Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * This file contains common routines for dealing with free of page tables |
| 3 | * Along with common page table handling code |
| 4 | * |
| 5 | * Derived from arch/powerpc/mm/tlb_64.c: |
| 6 | * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| 7 | * |
| 8 | * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) |
| 9 | * and Cort Dougan (PReP) (cort@cs.nmt.edu) |
| 10 | * Copyright (C) 1996 Paul Mackerras |
| 11 | * |
| 12 | * Derived from "arch/i386/mm/init.c" |
| 13 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| 14 | * |
| 15 | * Dave Engebretsen <engebret@us.ibm.com> |
| 16 | * Rework for PPC64 port. |
| 17 | * |
| 18 | * This program is free software; you can redistribute it and/or |
| 19 | * modify it under the terms of the GNU General Public License |
| 20 | * as published by the Free Software Foundation; either version |
| 21 | * 2 of the License, or (at your option) any later version. |
| 22 | */ |
| 23 | |
| 24 | #include <linux/kernel.h> |
| 25 | #include <linux/gfp.h> |
| 26 | #include <linux/mm.h> |
| 27 | #include <linux/percpu.h> |
| 28 | #include <linux/hardirq.h> |
| 29 | #include <linux/hugetlb.h> |
| 30 | #include <asm/pgalloc.h> |
| 31 | #include <asm/tlbflush.h> |
| 32 | #include <asm/tlb.h> |
| 33 | |
| 34 | static inline int is_exec_fault(void) |
| 35 | { |
| 36 | return current->thread.regs && TRAP(current->thread.regs) == 0x400; |
| 37 | } |
| 38 | |
| 39 | /* We only try to do i/d cache coherency on stuff that looks like |
| 40 | * reasonably "normal" PTEs. We currently require a PTE to be present |
| 41 | * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that |
| 42 | * on userspace PTEs |
| 43 | */ |
| 44 | static inline int pte_looks_normal(pte_t pte) |
| 45 | { |
| 46 | |
| 47 | #if defined(CONFIG_PPC_BOOK3S_64) |
| 48 | if ((pte_val(pte) & (_PAGE_PRESENT | _PAGE_SPECIAL)) == _PAGE_PRESENT) { |
| 49 | if (pte_ci(pte)) |
| 50 | return 0; |
| 51 | if (pte_user(pte)) |
| 52 | return 1; |
| 53 | } |
| 54 | return 0; |
| 55 | #else |
| 56 | return (pte_val(pte) & |
| 57 | (_PAGE_PRESENT | _PAGE_SPECIAL | _PAGE_NO_CACHE | _PAGE_USER | |
| 58 | _PAGE_PRIVILEGED)) == |
| 59 | (_PAGE_PRESENT | _PAGE_USER); |
| 60 | #endif |
| 61 | } |
| 62 | |
| 63 | static struct page *maybe_pte_to_page(pte_t pte) |
| 64 | { |
| 65 | unsigned long pfn = pte_pfn(pte); |
| 66 | struct page *page; |
| 67 | |
| 68 | if (unlikely(!pfn_valid(pfn))) |
| 69 | return NULL; |
| 70 | page = pfn_to_page(pfn); |
| 71 | if (PageReserved(page)) |
| 72 | return NULL; |
| 73 | return page; |
| 74 | } |
| 75 | |
| 76 | #if defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 |
| 77 | |
| 78 | /* Server-style MMU handles coherency when hashing if HW exec permission |
| 79 | * is supposed per page (currently 64-bit only). If not, then, we always |
| 80 | * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec |
| 81 | * support falls into the same category. |
| 82 | */ |
| 83 | |
| 84 | static pte_t set_pte_filter(pte_t pte) |
| 85 | { |
| 86 | if (radix_enabled()) |
| 87 | return pte; |
| 88 | |
| 89 | pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); |
| 90 | if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) || |
| 91 | cpu_has_feature(CPU_FTR_NOEXECUTE))) { |
| 92 | struct page *pg = maybe_pte_to_page(pte); |
| 93 | if (!pg) |
| 94 | return pte; |
| 95 | if (!test_bit(PG_arch_1, &pg->flags)) { |
| 96 | flush_dcache_icache_page(pg); |
| 97 | set_bit(PG_arch_1, &pg->flags); |
| 98 | } |
| 99 | } |
| 100 | return pte; |
| 101 | } |
| 102 | |
| 103 | static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma, |
| 104 | int dirty) |
| 105 | { |
| 106 | return pte; |
| 107 | } |
| 108 | |
| 109 | #else /* defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 */ |
| 110 | |
| 111 | /* Embedded type MMU with HW exec support. This is a bit more complicated |
| 112 | * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so |
| 113 | * instead we "filter out" the exec permission for non clean pages. |
| 114 | */ |
| 115 | static pte_t set_pte_filter(pte_t pte) |
| 116 | { |
| 117 | struct page *pg; |
| 118 | |
| 119 | /* No exec permission in the first place, move on */ |
| 120 | if (!(pte_val(pte) & _PAGE_EXEC) || !pte_looks_normal(pte)) |
| 121 | return pte; |
| 122 | |
| 123 | /* If you set _PAGE_EXEC on weird pages you're on your own */ |
| 124 | pg = maybe_pte_to_page(pte); |
| 125 | if (unlikely(!pg)) |
| 126 | return pte; |
| 127 | |
| 128 | /* If the page clean, we move on */ |
| 129 | if (test_bit(PG_arch_1, &pg->flags)) |
| 130 | return pte; |
| 131 | |
| 132 | /* If it's an exec fault, we flush the cache and make it clean */ |
| 133 | if (is_exec_fault()) { |
| 134 | flush_dcache_icache_page(pg); |
| 135 | set_bit(PG_arch_1, &pg->flags); |
| 136 | return pte; |
| 137 | } |
| 138 | |
| 139 | /* Else, we filter out _PAGE_EXEC */ |
| 140 | return __pte(pte_val(pte) & ~_PAGE_EXEC); |
| 141 | } |
| 142 | |
| 143 | static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma, |
| 144 | int dirty) |
| 145 | { |
| 146 | struct page *pg; |
| 147 | |
| 148 | /* So here, we only care about exec faults, as we use them |
| 149 | * to recover lost _PAGE_EXEC and perform I$/D$ coherency |
| 150 | * if necessary. Also if _PAGE_EXEC is already set, same deal, |
| 151 | * we just bail out |
| 152 | */ |
| 153 | if (dirty || (pte_val(pte) & _PAGE_EXEC) || !is_exec_fault()) |
| 154 | return pte; |
| 155 | |
| 156 | #ifdef CONFIG_DEBUG_VM |
| 157 | /* So this is an exec fault, _PAGE_EXEC is not set. If it was |
| 158 | * an error we would have bailed out earlier in do_page_fault() |
| 159 | * but let's make sure of it |
| 160 | */ |
| 161 | if (WARN_ON(!(vma->vm_flags & VM_EXEC))) |
| 162 | return pte; |
| 163 | #endif /* CONFIG_DEBUG_VM */ |
| 164 | |
| 165 | /* If you set _PAGE_EXEC on weird pages you're on your own */ |
| 166 | pg = maybe_pte_to_page(pte); |
| 167 | if (unlikely(!pg)) |
| 168 | goto bail; |
| 169 | |
| 170 | /* If the page is already clean, we move on */ |
| 171 | if (test_bit(PG_arch_1, &pg->flags)) |
| 172 | goto bail; |
| 173 | |
| 174 | /* Clean the page and set PG_arch_1 */ |
| 175 | flush_dcache_icache_page(pg); |
| 176 | set_bit(PG_arch_1, &pg->flags); |
| 177 | |
| 178 | bail: |
| 179 | return __pte(pte_val(pte) | _PAGE_EXEC); |
| 180 | } |
| 181 | |
| 182 | #endif /* !(defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0) */ |
| 183 | |
| 184 | /* |
| 185 | * set_pte stores a linux PTE into the linux page table. |
| 186 | */ |
| 187 | void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, |
| 188 | pte_t pte) |
| 189 | { |
| 190 | /* |
| 191 | * When handling numa faults, we already have the pte marked |
| 192 | * _PAGE_PRESENT, but we can be sure that it is not in hpte. |
| 193 | * Hence we can use set_pte_at for them. |
| 194 | */ |
| 195 | VM_WARN_ON(pte_present(*ptep) && !pte_protnone(*ptep)); |
| 196 | |
| 197 | /* Add the pte bit when trying to set a pte */ |
| 198 | pte = __pte(pte_val(pte) | _PAGE_PTE); |
| 199 | |
| 200 | /* Note: mm->context.id might not yet have been assigned as |
| 201 | * this context might not have been activated yet when this |
| 202 | * is called. |
| 203 | */ |
| 204 | pte = set_pte_filter(pte); |
| 205 | |
| 206 | /* Perform the setting of the PTE */ |
| 207 | __set_pte_at(mm, addr, ptep, pte, 0); |
| 208 | } |
| 209 | |
| 210 | /* |
| 211 | * This is called when relaxing access to a PTE. It's also called in the page |
| 212 | * fault path when we don't hit any of the major fault cases, ie, a minor |
| 213 | * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have |
| 214 | * handled those two for us, we additionally deal with missing execute |
| 215 | * permission here on some processors |
| 216 | */ |
| 217 | int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, |
| 218 | pte_t *ptep, pte_t entry, int dirty) |
| 219 | { |
| 220 | int changed; |
| 221 | entry = set_access_flags_filter(entry, vma, dirty); |
| 222 | changed = !pte_same(*(ptep), entry); |
| 223 | if (changed) { |
| 224 | assert_pte_locked(vma->vm_mm, address); |
| 225 | __ptep_set_access_flags(vma, ptep, entry, |
| 226 | address, mmu_virtual_psize); |
| 227 | } |
| 228 | return changed; |
| 229 | } |
| 230 | |
| 231 | #ifdef CONFIG_HUGETLB_PAGE |
| 232 | extern int huge_ptep_set_access_flags(struct vm_area_struct *vma, |
| 233 | unsigned long addr, pte_t *ptep, |
| 234 | pte_t pte, int dirty) |
| 235 | { |
| 236 | #ifdef HUGETLB_NEED_PRELOAD |
| 237 | /* |
| 238 | * The "return 1" forces a call of update_mmu_cache, which will write a |
| 239 | * TLB entry. Without this, platforms that don't do a write of the TLB |
| 240 | * entry in the TLB miss handler asm will fault ad infinitum. |
| 241 | */ |
| 242 | ptep_set_access_flags(vma, addr, ptep, pte, dirty); |
| 243 | return 1; |
| 244 | #else |
| 245 | int changed, psize; |
| 246 | |
| 247 | pte = set_access_flags_filter(pte, vma, dirty); |
| 248 | changed = !pte_same(*(ptep), pte); |
| 249 | if (changed) { |
| 250 | |
| 251 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 252 | struct hstate *h = hstate_vma(vma); |
| 253 | |
| 254 | psize = hstate_get_psize(h); |
| 255 | #ifdef CONFIG_DEBUG_VM |
| 256 | assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep)); |
| 257 | #endif |
| 258 | |
| 259 | #else |
| 260 | /* |
| 261 | * Not used on non book3s64 platforms. But 8xx |
| 262 | * can possibly use tsize derived from hstate. |
| 263 | */ |
| 264 | psize = 0; |
| 265 | #endif |
| 266 | __ptep_set_access_flags(vma, ptep, pte, addr, psize); |
| 267 | } |
| 268 | return changed; |
| 269 | #endif |
| 270 | } |
| 271 | #endif /* CONFIG_HUGETLB_PAGE */ |
| 272 | |
| 273 | #ifdef CONFIG_DEBUG_VM |
| 274 | void assert_pte_locked(struct mm_struct *mm, unsigned long addr) |
| 275 | { |
| 276 | pgd_t *pgd; |
| 277 | pud_t *pud; |
| 278 | pmd_t *pmd; |
| 279 | |
| 280 | if (mm == &init_mm) |
| 281 | return; |
| 282 | pgd = mm->pgd + pgd_index(addr); |
| 283 | BUG_ON(pgd_none(*pgd)); |
| 284 | pud = pud_offset(pgd, addr); |
| 285 | BUG_ON(pud_none(*pud)); |
| 286 | pmd = pmd_offset(pud, addr); |
| 287 | /* |
| 288 | * khugepaged to collapse normal pages to hugepage, first set |
| 289 | * pmd to none to force page fault/gup to take mmap_sem. After |
| 290 | * pmd is set to none, we do a pte_clear which does this assertion |
| 291 | * so if we find pmd none, return. |
| 292 | */ |
| 293 | if (pmd_none(*pmd)) |
| 294 | return; |
| 295 | BUG_ON(!pmd_present(*pmd)); |
| 296 | assert_spin_locked(pte_lockptr(mm, pmd)); |
| 297 | } |
| 298 | #endif /* CONFIG_DEBUG_VM */ |
| 299 | |
| 300 | unsigned long vmalloc_to_phys(void *va) |
| 301 | { |
| 302 | unsigned long pfn = vmalloc_to_pfn(va); |
| 303 | |
| 304 | BUG_ON(!pfn); |
| 305 | return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va); |
| 306 | } |
| 307 | EXPORT_SYMBOL_GPL(vmalloc_to_phys); |