Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * arch/arm/include/asm/io.h |
| 3 | * |
| 4 | * Copyright (C) 1996-2000 Russell King |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License version 2 as |
| 8 | * published by the Free Software Foundation. |
| 9 | * |
| 10 | * Modifications: |
| 11 | * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both |
| 12 | * constant addresses and variable addresses. |
| 13 | * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture |
| 14 | * specific IO header files. |
| 15 | * 27-Mar-1999 PJB Second parameter of memcpy_toio is const.. |
| 16 | * 04-Apr-1999 PJB Added check_signature. |
| 17 | * 12-Dec-1999 RMK More cleanups |
| 18 | * 18-Jun-2000 RMK Removed virt_to_* and friends definitions |
| 19 | * 05-Oct-2004 BJD Moved memory string functions to use void __iomem |
| 20 | */ |
| 21 | #ifndef __ASM_ARM_IO_H |
| 22 | #define __ASM_ARM_IO_H |
| 23 | |
| 24 | #ifdef __KERNEL__ |
| 25 | |
| 26 | #include <linux/string.h> |
| 27 | #include <linux/types.h> |
| 28 | #include <asm/byteorder.h> |
| 29 | #include <asm/memory.h> |
| 30 | #include <asm-generic/pci_iomap.h> |
| 31 | #include <xen/xen.h> |
| 32 | |
| 33 | /* |
| 34 | * ISA I/O bus memory addresses are 1:1 with the physical address. |
| 35 | */ |
| 36 | #define isa_virt_to_bus virt_to_phys |
| 37 | #define isa_page_to_bus page_to_phys |
| 38 | #define isa_bus_to_virt phys_to_virt |
| 39 | |
| 40 | /* |
| 41 | * Atomic MMIO-wide IO modify |
| 42 | */ |
| 43 | extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set); |
| 44 | extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set); |
| 45 | |
| 46 | /* |
| 47 | * Generic IO read/write. These perform native-endian accesses. Note |
| 48 | * that some architectures will want to re-define __raw_{read,write}w. |
| 49 | */ |
| 50 | void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen); |
| 51 | void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen); |
| 52 | void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen); |
| 53 | |
| 54 | void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen); |
| 55 | void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen); |
| 56 | void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen); |
| 57 | |
| 58 | #if __LINUX_ARM_ARCH__ < 6 |
| 59 | /* |
| 60 | * Half-word accesses are problematic with RiscPC due to limitations of |
| 61 | * the bus. Rather than special-case the machine, just let the compiler |
| 62 | * generate the access for CPUs prior to ARMv6. |
| 63 | */ |
| 64 | #define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a)) |
| 65 | #define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v))) |
| 66 | #else |
| 67 | /* |
| 68 | * When running under a hypervisor, we want to avoid I/O accesses with |
| 69 | * writeback addressing modes as these incur a significant performance |
| 70 | * overhead (the address generation must be emulated in software). |
| 71 | */ |
| 72 | #define __raw_writew __raw_writew |
| 73 | static inline void __raw_writew(u16 val, volatile void __iomem *addr) |
| 74 | { |
| 75 | asm volatile("strh %1, %0" |
| 76 | : : "Q" (*(volatile u16 __force *)addr), "r" (val)); |
| 77 | } |
| 78 | |
| 79 | #define __raw_readw __raw_readw |
| 80 | static inline u16 __raw_readw(const volatile void __iomem *addr) |
| 81 | { |
| 82 | u16 val; |
| 83 | asm volatile("ldrh %0, %1" |
| 84 | : "=r" (val) |
| 85 | : "Q" (*(volatile u16 __force *)addr)); |
| 86 | return val; |
| 87 | } |
| 88 | #endif |
| 89 | |
| 90 | #define __raw_writeb __raw_writeb |
| 91 | static inline void __raw_writeb(u8 val, volatile void __iomem *addr) |
| 92 | { |
| 93 | asm volatile("strb %1, %0" |
| 94 | : : "Qo" (*(volatile u8 __force *)addr), "r" (val)); |
| 95 | } |
| 96 | |
| 97 | #define __raw_writel __raw_writel |
| 98 | static inline void __raw_writel(u32 val, volatile void __iomem *addr) |
| 99 | { |
| 100 | asm volatile("str %1, %0" |
| 101 | : : "Qo" (*(volatile u32 __force *)addr), "r" (val)); |
| 102 | } |
| 103 | |
| 104 | #define __raw_readb __raw_readb |
| 105 | static inline u8 __raw_readb(const volatile void __iomem *addr) |
| 106 | { |
| 107 | u8 val; |
| 108 | asm volatile("ldrb %0, %1" |
| 109 | : "=r" (val) |
| 110 | : "Qo" (*(volatile u8 __force *)addr)); |
| 111 | return val; |
| 112 | } |
| 113 | |
| 114 | #define __raw_readl __raw_readl |
| 115 | static inline u32 __raw_readl(const volatile void __iomem *addr) |
| 116 | { |
| 117 | u32 val; |
| 118 | asm volatile("ldr %0, %1" |
| 119 | : "=r" (val) |
| 120 | : "Qo" (*(volatile u32 __force *)addr)); |
| 121 | return val; |
| 122 | } |
| 123 | |
| 124 | /* |
| 125 | * Architecture ioremap implementation. |
| 126 | */ |
| 127 | #define MT_DEVICE 0 |
| 128 | #define MT_DEVICE_NONSHARED 1 |
| 129 | #define MT_DEVICE_CACHED 2 |
| 130 | #define MT_DEVICE_WC 3 |
| 131 | /* |
| 132 | * types 4 onwards can be found in asm/mach/map.h and are undefined |
| 133 | * for ioremap |
| 134 | */ |
| 135 | |
| 136 | /* |
| 137 | * __arm_ioremap takes CPU physical address. |
| 138 | * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page |
| 139 | * The _caller variety takes a __builtin_return_address(0) value for |
| 140 | * /proc/vmalloc to use - and should only be used in non-inline functions. |
| 141 | */ |
| 142 | extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int, |
| 143 | void *); |
| 144 | extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int); |
| 145 | extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached); |
| 146 | extern void __iounmap(volatile void __iomem *addr); |
| 147 | |
| 148 | extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, |
| 149 | unsigned int, void *); |
| 150 | extern void (*arch_iounmap)(volatile void __iomem *); |
| 151 | |
| 152 | /* |
| 153 | * Bad read/write accesses... |
| 154 | */ |
| 155 | extern void __readwrite_bug(const char *fn); |
| 156 | |
| 157 | /* |
| 158 | * A typesafe __io() helper |
| 159 | */ |
| 160 | static inline void __iomem *__typesafe_io(unsigned long addr) |
| 161 | { |
| 162 | return (void __iomem *)addr; |
| 163 | } |
| 164 | |
| 165 | #define IOMEM(x) ((void __force __iomem *)(x)) |
| 166 | |
| 167 | /* IO barriers */ |
| 168 | #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE |
| 169 | #include <asm/barrier.h> |
| 170 | #define __iormb() rmb() |
| 171 | #define __iowmb() wmb() |
| 172 | #else |
| 173 | #define __iormb() do { } while (0) |
| 174 | #define __iowmb() do { } while (0) |
| 175 | #endif |
| 176 | |
| 177 | /* PCI fixed i/o mapping */ |
| 178 | #define PCI_IO_VIRT_BASE 0xfee00000 |
| 179 | #define PCI_IOBASE ((void __iomem *)PCI_IO_VIRT_BASE) |
| 180 | |
| 181 | #if defined(CONFIG_PCI) |
| 182 | void pci_ioremap_set_mem_type(int mem_type); |
| 183 | #else |
| 184 | static inline void pci_ioremap_set_mem_type(int mem_type) {} |
| 185 | #endif |
| 186 | |
| 187 | extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr); |
| 188 | |
| 189 | /* |
| 190 | * PCI configuration space mapping function. |
| 191 | * |
| 192 | * The PCI specification does not allow configuration write |
| 193 | * transactions to be posted. Add an arch specific |
| 194 | * pci_remap_cfgspace() definition that is implemented |
| 195 | * through strongly ordered memory mappings. |
| 196 | */ |
| 197 | #define pci_remap_cfgspace pci_remap_cfgspace |
| 198 | void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size); |
| 199 | /* |
| 200 | * Now, pick up the machine-defined IO definitions |
| 201 | */ |
| 202 | #ifdef CONFIG_NEED_MACH_IO_H |
| 203 | #include <mach/io.h> |
| 204 | #elif defined(CONFIG_PCI) |
| 205 | #define IO_SPACE_LIMIT ((resource_size_t)0xfffff) |
| 206 | #define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT)) |
| 207 | #else |
| 208 | #define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT) |
| 209 | #endif |
| 210 | |
| 211 | /* |
| 212 | * This is the limit of PC card/PCI/ISA IO space, which is by default |
| 213 | * 64K if we have PC card, PCI or ISA support. Otherwise, default to |
| 214 | * zero to prevent ISA/PCI drivers claiming IO space (and potentially |
| 215 | * oopsing.) |
| 216 | * |
| 217 | * Only set this larger if you really need inb() et.al. to operate over |
| 218 | * a larger address space. Note that SOC_COMMON ioremaps each sockets |
| 219 | * IO space area, and so inb() et.al. must be defined to operate as per |
| 220 | * readb() et.al. on such platforms. |
| 221 | */ |
| 222 | #ifndef IO_SPACE_LIMIT |
| 223 | #if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE) |
| 224 | #define IO_SPACE_LIMIT ((resource_size_t)0xffffffff) |
| 225 | #elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD) |
| 226 | #define IO_SPACE_LIMIT ((resource_size_t)0xffff) |
| 227 | #else |
| 228 | #define IO_SPACE_LIMIT ((resource_size_t)0) |
| 229 | #endif |
| 230 | #endif |
| 231 | |
| 232 | /* |
| 233 | * IO port access primitives |
| 234 | * ------------------------- |
| 235 | * |
| 236 | * The ARM doesn't have special IO access instructions; all IO is memory |
| 237 | * mapped. Note that these are defined to perform little endian accesses |
| 238 | * only. Their primary purpose is to access PCI and ISA peripherals. |
| 239 | * |
| 240 | * Note that for a big endian machine, this implies that the following |
| 241 | * big endian mode connectivity is in place, as described by numerous |
| 242 | * ARM documents: |
| 243 | * |
| 244 | * PCI: D0-D7 D8-D15 D16-D23 D24-D31 |
| 245 | * ARM: D24-D31 D16-D23 D8-D15 D0-D7 |
| 246 | * |
| 247 | * The machine specific io.h include defines __io to translate an "IO" |
| 248 | * address to a memory address. |
| 249 | * |
| 250 | * Note that we prevent GCC re-ordering or caching values in expressions |
| 251 | * by introducing sequence points into the in*() definitions. Note that |
| 252 | * __raw_* do not guarantee this behaviour. |
| 253 | * |
| 254 | * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space. |
| 255 | */ |
| 256 | #ifdef __io |
| 257 | #define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); }) |
| 258 | #define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \ |
| 259 | cpu_to_le16(v),__io(p)); }) |
| 260 | #define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \ |
| 261 | cpu_to_le32(v),__io(p)); }) |
| 262 | |
| 263 | #define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; }) |
| 264 | #define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \ |
| 265 | __raw_readw(__io(p))); __iormb(); __v; }) |
| 266 | #define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \ |
| 267 | __raw_readl(__io(p))); __iormb(); __v; }) |
| 268 | |
| 269 | #define outsb(p,d,l) __raw_writesb(__io(p),d,l) |
| 270 | #define outsw(p,d,l) __raw_writesw(__io(p),d,l) |
| 271 | #define outsl(p,d,l) __raw_writesl(__io(p),d,l) |
| 272 | |
| 273 | #define insb(p,d,l) __raw_readsb(__io(p),d,l) |
| 274 | #define insw(p,d,l) __raw_readsw(__io(p),d,l) |
| 275 | #define insl(p,d,l) __raw_readsl(__io(p),d,l) |
| 276 | #endif |
| 277 | |
| 278 | /* |
| 279 | * String version of IO memory access ops: |
| 280 | */ |
| 281 | extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t); |
| 282 | extern void _memcpy_toio(volatile void __iomem *, const void *, size_t); |
| 283 | extern void _memset_io(volatile void __iomem *, int, size_t); |
| 284 | |
| 285 | #define mmiowb() |
| 286 | |
| 287 | /* |
| 288 | * Memory access primitives |
| 289 | * ------------------------ |
| 290 | * |
| 291 | * These perform PCI memory accesses via an ioremap region. They don't |
| 292 | * take an address as such, but a cookie. |
| 293 | * |
| 294 | * Again, these are defined to perform little endian accesses. See the |
| 295 | * IO port primitives for more information. |
| 296 | */ |
| 297 | #ifndef readl |
| 298 | #define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; }) |
| 299 | #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \ |
| 300 | __raw_readw(c)); __r; }) |
| 301 | #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \ |
| 302 | __raw_readl(c)); __r; }) |
| 303 | |
| 304 | #define writeb_relaxed(v,c) __raw_writeb(v,c) |
| 305 | #define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c) |
| 306 | #define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c) |
| 307 | |
| 308 | #define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; }) |
| 309 | #define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; }) |
| 310 | #define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; }) |
| 311 | |
| 312 | #define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); }) |
| 313 | #define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); }) |
| 314 | #define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); }) |
| 315 | |
| 316 | #define readsb(p,d,l) __raw_readsb(p,d,l) |
| 317 | #define readsw(p,d,l) __raw_readsw(p,d,l) |
| 318 | #define readsl(p,d,l) __raw_readsl(p,d,l) |
| 319 | |
| 320 | #define writesb(p,d,l) __raw_writesb(p,d,l) |
| 321 | #define writesw(p,d,l) __raw_writesw(p,d,l) |
| 322 | #define writesl(p,d,l) __raw_writesl(p,d,l) |
| 323 | |
| 324 | #ifndef __ARMBE__ |
| 325 | static inline void memset_io(volatile void __iomem *dst, unsigned c, |
| 326 | size_t count) |
| 327 | { |
| 328 | extern void mmioset(void *, unsigned int, size_t); |
| 329 | mmioset((void __force *)dst, c, count); |
| 330 | } |
| 331 | #define memset_io(dst,c,count) memset_io(dst,c,count) |
| 332 | |
| 333 | static inline void memcpy_fromio(void *to, const volatile void __iomem *from, |
| 334 | size_t count) |
| 335 | { |
| 336 | extern void mmiocpy(void *, const void *, size_t); |
| 337 | mmiocpy(to, (const void __force *)from, count); |
| 338 | } |
| 339 | #define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count) |
| 340 | |
| 341 | static inline void memcpy_toio(volatile void __iomem *to, const void *from, |
| 342 | size_t count) |
| 343 | { |
| 344 | extern void mmiocpy(void *, const void *, size_t); |
| 345 | mmiocpy((void __force *)to, from, count); |
| 346 | } |
| 347 | #define memcpy_toio(to,from,count) memcpy_toio(to,from,count) |
| 348 | |
| 349 | #else |
| 350 | #define memset_io(c,v,l) _memset_io(c,(v),(l)) |
| 351 | #define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l)) |
| 352 | #define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l)) |
| 353 | #endif |
| 354 | |
| 355 | #endif /* readl */ |
| 356 | |
| 357 | /* |
| 358 | * ioremap() and friends. |
| 359 | * |
| 360 | * ioremap() takes a resource address, and size. Due to the ARM memory |
| 361 | * types, it is important to use the correct ioremap() function as each |
| 362 | * mapping has specific properties. |
| 363 | * |
| 364 | * Function Memory type Cacheability Cache hint |
| 365 | * ioremap() Device n/a n/a |
| 366 | * ioremap_nocache() Device n/a n/a |
| 367 | * ioremap_cache() Normal Writeback Read allocate |
| 368 | * ioremap_wc() Normal Non-cacheable n/a |
| 369 | * ioremap_wt() Normal Non-cacheable n/a |
| 370 | * |
| 371 | * All device mappings have the following properties: |
| 372 | * - no access speculation |
| 373 | * - no repetition (eg, on return from an exception) |
| 374 | * - number, order and size of accesses are maintained |
| 375 | * - unaligned accesses are "unpredictable" |
| 376 | * - writes may be delayed before they hit the endpoint device |
| 377 | * |
| 378 | * ioremap_nocache() is the same as ioremap() as there are too many device |
| 379 | * drivers using this for device registers, and documentation which tells |
| 380 | * people to use it for such for this to be any different. This is not a |
| 381 | * safe fallback for memory-like mappings, or memory regions where the |
| 382 | * compiler may generate unaligned accesses - eg, via inlining its own |
| 383 | * memcpy. |
| 384 | * |
| 385 | * All normal memory mappings have the following properties: |
| 386 | * - reads can be repeated with no side effects |
| 387 | * - repeated reads return the last value written |
| 388 | * - reads can fetch additional locations without side effects |
| 389 | * - writes can be repeated (in certain cases) with no side effects |
| 390 | * - writes can be merged before accessing the target |
| 391 | * - unaligned accesses can be supported |
| 392 | * - ordering is not guaranteed without explicit dependencies or barrier |
| 393 | * instructions |
| 394 | * - writes may be delayed before they hit the endpoint memory |
| 395 | * |
| 396 | * The cache hint is only a performance hint: CPUs may alias these hints. |
| 397 | * Eg, a CPU not implementing read allocate but implementing write allocate |
| 398 | * will provide a write allocate mapping instead. |
| 399 | */ |
| 400 | void __iomem *ioremap(resource_size_t res_cookie, size_t size); |
| 401 | #define ioremap ioremap |
| 402 | #define ioremap_nocache ioremap |
| 403 | |
| 404 | /* |
| 405 | * Do not use ioremap_cache for mapping memory. Use memremap instead. |
| 406 | */ |
| 407 | void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size); |
| 408 | #define ioremap_cache ioremap_cache |
| 409 | |
| 410 | /* |
| 411 | * Do not use ioremap_cached in new code. Provided for the benefit of |
| 412 | * the pxa2xx-flash MTD driver only. |
| 413 | */ |
| 414 | void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size); |
| 415 | |
| 416 | void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size); |
| 417 | #define ioremap_wc ioremap_wc |
| 418 | #define ioremap_wt ioremap_wc |
| 419 | |
| 420 | void iounmap(volatile void __iomem *iomem_cookie); |
| 421 | #define iounmap iounmap |
| 422 | |
| 423 | void *arch_memremap_wb(phys_addr_t phys_addr, size_t size); |
| 424 | #define arch_memremap_wb arch_memremap_wb |
| 425 | |
| 426 | /* |
| 427 | * io{read,write}{16,32}be() macros |
| 428 | */ |
| 429 | #define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; }) |
| 430 | #define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; }) |
| 431 | |
| 432 | #define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); }) |
| 433 | #define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); }) |
| 434 | |
| 435 | #ifndef ioport_map |
| 436 | #define ioport_map ioport_map |
| 437 | extern void __iomem *ioport_map(unsigned long port, unsigned int nr); |
| 438 | #endif |
| 439 | #ifndef ioport_unmap |
| 440 | #define ioport_unmap ioport_unmap |
| 441 | extern void ioport_unmap(void __iomem *addr); |
| 442 | #endif |
| 443 | |
| 444 | struct pci_dev; |
| 445 | |
| 446 | #define pci_iounmap pci_iounmap |
| 447 | extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr); |
| 448 | |
| 449 | /* |
| 450 | * Convert a physical pointer to a virtual kernel pointer for /dev/mem |
| 451 | * access |
| 452 | */ |
| 453 | #define xlate_dev_mem_ptr(p) __va(p) |
| 454 | |
| 455 | /* |
| 456 | * Convert a virtual cached pointer to an uncached pointer |
| 457 | */ |
| 458 | #define xlate_dev_kmem_ptr(p) p |
| 459 | |
| 460 | #include <asm-generic/io.h> |
| 461 | |
| 462 | /* |
| 463 | * can the hardware map this into one segment or not, given no other |
| 464 | * constraints. |
| 465 | */ |
| 466 | #define BIOVEC_MERGEABLE(vec1, vec2) \ |
| 467 | ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2))) |
| 468 | |
| 469 | struct bio_vec; |
| 470 | extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1, |
| 471 | const struct bio_vec *vec2); |
| 472 | #define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \ |
| 473 | (__BIOVEC_PHYS_MERGEABLE(vec1, vec2) && \ |
| 474 | (!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2))) |
| 475 | |
| 476 | #ifdef CONFIG_MMU |
| 477 | #define ARCH_HAS_VALID_PHYS_ADDR_RANGE |
| 478 | extern int valid_phys_addr_range(phys_addr_t addr, size_t size); |
| 479 | extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); |
| 480 | extern int devmem_is_allowed(unsigned long pfn); |
| 481 | #endif |
| 482 | |
| 483 | /* |
| 484 | * Register ISA memory and port locations for glibc iopl/inb/outb |
| 485 | * emulation. |
| 486 | */ |
| 487 | extern void register_isa_ports(unsigned int mmio, unsigned int io, |
| 488 | unsigned int io_shift); |
| 489 | |
| 490 | #endif /* __KERNEL__ */ |
| 491 | #endif /* __ASM_ARM_IO_H */ |