Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _LINUX_PGTABLE_H |
| 3 | #define _LINUX_PGTABLE_H |
| 4 | |
| 5 | #include <linux/pfn.h> |
| 6 | #include <asm/pgtable.h> |
| 7 | |
| 8 | #ifndef __ASSEMBLY__ |
| 9 | #ifdef CONFIG_MMU |
| 10 | |
| 11 | #include <linux/mm_types.h> |
| 12 | #include <linux/bug.h> |
| 13 | #include <linux/errno.h> |
| 14 | #include <asm-generic/pgtable_uffd.h> |
| 15 | |
| 16 | #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ |
| 17 | defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS |
| 18 | #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED |
| 19 | #endif |
| 20 | |
| 21 | /* |
| 22 | * On almost all architectures and configurations, 0 can be used as the |
| 23 | * upper ceiling to free_pgtables(): on many architectures it has the same |
| 24 | * effect as using TASK_SIZE. However, there is one configuration which |
| 25 | * must impose a more careful limit, to avoid freeing kernel pgtables. |
| 26 | */ |
| 27 | #ifndef USER_PGTABLES_CEILING |
| 28 | #define USER_PGTABLES_CEILING 0UL |
| 29 | #endif |
| 30 | |
| 31 | /* |
| 32 | * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] |
| 33 | * |
| 34 | * The pXx_index() functions return the index of the entry in the page |
| 35 | * table page which would control the given virtual address |
| 36 | * |
| 37 | * As these functions may be used by the same code for different levels of |
| 38 | * the page table folding, they are always available, regardless of |
| 39 | * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 |
| 40 | * because in such cases PTRS_PER_PxD equals 1. |
| 41 | */ |
| 42 | |
| 43 | static inline unsigned long pte_index(unsigned long address) |
| 44 | { |
| 45 | return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); |
| 46 | } |
| 47 | #define pte_index pte_index |
| 48 | |
| 49 | #ifndef pmd_index |
| 50 | static inline unsigned long pmd_index(unsigned long address) |
| 51 | { |
| 52 | return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); |
| 53 | } |
| 54 | #define pmd_index pmd_index |
| 55 | #endif |
| 56 | |
| 57 | #ifndef pud_index |
| 58 | static inline unsigned long pud_index(unsigned long address) |
| 59 | { |
| 60 | return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); |
| 61 | } |
| 62 | #define pud_index pud_index |
| 63 | #endif |
| 64 | |
| 65 | #ifndef pgd_index |
| 66 | /* Must be a compile-time constant, so implement it as a macro */ |
| 67 | #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) |
| 68 | #endif |
| 69 | |
| 70 | #ifndef pte_offset_kernel |
| 71 | static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) |
| 72 | { |
| 73 | return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); |
| 74 | } |
| 75 | #define pte_offset_kernel pte_offset_kernel |
| 76 | #endif |
| 77 | |
| 78 | #if defined(CONFIG_HIGHPTE) |
| 79 | #define pte_offset_map(dir, address) \ |
| 80 | ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ |
| 81 | pte_index((address))) |
| 82 | #define pte_unmap(pte) kunmap_atomic((pte)) |
| 83 | #else |
| 84 | #define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) |
| 85 | #define pte_unmap(pte) ((void)(pte)) /* NOP */ |
| 86 | #endif |
| 87 | |
| 88 | /* Find an entry in the second-level page table.. */ |
| 89 | #ifndef pmd_offset |
| 90 | static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) |
| 91 | { |
| 92 | return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); |
| 93 | } |
| 94 | #define pmd_offset pmd_offset |
| 95 | #endif |
| 96 | |
| 97 | #ifndef pud_offset |
| 98 | static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) |
| 99 | { |
| 100 | return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); |
| 101 | } |
| 102 | #define pud_offset pud_offset |
| 103 | #endif |
| 104 | |
| 105 | static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) |
| 106 | { |
| 107 | return (pgd + pgd_index(address)); |
| 108 | }; |
| 109 | |
| 110 | /* |
| 111 | * a shortcut to get a pgd_t in a given mm |
| 112 | */ |
| 113 | #ifndef pgd_offset |
| 114 | #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) |
| 115 | #endif |
| 116 | |
| 117 | /* |
| 118 | * a shortcut which implies the use of the kernel's pgd, instead |
| 119 | * of a process's |
| 120 | */ |
| 121 | #ifndef pgd_offset_k |
| 122 | #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) |
| 123 | #endif |
| 124 | |
| 125 | /* |
| 126 | * In many cases it is known that a virtual address is mapped at PMD or PTE |
| 127 | * level, so instead of traversing all the page table levels, we can get a |
| 128 | * pointer to the PMD entry in user or kernel page table or translate a virtual |
| 129 | * address to the pointer in the PTE in the kernel page tables with simple |
| 130 | * helpers. |
| 131 | */ |
| 132 | static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) |
| 133 | { |
| 134 | return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); |
| 135 | } |
| 136 | |
| 137 | static inline pmd_t *pmd_off_k(unsigned long va) |
| 138 | { |
| 139 | return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); |
| 140 | } |
| 141 | |
| 142 | static inline pte_t *virt_to_kpte(unsigned long vaddr) |
| 143 | { |
| 144 | pmd_t *pmd = pmd_off_k(vaddr); |
| 145 | |
| 146 | return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); |
| 147 | } |
| 148 | |
| 149 | #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| 150 | extern int ptep_set_access_flags(struct vm_area_struct *vma, |
| 151 | unsigned long address, pte_t *ptep, |
| 152 | pte_t entry, int dirty); |
| 153 | #endif |
| 154 | |
| 155 | #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS |
| 156 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 157 | extern int pmdp_set_access_flags(struct vm_area_struct *vma, |
| 158 | unsigned long address, pmd_t *pmdp, |
| 159 | pmd_t entry, int dirty); |
| 160 | extern int pudp_set_access_flags(struct vm_area_struct *vma, |
| 161 | unsigned long address, pud_t *pudp, |
| 162 | pud_t entry, int dirty); |
| 163 | #else |
| 164 | static inline int pmdp_set_access_flags(struct vm_area_struct *vma, |
| 165 | unsigned long address, pmd_t *pmdp, |
| 166 | pmd_t entry, int dirty) |
| 167 | { |
| 168 | BUILD_BUG(); |
| 169 | return 0; |
| 170 | } |
| 171 | static inline int pudp_set_access_flags(struct vm_area_struct *vma, |
| 172 | unsigned long address, pud_t *pudp, |
| 173 | pud_t entry, int dirty) |
| 174 | { |
| 175 | BUILD_BUG(); |
| 176 | return 0; |
| 177 | } |
| 178 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 179 | #endif |
| 180 | |
| 181 | #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| 182 | static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, |
| 183 | unsigned long address, |
| 184 | pte_t *ptep) |
| 185 | { |
| 186 | pte_t pte = *ptep; |
| 187 | int r = 1; |
| 188 | if (!pte_young(pte)) |
| 189 | r = 0; |
| 190 | else |
| 191 | set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); |
| 192 | return r; |
| 193 | } |
| 194 | #endif |
| 195 | |
| 196 | #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG |
| 197 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 198 | static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
| 199 | unsigned long address, |
| 200 | pmd_t *pmdp) |
| 201 | { |
| 202 | pmd_t pmd = *pmdp; |
| 203 | int r = 1; |
| 204 | if (!pmd_young(pmd)) |
| 205 | r = 0; |
| 206 | else |
| 207 | set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); |
| 208 | return r; |
| 209 | } |
| 210 | #else |
| 211 | static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
| 212 | unsigned long address, |
| 213 | pmd_t *pmdp) |
| 214 | { |
| 215 | BUILD_BUG(); |
| 216 | return 0; |
| 217 | } |
| 218 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 219 | #endif |
| 220 | |
| 221 | #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| 222 | int ptep_clear_flush_young(struct vm_area_struct *vma, |
| 223 | unsigned long address, pte_t *ptep); |
| 224 | #endif |
| 225 | |
| 226 | #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH |
| 227 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 228 | extern int pmdp_clear_flush_young(struct vm_area_struct *vma, |
| 229 | unsigned long address, pmd_t *pmdp); |
| 230 | #else |
| 231 | /* |
| 232 | * Despite relevant to THP only, this API is called from generic rmap code |
| 233 | * under PageTransHuge(), hence needs a dummy implementation for !THP |
| 234 | */ |
| 235 | static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, |
| 236 | unsigned long address, pmd_t *pmdp) |
| 237 | { |
| 238 | BUILD_BUG(); |
| 239 | return 0; |
| 240 | } |
| 241 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 242 | #endif |
| 243 | |
| 244 | #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| 245 | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, |
| 246 | unsigned long address, |
| 247 | pte_t *ptep) |
| 248 | { |
| 249 | pte_t pte = *ptep; |
| 250 | pte_clear(mm, address, ptep); |
| 251 | return pte; |
| 252 | } |
| 253 | #endif |
| 254 | |
| 255 | #ifndef __HAVE_ARCH_PTEP_GET |
| 256 | static inline pte_t ptep_get(pte_t *ptep) |
| 257 | { |
| 258 | return READ_ONCE(*ptep); |
| 259 | } |
| 260 | #endif |
| 261 | |
| 262 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 263 | #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR |
| 264 | static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, |
| 265 | unsigned long address, |
| 266 | pmd_t *pmdp) |
| 267 | { |
| 268 | pmd_t pmd = *pmdp; |
| 269 | pmd_clear(pmdp); |
| 270 | return pmd; |
| 271 | } |
| 272 | #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ |
| 273 | #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR |
| 274 | static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, |
| 275 | unsigned long address, |
| 276 | pud_t *pudp) |
| 277 | { |
| 278 | pud_t pud = *pudp; |
| 279 | |
| 280 | pud_clear(pudp); |
| 281 | return pud; |
| 282 | } |
| 283 | #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ |
| 284 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 285 | |
| 286 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 287 | #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL |
| 288 | static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, |
| 289 | unsigned long address, pmd_t *pmdp, |
| 290 | int full) |
| 291 | { |
| 292 | return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); |
| 293 | } |
| 294 | #endif |
| 295 | |
| 296 | #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL |
| 297 | static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, |
| 298 | unsigned long address, pud_t *pudp, |
| 299 | int full) |
| 300 | { |
| 301 | return pudp_huge_get_and_clear(mm, address, pudp); |
| 302 | } |
| 303 | #endif |
| 304 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 305 | |
| 306 | #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL |
| 307 | static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, |
| 308 | unsigned long address, pte_t *ptep, |
| 309 | int full) |
| 310 | { |
| 311 | pte_t pte; |
| 312 | pte = ptep_get_and_clear(mm, address, ptep); |
| 313 | return pte; |
| 314 | } |
| 315 | #endif |
| 316 | |
| 317 | |
| 318 | /* |
| 319 | * If two threads concurrently fault at the same page, the thread that |
| 320 | * won the race updates the PTE and its local TLB/Cache. The other thread |
| 321 | * gives up, simply does nothing, and continues; on architectures where |
| 322 | * software can update TLB, local TLB can be updated here to avoid next page |
| 323 | * fault. This function updates TLB only, do nothing with cache or others. |
| 324 | * It is the difference with function update_mmu_cache. |
| 325 | */ |
| 326 | #ifndef __HAVE_ARCH_UPDATE_MMU_TLB |
| 327 | static inline void update_mmu_tlb(struct vm_area_struct *vma, |
| 328 | unsigned long address, pte_t *ptep) |
| 329 | { |
| 330 | } |
| 331 | #define __HAVE_ARCH_UPDATE_MMU_TLB |
| 332 | #endif |
| 333 | |
| 334 | /* |
| 335 | * Some architectures may be able to avoid expensive synchronization |
| 336 | * primitives when modifications are made to PTE's which are already |
| 337 | * not present, or in the process of an address space destruction. |
| 338 | */ |
| 339 | #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL |
| 340 | static inline void pte_clear_not_present_full(struct mm_struct *mm, |
| 341 | unsigned long address, |
| 342 | pte_t *ptep, |
| 343 | int full) |
| 344 | { |
| 345 | pte_clear(mm, address, ptep); |
| 346 | } |
| 347 | #endif |
| 348 | |
| 349 | #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH |
| 350 | extern pte_t ptep_clear_flush(struct vm_area_struct *vma, |
| 351 | unsigned long address, |
| 352 | pte_t *ptep); |
| 353 | #endif |
| 354 | |
| 355 | #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH |
| 356 | extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, |
| 357 | unsigned long address, |
| 358 | pmd_t *pmdp); |
| 359 | extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, |
| 360 | unsigned long address, |
| 361 | pud_t *pudp); |
| 362 | #endif |
| 363 | |
| 364 | #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT |
| 365 | struct mm_struct; |
| 366 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) |
| 367 | { |
| 368 | pte_t old_pte = *ptep; |
| 369 | set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); |
| 370 | } |
| 371 | #endif |
| 372 | |
| 373 | /* |
| 374 | * On some architectures hardware does not set page access bit when accessing |
| 375 | * memory page, it is responsibilty of software setting this bit. It brings |
| 376 | * out extra page fault penalty to track page access bit. For optimization page |
| 377 | * access bit can be set during all page fault flow on these arches. |
| 378 | * To be differentiate with macro pte_mkyoung, this macro is used on platforms |
| 379 | * where software maintains page access bit. |
| 380 | */ |
| 381 | #ifndef pte_sw_mkyoung |
| 382 | static inline pte_t pte_sw_mkyoung(pte_t pte) |
| 383 | { |
| 384 | return pte; |
| 385 | } |
| 386 | #define pte_sw_mkyoung pte_sw_mkyoung |
| 387 | #endif |
| 388 | |
| 389 | #ifndef pte_savedwrite |
| 390 | #define pte_savedwrite pte_write |
| 391 | #endif |
| 392 | |
| 393 | #ifndef pte_mk_savedwrite |
| 394 | #define pte_mk_savedwrite pte_mkwrite |
| 395 | #endif |
| 396 | |
| 397 | #ifndef pte_clear_savedwrite |
| 398 | #define pte_clear_savedwrite pte_wrprotect |
| 399 | #endif |
| 400 | |
| 401 | #ifndef pmd_savedwrite |
| 402 | #define pmd_savedwrite pmd_write |
| 403 | #endif |
| 404 | |
| 405 | #ifndef pmd_mk_savedwrite |
| 406 | #define pmd_mk_savedwrite pmd_mkwrite |
| 407 | #endif |
| 408 | |
| 409 | #ifndef pmd_clear_savedwrite |
| 410 | #define pmd_clear_savedwrite pmd_wrprotect |
| 411 | #endif |
| 412 | |
| 413 | #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT |
| 414 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 415 | static inline void pmdp_set_wrprotect(struct mm_struct *mm, |
| 416 | unsigned long address, pmd_t *pmdp) |
| 417 | { |
| 418 | pmd_t old_pmd = *pmdp; |
| 419 | set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); |
| 420 | } |
| 421 | #else |
| 422 | static inline void pmdp_set_wrprotect(struct mm_struct *mm, |
| 423 | unsigned long address, pmd_t *pmdp) |
| 424 | { |
| 425 | BUILD_BUG(); |
| 426 | } |
| 427 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 428 | #endif |
| 429 | #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT |
| 430 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD |
| 431 | static inline void pudp_set_wrprotect(struct mm_struct *mm, |
| 432 | unsigned long address, pud_t *pudp) |
| 433 | { |
| 434 | pud_t old_pud = *pudp; |
| 435 | |
| 436 | set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); |
| 437 | } |
| 438 | #else |
| 439 | static inline void pudp_set_wrprotect(struct mm_struct *mm, |
| 440 | unsigned long address, pud_t *pudp) |
| 441 | { |
| 442 | BUILD_BUG(); |
| 443 | } |
| 444 | #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ |
| 445 | #endif |
| 446 | |
| 447 | #ifndef pmdp_collapse_flush |
| 448 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 449 | extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, |
| 450 | unsigned long address, pmd_t *pmdp); |
| 451 | #else |
| 452 | static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, |
| 453 | unsigned long address, |
| 454 | pmd_t *pmdp) |
| 455 | { |
| 456 | BUILD_BUG(); |
| 457 | return *pmdp; |
| 458 | } |
| 459 | #define pmdp_collapse_flush pmdp_collapse_flush |
| 460 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 461 | #endif |
| 462 | |
| 463 | #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT |
| 464 | extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, |
| 465 | pgtable_t pgtable); |
| 466 | #endif |
| 467 | |
| 468 | #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW |
| 469 | extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); |
| 470 | #endif |
| 471 | |
| 472 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 473 | /* |
| 474 | * This is an implementation of pmdp_establish() that is only suitable for an |
| 475 | * architecture that doesn't have hardware dirty/accessed bits. In this case we |
| 476 | * can't race with CPU which sets these bits and non-atomic aproach is fine. |
| 477 | */ |
| 478 | static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, |
| 479 | unsigned long address, pmd_t *pmdp, pmd_t pmd) |
| 480 | { |
| 481 | pmd_t old_pmd = *pmdp; |
| 482 | set_pmd_at(vma->vm_mm, address, pmdp, pmd); |
| 483 | return old_pmd; |
| 484 | } |
| 485 | #endif |
| 486 | |
| 487 | #ifndef __HAVE_ARCH_PMDP_INVALIDATE |
| 488 | extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, |
| 489 | pmd_t *pmdp); |
| 490 | #endif |
| 491 | |
| 492 | #ifndef __HAVE_ARCH_PTE_SAME |
| 493 | static inline int pte_same(pte_t pte_a, pte_t pte_b) |
| 494 | { |
| 495 | return pte_val(pte_a) == pte_val(pte_b); |
| 496 | } |
| 497 | #endif |
| 498 | |
| 499 | #ifndef __HAVE_ARCH_PTE_UNUSED |
| 500 | /* |
| 501 | * Some architectures provide facilities to virtualization guests |
| 502 | * so that they can flag allocated pages as unused. This allows the |
| 503 | * host to transparently reclaim unused pages. This function returns |
| 504 | * whether the pte's page is unused. |
| 505 | */ |
| 506 | static inline int pte_unused(pte_t pte) |
| 507 | { |
| 508 | return 0; |
| 509 | } |
| 510 | #endif |
| 511 | |
| 512 | #ifndef pte_access_permitted |
| 513 | #define pte_access_permitted(pte, write) \ |
| 514 | (pte_present(pte) && (!(write) || pte_write(pte))) |
| 515 | #endif |
| 516 | |
| 517 | #ifndef pmd_access_permitted |
| 518 | #define pmd_access_permitted(pmd, write) \ |
| 519 | (pmd_present(pmd) && (!(write) || pmd_write(pmd))) |
| 520 | #endif |
| 521 | |
| 522 | #ifndef pud_access_permitted |
| 523 | #define pud_access_permitted(pud, write) \ |
| 524 | (pud_present(pud) && (!(write) || pud_write(pud))) |
| 525 | #endif |
| 526 | |
| 527 | #ifndef p4d_access_permitted |
| 528 | #define p4d_access_permitted(p4d, write) \ |
| 529 | (p4d_present(p4d) && (!(write) || p4d_write(p4d))) |
| 530 | #endif |
| 531 | |
| 532 | #ifndef pgd_access_permitted |
| 533 | #define pgd_access_permitted(pgd, write) \ |
| 534 | (pgd_present(pgd) && (!(write) || pgd_write(pgd))) |
| 535 | #endif |
| 536 | |
| 537 | #ifndef __HAVE_ARCH_PMD_SAME |
| 538 | static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) |
| 539 | { |
| 540 | return pmd_val(pmd_a) == pmd_val(pmd_b); |
| 541 | } |
| 542 | |
| 543 | static inline int pud_same(pud_t pud_a, pud_t pud_b) |
| 544 | { |
| 545 | return pud_val(pud_a) == pud_val(pud_b); |
| 546 | } |
| 547 | #endif |
| 548 | |
| 549 | #ifndef __HAVE_ARCH_P4D_SAME |
| 550 | static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) |
| 551 | { |
| 552 | return p4d_val(p4d_a) == p4d_val(p4d_b); |
| 553 | } |
| 554 | #endif |
| 555 | |
| 556 | #ifndef __HAVE_ARCH_PGD_SAME |
| 557 | static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) |
| 558 | { |
| 559 | return pgd_val(pgd_a) == pgd_val(pgd_b); |
| 560 | } |
| 561 | #endif |
| 562 | |
| 563 | /* |
| 564 | * Use set_p*_safe(), and elide TLB flushing, when confident that *no* |
| 565 | * TLB flush will be required as a result of the "set". For example, use |
| 566 | * in scenarios where it is known ahead of time that the routine is |
| 567 | * setting non-present entries, or re-setting an existing entry to the |
| 568 | * same value. Otherwise, use the typical "set" helpers and flush the |
| 569 | * TLB. |
| 570 | */ |
| 571 | #define set_pte_safe(ptep, pte) \ |
| 572 | ({ \ |
| 573 | WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ |
| 574 | set_pte(ptep, pte); \ |
| 575 | }) |
| 576 | |
| 577 | #define set_pmd_safe(pmdp, pmd) \ |
| 578 | ({ \ |
| 579 | WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ |
| 580 | set_pmd(pmdp, pmd); \ |
| 581 | }) |
| 582 | |
| 583 | #define set_pud_safe(pudp, pud) \ |
| 584 | ({ \ |
| 585 | WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ |
| 586 | set_pud(pudp, pud); \ |
| 587 | }) |
| 588 | |
| 589 | #define set_p4d_safe(p4dp, p4d) \ |
| 590 | ({ \ |
| 591 | WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ |
| 592 | set_p4d(p4dp, p4d); \ |
| 593 | }) |
| 594 | |
| 595 | #define set_pgd_safe(pgdp, pgd) \ |
| 596 | ({ \ |
| 597 | WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ |
| 598 | set_pgd(pgdp, pgd); \ |
| 599 | }) |
| 600 | |
| 601 | #ifndef __HAVE_ARCH_DO_SWAP_PAGE |
| 602 | /* |
| 603 | * Some architectures support metadata associated with a page. When a |
| 604 | * page is being swapped out, this metadata must be saved so it can be |
| 605 | * restored when the page is swapped back in. SPARC M7 and newer |
| 606 | * processors support an ADI (Application Data Integrity) tag for the |
| 607 | * page as metadata for the page. arch_do_swap_page() can restore this |
| 608 | * metadata when a page is swapped back in. |
| 609 | */ |
| 610 | static inline void arch_do_swap_page(struct mm_struct *mm, |
| 611 | struct vm_area_struct *vma, |
| 612 | unsigned long addr, |
| 613 | pte_t pte, pte_t oldpte) |
| 614 | { |
| 615 | |
| 616 | } |
| 617 | #endif |
| 618 | |
| 619 | #ifndef __HAVE_ARCH_UNMAP_ONE |
| 620 | /* |
| 621 | * Some architectures support metadata associated with a page. When a |
| 622 | * page is being swapped out, this metadata must be saved so it can be |
| 623 | * restored when the page is swapped back in. SPARC M7 and newer |
| 624 | * processors support an ADI (Application Data Integrity) tag for the |
| 625 | * page as metadata for the page. arch_unmap_one() can save this |
| 626 | * metadata on a swap-out of a page. |
| 627 | */ |
| 628 | static inline int arch_unmap_one(struct mm_struct *mm, |
| 629 | struct vm_area_struct *vma, |
| 630 | unsigned long addr, |
| 631 | pte_t orig_pte) |
| 632 | { |
| 633 | return 0; |
| 634 | } |
| 635 | #endif |
| 636 | |
| 637 | /* |
| 638 | * Allow architectures to preserve additional metadata associated with |
| 639 | * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function |
| 640 | * prototypes must be defined in the arch-specific asm/pgtable.h file. |
| 641 | */ |
| 642 | #ifndef __HAVE_ARCH_PREPARE_TO_SWAP |
| 643 | static inline int arch_prepare_to_swap(struct page *page) |
| 644 | { |
| 645 | return 0; |
| 646 | } |
| 647 | #endif |
| 648 | |
| 649 | #ifndef __HAVE_ARCH_SWAP_INVALIDATE |
| 650 | static inline void arch_swap_invalidate_page(int type, pgoff_t offset) |
| 651 | { |
| 652 | } |
| 653 | |
| 654 | static inline void arch_swap_invalidate_area(int type) |
| 655 | { |
| 656 | } |
| 657 | #endif |
| 658 | |
| 659 | #ifndef __HAVE_ARCH_SWAP_RESTORE |
| 660 | static inline void arch_swap_restore(swp_entry_t entry, struct page *page) |
| 661 | { |
| 662 | } |
| 663 | #endif |
| 664 | |
| 665 | #ifndef __HAVE_ARCH_PGD_OFFSET_GATE |
| 666 | #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) |
| 667 | #endif |
| 668 | |
| 669 | #ifndef __HAVE_ARCH_MOVE_PTE |
| 670 | #define move_pte(pte, prot, old_addr, new_addr) (pte) |
| 671 | #endif |
| 672 | |
| 673 | #ifndef pte_accessible |
| 674 | # define pte_accessible(mm, pte) ((void)(pte), 1) |
| 675 | #endif |
| 676 | |
| 677 | #ifndef flush_tlb_fix_spurious_fault |
| 678 | #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) |
| 679 | #endif |
| 680 | |
| 681 | /* |
| 682 | * When walking page tables, get the address of the next boundary, |
| 683 | * or the end address of the range if that comes earlier. Although no |
| 684 | * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. |
| 685 | */ |
| 686 | |
| 687 | #define pgd_addr_end(addr, end) \ |
| 688 | ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ |
| 689 | (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| 690 | }) |
| 691 | |
| 692 | #ifndef p4d_addr_end |
| 693 | #define p4d_addr_end(addr, end) \ |
| 694 | ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ |
| 695 | (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| 696 | }) |
| 697 | #endif |
| 698 | |
| 699 | #ifndef pud_addr_end |
| 700 | #define pud_addr_end(addr, end) \ |
| 701 | ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ |
| 702 | (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| 703 | }) |
| 704 | #endif |
| 705 | |
| 706 | #ifndef pmd_addr_end |
| 707 | #define pmd_addr_end(addr, end) \ |
| 708 | ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ |
| 709 | (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| 710 | }) |
| 711 | #endif |
| 712 | |
| 713 | /* |
| 714 | * When walking page tables, we usually want to skip any p?d_none entries; |
| 715 | * and any p?d_bad entries - reporting the error before resetting to none. |
| 716 | * Do the tests inline, but report and clear the bad entry in mm/memory.c. |
| 717 | */ |
| 718 | void pgd_clear_bad(pgd_t *); |
| 719 | |
| 720 | #ifndef __PAGETABLE_P4D_FOLDED |
| 721 | void p4d_clear_bad(p4d_t *); |
| 722 | #else |
| 723 | #define p4d_clear_bad(p4d) do { } while (0) |
| 724 | #endif |
| 725 | |
| 726 | #ifndef __PAGETABLE_PUD_FOLDED |
| 727 | void pud_clear_bad(pud_t *); |
| 728 | #else |
| 729 | #define pud_clear_bad(p4d) do { } while (0) |
| 730 | #endif |
| 731 | |
| 732 | void pmd_clear_bad(pmd_t *); |
| 733 | |
| 734 | static inline int pgd_none_or_clear_bad(pgd_t *pgd) |
| 735 | { |
| 736 | if (pgd_none(*pgd)) |
| 737 | return 1; |
| 738 | if (unlikely(pgd_bad(*pgd))) { |
| 739 | pgd_clear_bad(pgd); |
| 740 | return 1; |
| 741 | } |
| 742 | return 0; |
| 743 | } |
| 744 | |
| 745 | static inline int p4d_none_or_clear_bad(p4d_t *p4d) |
| 746 | { |
| 747 | if (p4d_none(*p4d)) |
| 748 | return 1; |
| 749 | if (unlikely(p4d_bad(*p4d))) { |
| 750 | p4d_clear_bad(p4d); |
| 751 | return 1; |
| 752 | } |
| 753 | return 0; |
| 754 | } |
| 755 | |
| 756 | static inline int pud_none_or_clear_bad(pud_t *pud) |
| 757 | { |
| 758 | if (pud_none(*pud)) |
| 759 | return 1; |
| 760 | if (unlikely(pud_bad(*pud))) { |
| 761 | pud_clear_bad(pud); |
| 762 | return 1; |
| 763 | } |
| 764 | return 0; |
| 765 | } |
| 766 | |
| 767 | static inline int pmd_none_or_clear_bad(pmd_t *pmd) |
| 768 | { |
| 769 | if (pmd_none(*pmd)) |
| 770 | return 1; |
| 771 | if (unlikely(pmd_bad(*pmd))) { |
| 772 | pmd_clear_bad(pmd); |
| 773 | return 1; |
| 774 | } |
| 775 | return 0; |
| 776 | } |
| 777 | |
| 778 | static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, |
| 779 | unsigned long addr, |
| 780 | pte_t *ptep) |
| 781 | { |
| 782 | /* |
| 783 | * Get the current pte state, but zero it out to make it |
| 784 | * non-present, preventing the hardware from asynchronously |
| 785 | * updating it. |
| 786 | */ |
| 787 | return ptep_get_and_clear(vma->vm_mm, addr, ptep); |
| 788 | } |
| 789 | |
| 790 | static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, |
| 791 | unsigned long addr, |
| 792 | pte_t *ptep, pte_t pte) |
| 793 | { |
| 794 | /* |
| 795 | * The pte is non-present, so there's no hardware state to |
| 796 | * preserve. |
| 797 | */ |
| 798 | set_pte_at(vma->vm_mm, addr, ptep, pte); |
| 799 | } |
| 800 | |
| 801 | #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION |
| 802 | /* |
| 803 | * Start a pte protection read-modify-write transaction, which |
| 804 | * protects against asynchronous hardware modifications to the pte. |
| 805 | * The intention is not to prevent the hardware from making pte |
| 806 | * updates, but to prevent any updates it may make from being lost. |
| 807 | * |
| 808 | * This does not protect against other software modifications of the |
| 809 | * pte; the appropriate pte lock must be held over the transation. |
| 810 | * |
| 811 | * Note that this interface is intended to be batchable, meaning that |
| 812 | * ptep_modify_prot_commit may not actually update the pte, but merely |
| 813 | * queue the update to be done at some later time. The update must be |
| 814 | * actually committed before the pte lock is released, however. |
| 815 | */ |
| 816 | static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, |
| 817 | unsigned long addr, |
| 818 | pte_t *ptep) |
| 819 | { |
| 820 | return __ptep_modify_prot_start(vma, addr, ptep); |
| 821 | } |
| 822 | |
| 823 | /* |
| 824 | * Commit an update to a pte, leaving any hardware-controlled bits in |
| 825 | * the PTE unmodified. |
| 826 | */ |
| 827 | static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, |
| 828 | unsigned long addr, |
| 829 | pte_t *ptep, pte_t old_pte, pte_t pte) |
| 830 | { |
| 831 | __ptep_modify_prot_commit(vma, addr, ptep, pte); |
| 832 | } |
| 833 | #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ |
| 834 | #endif /* CONFIG_MMU */ |
| 835 | |
| 836 | /* |
| 837 | * No-op macros that just return the current protection value. Defined here |
| 838 | * because these macros can be used even if CONFIG_MMU is not defined. |
| 839 | */ |
| 840 | |
| 841 | #ifndef pgprot_nx |
| 842 | #define pgprot_nx(prot) (prot) |
| 843 | #endif |
| 844 | |
| 845 | #ifndef pgprot_noncached |
| 846 | #define pgprot_noncached(prot) (prot) |
| 847 | #endif |
| 848 | |
| 849 | #ifndef pgprot_writecombine |
| 850 | #define pgprot_writecombine pgprot_noncached |
| 851 | #endif |
| 852 | |
| 853 | #ifndef pgprot_writethrough |
| 854 | #define pgprot_writethrough pgprot_noncached |
| 855 | #endif |
| 856 | |
| 857 | #ifndef pgprot_device |
| 858 | #define pgprot_device pgprot_noncached |
| 859 | #endif |
| 860 | |
| 861 | #ifndef pgprot_mhp |
| 862 | #define pgprot_mhp(prot) (prot) |
| 863 | #endif |
| 864 | |
| 865 | #ifdef CONFIG_MMU |
| 866 | #ifndef pgprot_modify |
| 867 | #define pgprot_modify pgprot_modify |
| 868 | static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) |
| 869 | { |
| 870 | if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) |
| 871 | newprot = pgprot_noncached(newprot); |
| 872 | if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) |
| 873 | newprot = pgprot_writecombine(newprot); |
| 874 | if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) |
| 875 | newprot = pgprot_device(newprot); |
| 876 | return newprot; |
| 877 | } |
| 878 | #endif |
| 879 | #endif /* CONFIG_MMU */ |
| 880 | |
| 881 | #ifndef pgprot_encrypted |
| 882 | #define pgprot_encrypted(prot) (prot) |
| 883 | #endif |
| 884 | |
| 885 | #ifndef pgprot_decrypted |
| 886 | #define pgprot_decrypted(prot) (prot) |
| 887 | #endif |
| 888 | |
| 889 | /* |
| 890 | * A facility to provide lazy MMU batching. This allows PTE updates and |
| 891 | * page invalidations to be delayed until a call to leave lazy MMU mode |
| 892 | * is issued. Some architectures may benefit from doing this, and it is |
| 893 | * beneficial for both shadow and direct mode hypervisors, which may batch |
| 894 | * the PTE updates which happen during this window. Note that using this |
| 895 | * interface requires that read hazards be removed from the code. A read |
| 896 | * hazard could result in the direct mode hypervisor case, since the actual |
| 897 | * write to the page tables may not yet have taken place, so reads though |
| 898 | * a raw PTE pointer after it has been modified are not guaranteed to be |
| 899 | * up to date. This mode can only be entered and left under the protection of |
| 900 | * the page table locks for all page tables which may be modified. In the UP |
| 901 | * case, this is required so that preemption is disabled, and in the SMP case, |
| 902 | * it must synchronize the delayed page table writes properly on other CPUs. |
| 903 | */ |
| 904 | #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE |
| 905 | #define arch_enter_lazy_mmu_mode() do {} while (0) |
| 906 | #define arch_leave_lazy_mmu_mode() do {} while (0) |
| 907 | #define arch_flush_lazy_mmu_mode() do {} while (0) |
| 908 | #endif |
| 909 | |
| 910 | /* |
| 911 | * A facility to provide batching of the reload of page tables and |
| 912 | * other process state with the actual context switch code for |
| 913 | * paravirtualized guests. By convention, only one of the batched |
| 914 | * update (lazy) modes (CPU, MMU) should be active at any given time, |
| 915 | * entry should never be nested, and entry and exits should always be |
| 916 | * paired. This is for sanity of maintaining and reasoning about the |
| 917 | * kernel code. In this case, the exit (end of the context switch) is |
| 918 | * in architecture-specific code, and so doesn't need a generic |
| 919 | * definition. |
| 920 | */ |
| 921 | #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH |
| 922 | #define arch_start_context_switch(prev) do {} while (0) |
| 923 | #endif |
| 924 | |
| 925 | #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY |
| 926 | #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| 927 | static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) |
| 928 | { |
| 929 | return pmd; |
| 930 | } |
| 931 | |
| 932 | static inline int pmd_swp_soft_dirty(pmd_t pmd) |
| 933 | { |
| 934 | return 0; |
| 935 | } |
| 936 | |
| 937 | static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) |
| 938 | { |
| 939 | return pmd; |
| 940 | } |
| 941 | #endif |
| 942 | #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ |
| 943 | static inline int pte_soft_dirty(pte_t pte) |
| 944 | { |
| 945 | return 0; |
| 946 | } |
| 947 | |
| 948 | static inline int pmd_soft_dirty(pmd_t pmd) |
| 949 | { |
| 950 | return 0; |
| 951 | } |
| 952 | |
| 953 | static inline pte_t pte_mksoft_dirty(pte_t pte) |
| 954 | { |
| 955 | return pte; |
| 956 | } |
| 957 | |
| 958 | static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) |
| 959 | { |
| 960 | return pmd; |
| 961 | } |
| 962 | |
| 963 | static inline pte_t pte_clear_soft_dirty(pte_t pte) |
| 964 | { |
| 965 | return pte; |
| 966 | } |
| 967 | |
| 968 | static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) |
| 969 | { |
| 970 | return pmd; |
| 971 | } |
| 972 | |
| 973 | static inline pte_t pte_swp_mksoft_dirty(pte_t pte) |
| 974 | { |
| 975 | return pte; |
| 976 | } |
| 977 | |
| 978 | static inline int pte_swp_soft_dirty(pte_t pte) |
| 979 | { |
| 980 | return 0; |
| 981 | } |
| 982 | |
| 983 | static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) |
| 984 | { |
| 985 | return pte; |
| 986 | } |
| 987 | |
| 988 | static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) |
| 989 | { |
| 990 | return pmd; |
| 991 | } |
| 992 | |
| 993 | static inline int pmd_swp_soft_dirty(pmd_t pmd) |
| 994 | { |
| 995 | return 0; |
| 996 | } |
| 997 | |
| 998 | static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) |
| 999 | { |
| 1000 | return pmd; |
| 1001 | } |
| 1002 | #endif |
| 1003 | |
| 1004 | #ifndef __HAVE_PFNMAP_TRACKING |
| 1005 | /* |
| 1006 | * Interfaces that can be used by architecture code to keep track of |
| 1007 | * memory type of pfn mappings specified by the remap_pfn_range, |
| 1008 | * vmf_insert_pfn. |
| 1009 | */ |
| 1010 | |
| 1011 | /* |
| 1012 | * track_pfn_remap is called when a _new_ pfn mapping is being established |
| 1013 | * by remap_pfn_range() for physical range indicated by pfn and size. |
| 1014 | */ |
| 1015 | static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, |
| 1016 | unsigned long pfn, unsigned long addr, |
| 1017 | unsigned long size) |
| 1018 | { |
| 1019 | return 0; |
| 1020 | } |
| 1021 | |
| 1022 | /* |
| 1023 | * track_pfn_insert is called when a _new_ single pfn is established |
| 1024 | * by vmf_insert_pfn(). |
| 1025 | */ |
| 1026 | static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, |
| 1027 | pfn_t pfn) |
| 1028 | { |
| 1029 | } |
| 1030 | |
| 1031 | /* |
| 1032 | * track_pfn_copy is called when vma that is covering the pfnmap gets |
| 1033 | * copied through copy_page_range(). |
| 1034 | */ |
| 1035 | static inline int track_pfn_copy(struct vm_area_struct *vma) |
| 1036 | { |
| 1037 | return 0; |
| 1038 | } |
| 1039 | |
| 1040 | /* |
| 1041 | * untrack_pfn is called while unmapping a pfnmap for a region. |
| 1042 | * untrack can be called for a specific region indicated by pfn and size or |
| 1043 | * can be for the entire vma (in which case pfn, size are zero). |
| 1044 | */ |
| 1045 | static inline void untrack_pfn(struct vm_area_struct *vma, |
| 1046 | unsigned long pfn, unsigned long size) |
| 1047 | { |
| 1048 | } |
| 1049 | |
| 1050 | /* |
| 1051 | * untrack_pfn_moved is called while mremapping a pfnmap for a new region. |
| 1052 | */ |
| 1053 | static inline void untrack_pfn_moved(struct vm_area_struct *vma) |
| 1054 | { |
| 1055 | } |
| 1056 | #else |
| 1057 | extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, |
| 1058 | unsigned long pfn, unsigned long addr, |
| 1059 | unsigned long size); |
| 1060 | extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, |
| 1061 | pfn_t pfn); |
| 1062 | extern int track_pfn_copy(struct vm_area_struct *vma); |
| 1063 | extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, |
| 1064 | unsigned long size); |
| 1065 | extern void untrack_pfn_moved(struct vm_area_struct *vma); |
| 1066 | #endif |
| 1067 | |
| 1068 | #ifdef __HAVE_COLOR_ZERO_PAGE |
| 1069 | static inline int is_zero_pfn(unsigned long pfn) |
| 1070 | { |
| 1071 | extern unsigned long zero_pfn; |
| 1072 | unsigned long offset_from_zero_pfn = pfn - zero_pfn; |
| 1073 | return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); |
| 1074 | } |
| 1075 | |
| 1076 | #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) |
| 1077 | |
| 1078 | #else |
| 1079 | static inline int is_zero_pfn(unsigned long pfn) |
| 1080 | { |
| 1081 | extern unsigned long zero_pfn; |
| 1082 | return pfn == zero_pfn; |
| 1083 | } |
| 1084 | |
| 1085 | static inline unsigned long my_zero_pfn(unsigned long addr) |
| 1086 | { |
| 1087 | extern unsigned long zero_pfn; |
| 1088 | return zero_pfn; |
| 1089 | } |
| 1090 | #endif |
| 1091 | |
| 1092 | #ifdef CONFIG_MMU |
| 1093 | |
| 1094 | #ifndef CONFIG_TRANSPARENT_HUGEPAGE |
| 1095 | static inline int pmd_trans_huge(pmd_t pmd) |
| 1096 | { |
| 1097 | return 0; |
| 1098 | } |
| 1099 | #ifndef pmd_write |
| 1100 | static inline int pmd_write(pmd_t pmd) |
| 1101 | { |
| 1102 | BUG(); |
| 1103 | return 0; |
| 1104 | } |
| 1105 | #endif /* pmd_write */ |
| 1106 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 1107 | |
| 1108 | #ifndef pud_write |
| 1109 | static inline int pud_write(pud_t pud) |
| 1110 | { |
| 1111 | BUG(); |
| 1112 | return 0; |
| 1113 | } |
| 1114 | #endif /* pud_write */ |
| 1115 | |
| 1116 | #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| 1117 | static inline int pmd_devmap(pmd_t pmd) |
| 1118 | { |
| 1119 | return 0; |
| 1120 | } |
| 1121 | static inline int pud_devmap(pud_t pud) |
| 1122 | { |
| 1123 | return 0; |
| 1124 | } |
| 1125 | static inline int pgd_devmap(pgd_t pgd) |
| 1126 | { |
| 1127 | return 0; |
| 1128 | } |
| 1129 | #endif |
| 1130 | |
| 1131 | #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ |
| 1132 | (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ |
| 1133 | !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) |
| 1134 | static inline int pud_trans_huge(pud_t pud) |
| 1135 | { |
| 1136 | return 0; |
| 1137 | } |
| 1138 | #endif |
| 1139 | |
| 1140 | /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ |
| 1141 | static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) |
| 1142 | { |
| 1143 | pud_t pudval = READ_ONCE(*pud); |
| 1144 | |
| 1145 | if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) |
| 1146 | return 1; |
| 1147 | if (unlikely(pud_bad(pudval))) { |
| 1148 | pud_clear_bad(pud); |
| 1149 | return 1; |
| 1150 | } |
| 1151 | return 0; |
| 1152 | } |
| 1153 | |
| 1154 | /* See pmd_trans_unstable for discussion. */ |
| 1155 | static inline int pud_trans_unstable(pud_t *pud) |
| 1156 | { |
| 1157 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ |
| 1158 | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) |
| 1159 | return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); |
| 1160 | #else |
| 1161 | return 0; |
| 1162 | #endif |
| 1163 | } |
| 1164 | |
| 1165 | #ifndef pmd_read_atomic |
| 1166 | static inline pmd_t pmd_read_atomic(pmd_t *pmdp) |
| 1167 | { |
| 1168 | /* |
| 1169 | * Depend on compiler for an atomic pmd read. NOTE: this is |
| 1170 | * only going to work, if the pmdval_t isn't larger than |
| 1171 | * an unsigned long. |
| 1172 | */ |
| 1173 | return *pmdp; |
| 1174 | } |
| 1175 | #endif |
| 1176 | |
| 1177 | #ifndef arch_needs_pgtable_deposit |
| 1178 | #define arch_needs_pgtable_deposit() (false) |
| 1179 | #endif |
| 1180 | /* |
| 1181 | * This function is meant to be used by sites walking pagetables with |
| 1182 | * the mmap_lock held in read mode to protect against MADV_DONTNEED and |
| 1183 | * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd |
| 1184 | * into a null pmd and the transhuge page fault can convert a null pmd |
| 1185 | * into an hugepmd or into a regular pmd (if the hugepage allocation |
| 1186 | * fails). While holding the mmap_lock in read mode the pmd becomes |
| 1187 | * stable and stops changing under us only if it's not null and not a |
| 1188 | * transhuge pmd. When those races occurs and this function makes a |
| 1189 | * difference vs the standard pmd_none_or_clear_bad, the result is |
| 1190 | * undefined so behaving like if the pmd was none is safe (because it |
| 1191 | * can return none anyway). The compiler level barrier() is critically |
| 1192 | * important to compute the two checks atomically on the same pmdval. |
| 1193 | * |
| 1194 | * For 32bit kernels with a 64bit large pmd_t this automatically takes |
| 1195 | * care of reading the pmd atomically to avoid SMP race conditions |
| 1196 | * against pmd_populate() when the mmap_lock is hold for reading by the |
| 1197 | * caller (a special atomic read not done by "gcc" as in the generic |
| 1198 | * version above, is also needed when THP is disabled because the page |
| 1199 | * fault can populate the pmd from under us). |
| 1200 | */ |
| 1201 | static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) |
| 1202 | { |
| 1203 | pmd_t pmdval = pmd_read_atomic(pmd); |
| 1204 | /* |
| 1205 | * The barrier will stabilize the pmdval in a register or on |
| 1206 | * the stack so that it will stop changing under the code. |
| 1207 | * |
| 1208 | * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, |
| 1209 | * pmd_read_atomic is allowed to return a not atomic pmdval |
| 1210 | * (for example pointing to an hugepage that has never been |
| 1211 | * mapped in the pmd). The below checks will only care about |
| 1212 | * the low part of the pmd with 32bit PAE x86 anyway, with the |
| 1213 | * exception of pmd_none(). So the important thing is that if |
| 1214 | * the low part of the pmd is found null, the high part will |
| 1215 | * be also null or the pmd_none() check below would be |
| 1216 | * confused. |
| 1217 | */ |
| 1218 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 1219 | barrier(); |
| 1220 | #endif |
| 1221 | /* |
| 1222 | * !pmd_present() checks for pmd migration entries |
| 1223 | * |
| 1224 | * The complete check uses is_pmd_migration_entry() in linux/swapops.h |
| 1225 | * But using that requires moving current function and pmd_trans_unstable() |
| 1226 | * to linux/swapops.h to resovle dependency, which is too much code move. |
| 1227 | * |
| 1228 | * !pmd_present() is equivalent to is_pmd_migration_entry() currently, |
| 1229 | * because !pmd_present() pages can only be under migration not swapped |
| 1230 | * out. |
| 1231 | * |
| 1232 | * pmd_none() is preseved for future condition checks on pmd migration |
| 1233 | * entries and not confusing with this function name, although it is |
| 1234 | * redundant with !pmd_present(). |
| 1235 | */ |
| 1236 | if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || |
| 1237 | (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) |
| 1238 | return 1; |
| 1239 | if (unlikely(pmd_bad(pmdval))) { |
| 1240 | pmd_clear_bad(pmd); |
| 1241 | return 1; |
| 1242 | } |
| 1243 | return 0; |
| 1244 | } |
| 1245 | |
| 1246 | /* |
| 1247 | * This is a noop if Transparent Hugepage Support is not built into |
| 1248 | * the kernel. Otherwise it is equivalent to |
| 1249 | * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in |
| 1250 | * places that already verified the pmd is not none and they want to |
| 1251 | * walk ptes while holding the mmap sem in read mode (write mode don't |
| 1252 | * need this). If THP is not enabled, the pmd can't go away under the |
| 1253 | * code even if MADV_DONTNEED runs, but if THP is enabled we need to |
| 1254 | * run a pmd_trans_unstable before walking the ptes after |
| 1255 | * split_huge_pmd returns (because it may have run when the pmd become |
| 1256 | * null, but then a page fault can map in a THP and not a regular page). |
| 1257 | */ |
| 1258 | static inline int pmd_trans_unstable(pmd_t *pmd) |
| 1259 | { |
| 1260 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 1261 | return pmd_none_or_trans_huge_or_clear_bad(pmd); |
| 1262 | #else |
| 1263 | return 0; |
| 1264 | #endif |
| 1265 | } |
| 1266 | |
| 1267 | #ifndef CONFIG_NUMA_BALANCING |
| 1268 | /* |
| 1269 | * Technically a PTE can be PROTNONE even when not doing NUMA balancing but |
| 1270 | * the only case the kernel cares is for NUMA balancing and is only ever set |
| 1271 | * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked |
| 1272 | * _PAGE_PROTNONE so by default, implement the helper as "always no". It |
| 1273 | * is the responsibility of the caller to distinguish between PROT_NONE |
| 1274 | * protections and NUMA hinting fault protections. |
| 1275 | */ |
| 1276 | static inline int pte_protnone(pte_t pte) |
| 1277 | { |
| 1278 | return 0; |
| 1279 | } |
| 1280 | |
| 1281 | static inline int pmd_protnone(pmd_t pmd) |
| 1282 | { |
| 1283 | return 0; |
| 1284 | } |
| 1285 | #endif /* CONFIG_NUMA_BALANCING */ |
| 1286 | |
| 1287 | #endif /* CONFIG_MMU */ |
| 1288 | |
| 1289 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP |
| 1290 | |
| 1291 | #ifndef __PAGETABLE_P4D_FOLDED |
| 1292 | int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); |
| 1293 | int p4d_clear_huge(p4d_t *p4d); |
| 1294 | #else |
| 1295 | static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) |
| 1296 | { |
| 1297 | return 0; |
| 1298 | } |
| 1299 | static inline int p4d_clear_huge(p4d_t *p4d) |
| 1300 | { |
| 1301 | return 0; |
| 1302 | } |
| 1303 | #endif /* !__PAGETABLE_P4D_FOLDED */ |
| 1304 | |
| 1305 | int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); |
| 1306 | int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); |
| 1307 | int pud_clear_huge(pud_t *pud); |
| 1308 | int pmd_clear_huge(pmd_t *pmd); |
| 1309 | int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); |
| 1310 | int pud_free_pmd_page(pud_t *pud, unsigned long addr); |
| 1311 | int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); |
| 1312 | #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ |
| 1313 | static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) |
| 1314 | { |
| 1315 | return 0; |
| 1316 | } |
| 1317 | static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) |
| 1318 | { |
| 1319 | return 0; |
| 1320 | } |
| 1321 | static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) |
| 1322 | { |
| 1323 | return 0; |
| 1324 | } |
| 1325 | static inline int p4d_clear_huge(p4d_t *p4d) |
| 1326 | { |
| 1327 | return 0; |
| 1328 | } |
| 1329 | static inline int pud_clear_huge(pud_t *pud) |
| 1330 | { |
| 1331 | return 0; |
| 1332 | } |
| 1333 | static inline int pmd_clear_huge(pmd_t *pmd) |
| 1334 | { |
| 1335 | return 0; |
| 1336 | } |
| 1337 | static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) |
| 1338 | { |
| 1339 | return 0; |
| 1340 | } |
| 1341 | static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) |
| 1342 | { |
| 1343 | return 0; |
| 1344 | } |
| 1345 | static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) |
| 1346 | { |
| 1347 | return 0; |
| 1348 | } |
| 1349 | #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ |
| 1350 | |
| 1351 | #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE |
| 1352 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 1353 | /* |
| 1354 | * ARCHes with special requirements for evicting THP backing TLB entries can |
| 1355 | * implement this. Otherwise also, it can help optimize normal TLB flush in |
| 1356 | * THP regime. Stock flush_tlb_range() typically has optimization to nuke the |
| 1357 | * entire TLB if flush span is greater than a threshold, which will |
| 1358 | * likely be true for a single huge page. Thus a single THP flush will |
| 1359 | * invalidate the entire TLB which is not desirable. |
| 1360 | * e.g. see arch/arc: flush_pmd_tlb_range |
| 1361 | */ |
| 1362 | #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) |
| 1363 | #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) |
| 1364 | #else |
| 1365 | #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() |
| 1366 | #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() |
| 1367 | #endif |
| 1368 | #endif |
| 1369 | |
| 1370 | struct file; |
| 1371 | int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, |
| 1372 | unsigned long size, pgprot_t *vma_prot); |
| 1373 | |
| 1374 | #ifndef CONFIG_X86_ESPFIX64 |
| 1375 | static inline void init_espfix_bsp(void) { } |
| 1376 | #endif |
| 1377 | |
| 1378 | extern void __init pgtable_cache_init(void); |
| 1379 | |
| 1380 | #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED |
| 1381 | static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) |
| 1382 | { |
| 1383 | return true; |
| 1384 | } |
| 1385 | |
| 1386 | static inline bool arch_has_pfn_modify_check(void) |
| 1387 | { |
| 1388 | return false; |
| 1389 | } |
| 1390 | #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ |
| 1391 | |
| 1392 | /* |
| 1393 | * Architecture PAGE_KERNEL_* fallbacks |
| 1394 | * |
| 1395 | * Some architectures don't define certain PAGE_KERNEL_* flags. This is either |
| 1396 | * because they really don't support them, or the port needs to be updated to |
| 1397 | * reflect the required functionality. Below are a set of relatively safe |
| 1398 | * fallbacks, as best effort, which we can count on in lieu of the architectures |
| 1399 | * not defining them on their own yet. |
| 1400 | */ |
| 1401 | |
| 1402 | #ifndef PAGE_KERNEL_RO |
| 1403 | # define PAGE_KERNEL_RO PAGE_KERNEL |
| 1404 | #endif |
| 1405 | |
| 1406 | #ifndef PAGE_KERNEL_EXEC |
| 1407 | # define PAGE_KERNEL_EXEC PAGE_KERNEL |
| 1408 | #endif |
| 1409 | |
| 1410 | /* |
| 1411 | * Page Table Modification bits for pgtbl_mod_mask. |
| 1412 | * |
| 1413 | * These are used by the p?d_alloc_track*() set of functions an in the generic |
| 1414 | * vmalloc/ioremap code to track at which page-table levels entries have been |
| 1415 | * modified. Based on that the code can better decide when vmalloc and ioremap |
| 1416 | * mapping changes need to be synchronized to other page-tables in the system. |
| 1417 | */ |
| 1418 | #define __PGTBL_PGD_MODIFIED 0 |
| 1419 | #define __PGTBL_P4D_MODIFIED 1 |
| 1420 | #define __PGTBL_PUD_MODIFIED 2 |
| 1421 | #define __PGTBL_PMD_MODIFIED 3 |
| 1422 | #define __PGTBL_PTE_MODIFIED 4 |
| 1423 | |
| 1424 | #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) |
| 1425 | #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) |
| 1426 | #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) |
| 1427 | #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) |
| 1428 | #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) |
| 1429 | |
| 1430 | /* Page-Table Modification Mask */ |
| 1431 | typedef unsigned int pgtbl_mod_mask; |
| 1432 | |
| 1433 | #endif /* !__ASSEMBLY__ */ |
| 1434 | |
| 1435 | #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) |
| 1436 | #ifdef CONFIG_PHYS_ADDR_T_64BIT |
| 1437 | /* |
| 1438 | * ZSMALLOC needs to know the highest PFN on 32-bit architectures |
| 1439 | * with physical address space extension, but falls back to |
| 1440 | * BITS_PER_LONG otherwise. |
| 1441 | */ |
| 1442 | #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition |
| 1443 | #else |
| 1444 | #define MAX_POSSIBLE_PHYSMEM_BITS 32 |
| 1445 | #endif |
| 1446 | #endif |
| 1447 | |
| 1448 | #ifndef has_transparent_hugepage |
| 1449 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 1450 | #define has_transparent_hugepage() 1 |
| 1451 | #else |
| 1452 | #define has_transparent_hugepage() 0 |
| 1453 | #endif |
| 1454 | #endif |
| 1455 | |
| 1456 | /* |
| 1457 | * On some architectures it depends on the mm if the p4d/pud or pmd |
| 1458 | * layer of the page table hierarchy is folded or not. |
| 1459 | */ |
| 1460 | #ifndef mm_p4d_folded |
| 1461 | #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) |
| 1462 | #endif |
| 1463 | |
| 1464 | #ifndef mm_pud_folded |
| 1465 | #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) |
| 1466 | #endif |
| 1467 | |
| 1468 | #ifndef mm_pmd_folded |
| 1469 | #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) |
| 1470 | #endif |
| 1471 | |
| 1472 | #ifndef p4d_offset_lockless |
| 1473 | #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) |
| 1474 | #endif |
| 1475 | #ifndef pud_offset_lockless |
| 1476 | #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) |
| 1477 | #endif |
| 1478 | #ifndef pmd_offset_lockless |
| 1479 | #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) |
| 1480 | #endif |
| 1481 | |
| 1482 | /* |
| 1483 | * p?d_leaf() - true if this entry is a final mapping to a physical address. |
| 1484 | * This differs from p?d_huge() by the fact that they are always available (if |
| 1485 | * the architecture supports large pages at the appropriate level) even |
| 1486 | * if CONFIG_HUGETLB_PAGE is not defined. |
| 1487 | * Only meaningful when called on a valid entry. |
| 1488 | */ |
| 1489 | #ifndef pgd_leaf |
| 1490 | #define pgd_leaf(x) 0 |
| 1491 | #endif |
| 1492 | #ifndef p4d_leaf |
| 1493 | #define p4d_leaf(x) 0 |
| 1494 | #endif |
| 1495 | #ifndef pud_leaf |
| 1496 | #define pud_leaf(x) 0 |
| 1497 | #endif |
| 1498 | #ifndef pmd_leaf |
| 1499 | #define pmd_leaf(x) 0 |
| 1500 | #endif |
| 1501 | |
| 1502 | #endif /* _LINUX_PGTABLE_H */ |