Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2015 - ARM Ltd |
| 3 | * Author: Marc Zyngier <marc.zyngier@arm.com> |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License version 2 as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 16 | */ |
| 17 | |
| 18 | #include <linux/arm-smccc.h> |
| 19 | #include <linux/types.h> |
| 20 | #include <linux/jump_label.h> |
| 21 | #include <uapi/linux/psci.h> |
| 22 | |
| 23 | #include <kvm/arm_psci.h> |
| 24 | |
| 25 | #include <asm/cpufeature.h> |
| 26 | #include <asm/kvm_asm.h> |
| 27 | #include <asm/kvm_emulate.h> |
| 28 | #include <asm/kvm_host.h> |
| 29 | #include <asm/kvm_hyp.h> |
| 30 | #include <asm/kvm_mmu.h> |
| 31 | #include <asm/fpsimd.h> |
| 32 | #include <asm/debug-monitors.h> |
| 33 | #include <asm/processor.h> |
| 34 | #include <asm/thread_info.h> |
| 35 | |
| 36 | /* Check whether the FP regs were dirtied while in the host-side run loop: */ |
| 37 | static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu) |
| 38 | { |
| 39 | if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE) |
| 40 | vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED | |
| 41 | KVM_ARM64_FP_HOST); |
| 42 | |
| 43 | return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED); |
| 44 | } |
| 45 | |
| 46 | /* Save the 32-bit only FPSIMD system register state */ |
| 47 | static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu) |
| 48 | { |
| 49 | if (!vcpu_el1_is_32bit(vcpu)) |
| 50 | return; |
| 51 | |
| 52 | vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2); |
| 53 | } |
| 54 | |
| 55 | static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu) |
| 56 | { |
| 57 | /* |
| 58 | * We are about to set CPTR_EL2.TFP to trap all floating point |
| 59 | * register accesses to EL2, however, the ARM ARM clearly states that |
| 60 | * traps are only taken to EL2 if the operation would not otherwise |
| 61 | * trap to EL1. Therefore, always make sure that for 32-bit guests, |
| 62 | * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. |
| 63 | * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to |
| 64 | * it will cause an exception. |
| 65 | */ |
| 66 | if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) { |
| 67 | write_sysreg(1 << 30, fpexc32_el2); |
| 68 | isb(); |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu) |
| 73 | { |
| 74 | /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */ |
| 75 | write_sysreg(1 << 15, hstr_el2); |
| 76 | |
| 77 | /* |
| 78 | * Make sure we trap PMU access from EL0 to EL2. Also sanitize |
| 79 | * PMSELR_EL0 to make sure it never contains the cycle |
| 80 | * counter, which could make a PMXEVCNTR_EL0 access UNDEF at |
| 81 | * EL1 instead of being trapped to EL2. |
| 82 | */ |
| 83 | write_sysreg(0, pmselr_el0); |
| 84 | write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); |
| 85 | write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); |
| 86 | } |
| 87 | |
| 88 | static void __hyp_text __deactivate_traps_common(void) |
| 89 | { |
| 90 | write_sysreg(0, hstr_el2); |
| 91 | write_sysreg(0, pmuserenr_el0); |
| 92 | } |
| 93 | |
| 94 | static void activate_traps_vhe(struct kvm_vcpu *vcpu) |
| 95 | { |
| 96 | u64 val; |
| 97 | |
| 98 | val = read_sysreg(cpacr_el1); |
| 99 | val |= CPACR_EL1_TTA; |
| 100 | val &= ~CPACR_EL1_ZEN; |
| 101 | if (!update_fp_enabled(vcpu)) { |
| 102 | val &= ~CPACR_EL1_FPEN; |
| 103 | __activate_traps_fpsimd32(vcpu); |
| 104 | } |
| 105 | |
| 106 | write_sysreg(val, cpacr_el1); |
| 107 | |
| 108 | write_sysreg(kvm_get_hyp_vector(), vbar_el1); |
| 109 | } |
| 110 | |
| 111 | static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu) |
| 112 | { |
| 113 | u64 val; |
| 114 | |
| 115 | __activate_traps_common(vcpu); |
| 116 | |
| 117 | val = CPTR_EL2_DEFAULT; |
| 118 | val |= CPTR_EL2_TTA | CPTR_EL2_TZ; |
| 119 | if (!update_fp_enabled(vcpu)) { |
| 120 | val |= CPTR_EL2_TFP; |
| 121 | __activate_traps_fpsimd32(vcpu); |
| 122 | } |
| 123 | |
| 124 | write_sysreg(val, cptr_el2); |
| 125 | } |
| 126 | |
| 127 | static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu) |
| 128 | { |
| 129 | u64 hcr = vcpu->arch.hcr_el2; |
| 130 | |
| 131 | write_sysreg(hcr, hcr_el2); |
| 132 | |
| 133 | if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE)) |
| 134 | write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2); |
| 135 | |
| 136 | if (has_vhe()) |
| 137 | activate_traps_vhe(vcpu); |
| 138 | else |
| 139 | __activate_traps_nvhe(vcpu); |
| 140 | } |
| 141 | |
| 142 | static void deactivate_traps_vhe(void) |
| 143 | { |
| 144 | extern char vectors[]; /* kernel exception vectors */ |
| 145 | write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2); |
| 146 | write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1); |
| 147 | write_sysreg(vectors, vbar_el1); |
| 148 | } |
| 149 | |
| 150 | static void __hyp_text __deactivate_traps_nvhe(void) |
| 151 | { |
| 152 | u64 mdcr_el2 = read_sysreg(mdcr_el2); |
| 153 | |
| 154 | __deactivate_traps_common(); |
| 155 | |
| 156 | mdcr_el2 &= MDCR_EL2_HPMN_MASK; |
| 157 | mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT; |
| 158 | |
| 159 | write_sysreg(mdcr_el2, mdcr_el2); |
| 160 | write_sysreg(HCR_RW, hcr_el2); |
| 161 | write_sysreg(CPTR_EL2_DEFAULT, cptr_el2); |
| 162 | } |
| 163 | |
| 164 | static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu) |
| 165 | { |
| 166 | /* |
| 167 | * If we pended a virtual abort, preserve it until it gets |
| 168 | * cleared. See D1.14.3 (Virtual Interrupts) for details, but |
| 169 | * the crucial bit is "On taking a vSError interrupt, |
| 170 | * HCR_EL2.VSE is cleared to 0." |
| 171 | */ |
| 172 | if (vcpu->arch.hcr_el2 & HCR_VSE) |
| 173 | vcpu->arch.hcr_el2 = read_sysreg(hcr_el2); |
| 174 | |
| 175 | if (has_vhe()) |
| 176 | deactivate_traps_vhe(); |
| 177 | else |
| 178 | __deactivate_traps_nvhe(); |
| 179 | } |
| 180 | |
| 181 | void activate_traps_vhe_load(struct kvm_vcpu *vcpu) |
| 182 | { |
| 183 | __activate_traps_common(vcpu); |
| 184 | } |
| 185 | |
| 186 | void deactivate_traps_vhe_put(void) |
| 187 | { |
| 188 | u64 mdcr_el2 = read_sysreg(mdcr_el2); |
| 189 | |
| 190 | mdcr_el2 &= MDCR_EL2_HPMN_MASK | |
| 191 | MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT | |
| 192 | MDCR_EL2_TPMS; |
| 193 | |
| 194 | write_sysreg(mdcr_el2, mdcr_el2); |
| 195 | |
| 196 | __deactivate_traps_common(); |
| 197 | } |
| 198 | |
| 199 | static void __hyp_text __activate_vm(struct kvm *kvm) |
| 200 | { |
| 201 | write_sysreg(kvm->arch.vttbr, vttbr_el2); |
| 202 | } |
| 203 | |
| 204 | static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu) |
| 205 | { |
| 206 | write_sysreg(0, vttbr_el2); |
| 207 | } |
| 208 | |
| 209 | /* Save VGICv3 state on non-VHE systems */ |
| 210 | static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu) |
| 211 | { |
| 212 | if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { |
| 213 | __vgic_v3_save_state(vcpu); |
| 214 | __vgic_v3_deactivate_traps(vcpu); |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | /* Restore VGICv3 state on non_VEH systems */ |
| 219 | static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu) |
| 220 | { |
| 221 | if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { |
| 222 | __vgic_v3_activate_traps(vcpu); |
| 223 | __vgic_v3_restore_state(vcpu); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | static bool __hyp_text __true_value(void) |
| 228 | { |
| 229 | return true; |
| 230 | } |
| 231 | |
| 232 | static bool __hyp_text __false_value(void) |
| 233 | { |
| 234 | return false; |
| 235 | } |
| 236 | |
| 237 | static hyp_alternate_select(__check_arm_834220, |
| 238 | __false_value, __true_value, |
| 239 | ARM64_WORKAROUND_834220); |
| 240 | |
| 241 | static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar) |
| 242 | { |
| 243 | u64 par, tmp; |
| 244 | |
| 245 | /* |
| 246 | * Resolve the IPA the hard way using the guest VA. |
| 247 | * |
| 248 | * Stage-1 translation already validated the memory access |
| 249 | * rights. As such, we can use the EL1 translation regime, and |
| 250 | * don't have to distinguish between EL0 and EL1 access. |
| 251 | * |
| 252 | * We do need to save/restore PAR_EL1 though, as we haven't |
| 253 | * saved the guest context yet, and we may return early... |
| 254 | */ |
| 255 | par = read_sysreg(par_el1); |
| 256 | asm volatile("at s1e1r, %0" : : "r" (far)); |
| 257 | isb(); |
| 258 | |
| 259 | tmp = read_sysreg(par_el1); |
| 260 | write_sysreg(par, par_el1); |
| 261 | |
| 262 | if (unlikely(tmp & 1)) |
| 263 | return false; /* Translation failed, back to guest */ |
| 264 | |
| 265 | /* Convert PAR to HPFAR format */ |
| 266 | *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4; |
| 267 | return true; |
| 268 | } |
| 269 | |
| 270 | static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu) |
| 271 | { |
| 272 | u8 ec; |
| 273 | u64 esr; |
| 274 | u64 hpfar, far; |
| 275 | |
| 276 | esr = vcpu->arch.fault.esr_el2; |
| 277 | ec = ESR_ELx_EC(esr); |
| 278 | |
| 279 | if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW) |
| 280 | return true; |
| 281 | |
| 282 | far = read_sysreg_el2(far); |
| 283 | |
| 284 | /* |
| 285 | * The HPFAR can be invalid if the stage 2 fault did not |
| 286 | * happen during a stage 1 page table walk (the ESR_EL2.S1PTW |
| 287 | * bit is clear) and one of the two following cases are true: |
| 288 | * 1. The fault was due to a permission fault |
| 289 | * 2. The processor carries errata 834220 |
| 290 | * |
| 291 | * Therefore, for all non S1PTW faults where we either have a |
| 292 | * permission fault or the errata workaround is enabled, we |
| 293 | * resolve the IPA using the AT instruction. |
| 294 | */ |
| 295 | if (!(esr & ESR_ELx_S1PTW) && |
| 296 | (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) { |
| 297 | if (!__translate_far_to_hpfar(far, &hpfar)) |
| 298 | return false; |
| 299 | } else { |
| 300 | hpfar = read_sysreg(hpfar_el2); |
| 301 | } |
| 302 | |
| 303 | vcpu->arch.fault.far_el2 = far; |
| 304 | vcpu->arch.fault.hpfar_el2 = hpfar; |
| 305 | return true; |
| 306 | } |
| 307 | |
| 308 | /* Skip an instruction which has been emulated. Returns true if |
| 309 | * execution can continue or false if we need to exit hyp mode because |
| 310 | * single-step was in effect. |
| 311 | */ |
| 312 | static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu) |
| 313 | { |
| 314 | *vcpu_pc(vcpu) = read_sysreg_el2(elr); |
| 315 | |
| 316 | if (vcpu_mode_is_32bit(vcpu)) { |
| 317 | vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr); |
| 318 | kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); |
| 319 | write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr); |
| 320 | } else { |
| 321 | *vcpu_pc(vcpu) += 4; |
| 322 | } |
| 323 | |
| 324 | write_sysreg_el2(*vcpu_pc(vcpu), elr); |
| 325 | |
| 326 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
| 327 | vcpu->arch.fault.esr_el2 = |
| 328 | (ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22; |
| 329 | return false; |
| 330 | } else { |
| 331 | return true; |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu) |
| 336 | { |
| 337 | struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state; |
| 338 | |
| 339 | if (has_vhe()) |
| 340 | write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN, |
| 341 | cpacr_el1); |
| 342 | else |
| 343 | write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP, |
| 344 | cptr_el2); |
| 345 | |
| 346 | isb(); |
| 347 | |
| 348 | if (vcpu->arch.flags & KVM_ARM64_FP_HOST) { |
| 349 | /* |
| 350 | * In the SVE case, VHE is assumed: it is enforced by |
| 351 | * Kconfig and kvm_arch_init(). |
| 352 | */ |
| 353 | if (system_supports_sve() && |
| 354 | (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) { |
| 355 | struct thread_struct *thread = container_of( |
| 356 | host_fpsimd, |
| 357 | struct thread_struct, uw.fpsimd_state); |
| 358 | |
| 359 | sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr); |
| 360 | } else { |
| 361 | __fpsimd_save_state(host_fpsimd); |
| 362 | } |
| 363 | |
| 364 | vcpu->arch.flags &= ~KVM_ARM64_FP_HOST; |
| 365 | } |
| 366 | |
| 367 | __fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs); |
| 368 | |
| 369 | /* Skip restoring fpexc32 for AArch64 guests */ |
| 370 | if (!(read_sysreg(hcr_el2) & HCR_RW)) |
| 371 | write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2], |
| 372 | fpexc32_el2); |
| 373 | |
| 374 | vcpu->arch.flags |= KVM_ARM64_FP_ENABLED; |
| 375 | |
| 376 | return true; |
| 377 | } |
| 378 | |
| 379 | /* |
| 380 | * Return true when we were able to fixup the guest exit and should return to |
| 381 | * the guest, false when we should restore the host state and return to the |
| 382 | * main run loop. |
| 383 | */ |
| 384 | static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) |
| 385 | { |
| 386 | if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) |
| 387 | vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr); |
| 388 | |
| 389 | /* |
| 390 | * We're using the raw exception code in order to only process |
| 391 | * the trap if no SError is pending. We will come back to the |
| 392 | * same PC once the SError has been injected, and replay the |
| 393 | * trapping instruction. |
| 394 | */ |
| 395 | if (*exit_code != ARM_EXCEPTION_TRAP) |
| 396 | goto exit; |
| 397 | |
| 398 | /* |
| 399 | * We trap the first access to the FP/SIMD to save the host context |
| 400 | * and restore the guest context lazily. |
| 401 | * If FP/SIMD is not implemented, handle the trap and inject an |
| 402 | * undefined instruction exception to the guest. |
| 403 | */ |
| 404 | if (system_supports_fpsimd() && |
| 405 | kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD) |
| 406 | return __hyp_switch_fpsimd(vcpu); |
| 407 | |
| 408 | if (!__populate_fault_info(vcpu)) |
| 409 | return true; |
| 410 | |
| 411 | if (static_branch_unlikely(&vgic_v2_cpuif_trap)) { |
| 412 | bool valid; |
| 413 | |
| 414 | valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW && |
| 415 | kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT && |
| 416 | kvm_vcpu_dabt_isvalid(vcpu) && |
| 417 | !kvm_vcpu_dabt_isextabt(vcpu) && |
| 418 | !kvm_vcpu_dabt_iss1tw(vcpu); |
| 419 | |
| 420 | if (valid) { |
| 421 | int ret = __vgic_v2_perform_cpuif_access(vcpu); |
| 422 | |
| 423 | if (ret == 1 && __skip_instr(vcpu)) |
| 424 | return true; |
| 425 | |
| 426 | if (ret == -1) { |
| 427 | /* Promote an illegal access to an |
| 428 | * SError. If we would be returning |
| 429 | * due to single-step clear the SS |
| 430 | * bit so handle_exit knows what to |
| 431 | * do after dealing with the error. |
| 432 | */ |
| 433 | if (!__skip_instr(vcpu)) |
| 434 | *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS; |
| 435 | *exit_code = ARM_EXCEPTION_EL1_SERROR; |
| 436 | } |
| 437 | |
| 438 | goto exit; |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | if (static_branch_unlikely(&vgic_v3_cpuif_trap) && |
| 443 | (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 || |
| 444 | kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) { |
| 445 | int ret = __vgic_v3_perform_cpuif_access(vcpu); |
| 446 | |
| 447 | if (ret == 1 && __skip_instr(vcpu)) |
| 448 | return true; |
| 449 | } |
| 450 | |
| 451 | exit: |
| 452 | /* Return to the host kernel and handle the exit */ |
| 453 | return false; |
| 454 | } |
| 455 | |
| 456 | static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu) |
| 457 | { |
| 458 | if (!cpus_have_const_cap(ARM64_SSBD)) |
| 459 | return false; |
| 460 | |
| 461 | return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG); |
| 462 | } |
| 463 | |
| 464 | static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu) |
| 465 | { |
| 466 | #ifdef CONFIG_ARM64_SSBD |
| 467 | /* |
| 468 | * The host runs with the workaround always present. If the |
| 469 | * guest wants it disabled, so be it... |
| 470 | */ |
| 471 | if (__needs_ssbd_off(vcpu) && |
| 472 | __hyp_this_cpu_read(arm64_ssbd_callback_required)) |
| 473 | arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL); |
| 474 | #endif |
| 475 | } |
| 476 | |
| 477 | static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu) |
| 478 | { |
| 479 | #ifdef CONFIG_ARM64_SSBD |
| 480 | /* |
| 481 | * If the guest has disabled the workaround, bring it back on. |
| 482 | */ |
| 483 | if (__needs_ssbd_off(vcpu) && |
| 484 | __hyp_this_cpu_read(arm64_ssbd_callback_required)) |
| 485 | arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL); |
| 486 | #endif |
| 487 | } |
| 488 | |
| 489 | /* Switch to the guest for VHE systems running in EL2 */ |
| 490 | int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu) |
| 491 | { |
| 492 | struct kvm_cpu_context *host_ctxt; |
| 493 | struct kvm_cpu_context *guest_ctxt; |
| 494 | u64 exit_code; |
| 495 | |
| 496 | host_ctxt = vcpu->arch.host_cpu_context; |
| 497 | host_ctxt->__hyp_running_vcpu = vcpu; |
| 498 | guest_ctxt = &vcpu->arch.ctxt; |
| 499 | |
| 500 | sysreg_save_host_state_vhe(host_ctxt); |
| 501 | |
| 502 | __activate_traps(vcpu); |
| 503 | __activate_vm(vcpu->kvm); |
| 504 | |
| 505 | sysreg_restore_guest_state_vhe(guest_ctxt); |
| 506 | __debug_switch_to_guest(vcpu); |
| 507 | |
| 508 | __set_guest_arch_workaround_state(vcpu); |
| 509 | |
| 510 | do { |
| 511 | /* Jump in the fire! */ |
| 512 | exit_code = __guest_enter(vcpu, host_ctxt); |
| 513 | |
| 514 | /* And we're baaack! */ |
| 515 | } while (fixup_guest_exit(vcpu, &exit_code)); |
| 516 | |
| 517 | __set_host_arch_workaround_state(vcpu); |
| 518 | |
| 519 | sysreg_save_guest_state_vhe(guest_ctxt); |
| 520 | |
| 521 | __deactivate_traps(vcpu); |
| 522 | |
| 523 | sysreg_restore_host_state_vhe(host_ctxt); |
| 524 | |
| 525 | if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) |
| 526 | __fpsimd_save_fpexc32(vcpu); |
| 527 | |
| 528 | __debug_switch_to_host(vcpu); |
| 529 | |
| 530 | return exit_code; |
| 531 | } |
| 532 | |
| 533 | /* Switch to the guest for legacy non-VHE systems */ |
| 534 | int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu) |
| 535 | { |
| 536 | struct kvm_cpu_context *host_ctxt; |
| 537 | struct kvm_cpu_context *guest_ctxt; |
| 538 | u64 exit_code; |
| 539 | |
| 540 | vcpu = kern_hyp_va(vcpu); |
| 541 | |
| 542 | host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context); |
| 543 | host_ctxt->__hyp_running_vcpu = vcpu; |
| 544 | guest_ctxt = &vcpu->arch.ctxt; |
| 545 | |
| 546 | __sysreg_save_state_nvhe(host_ctxt); |
| 547 | |
| 548 | __activate_traps(vcpu); |
| 549 | __activate_vm(kern_hyp_va(vcpu->kvm)); |
| 550 | |
| 551 | __hyp_vgic_restore_state(vcpu); |
| 552 | __timer_enable_traps(vcpu); |
| 553 | |
| 554 | /* |
| 555 | * We must restore the 32-bit state before the sysregs, thanks |
| 556 | * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). |
| 557 | */ |
| 558 | __sysreg32_restore_state(vcpu); |
| 559 | __sysreg_restore_state_nvhe(guest_ctxt); |
| 560 | __debug_switch_to_guest(vcpu); |
| 561 | |
| 562 | __set_guest_arch_workaround_state(vcpu); |
| 563 | |
| 564 | do { |
| 565 | /* Jump in the fire! */ |
| 566 | exit_code = __guest_enter(vcpu, host_ctxt); |
| 567 | |
| 568 | /* And we're baaack! */ |
| 569 | } while (fixup_guest_exit(vcpu, &exit_code)); |
| 570 | |
| 571 | __set_host_arch_workaround_state(vcpu); |
| 572 | |
| 573 | __sysreg_save_state_nvhe(guest_ctxt); |
| 574 | __sysreg32_save_state(vcpu); |
| 575 | __timer_disable_traps(vcpu); |
| 576 | __hyp_vgic_save_state(vcpu); |
| 577 | |
| 578 | __deactivate_traps(vcpu); |
| 579 | __deactivate_vm(vcpu); |
| 580 | |
| 581 | __sysreg_restore_state_nvhe(host_ctxt); |
| 582 | |
| 583 | if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) |
| 584 | __fpsimd_save_fpexc32(vcpu); |
| 585 | |
| 586 | /* |
| 587 | * This must come after restoring the host sysregs, since a non-VHE |
| 588 | * system may enable SPE here and make use of the TTBRs. |
| 589 | */ |
| 590 | __debug_switch_to_host(vcpu); |
| 591 | |
| 592 | return exit_code; |
| 593 | } |
| 594 | |
| 595 | static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n"; |
| 596 | |
| 597 | static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par, |
| 598 | struct kvm_cpu_context *__host_ctxt) |
| 599 | { |
| 600 | struct kvm_vcpu *vcpu; |
| 601 | unsigned long str_va; |
| 602 | |
| 603 | vcpu = __host_ctxt->__hyp_running_vcpu; |
| 604 | |
| 605 | if (read_sysreg(vttbr_el2)) { |
| 606 | __timer_disable_traps(vcpu); |
| 607 | __deactivate_traps(vcpu); |
| 608 | __deactivate_vm(vcpu); |
| 609 | __sysreg_restore_state_nvhe(__host_ctxt); |
| 610 | } |
| 611 | |
| 612 | /* |
| 613 | * Force the panic string to be loaded from the literal pool, |
| 614 | * making sure it is a kernel address and not a PC-relative |
| 615 | * reference. |
| 616 | */ |
| 617 | asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va)); |
| 618 | |
| 619 | __hyp_do_panic(str_va, |
| 620 | spsr, elr, |
| 621 | read_sysreg(esr_el2), read_sysreg_el2(far), |
| 622 | read_sysreg(hpfar_el2), par, vcpu); |
| 623 | } |
| 624 | |
| 625 | static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par, |
| 626 | struct kvm_cpu_context *host_ctxt) |
| 627 | { |
| 628 | struct kvm_vcpu *vcpu; |
| 629 | vcpu = host_ctxt->__hyp_running_vcpu; |
| 630 | |
| 631 | __deactivate_traps(vcpu); |
| 632 | sysreg_restore_host_state_vhe(host_ctxt); |
| 633 | |
| 634 | panic(__hyp_panic_string, |
| 635 | spsr, elr, |
| 636 | read_sysreg_el2(esr), read_sysreg_el2(far), |
| 637 | read_sysreg(hpfar_el2), par, vcpu); |
| 638 | } |
| 639 | |
| 640 | void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt) |
| 641 | { |
| 642 | u64 spsr = read_sysreg_el2(spsr); |
| 643 | u64 elr = read_sysreg_el2(elr); |
| 644 | u64 par = read_sysreg(par_el1); |
| 645 | |
| 646 | if (!has_vhe()) |
| 647 | __hyp_call_panic_nvhe(spsr, elr, par, host_ctxt); |
| 648 | else |
| 649 | __hyp_call_panic_vhe(spsr, elr, par, host_ctxt); |
| 650 | |
| 651 | unreachable(); |
| 652 | } |