Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * linux/arch/arm/mm/context.c |
| 3 | * |
| 4 | * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved. |
| 5 | * Copyright (C) 2012 ARM Limited |
| 6 | * |
| 7 | * Author: Will Deacon <will.deacon@arm.com> |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License version 2 as |
| 11 | * published by the Free Software Foundation. |
| 12 | */ |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/sched.h> |
| 15 | #include <linux/mm.h> |
| 16 | #include <linux/smp.h> |
| 17 | #include <linux/percpu.h> |
| 18 | |
| 19 | #include <asm/mmu_context.h> |
| 20 | #include <asm/smp_plat.h> |
| 21 | #include <asm/thread_notify.h> |
| 22 | #include <asm/tlbflush.h> |
| 23 | #include <asm/proc-fns.h> |
| 24 | |
| 25 | /* |
| 26 | * On ARMv6, we have the following structure in the Context ID: |
| 27 | * |
| 28 | * 31 7 0 |
| 29 | * +-------------------------+-----------+ |
| 30 | * | process ID | ASID | |
| 31 | * +-------------------------+-----------+ |
| 32 | * | context ID | |
| 33 | * +-------------------------------------+ |
| 34 | * |
| 35 | * The ASID is used to tag entries in the CPU caches and TLBs. |
| 36 | * The context ID is used by debuggers and trace logic, and |
| 37 | * should be unique within all running processes. |
| 38 | * |
| 39 | * In big endian operation, the two 32 bit words are swapped if accessed |
| 40 | * by non-64-bit operations. |
| 41 | */ |
| 42 | #define ASID_FIRST_VERSION (1ULL << ASID_BITS) |
| 43 | #define NUM_USER_ASIDS ASID_FIRST_VERSION |
| 44 | |
| 45 | static DEFINE_RAW_SPINLOCK(cpu_asid_lock); |
| 46 | static atomic64_t asid_generation = ATOMIC64_INIT(ASID_FIRST_VERSION); |
| 47 | static DECLARE_BITMAP(asid_map, NUM_USER_ASIDS); |
| 48 | |
| 49 | static DEFINE_PER_CPU(atomic64_t, active_asids); |
| 50 | static DEFINE_PER_CPU(u64, reserved_asids); |
| 51 | static cpumask_t tlb_flush_pending; |
| 52 | |
| 53 | #ifdef CONFIG_ARM_ERRATA_798181 |
| 54 | void a15_erratum_get_cpumask(int this_cpu, struct mm_struct *mm, |
| 55 | cpumask_t *mask) |
| 56 | { |
| 57 | int cpu; |
| 58 | unsigned long flags; |
| 59 | u64 context_id, asid; |
| 60 | |
| 61 | raw_spin_lock_irqsave(&cpu_asid_lock, flags); |
| 62 | context_id = mm->context.id.counter; |
| 63 | for_each_online_cpu(cpu) { |
| 64 | if (cpu == this_cpu) |
| 65 | continue; |
| 66 | /* |
| 67 | * We only need to send an IPI if the other CPUs are |
| 68 | * running the same ASID as the one being invalidated. |
| 69 | */ |
| 70 | asid = per_cpu(active_asids, cpu).counter; |
| 71 | if (asid == 0) |
| 72 | asid = per_cpu(reserved_asids, cpu); |
| 73 | if (context_id == asid) |
| 74 | cpumask_set_cpu(cpu, mask); |
| 75 | } |
| 76 | raw_spin_unlock_irqrestore(&cpu_asid_lock, flags); |
| 77 | } |
| 78 | #endif |
| 79 | |
| 80 | #ifdef CONFIG_ARM_LPAE |
| 81 | /* |
| 82 | * With LPAE, the ASID and page tables are updated atomicly, so there is |
| 83 | * no need for a reserved set of tables (the active ASID tracking prevents |
| 84 | * any issues across a rollover). |
| 85 | */ |
| 86 | #define cpu_set_reserved_ttbr0() |
| 87 | #else |
| 88 | static void cpu_set_reserved_ttbr0(void) |
| 89 | { |
| 90 | u32 ttb; |
| 91 | /* |
| 92 | * Copy TTBR1 into TTBR0. |
| 93 | * This points at swapper_pg_dir, which contains only global |
| 94 | * entries so any speculative walks are perfectly safe. |
| 95 | */ |
| 96 | asm volatile( |
| 97 | " mrc p15, 0, %0, c2, c0, 1 @ read TTBR1\n" |
| 98 | " mcr p15, 0, %0, c2, c0, 0 @ set TTBR0\n" |
| 99 | : "=r" (ttb)); |
| 100 | isb(); |
| 101 | } |
| 102 | #endif |
| 103 | |
| 104 | #ifdef CONFIG_PID_IN_CONTEXTIDR |
| 105 | static int contextidr_notifier(struct notifier_block *unused, unsigned long cmd, |
| 106 | void *t) |
| 107 | { |
| 108 | u32 contextidr; |
| 109 | pid_t pid; |
| 110 | struct thread_info *thread = t; |
| 111 | |
| 112 | if (cmd != THREAD_NOTIFY_SWITCH) |
| 113 | return NOTIFY_DONE; |
| 114 | |
| 115 | pid = task_pid_nr(thread->task) << ASID_BITS; |
| 116 | asm volatile( |
| 117 | " mrc p15, 0, %0, c13, c0, 1\n" |
| 118 | " and %0, %0, %2\n" |
| 119 | " orr %0, %0, %1\n" |
| 120 | " mcr p15, 0, %0, c13, c0, 1\n" |
| 121 | : "=r" (contextidr), "+r" (pid) |
| 122 | : "I" (~ASID_MASK)); |
| 123 | isb(); |
| 124 | |
| 125 | return NOTIFY_OK; |
| 126 | } |
| 127 | |
| 128 | static struct notifier_block contextidr_notifier_block = { |
| 129 | .notifier_call = contextidr_notifier, |
| 130 | }; |
| 131 | |
| 132 | static int __init contextidr_notifier_init(void) |
| 133 | { |
| 134 | return thread_register_notifier(&contextidr_notifier_block); |
| 135 | } |
| 136 | arch_initcall(contextidr_notifier_init); |
| 137 | #endif |
| 138 | |
| 139 | static void flush_context(unsigned int cpu) |
| 140 | { |
| 141 | int i; |
| 142 | u64 asid; |
| 143 | |
| 144 | /* Update the list of reserved ASIDs and the ASID bitmap. */ |
| 145 | bitmap_clear(asid_map, 0, NUM_USER_ASIDS); |
| 146 | for_each_possible_cpu(i) { |
| 147 | asid = atomic64_xchg(&per_cpu(active_asids, i), 0); |
| 148 | /* |
| 149 | * If this CPU has already been through a |
| 150 | * rollover, but hasn't run another task in |
| 151 | * the meantime, we must preserve its reserved |
| 152 | * ASID, as this is the only trace we have of |
| 153 | * the process it is still running. |
| 154 | */ |
| 155 | if (asid == 0) |
| 156 | asid = per_cpu(reserved_asids, i); |
| 157 | __set_bit(asid & ~ASID_MASK, asid_map); |
| 158 | per_cpu(reserved_asids, i) = asid; |
| 159 | } |
| 160 | |
| 161 | /* Queue a TLB invalidate and flush the I-cache if necessary. */ |
| 162 | cpumask_setall(&tlb_flush_pending); |
| 163 | |
| 164 | if (icache_is_vivt_asid_tagged()) |
| 165 | __flush_icache_all(); |
| 166 | } |
| 167 | |
| 168 | static bool check_update_reserved_asid(u64 asid, u64 newasid) |
| 169 | { |
| 170 | int cpu; |
| 171 | bool hit = false; |
| 172 | |
| 173 | /* |
| 174 | * Iterate over the set of reserved ASIDs looking for a match. |
| 175 | * If we find one, then we can update our mm to use newasid |
| 176 | * (i.e. the same ASID in the current generation) but we can't |
| 177 | * exit the loop early, since we need to ensure that all copies |
| 178 | * of the old ASID are updated to reflect the mm. Failure to do |
| 179 | * so could result in us missing the reserved ASID in a future |
| 180 | * generation. |
| 181 | */ |
| 182 | for_each_possible_cpu(cpu) { |
| 183 | if (per_cpu(reserved_asids, cpu) == asid) { |
| 184 | hit = true; |
| 185 | per_cpu(reserved_asids, cpu) = newasid; |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | return hit; |
| 190 | } |
| 191 | |
| 192 | static u64 new_context(struct mm_struct *mm, unsigned int cpu) |
| 193 | { |
| 194 | static u32 cur_idx = 1; |
| 195 | u64 asid = atomic64_read(&mm->context.id); |
| 196 | u64 generation = atomic64_read(&asid_generation); |
| 197 | |
| 198 | if (asid != 0) { |
| 199 | u64 newasid = generation | (asid & ~ASID_MASK); |
| 200 | |
| 201 | /* |
| 202 | * If our current ASID was active during a rollover, we |
| 203 | * can continue to use it and this was just a false alarm. |
| 204 | */ |
| 205 | if (check_update_reserved_asid(asid, newasid)) |
| 206 | return newasid; |
| 207 | |
| 208 | /* |
| 209 | * We had a valid ASID in a previous life, so try to re-use |
| 210 | * it if possible., |
| 211 | */ |
| 212 | asid &= ~ASID_MASK; |
| 213 | if (!__test_and_set_bit(asid, asid_map)) |
| 214 | return newasid; |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * Allocate a free ASID. If we can't find one, take a note of the |
| 219 | * currently active ASIDs and mark the TLBs as requiring flushes. |
| 220 | * We always count from ASID #1, as we reserve ASID #0 to switch |
| 221 | * via TTBR0 and to avoid speculative page table walks from hitting |
| 222 | * in any partial walk caches, which could be populated from |
| 223 | * overlapping level-1 descriptors used to map both the module |
| 224 | * area and the userspace stack. |
| 225 | */ |
| 226 | asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx); |
| 227 | if (asid == NUM_USER_ASIDS) { |
| 228 | generation = atomic64_add_return(ASID_FIRST_VERSION, |
| 229 | &asid_generation); |
| 230 | flush_context(cpu); |
| 231 | asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1); |
| 232 | } |
| 233 | |
| 234 | __set_bit(asid, asid_map); |
| 235 | cur_idx = asid; |
| 236 | cpumask_clear(mm_cpumask(mm)); |
| 237 | return asid | generation; |
| 238 | } |
| 239 | |
| 240 | void check_and_switch_context(struct mm_struct *mm, struct task_struct *tsk) |
| 241 | { |
| 242 | unsigned long flags; |
| 243 | unsigned int cpu = smp_processor_id(); |
| 244 | u64 asid; |
| 245 | |
| 246 | if (unlikely(mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)) |
| 247 | __check_vmalloc_seq(mm); |
| 248 | |
| 249 | /* |
| 250 | * We cannot update the pgd and the ASID atomicly with classic |
| 251 | * MMU, so switch exclusively to global mappings to avoid |
| 252 | * speculative page table walking with the wrong TTBR. |
| 253 | */ |
| 254 | cpu_set_reserved_ttbr0(); |
| 255 | |
| 256 | asid = atomic64_read(&mm->context.id); |
| 257 | if (!((asid ^ atomic64_read(&asid_generation)) >> ASID_BITS) |
| 258 | && atomic64_xchg(&per_cpu(active_asids, cpu), asid)) |
| 259 | goto switch_mm_fastpath; |
| 260 | |
| 261 | raw_spin_lock_irqsave(&cpu_asid_lock, flags); |
| 262 | /* Check that our ASID belongs to the current generation. */ |
| 263 | asid = atomic64_read(&mm->context.id); |
| 264 | if ((asid ^ atomic64_read(&asid_generation)) >> ASID_BITS) { |
| 265 | asid = new_context(mm, cpu); |
| 266 | atomic64_set(&mm->context.id, asid); |
| 267 | } |
| 268 | |
| 269 | if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending)) { |
| 270 | local_flush_bp_all(); |
| 271 | local_flush_tlb_all(); |
| 272 | } |
| 273 | |
| 274 | atomic64_set(&per_cpu(active_asids, cpu), asid); |
| 275 | cpumask_set_cpu(cpu, mm_cpumask(mm)); |
| 276 | raw_spin_unlock_irqrestore(&cpu_asid_lock, flags); |
| 277 | |
| 278 | switch_mm_fastpath: |
| 279 | cpu_switch_mm(mm->pgd, mm); |
| 280 | } |