3492 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
| 3493 | return rc; |
| 3494 | } |
| 3495 | |
| 3496 | static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| 3497 | { |
| 3498 | struct runtime_instr_cb *riccb; |
| 3499 | struct gs_cb *gscb; |
| 3500 | |
| 3501 | riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; |
| 3502 | gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; |
| 3503 | vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; |
| 3504 | vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; |
| 3505 | if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) |
| 3506 | kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); |
| 3507 | if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { |
| 3508 | memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); |
| 3509 | /* some control register changes require a tlb flush */ |
| 3510 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| 3511 | } |
| 3512 | if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { |
| 3513 | kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); |
| 3514 | vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; |
| 3515 | vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; |
| 3516 | vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; |
| 3517 | vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; |
| 3518 | } |
| 3519 | if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { |
| 3520 | vcpu->arch.pfault_token = kvm_run->s.regs.pft; |
| 3521 | vcpu->arch.pfault_select = kvm_run->s.regs.pfs; |
| 3522 | vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; |
| 3523 | if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) |
| 3524 | kvm_clear_async_pf_completion_queue(vcpu); |
| 3525 | } |
| 3526 | /* |
| 3527 | * If userspace sets the riccb (e.g. after migration) to a valid state, |
| 3528 | * we should enable RI here instead of doing the lazy enablement. |
| 3529 | */ |
| 3530 | if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && |
| 3531 | test_kvm_facility(vcpu->kvm, 64) && |
| 3532 | riccb->v && |
| 3533 | !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { |
| 3534 | VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); |
| 3535 | vcpu->arch.sie_block->ecb3 |= ECB3_RI; |
| 3536 | } |
| 3537 | /* |
| 3538 | * If userspace sets the gscb (e.g. after migration) to non-zero, |
| 3539 | * we should enable GS here instead of doing the lazy enablement. |
| 3540 | */ |
| 3541 | if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && |
| 3542 | test_kvm_facility(vcpu->kvm, 133) && |
| 3543 | gscb->gssm && |
| 3544 | !vcpu->arch.gs_enabled) { |
| 3545 | VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); |
| 3546 | vcpu->arch.sie_block->ecb |= ECB_GS; |
| 3547 | vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; |
| 3548 | vcpu->arch.gs_enabled = 1; |
| 3549 | } |
| 3550 | if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && |
| 3551 | test_kvm_facility(vcpu->kvm, 82)) { |
| 3552 | vcpu->arch.sie_block->fpf &= ~FPF_BPBC; |
| 3553 | vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; |
| 3554 | } |
| 3555 | save_access_regs(vcpu->arch.host_acrs); |
| 3556 | restore_access_regs(vcpu->run->s.regs.acrs); |
| 3557 | /* save host (userspace) fprs/vrs */ |
| 3558 | save_fpu_regs(); |
| 3559 | vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc; |
| 3560 | vcpu->arch.host_fpregs.regs = current->thread.fpu.regs; |
| 3561 | if (MACHINE_HAS_VX) |
| 3562 | current->thread.fpu.regs = vcpu->run->s.regs.vrs; |
| 3563 | else |
| 3564 | current->thread.fpu.regs = vcpu->run->s.regs.fprs; |
| 3565 | current->thread.fpu.fpc = vcpu->run->s.regs.fpc; |
| 3566 | if (test_fp_ctl(current->thread.fpu.fpc)) |
| 3567 | /* User space provided an invalid FPC, let's clear it */ |
| 3568 | current->thread.fpu.fpc = 0; |
| 3569 | if (MACHINE_HAS_GS) { |
| 3570 | preempt_disable(); |
| 3571 | __ctl_set_bit(2, 4); |
| 3572 | if (current->thread.gs_cb) { |
| 3573 | vcpu->arch.host_gscb = current->thread.gs_cb; |
| 3574 | save_gs_cb(vcpu->arch.host_gscb); |
| 3575 | } |
| 3576 | if (vcpu->arch.gs_enabled) { |
| 3577 | current->thread.gs_cb = (struct gs_cb *) |
| 3578 | &vcpu->run->s.regs.gscb; |
| 3579 | restore_gs_cb(current->thread.gs_cb); |
| 3580 | } |
| 3581 | preempt_enable(); |
| 3582 | } |
| 3583 | /* SIE will load etoken directly from SDNX and therefore kvm_run */ |
| 3584 | |
| 3585 | kvm_run->kvm_dirty_regs = 0; |
| 3586 | } |
| 3587 | |
| 3588 | static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| 3589 | { |
| 3590 | kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; |
| 3591 | kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; |
| 3592 | kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); |
| 3593 | memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); |
| 3594 | kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); |
| 3595 | kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; |
| 3596 | kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; |
| 3597 | kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; |
| 3598 | kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; |
| 3599 | kvm_run->s.regs.pft = vcpu->arch.pfault_token; |
| 3600 | kvm_run->s.regs.pfs = vcpu->arch.pfault_select; |
| 3601 | kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; |
| 3602 | kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; |
| 3603 | save_access_regs(vcpu->run->s.regs.acrs); |
| 3604 | restore_access_regs(vcpu->arch.host_acrs); |
| 3605 | /* Save guest register state */ |
| 3606 | save_fpu_regs(); |
| 3607 | vcpu->run->s.regs.fpc = current->thread.fpu.fpc; |
| 3608 | /* Restore will be done lazily at return */ |
| 3609 | current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc; |
| 3610 | current->thread.fpu.regs = vcpu->arch.host_fpregs.regs; |
| 3611 | if (MACHINE_HAS_GS) { |
| 3612 | __ctl_set_bit(2, 4); |
| 3613 | if (vcpu->arch.gs_enabled) |
| 3614 | save_gs_cb(current->thread.gs_cb); |
| 3615 | preempt_disable(); |
| 3616 | current->thread.gs_cb = vcpu->arch.host_gscb; |
| 3617 | restore_gs_cb(vcpu->arch.host_gscb); |
| 3618 | preempt_enable(); |
| 3619 | if (!vcpu->arch.host_gscb) |
| 3620 | __ctl_clear_bit(2, 4); |
| 3621 | vcpu->arch.host_gscb = NULL; |
| 3622 | } |
| 3623 | /* SIE will save etoken directly into SDNX and therefore kvm_run */ |
| 3624 | } |
| 3625 | |
| 3626 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| 3627 | { |
| 3628 | int rc; |
| 3629 | |
| 3630 | if (kvm_run->immediate_exit) |
| 3631 | return -EINTR; |
| 3632 | |
| 3633 | vcpu_load(vcpu); |
| 3634 | |
| 3635 | if (guestdbg_exit_pending(vcpu)) { |
| 3636 | kvm_s390_prepare_debug_exit(vcpu); |
| 3637 | rc = 0; |
| 3638 | goto out; |
| 3639 | } |
| 3640 | |
| 3641 | kvm_sigset_activate(vcpu); |
| 3642 | |
| 3643 | if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { |
| 3644 | kvm_s390_vcpu_start(vcpu); |
| 3645 | } else if (is_vcpu_stopped(vcpu)) { |
| 3646 | pr_err_ratelimited("can't run stopped vcpu %d\n", |
| 3647 | vcpu->vcpu_id); |
| 3648 | rc = -EINVAL; |
| 3649 | goto out; |
| 3650 | } |
| 3651 | |
| 3652 | sync_regs(vcpu, kvm_run); |
| 3653 | enable_cpu_timer_accounting(vcpu); |
| 3654 | |
| 3655 | might_fault(); |
| 3656 | rc = __vcpu_run(vcpu); |
| 3657 | |
| 3658 | if (signal_pending(current) && !rc) { |
| 3659 | kvm_run->exit_reason = KVM_EXIT_INTR; |
| 3660 | rc = -EINTR; |
| 3661 | } |
| 3662 | |
| 3663 | if (guestdbg_exit_pending(vcpu) && !rc) { |
| 3664 | kvm_s390_prepare_debug_exit(vcpu); |
| 3665 | rc = 0; |
| 3666 | } |
| 3667 | |
| 3668 | if (rc == -EREMOTE) { |
| 3669 | /* userspace support is needed, kvm_run has been prepared */ |
| 3670 | rc = 0; |
| 3671 | } |
| 3672 | |
| 3673 | disable_cpu_timer_accounting(vcpu); |
| 3674 | store_regs(vcpu, kvm_run); |
| 3675 | |
| 3676 | kvm_sigset_deactivate(vcpu); |
| 3677 | |
| 3678 | vcpu->stat.exit_userspace++; |
| 3679 | out: |
| 3680 | vcpu_put(vcpu); |
| 3681 | return rc; |
| 3682 | } |
| 3683 | |
| 3684 | /* |
| 3685 | * store status at address |
| 3686 | * we use have two special cases: |
| 3687 | * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit |
| 3688 | * KVM_S390_STORE_STATUS_PREFIXED: -> prefix |
| 3689 | */ |
| 3690 | int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) |
| 3691 | { |
| 3692 | unsigned char archmode = 1; |
| 3693 | freg_t fprs[NUM_FPRS]; |
| 3694 | unsigned int px; |
| 3695 | u64 clkcomp, cputm; |
| 3696 | int rc; |
| 3697 | |
| 3698 | px = kvm_s390_get_prefix(vcpu); |
| 3699 | if (gpa == KVM_S390_STORE_STATUS_NOADDR) { |
| 3700 | if (write_guest_abs(vcpu, 163, &archmode, 1)) |
| 3701 | return -EFAULT; |
| 3702 | gpa = 0; |
| 3703 | } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { |
| 3704 | if (write_guest_real(vcpu, 163, &archmode, 1)) |
| 3705 | return -EFAULT; |
| 3706 | gpa = px; |
| 3707 | } else |
| 3708 | gpa -= __LC_FPREGS_SAVE_AREA; |
| 3709 | |
| 3710 | /* manually convert vector registers if necessary */ |
| 3711 | if (MACHINE_HAS_VX) { |
| 3712 | convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); |
| 3713 | rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, |
| 3714 | fprs, 128); |
| 3715 | } else { |
| 3716 | rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, |
| 3717 | vcpu->run->s.regs.fprs, 128); |
| 3718 | } |
| 3719 | rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, |
| 3720 | vcpu->run->s.regs.gprs, 128); |
| 3721 | rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, |
| 3722 | &vcpu->arch.sie_block->gpsw, 16); |
| 3723 | rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, |
| 3724 | &px, 4); |
| 3725 | rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, |
| 3726 | &vcpu->run->s.regs.fpc, 4); |
| 3727 | rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, |
| 3728 | &vcpu->arch.sie_block->todpr, 4); |
| 3729 | cputm = kvm_s390_get_cpu_timer(vcpu); |
| 3730 | rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, |
| 3731 | &cputm, 8); |
| 3732 | clkcomp = vcpu->arch.sie_block->ckc >> 8; |
| 3733 | rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, |
| 3734 | &clkcomp, 8); |
| 3735 | rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, |
| 3736 | &vcpu->run->s.regs.acrs, 64); |
| 3737 | rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, |
| 3738 | &vcpu->arch.sie_block->gcr, 128); |
| 3739 | return rc ? -EFAULT : 0; |
| 3740 | } |
| 3741 | |
| 3742 | int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) |
| 3743 | { |
| 3744 | /* |
| 3745 | * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy |
| 3746 | * switch in the run ioctl. Let's update our copies before we save |
| 3747 | * it into the save area |
| 3748 | */ |
| 3749 | save_fpu_regs(); |
| 3750 | vcpu->run->s.regs.fpc = current->thread.fpu.fpc; |
| 3751 | save_access_regs(vcpu->run->s.regs.acrs); |
| 3752 | |
| 3753 | return kvm_s390_store_status_unloaded(vcpu, addr); |
| 3754 | } |
| 3755 | |
| 3756 | static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) |
| 3757 | { |
| 3758 | kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); |
| 3759 | kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); |
| 3760 | } |
| 3761 | |
| 3762 | static void __disable_ibs_on_all_vcpus(struct kvm *kvm) |
| 3763 | { |
| 3764 | unsigned int i; |
| 3765 | struct kvm_vcpu *vcpu; |
| 3766 | |
| 3767 | kvm_for_each_vcpu(i, vcpu, kvm) { |
| 3768 | __disable_ibs_on_vcpu(vcpu); |
| 3769 | } |
| 3770 | } |
| 3771 | |
| 3772 | static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) |
| 3773 | { |
| 3774 | if (!sclp.has_ibs) |
| 3775 | return; |
| 3776 | kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); |
| 3777 | kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); |
| 3778 | } |
| 3779 | |
| 3780 | void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) |
| 3781 | { |
| 3782 | int i, online_vcpus, started_vcpus = 0; |
| 3783 | |
| 3784 | if (!is_vcpu_stopped(vcpu)) |
| 3785 | return; |
| 3786 | |
| 3787 | trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); |
| 3788 | /* Only one cpu at a time may enter/leave the STOPPED state. */ |
| 3789 | spin_lock(&vcpu->kvm->arch.start_stop_lock); |
| 3790 | online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); |
| 3791 | |
| 3792 | for (i = 0; i < online_vcpus; i++) { |
| 3793 | if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) |
| 3794 | started_vcpus++; |
| 3795 | } |
| 3796 | |
| 3797 | if (started_vcpus == 0) { |
| 3798 | /* we're the only active VCPU -> speed it up */ |
| 3799 | __enable_ibs_on_vcpu(vcpu); |
| 3800 | } else if (started_vcpus == 1) { |
| 3801 | /* |
| 3802 | * As we are starting a second VCPU, we have to disable |
| 3803 | * the IBS facility on all VCPUs to remove potentially |
| 3804 | * oustanding ENABLE requests. |
| 3805 | */ |
| 3806 | __disable_ibs_on_all_vcpus(vcpu->kvm); |
| 3807 | } |
| 3808 | |
| 3809 | kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); |
| 3810 | /* |
| 3811 | * Another VCPU might have used IBS while we were offline. |
| 3812 | * Let's play safe and flush the VCPU at startup. |
| 3813 | */ |
| 3814 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| 3815 | spin_unlock(&vcpu->kvm->arch.start_stop_lock); |
| 3816 | return; |
| 3817 | } |
| 3818 | |
| 3819 | void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) |
| 3820 | { |
| 3821 | int i, online_vcpus, started_vcpus = 0; |
| 3822 | struct kvm_vcpu *started_vcpu = NULL; |
| 3823 | |
| 3824 | if (is_vcpu_stopped(vcpu)) |
| 3825 | return; |
| 3826 | |
| 3827 | trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); |
| 3828 | /* Only one cpu at a time may enter/leave the STOPPED state. */ |
| 3829 | spin_lock(&vcpu->kvm->arch.start_stop_lock); |
| 3830 | online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); |
| 3831 | |
| 3832 | /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */ |
| 3833 | kvm_s390_clear_stop_irq(vcpu); |
| 3834 | |
| 3835 | kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); |
| 3836 | __disable_ibs_on_vcpu(vcpu); |
| 3837 | |
| 3838 | for (i = 0; i < online_vcpus; i++) { |
| 3839 | if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) { |
| 3840 | started_vcpus++; |
| 3841 | started_vcpu = vcpu->kvm->vcpus[i]; |
| 3842 | } |
| 3843 | } |
| 3844 | |
| 3845 | if (started_vcpus == 1) { |
| 3846 | /* |
| 3847 | * As we only have one VCPU left, we want to enable the |
| 3848 | * IBS facility for that VCPU to speed it up. |
| 3849 | */ |
| 3850 | __enable_ibs_on_vcpu(started_vcpu); |
| 3851 | } |
| 3852 | |
| 3853 | spin_unlock(&vcpu->kvm->arch.start_stop_lock); |
| 3854 | return; |
| 3855 | } |
| 3856 | |
| 3857 | static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, |
| 3858 | struct kvm_enable_cap *cap) |
| 3859 | { |
| 3860 | int r; |
| 3861 | |
| 3862 | if (cap->flags) |
| 3863 | return -EINVAL; |
| 3864 | |
| 3865 | switch (cap->cap) { |
| 3866 | case KVM_CAP_S390_CSS_SUPPORT: |
| 3867 | if (!vcpu->kvm->arch.css_support) { |
| 3868 | vcpu->kvm->arch.css_support = 1; |
| 3869 | VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); |
| 3870 | trace_kvm_s390_enable_css(vcpu->kvm); |
| 3871 | } |
| 3872 | r = 0; |
| 3873 | break; |
| 3874 | default: |
| 3875 | r = -EINVAL; |
| 3876 | break; |
| 3877 | } |
| 3878 | return r; |
| 3879 | } |
| 3880 | |
| 3881 | static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu, |
| 3882 | struct kvm_s390_mem_op *mop) |
| 3883 | { |
| 3884 | void __user *uaddr = (void __user *)mop->buf; |
| 3885 | void *tmpbuf = NULL; |
| 3886 | int r, srcu_idx; |
| 3887 | const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION |
| 3888 | | KVM_S390_MEMOP_F_CHECK_ONLY; |
| 3889 | |
| 3890 | if (mop->flags & ~supported_flags) |
| 3891 | return -EINVAL; |
| 3892 | |
| 3893 | if (mop->size > MEM_OP_MAX_SIZE) |
| 3894 | return -E2BIG; |
| 3895 | |
| 3896 | if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { |
| 3897 | tmpbuf = vmalloc(mop->size); |
| 3898 | if (!tmpbuf) |
| 3899 | return -ENOMEM; |
| 3900 | } |
| 3901 | |
| 3902 | srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
| 3903 | |
| 3904 | switch (mop->op) { |
| 3905 | case KVM_S390_MEMOP_LOGICAL_READ: |
| 3906 | if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { |
| 3907 | r = check_gva_range(vcpu, mop->gaddr, mop->ar, |
| 3908 | mop->size, GACC_FETCH); |
| 3909 | break; |
| 3910 | } |
| 3911 | r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); |
| 3912 | if (r == 0) { |
| 3913 | if (copy_to_user(uaddr, tmpbuf, mop->size)) |
| 3914 | r = -EFAULT; |
| 3915 | } |
| 3916 | break; |
| 3917 | case KVM_S390_MEMOP_LOGICAL_WRITE: |
| 3918 | if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { |
| 3919 | r = check_gva_range(vcpu, mop->gaddr, mop->ar, |
| 3920 | mop->size, GACC_STORE); |
| 3921 | break; |
| 3922 | } |
| 3923 | if (copy_from_user(tmpbuf, uaddr, mop->size)) { |
| 3924 | r = -EFAULT; |
| 3925 | break; |
| 3926 | } |
| 3927 | r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); |
| 3928 | break; |
| 3929 | default: |
| 3930 | r = -EINVAL; |
| 3931 | } |
| 3932 | |
| 3933 | srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); |
| 3934 | |
| 3935 | if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) |
| 3936 | kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); |
| 3937 | |
| 3938 | vfree(tmpbuf); |
| 3939 | return r; |
| 3940 | } |
| 3941 | |
| 3942 | long kvm_arch_vcpu_async_ioctl(struct file *filp, |
| 3943 | unsigned int ioctl, unsigned long arg) |
| 3944 | { |
| 3945 | struct kvm_vcpu *vcpu = filp->private_data; |
| 3946 | void __user *argp = (void __user *)arg; |
| 3947 | |
| 3948 | switch (ioctl) { |
| 3949 | case KVM_S390_IRQ: { |
| 3950 | struct kvm_s390_irq s390irq; |
| 3951 | |
| 3952 | if (copy_from_user(&s390irq, argp, sizeof(s390irq))) |
| 3953 | return -EFAULT; |
| 3954 | return kvm_s390_inject_vcpu(vcpu, &s390irq); |
| 3955 | } |
| 3956 | case KVM_S390_INTERRUPT: { |
| 3957 | struct kvm_s390_interrupt s390int; |
| 3958 | struct kvm_s390_irq s390irq; |
| 3959 | |
| 3960 | if (copy_from_user(&s390int, argp, sizeof(s390int))) |
| 3961 | return -EFAULT; |
| 3962 | if (s390int_to_s390irq(&s390int, &s390irq)) |
| 3963 | return -EINVAL; |
| 3964 | return kvm_s390_inject_vcpu(vcpu, &s390irq); |
| 3965 | } |
| 3966 | } |
| 3967 | return -ENOIOCTLCMD; |
| 3968 | } |
| 3969 | |
| 3970 | long kvm_arch_vcpu_ioctl(struct file *filp, |
| 3971 | unsigned int ioctl, unsigned long arg) |
| 3972 | { |
| 3973 | struct kvm_vcpu *vcpu = filp->private_data; |
| 3974 | void __user *argp = (void __user *)arg; |
| 3975 | int idx; |
| 3976 | long r; |
| 3977 | |
| 3978 | vcpu_load(vcpu); |
| 3979 | |
| 3980 | switch (ioctl) { |
| 3981 | case KVM_S390_STORE_STATUS: |
| 3982 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
| 3983 | r = kvm_s390_vcpu_store_status(vcpu, arg); |
| 3984 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| 3985 | break; |
| 3986 | case KVM_S390_SET_INITIAL_PSW: { |
| 3987 | psw_t psw; |
| 3988 | |
| 3989 | r = -EFAULT; |
| 3990 | if (copy_from_user(&psw, argp, sizeof(psw))) |
| 3991 | break; |
| 3992 | r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); |
| 3993 | break; |
| 3994 | } |
| 3995 | case KVM_S390_INITIAL_RESET: |
| 3996 | r = kvm_arch_vcpu_ioctl_initial_reset(vcpu); |
| 3997 | break; |
| 3998 | case KVM_SET_ONE_REG: |
| 3999 | case KVM_GET_ONE_REG: { |
| 4000 | struct kvm_one_reg reg; |
| 4001 | r = -EFAULT; |
| 4002 | if (copy_from_user(®, argp, sizeof(reg))) |
| 4003 | break; |
| 4004 | if (ioctl == KVM_SET_ONE_REG) |
| 4005 | r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); |
| 4006 | else |
| 4007 | r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); |
| 4008 | break; |
| 4009 | } |
| 4010 | #ifdef CONFIG_KVM_S390_UCONTROL |
| 4011 | case KVM_S390_UCAS_MAP: { |
| 4012 | struct kvm_s390_ucas_mapping ucasmap; |
| 4013 | |
| 4014 | if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { |
| 4015 | r = -EFAULT; |
| 4016 | break; |
| 4017 | } |
| 4018 | |
| 4019 | if (!kvm_is_ucontrol(vcpu->kvm)) { |
| 4020 | r = -EINVAL; |
| 4021 | break; |
| 4022 | } |
| 4023 | |
| 4024 | r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, |
| 4025 | ucasmap.vcpu_addr, ucasmap.length); |
| 4026 | break; |
| 4027 | } |
| 4028 | case KVM_S390_UCAS_UNMAP: { |
| 4029 | struct kvm_s390_ucas_mapping ucasmap; |
| 4030 | |
| 4031 | if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { |
| 4032 | r = -EFAULT; |
| 4033 | break; |
| 4034 | } |
| 4035 | |
| 4036 | if (!kvm_is_ucontrol(vcpu->kvm)) { |
| 4037 | r = -EINVAL; |
| 4038 | break; |
| 4039 | } |
| 4040 | |
| 4041 | r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, |
| 4042 | ucasmap.length); |
| 4043 | break; |
| 4044 | } |
| 4045 | #endif |
| 4046 | case KVM_S390_VCPU_FAULT: { |
| 4047 | r = gmap_fault(vcpu->arch.gmap, arg, 0); |
| 4048 | break; |
| 4049 | } |
| 4050 | case KVM_ENABLE_CAP: |
| 4051 | { |
| 4052 | struct kvm_enable_cap cap; |
| 4053 | r = -EFAULT; |
| 4054 | if (copy_from_user(&cap, argp, sizeof(cap))) |
| 4055 | break; |
| 4056 | r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); |
| 4057 | break; |
| 4058 | } |
| 4059 | case KVM_S390_MEM_OP: { |
| 4060 | struct kvm_s390_mem_op mem_op; |
| 4061 | |
| 4062 | if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) |
| 4063 | r = kvm_s390_guest_mem_op(vcpu, &mem_op); |
| 4064 | else |
| 4065 | r = -EFAULT; |
| 4066 | break; |
| 4067 | } |
| 4068 | case KVM_S390_SET_IRQ_STATE: { |
| 4069 | struct kvm_s390_irq_state irq_state; |
| 4070 | |
| 4071 | r = -EFAULT; |
| 4072 | if (copy_from_user(&irq_state, argp, sizeof(irq_state))) |
| 4073 | break; |
| 4074 | if (irq_state.len > VCPU_IRQS_MAX_BUF || |
| 4075 | irq_state.len == 0 || |
| 4076 | irq_state.len % sizeof(struct kvm_s390_irq) > 0) { |
| 4077 | r = -EINVAL; |
| 4078 | break; |
| 4079 | } |
| 4080 | /* do not use irq_state.flags, it will break old QEMUs */ |
| 4081 | r = kvm_s390_set_irq_state(vcpu, |
| 4082 | (void __user *) irq_state.buf, |
| 4083 | irq_state.len); |
| 4084 | break; |
| 4085 | } |
| 4086 | case KVM_S390_GET_IRQ_STATE: { |
| 4087 | struct kvm_s390_irq_state irq_state; |
| 4088 | |
| 4089 | r = -EFAULT; |
| 4090 | if (copy_from_user(&irq_state, argp, sizeof(irq_state))) |
| 4091 | break; |
| 4092 | if (irq_state.len == 0) { |
| 4093 | r = -EINVAL; |
| 4094 | break; |
| 4095 | } |
| 4096 | /* do not use irq_state.flags, it will break old QEMUs */ |
| 4097 | r = kvm_s390_get_irq_state(vcpu, |
| 4098 | (__u8 __user *) irq_state.buf, |
| 4099 | irq_state.len); |
| 4100 | break; |
| 4101 | } |
| 4102 | default: |
| 4103 | r = -ENOTTY; |
| 4104 | } |
| 4105 | |
| 4106 | vcpu_put(vcpu); |
| 4107 | return r; |
| 4108 | } |
| 4109 | |
| 4110 | vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
| 4111 | { |
| 4112 | #ifdef CONFIG_KVM_S390_UCONTROL |
| 4113 | if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) |
| 4114 | && (kvm_is_ucontrol(vcpu->kvm))) { |
| 4115 | vmf->page = virt_to_page(vcpu->arch.sie_block); |
| 4116 | get_page(vmf->page); |
| 4117 | return 0; |
| 4118 | } |
| 4119 | #endif |
| 4120 | return VM_FAULT_SIGBUS; |
| 4121 | } |
| 4122 | |
| 4123 | int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, |
| 4124 | unsigned long npages) |
| 4125 | { |
| 4126 | return 0; |
| 4127 | } |
| 4128 | |
| 4129 | /* Section: memory related */ |
| 4130 | int kvm_arch_prepare_memory_region(struct kvm *kvm, |
| 4131 | struct kvm_memory_slot *memslot, |
| 4132 | const struct kvm_userspace_memory_region *mem, |
| 4133 | enum kvm_mr_change change) |
| 4134 | { |
| 4135 | /* A few sanity checks. We can have memory slots which have to be |
| 4136 | located/ended at a segment boundary (1MB). The memory in userland is |
| 4137 | ok to be fragmented into various different vmas. It is okay to mmap() |
| 4138 | and munmap() stuff in this slot after doing this call at any time */ |
| 4139 | |
| 4140 | if (mem->userspace_addr & 0xffffful) |
| 4141 | return -EINVAL; |
| 4142 | |
| 4143 | if (mem->memory_size & 0xffffful) |
| 4144 | return -EINVAL; |
| 4145 | |
| 4146 | if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit) |
| 4147 | return -EINVAL; |
| 4148 | |
| 4149 | return 0; |
| 4150 | } |
| 4151 | |
| 4152 | void kvm_arch_commit_memory_region(struct kvm *kvm, |
| 4153 | const struct kvm_userspace_memory_region *mem, |
| 4154 | const struct kvm_memory_slot *old, |
| 4155 | const struct kvm_memory_slot *new, |
| 4156 | enum kvm_mr_change change) |
| 4157 | { |
| 4158 | int rc; |
| 4159 | |
| 4160 | /* If the basics of the memslot do not change, we do not want |
| 4161 | * to update the gmap. Every update causes several unnecessary |
| 4162 | * segment translation exceptions. This is usually handled just |
| 4163 | * fine by the normal fault handler + gmap, but it will also |
| 4164 | * cause faults on the prefix page of running guest CPUs. |
| 4165 | */ |
| 4166 | if (old->userspace_addr == mem->userspace_addr && |
| 4167 | old->base_gfn * PAGE_SIZE == mem->guest_phys_addr && |
| 4168 | old->npages * PAGE_SIZE == mem->memory_size) |
| 4169 | return; |
| 4170 | |
| 4171 | rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr, |
| 4172 | mem->guest_phys_addr, mem->memory_size); |
| 4173 | if (rc) |
| 4174 | pr_warn("failed to commit memory region\n"); |
| 4175 | return; |
| 4176 | } |
| 4177 | |
| 4178 | static inline unsigned long nonhyp_mask(int i) |
| 4179 | { |
| 4180 | unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; |
| 4181 | |
| 4182 | return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); |
| 4183 | } |
| 4184 | |
| 4185 | void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) |
| 4186 | { |
| 4187 | vcpu->valid_wakeup = false; |
| 4188 | } |
| 4189 | |
| 4190 | static int __init kvm_s390_init(void) |
| 4191 | { |
| 4192 | int i; |
| 4193 | |
| 4194 | if (!sclp.has_sief2) { |
| 4195 | pr_info("SIE not available\n"); |
| 4196 | return -ENODEV; |
| 4197 | } |
| 4198 | |
| 4199 | if (nested && hpage) { |
| 4200 | pr_info("nested (vSIE) and hpage (huge page backing) can currently not be activated concurrently"); |
| 4201 | return -EINVAL; |
| 4202 | } |
| 4203 | |
| 4204 | for (i = 0; i < 16; i++) |
| 4205 | kvm_s390_fac_base[i] |= |
| 4206 | S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i); |
| 4207 | |
| 4208 | return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); |
| 4209 | } |
| 4210 | |
| 4211 | static void __exit kvm_s390_exit(void) |
| 4212 | { |
| 4213 | kvm_exit(); |
| 4214 | } |
| 4215 | |
| 4216 | module_init(kvm_s390_init); |
| 4217 | module_exit(kvm_s390_exit); |
| 4218 | |
| 4219 | /* |
| 4220 | * Enable autoloading of the kvm module. |
| 4221 | * Note that we add the module alias here instead of virt/kvm/kvm_main.c |
| 4222 | * since x86 takes a different approach. |
| 4223 | */ |
| 4224 | #include <linux/miscdevice.h> |
| 4225 | MODULE_ALIAS_MISCDEV(KVM_MINOR); |
| 4226 | MODULE_ALIAS("devname:kvm"); |