Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * linux/arch/arm/mm/fault.c |
| 3 | * |
| 4 | * Copyright (C) 1995 Linus Torvalds |
| 5 | * Modifications for ARM processor (c) 1995-2004 Russell King |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | */ |
| 11 | #include <linux/extable.h> |
| 12 | #include <linux/signal.h> |
| 13 | #include <linux/mm.h> |
| 14 | #include <linux/hardirq.h> |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/kprobes.h> |
| 17 | #include <linux/uaccess.h> |
| 18 | #include <linux/page-flags.h> |
| 19 | #include <linux/sched/signal.h> |
| 20 | #include <linux/sched/debug.h> |
| 21 | #include <linux/highmem.h> |
| 22 | #include <linux/perf_event.h> |
| 23 | |
| 24 | #include <asm/pgtable.h> |
| 25 | #include <asm/system_misc.h> |
| 26 | #include <asm/system_info.h> |
| 27 | #include <asm/tlbflush.h> |
| 28 | |
| 29 | #include "fault.h" |
| 30 | |
| 31 | #ifdef CONFIG_MMU |
| 32 | |
| 33 | #ifdef CONFIG_KPROBES |
| 34 | static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) |
| 35 | { |
| 36 | int ret = 0; |
| 37 | |
| 38 | if (!user_mode(regs)) { |
| 39 | /* kprobe_running() needs smp_processor_id() */ |
| 40 | preempt_disable(); |
| 41 | if (kprobe_running() && kprobe_fault_handler(regs, fsr)) |
| 42 | ret = 1; |
| 43 | preempt_enable(); |
| 44 | } |
| 45 | |
| 46 | return ret; |
| 47 | } |
| 48 | #else |
| 49 | static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) |
| 50 | { |
| 51 | return 0; |
| 52 | } |
| 53 | #endif |
| 54 | |
| 55 | /* |
| 56 | * This is useful to dump out the page tables associated with |
| 57 | * 'addr' in mm 'mm'. |
| 58 | */ |
| 59 | void show_pte(struct mm_struct *mm, unsigned long addr) |
| 60 | { |
| 61 | pgd_t *pgd; |
| 62 | |
| 63 | if (!mm) |
| 64 | mm = &init_mm; |
| 65 | |
| 66 | pr_alert("pgd = %p\n", mm->pgd); |
| 67 | pgd = pgd_offset(mm, addr); |
| 68 | pr_alert("[%08lx] *pgd=%08llx", |
| 69 | addr, (long long)pgd_val(*pgd)); |
| 70 | |
| 71 | do { |
| 72 | pud_t *pud; |
| 73 | pmd_t *pmd; |
| 74 | pte_t *pte; |
| 75 | |
| 76 | if (pgd_none(*pgd)) |
| 77 | break; |
| 78 | |
| 79 | if (pgd_bad(*pgd)) { |
| 80 | pr_cont("(bad)"); |
| 81 | break; |
| 82 | } |
| 83 | |
| 84 | pud = pud_offset(pgd, addr); |
| 85 | if (PTRS_PER_PUD != 1) |
| 86 | pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); |
| 87 | |
| 88 | if (pud_none(*pud)) |
| 89 | break; |
| 90 | |
| 91 | if (pud_bad(*pud)) { |
| 92 | pr_cont("(bad)"); |
| 93 | break; |
| 94 | } |
| 95 | |
| 96 | pmd = pmd_offset(pud, addr); |
| 97 | if (PTRS_PER_PMD != 1) |
| 98 | pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); |
| 99 | |
| 100 | if (pmd_none(*pmd)) |
| 101 | break; |
| 102 | |
| 103 | if (pmd_bad(*pmd)) { |
| 104 | pr_cont("(bad)"); |
| 105 | break; |
| 106 | } |
| 107 | |
| 108 | /* We must not map this if we have highmem enabled */ |
| 109 | if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) |
| 110 | break; |
| 111 | |
| 112 | pte = pte_offset_map(pmd, addr); |
| 113 | pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); |
| 114 | #ifndef CONFIG_ARM_LPAE |
| 115 | pr_cont(", *ppte=%08llx", |
| 116 | (long long)pte_val(pte[PTE_HWTABLE_PTRS])); |
| 117 | #endif |
| 118 | pte_unmap(pte); |
| 119 | } while(0); |
| 120 | |
| 121 | pr_cont("\n"); |
| 122 | } |
| 123 | #else /* CONFIG_MMU */ |
| 124 | void show_pte(struct mm_struct *mm, unsigned long addr) |
| 125 | { } |
| 126 | #endif /* CONFIG_MMU */ |
| 127 | |
| 128 | /* |
| 129 | * Oops. The kernel tried to access some page that wasn't present. |
| 130 | */ |
| 131 | static void |
| 132 | __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, |
| 133 | struct pt_regs *regs) |
| 134 | { |
| 135 | /* |
| 136 | * Are we prepared to handle this kernel fault? |
| 137 | */ |
| 138 | if (fixup_exception(regs)) |
| 139 | return; |
| 140 | |
| 141 | /* |
| 142 | * No handler, we'll have to terminate things with extreme prejudice. |
| 143 | */ |
| 144 | bust_spinlocks(1); |
| 145 | pr_alert("Unable to handle kernel %s at virtual address %08lx\n", |
| 146 | (addr < PAGE_SIZE) ? "NULL pointer dereference" : |
| 147 | "paging request", addr); |
| 148 | |
| 149 | show_pte(mm, addr); |
| 150 | die("Oops", regs, fsr); |
| 151 | bust_spinlocks(0); |
| 152 | do_exit(SIGKILL); |
| 153 | } |
| 154 | |
| 155 | /* |
| 156 | * Something tried to access memory that isn't in our memory map.. |
| 157 | * User mode accesses just cause a SIGSEGV |
| 158 | */ |
| 159 | static void |
| 160 | __do_user_fault(struct task_struct *tsk, unsigned long addr, |
| 161 | unsigned int fsr, unsigned int sig, int code, |
| 162 | struct pt_regs *regs) |
| 163 | { |
| 164 | struct siginfo si; |
| 165 | |
| 166 | if (addr > TASK_SIZE) |
| 167 | harden_branch_predictor(); |
| 168 | |
| 169 | clear_siginfo(&si); |
| 170 | |
| 171 | #ifdef CONFIG_DEBUG_USER |
| 172 | if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || |
| 173 | ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { |
| 174 | printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", |
| 175 | tsk->comm, sig, addr, fsr); |
| 176 | show_pte(tsk->mm, addr); |
| 177 | show_regs(regs); |
| 178 | } |
| 179 | #endif |
| 180 | |
| 181 | tsk->thread.address = addr; |
| 182 | tsk->thread.error_code = fsr; |
| 183 | tsk->thread.trap_no = 14; |
| 184 | si.si_signo = sig; |
| 185 | si.si_errno = 0; |
| 186 | si.si_code = code; |
| 187 | si.si_addr = (void __user *)addr; |
| 188 | force_sig_info(sig, &si, tsk); |
| 189 | } |
| 190 | |
| 191 | void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| 192 | { |
| 193 | struct task_struct *tsk = current; |
| 194 | struct mm_struct *mm = tsk->active_mm; |
| 195 | |
| 196 | /* |
| 197 | * If we are in kernel mode at this point, we |
| 198 | * have no context to handle this fault with. |
| 199 | */ |
| 200 | if (user_mode(regs)) |
| 201 | __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs); |
| 202 | else |
| 203 | __do_kernel_fault(mm, addr, fsr, regs); |
| 204 | } |
| 205 | |
| 206 | #ifdef CONFIG_MMU |
| 207 | #define VM_FAULT_BADMAP 0x010000 |
| 208 | #define VM_FAULT_BADACCESS 0x020000 |
| 209 | |
| 210 | /* |
| 211 | * Check that the permissions on the VMA allow for the fault which occurred. |
| 212 | * If we encountered a write fault, we must have write permission, otherwise |
| 213 | * we allow any permission. |
| 214 | */ |
| 215 | static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma) |
| 216 | { |
| 217 | unsigned int mask = VM_READ | VM_WRITE | VM_EXEC; |
| 218 | |
| 219 | if (fsr & FSR_WRITE) |
| 220 | mask = VM_WRITE; |
| 221 | if (fsr & FSR_LNX_PF) |
| 222 | mask = VM_EXEC; |
| 223 | |
| 224 | return vma->vm_flags & mask ? false : true; |
| 225 | } |
| 226 | |
| 227 | static vm_fault_t __kprobes |
| 228 | __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, |
| 229 | unsigned int flags, struct task_struct *tsk) |
| 230 | { |
| 231 | struct vm_area_struct *vma; |
| 232 | vm_fault_t fault; |
| 233 | |
| 234 | vma = find_vma(mm, addr); |
| 235 | fault = VM_FAULT_BADMAP; |
| 236 | if (unlikely(!vma)) |
| 237 | goto out; |
| 238 | if (unlikely(vma->vm_start > addr)) |
| 239 | goto check_stack; |
| 240 | |
| 241 | /* |
| 242 | * Ok, we have a good vm_area for this |
| 243 | * memory access, so we can handle it. |
| 244 | */ |
| 245 | good_area: |
| 246 | if (access_error(fsr, vma)) { |
| 247 | fault = VM_FAULT_BADACCESS; |
| 248 | goto out; |
| 249 | } |
| 250 | |
| 251 | return handle_mm_fault(vma, addr & PAGE_MASK, flags); |
| 252 | |
| 253 | check_stack: |
| 254 | /* Don't allow expansion below FIRST_USER_ADDRESS */ |
| 255 | if (vma->vm_flags & VM_GROWSDOWN && |
| 256 | addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr)) |
| 257 | goto good_area; |
| 258 | out: |
| 259 | return fault; |
| 260 | } |
| 261 | |
| 262 | static int __kprobes |
| 263 | do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| 264 | { |
| 265 | struct task_struct *tsk; |
| 266 | struct mm_struct *mm; |
| 267 | int sig, code; |
| 268 | vm_fault_t fault; |
| 269 | unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
| 270 | |
| 271 | if (notify_page_fault(regs, fsr)) |
| 272 | return 0; |
| 273 | |
| 274 | tsk = current; |
| 275 | mm = tsk->mm; |
| 276 | |
| 277 | /* Enable interrupts if they were enabled in the parent context. */ |
| 278 | if (interrupts_enabled(regs)) |
| 279 | local_irq_enable(); |
| 280 | |
| 281 | /* |
| 282 | * If we're in an interrupt or have no user |
| 283 | * context, we must not take the fault.. |
| 284 | */ |
| 285 | if (faulthandler_disabled() || !mm) |
| 286 | goto no_context; |
| 287 | |
| 288 | if (user_mode(regs)) |
| 289 | flags |= FAULT_FLAG_USER; |
| 290 | if (fsr & FSR_WRITE) |
| 291 | flags |= FAULT_FLAG_WRITE; |
| 292 | |
| 293 | /* |
| 294 | * As per x86, we may deadlock here. However, since the kernel only |
| 295 | * validly references user space from well defined areas of the code, |
| 296 | * we can bug out early if this is from code which shouldn't. |
| 297 | */ |
| 298 | if (!down_read_trylock(&mm->mmap_sem)) { |
| 299 | if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) |
| 300 | goto no_context; |
| 301 | retry: |
| 302 | down_read(&mm->mmap_sem); |
| 303 | } else { |
| 304 | /* |
| 305 | * The above down_read_trylock() might have succeeded in |
| 306 | * which case, we'll have missed the might_sleep() from |
| 307 | * down_read() |
| 308 | */ |
| 309 | might_sleep(); |
| 310 | #ifdef CONFIG_DEBUG_VM |
| 311 | if (!user_mode(regs) && |
| 312 | !search_exception_tables(regs->ARM_pc)) |
| 313 | goto no_context; |
| 314 | #endif |
| 315 | } |
| 316 | |
| 317 | fault = __do_page_fault(mm, addr, fsr, flags, tsk); |
| 318 | |
| 319 | /* If we need to retry but a fatal signal is pending, handle the |
| 320 | * signal first. We do not need to release the mmap_sem because |
| 321 | * it would already be released in __lock_page_or_retry in |
| 322 | * mm/filemap.c. */ |
| 323 | if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) { |
| 324 | if (!user_mode(regs)) |
| 325 | goto no_context; |
| 326 | return 0; |
| 327 | } |
| 328 | |
| 329 | /* |
| 330 | * Major/minor page fault accounting is only done on the |
| 331 | * initial attempt. If we go through a retry, it is extremely |
| 332 | * likely that the page will be found in page cache at that point. |
| 333 | */ |
| 334 | |
| 335 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); |
| 336 | if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) { |
| 337 | if (fault & VM_FAULT_MAJOR) { |
| 338 | tsk->maj_flt++; |
| 339 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, |
| 340 | regs, addr); |
| 341 | } else { |
| 342 | tsk->min_flt++; |
| 343 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, |
| 344 | regs, addr); |
| 345 | } |
| 346 | if (fault & VM_FAULT_RETRY) { |
| 347 | /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk |
| 348 | * of starvation. */ |
| 349 | flags &= ~FAULT_FLAG_ALLOW_RETRY; |
| 350 | flags |= FAULT_FLAG_TRIED; |
| 351 | goto retry; |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | up_read(&mm->mmap_sem); |
| 356 | |
| 357 | /* |
| 358 | * Handle the "normal" case first - VM_FAULT_MAJOR |
| 359 | */ |
| 360 | if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) |
| 361 | return 0; |
| 362 | |
| 363 | /* |
| 364 | * If we are in kernel mode at this point, we |
| 365 | * have no context to handle this fault with. |
| 366 | */ |
| 367 | if (!user_mode(regs)) |
| 368 | goto no_context; |
| 369 | |
| 370 | if (fault & VM_FAULT_OOM) { |
| 371 | /* |
| 372 | * We ran out of memory, call the OOM killer, and return to |
| 373 | * userspace (which will retry the fault, or kill us if we |
| 374 | * got oom-killed) |
| 375 | */ |
| 376 | pagefault_out_of_memory(); |
| 377 | return 0; |
| 378 | } |
| 379 | |
| 380 | if (fault & VM_FAULT_SIGBUS) { |
| 381 | /* |
| 382 | * We had some memory, but were unable to |
| 383 | * successfully fix up this page fault. |
| 384 | */ |
| 385 | sig = SIGBUS; |
| 386 | code = BUS_ADRERR; |
| 387 | } else { |
| 388 | /* |
| 389 | * Something tried to access memory that |
| 390 | * isn't in our memory map.. |
| 391 | */ |
| 392 | sig = SIGSEGV; |
| 393 | code = fault == VM_FAULT_BADACCESS ? |
| 394 | SEGV_ACCERR : SEGV_MAPERR; |
| 395 | } |
| 396 | |
| 397 | __do_user_fault(tsk, addr, fsr, sig, code, regs); |
| 398 | return 0; |
| 399 | |
| 400 | no_context: |
| 401 | __do_kernel_fault(mm, addr, fsr, regs); |
| 402 | return 0; |
| 403 | } |
| 404 | #else /* CONFIG_MMU */ |
| 405 | static int |
| 406 | do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| 407 | { |
| 408 | return 0; |
| 409 | } |
| 410 | #endif /* CONFIG_MMU */ |
| 411 | |
| 412 | /* |
| 413 | * First Level Translation Fault Handler |
| 414 | * |
| 415 | * We enter here because the first level page table doesn't contain |
| 416 | * a valid entry for the address. |
| 417 | * |
| 418 | * If the address is in kernel space (>= TASK_SIZE), then we are |
| 419 | * probably faulting in the vmalloc() area. |
| 420 | * |
| 421 | * If the init_task's first level page tables contains the relevant |
| 422 | * entry, we copy the it to this task. If not, we send the process |
| 423 | * a signal, fixup the exception, or oops the kernel. |
| 424 | * |
| 425 | * NOTE! We MUST NOT take any locks for this case. We may be in an |
| 426 | * interrupt or a critical region, and should only copy the information |
| 427 | * from the master page table, nothing more. |
| 428 | */ |
| 429 | #ifdef CONFIG_MMU |
| 430 | static int __kprobes |
| 431 | do_translation_fault(unsigned long addr, unsigned int fsr, |
| 432 | struct pt_regs *regs) |
| 433 | { |
| 434 | unsigned int index; |
| 435 | pgd_t *pgd, *pgd_k; |
| 436 | pud_t *pud, *pud_k; |
| 437 | pmd_t *pmd, *pmd_k; |
| 438 | |
| 439 | if (addr < TASK_SIZE) |
| 440 | return do_page_fault(addr, fsr, regs); |
| 441 | |
| 442 | if (user_mode(regs)) |
| 443 | goto bad_area; |
| 444 | |
| 445 | index = pgd_index(addr); |
| 446 | |
| 447 | pgd = cpu_get_pgd() + index; |
| 448 | pgd_k = init_mm.pgd + index; |
| 449 | |
| 450 | if (pgd_none(*pgd_k)) |
| 451 | goto bad_area; |
| 452 | if (!pgd_present(*pgd)) |
| 453 | set_pgd(pgd, *pgd_k); |
| 454 | |
| 455 | pud = pud_offset(pgd, addr); |
| 456 | pud_k = pud_offset(pgd_k, addr); |
| 457 | |
| 458 | if (pud_none(*pud_k)) |
| 459 | goto bad_area; |
| 460 | if (!pud_present(*pud)) |
| 461 | set_pud(pud, *pud_k); |
| 462 | |
| 463 | pmd = pmd_offset(pud, addr); |
| 464 | pmd_k = pmd_offset(pud_k, addr); |
| 465 | |
| 466 | #ifdef CONFIG_ARM_LPAE |
| 467 | /* |
| 468 | * Only one hardware entry per PMD with LPAE. |
| 469 | */ |
| 470 | index = 0; |
| 471 | #else |
| 472 | /* |
| 473 | * On ARM one Linux PGD entry contains two hardware entries (see page |
| 474 | * tables layout in pgtable.h). We normally guarantee that we always |
| 475 | * fill both L1 entries. But create_mapping() doesn't follow the rule. |
| 476 | * It can create inidividual L1 entries, so here we have to call |
| 477 | * pmd_none() check for the entry really corresponded to address, not |
| 478 | * for the first of pair. |
| 479 | */ |
| 480 | index = (addr >> SECTION_SHIFT) & 1; |
| 481 | #endif |
| 482 | if (pmd_none(pmd_k[index])) |
| 483 | goto bad_area; |
| 484 | |
| 485 | copy_pmd(pmd, pmd_k); |
| 486 | return 0; |
| 487 | |
| 488 | bad_area: |
| 489 | do_bad_area(addr, fsr, regs); |
| 490 | return 0; |
| 491 | } |
| 492 | #else /* CONFIG_MMU */ |
| 493 | static int |
| 494 | do_translation_fault(unsigned long addr, unsigned int fsr, |
| 495 | struct pt_regs *regs) |
| 496 | { |
| 497 | return 0; |
| 498 | } |
| 499 | #endif /* CONFIG_MMU */ |
| 500 | |
| 501 | /* |
| 502 | * Some section permission faults need to be handled gracefully. |
| 503 | * They can happen due to a __{get,put}_user during an oops. |
| 504 | */ |
| 505 | #ifndef CONFIG_ARM_LPAE |
| 506 | static int |
| 507 | do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| 508 | { |
| 509 | do_bad_area(addr, fsr, regs); |
| 510 | return 0; |
| 511 | } |
| 512 | #endif /* CONFIG_ARM_LPAE */ |
| 513 | |
| 514 | /* |
| 515 | * This abort handler always returns "fault". |
| 516 | */ |
| 517 | static int |
| 518 | do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| 519 | { |
| 520 | return 1; |
| 521 | } |
| 522 | |
| 523 | struct fsr_info { |
| 524 | int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); |
| 525 | int sig; |
| 526 | int code; |
| 527 | const char *name; |
| 528 | }; |
| 529 | |
| 530 | /* FSR definition */ |
| 531 | #ifdef CONFIG_ARM_LPAE |
| 532 | #include "fsr-3level.c" |
| 533 | #else |
| 534 | #include "fsr-2level.c" |
| 535 | #endif |
| 536 | |
| 537 | void __init |
| 538 | hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), |
| 539 | int sig, int code, const char *name) |
| 540 | { |
| 541 | if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) |
| 542 | BUG(); |
| 543 | |
| 544 | fsr_info[nr].fn = fn; |
| 545 | fsr_info[nr].sig = sig; |
| 546 | fsr_info[nr].code = code; |
| 547 | fsr_info[nr].name = name; |
| 548 | } |
| 549 | |
| 550 | /* |
| 551 | * Dispatch a data abort to the relevant handler. |
| 552 | */ |
| 553 | asmlinkage void |
| 554 | do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| 555 | { |
| 556 | const struct fsr_info *inf = fsr_info + fsr_fs(fsr); |
| 557 | struct siginfo info; |
| 558 | |
| 559 | if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) |
| 560 | return; |
| 561 | |
| 562 | pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", |
| 563 | inf->name, fsr, addr); |
| 564 | show_pte(current->mm, addr); |
| 565 | |
| 566 | clear_siginfo(&info); |
| 567 | info.si_signo = inf->sig; |
| 568 | info.si_errno = 0; |
| 569 | info.si_code = inf->code; |
| 570 | info.si_addr = (void __user *)addr; |
| 571 | arm_notify_die("", regs, &info, fsr, 0); |
| 572 | } |
| 573 | |
| 574 | void __init |
| 575 | hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), |
| 576 | int sig, int code, const char *name) |
| 577 | { |
| 578 | if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) |
| 579 | BUG(); |
| 580 | |
| 581 | ifsr_info[nr].fn = fn; |
| 582 | ifsr_info[nr].sig = sig; |
| 583 | ifsr_info[nr].code = code; |
| 584 | ifsr_info[nr].name = name; |
| 585 | } |
| 586 | |
| 587 | asmlinkage void |
| 588 | do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) |
| 589 | { |
| 590 | const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); |
| 591 | struct siginfo info; |
| 592 | |
| 593 | if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) |
| 594 | return; |
| 595 | |
| 596 | pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", |
| 597 | inf->name, ifsr, addr); |
| 598 | |
| 599 | clear_siginfo(&info); |
| 600 | info.si_signo = inf->sig; |
| 601 | info.si_errno = 0; |
| 602 | info.si_code = inf->code; |
| 603 | info.si_addr = (void __user *)addr; |
| 604 | arm_notify_die("", regs, &info, ifsr, 0); |
| 605 | } |
| 606 | |
| 607 | /* |
| 608 | * Abort handler to be used only during first unmasking of asynchronous aborts |
| 609 | * on the boot CPU. This makes sure that the machine will not die if the |
| 610 | * firmware/bootloader left an imprecise abort pending for us to trip over. |
| 611 | */ |
| 612 | static int __init early_abort_handler(unsigned long addr, unsigned int fsr, |
| 613 | struct pt_regs *regs) |
| 614 | { |
| 615 | pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " |
| 616 | "first unmask, this is most likely caused by a " |
| 617 | "firmware/bootloader bug.\n", fsr); |
| 618 | |
| 619 | return 0; |
| 620 | } |
| 621 | |
| 622 | void __init early_abt_enable(void) |
| 623 | { |
| 624 | fsr_info[FSR_FS_AEA].fn = early_abort_handler; |
| 625 | local_abt_enable(); |
| 626 | fsr_info[FSR_FS_AEA].fn = do_bad; |
| 627 | } |
| 628 | |
| 629 | #ifndef CONFIG_ARM_LPAE |
| 630 | static int __init exceptions_init(void) |
| 631 | { |
| 632 | if (cpu_architecture() >= CPU_ARCH_ARMv6) { |
| 633 | hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, |
| 634 | "I-cache maintenance fault"); |
| 635 | } |
| 636 | |
| 637 | if (cpu_architecture() >= CPU_ARCH_ARMv7) { |
| 638 | /* |
| 639 | * TODO: Access flag faults introduced in ARMv6K. |
| 640 | * Runtime check for 'K' extension is needed |
| 641 | */ |
| 642 | hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, |
| 643 | "section access flag fault"); |
| 644 | hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, |
| 645 | "section access flag fault"); |
| 646 | } |
| 647 | |
| 648 | return 0; |
| 649 | } |
| 650 | |
| 651 | arch_initcall(exceptions_init); |
| 652 | #endif |