blob: 9def1ac19546b659395e2e5554d160b612476931 [file] [log] [blame]
Olivier Deprez157378f2022-04-04 15:47:50 +02001/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#ifndef __ASSEMBLY__
9#ifdef CONFIG_MMU
10
11#include <linux/mm_types.h>
12#include <linux/bug.h>
13#include <linux/errno.h>
14#include <asm-generic/pgtable_uffd.h>
15
16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19#endif
20
21/*
22 * On almost all architectures and configurations, 0 can be used as the
23 * upper ceiling to free_pgtables(): on many architectures it has the same
24 * effect as using TASK_SIZE. However, there is one configuration which
25 * must impose a more careful limit, to avoid freeing kernel pgtables.
26 */
27#ifndef USER_PGTABLES_CEILING
28#define USER_PGTABLES_CEILING 0UL
29#endif
30
31/*
32 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
33 *
34 * The pXx_index() functions return the index of the entry in the page
35 * table page which would control the given virtual address
36 *
37 * As these functions may be used by the same code for different levels of
38 * the page table folding, they are always available, regardless of
39 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
40 * because in such cases PTRS_PER_PxD equals 1.
41 */
42
43static inline unsigned long pte_index(unsigned long address)
44{
45 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
46}
47#define pte_index pte_index
48
49#ifndef pmd_index
50static inline unsigned long pmd_index(unsigned long address)
51{
52 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
53}
54#define pmd_index pmd_index
55#endif
56
57#ifndef pud_index
58static inline unsigned long pud_index(unsigned long address)
59{
60 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
61}
62#define pud_index pud_index
63#endif
64
65#ifndef pgd_index
66/* Must be a compile-time constant, so implement it as a macro */
67#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
68#endif
69
70#ifndef pte_offset_kernel
71static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
72{
73 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
74}
75#define pte_offset_kernel pte_offset_kernel
76#endif
77
78#if defined(CONFIG_HIGHPTE)
79#define pte_offset_map(dir, address) \
80 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
81 pte_index((address)))
82#define pte_unmap(pte) kunmap_atomic((pte))
83#else
84#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
85#define pte_unmap(pte) ((void)(pte)) /* NOP */
86#endif
87
88/* Find an entry in the second-level page table.. */
89#ifndef pmd_offset
90static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
91{
92 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
93}
94#define pmd_offset pmd_offset
95#endif
96
97#ifndef pud_offset
98static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
99{
100 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
101}
102#define pud_offset pud_offset
103#endif
104
105static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
106{
107 return (pgd + pgd_index(address));
108};
109
110/*
111 * a shortcut to get a pgd_t in a given mm
112 */
113#ifndef pgd_offset
114#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
115#endif
116
117/*
118 * a shortcut which implies the use of the kernel's pgd, instead
119 * of a process's
120 */
121#ifndef pgd_offset_k
122#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
123#endif
124
125/*
126 * In many cases it is known that a virtual address is mapped at PMD or PTE
127 * level, so instead of traversing all the page table levels, we can get a
128 * pointer to the PMD entry in user or kernel page table or translate a virtual
129 * address to the pointer in the PTE in the kernel page tables with simple
130 * helpers.
131 */
132static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
133{
134 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
135}
136
137static inline pmd_t *pmd_off_k(unsigned long va)
138{
139 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
140}
141
142static inline pte_t *virt_to_kpte(unsigned long vaddr)
143{
144 pmd_t *pmd = pmd_off_k(vaddr);
145
146 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
147}
148
149#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
150extern int ptep_set_access_flags(struct vm_area_struct *vma,
151 unsigned long address, pte_t *ptep,
152 pte_t entry, int dirty);
153#endif
154
155#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
156#ifdef CONFIG_TRANSPARENT_HUGEPAGE
157extern int pmdp_set_access_flags(struct vm_area_struct *vma,
158 unsigned long address, pmd_t *pmdp,
159 pmd_t entry, int dirty);
160extern int pudp_set_access_flags(struct vm_area_struct *vma,
161 unsigned long address, pud_t *pudp,
162 pud_t entry, int dirty);
163#else
164static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
165 unsigned long address, pmd_t *pmdp,
166 pmd_t entry, int dirty)
167{
168 BUILD_BUG();
169 return 0;
170}
171static inline int pudp_set_access_flags(struct vm_area_struct *vma,
172 unsigned long address, pud_t *pudp,
173 pud_t entry, int dirty)
174{
175 BUILD_BUG();
176 return 0;
177}
178#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
179#endif
180
181#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
182static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
183 unsigned long address,
184 pte_t *ptep)
185{
186 pte_t pte = *ptep;
187 int r = 1;
188 if (!pte_young(pte))
189 r = 0;
190 else
191 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
192 return r;
193}
194#endif
195
196#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
197#ifdef CONFIG_TRANSPARENT_HUGEPAGE
198static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
199 unsigned long address,
200 pmd_t *pmdp)
201{
202 pmd_t pmd = *pmdp;
203 int r = 1;
204 if (!pmd_young(pmd))
205 r = 0;
206 else
207 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
208 return r;
209}
210#else
211static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
212 unsigned long address,
213 pmd_t *pmdp)
214{
215 BUILD_BUG();
216 return 0;
217}
218#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
219#endif
220
221#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
222int ptep_clear_flush_young(struct vm_area_struct *vma,
223 unsigned long address, pte_t *ptep);
224#endif
225
226#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
227#ifdef CONFIG_TRANSPARENT_HUGEPAGE
228extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
229 unsigned long address, pmd_t *pmdp);
230#else
231/*
232 * Despite relevant to THP only, this API is called from generic rmap code
233 * under PageTransHuge(), hence needs a dummy implementation for !THP
234 */
235static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
236 unsigned long address, pmd_t *pmdp)
237{
238 BUILD_BUG();
239 return 0;
240}
241#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
242#endif
243
244#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
245static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
246 unsigned long address,
247 pte_t *ptep)
248{
249 pte_t pte = *ptep;
250 pte_clear(mm, address, ptep);
251 return pte;
252}
253#endif
254
255#ifndef __HAVE_ARCH_PTEP_GET
256static inline pte_t ptep_get(pte_t *ptep)
257{
258 return READ_ONCE(*ptep);
259}
260#endif
261
262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
263#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
264static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
265 unsigned long address,
266 pmd_t *pmdp)
267{
268 pmd_t pmd = *pmdp;
269 pmd_clear(pmdp);
270 return pmd;
271}
272#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
273#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
274static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
275 unsigned long address,
276 pud_t *pudp)
277{
278 pud_t pud = *pudp;
279
280 pud_clear(pudp);
281 return pud;
282}
283#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
284#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
285
286#ifdef CONFIG_TRANSPARENT_HUGEPAGE
287#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
288static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
289 unsigned long address, pmd_t *pmdp,
290 int full)
291{
292 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
293}
294#endif
295
296#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
297static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
298 unsigned long address, pud_t *pudp,
299 int full)
300{
301 return pudp_huge_get_and_clear(mm, address, pudp);
302}
303#endif
304#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
305
306#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
307static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
308 unsigned long address, pte_t *ptep,
309 int full)
310{
311 pte_t pte;
312 pte = ptep_get_and_clear(mm, address, ptep);
313 return pte;
314}
315#endif
316
317
318/*
319 * If two threads concurrently fault at the same page, the thread that
320 * won the race updates the PTE and its local TLB/Cache. The other thread
321 * gives up, simply does nothing, and continues; on architectures where
322 * software can update TLB, local TLB can be updated here to avoid next page
323 * fault. This function updates TLB only, do nothing with cache or others.
324 * It is the difference with function update_mmu_cache.
325 */
326#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
327static inline void update_mmu_tlb(struct vm_area_struct *vma,
328 unsigned long address, pte_t *ptep)
329{
330}
331#define __HAVE_ARCH_UPDATE_MMU_TLB
332#endif
333
334/*
335 * Some architectures may be able to avoid expensive synchronization
336 * primitives when modifications are made to PTE's which are already
337 * not present, or in the process of an address space destruction.
338 */
339#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
340static inline void pte_clear_not_present_full(struct mm_struct *mm,
341 unsigned long address,
342 pte_t *ptep,
343 int full)
344{
345 pte_clear(mm, address, ptep);
346}
347#endif
348
349#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
350extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
351 unsigned long address,
352 pte_t *ptep);
353#endif
354
355#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
356extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
357 unsigned long address,
358 pmd_t *pmdp);
359extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
360 unsigned long address,
361 pud_t *pudp);
362#endif
363
364#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
365struct mm_struct;
366static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
367{
368 pte_t old_pte = *ptep;
369 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
370}
371#endif
372
373/*
374 * On some architectures hardware does not set page access bit when accessing
375 * memory page, it is responsibilty of software setting this bit. It brings
376 * out extra page fault penalty to track page access bit. For optimization page
377 * access bit can be set during all page fault flow on these arches.
378 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
379 * where software maintains page access bit.
380 */
381#ifndef pte_sw_mkyoung
382static inline pte_t pte_sw_mkyoung(pte_t pte)
383{
384 return pte;
385}
386#define pte_sw_mkyoung pte_sw_mkyoung
387#endif
388
389#ifndef pte_savedwrite
390#define pte_savedwrite pte_write
391#endif
392
393#ifndef pte_mk_savedwrite
394#define pte_mk_savedwrite pte_mkwrite
395#endif
396
397#ifndef pte_clear_savedwrite
398#define pte_clear_savedwrite pte_wrprotect
399#endif
400
401#ifndef pmd_savedwrite
402#define pmd_savedwrite pmd_write
403#endif
404
405#ifndef pmd_mk_savedwrite
406#define pmd_mk_savedwrite pmd_mkwrite
407#endif
408
409#ifndef pmd_clear_savedwrite
410#define pmd_clear_savedwrite pmd_wrprotect
411#endif
412
413#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
414#ifdef CONFIG_TRANSPARENT_HUGEPAGE
415static inline void pmdp_set_wrprotect(struct mm_struct *mm,
416 unsigned long address, pmd_t *pmdp)
417{
418 pmd_t old_pmd = *pmdp;
419 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
420}
421#else
422static inline void pmdp_set_wrprotect(struct mm_struct *mm,
423 unsigned long address, pmd_t *pmdp)
424{
425 BUILD_BUG();
426}
427#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
428#endif
429#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
430#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
431static inline void pudp_set_wrprotect(struct mm_struct *mm,
432 unsigned long address, pud_t *pudp)
433{
434 pud_t old_pud = *pudp;
435
436 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
437}
438#else
439static inline void pudp_set_wrprotect(struct mm_struct *mm,
440 unsigned long address, pud_t *pudp)
441{
442 BUILD_BUG();
443}
444#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
445#endif
446
447#ifndef pmdp_collapse_flush
448#ifdef CONFIG_TRANSPARENT_HUGEPAGE
449extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
450 unsigned long address, pmd_t *pmdp);
451#else
452static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
453 unsigned long address,
454 pmd_t *pmdp)
455{
456 BUILD_BUG();
457 return *pmdp;
458}
459#define pmdp_collapse_flush pmdp_collapse_flush
460#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
461#endif
462
463#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
464extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
465 pgtable_t pgtable);
466#endif
467
468#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
469extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
470#endif
471
472#ifdef CONFIG_TRANSPARENT_HUGEPAGE
473/*
474 * This is an implementation of pmdp_establish() that is only suitable for an
475 * architecture that doesn't have hardware dirty/accessed bits. In this case we
476 * can't race with CPU which sets these bits and non-atomic aproach is fine.
477 */
478static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
479 unsigned long address, pmd_t *pmdp, pmd_t pmd)
480{
481 pmd_t old_pmd = *pmdp;
482 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
483 return old_pmd;
484}
485#endif
486
487#ifndef __HAVE_ARCH_PMDP_INVALIDATE
488extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
489 pmd_t *pmdp);
490#endif
491
492#ifndef __HAVE_ARCH_PTE_SAME
493static inline int pte_same(pte_t pte_a, pte_t pte_b)
494{
495 return pte_val(pte_a) == pte_val(pte_b);
496}
497#endif
498
499#ifndef __HAVE_ARCH_PTE_UNUSED
500/*
501 * Some architectures provide facilities to virtualization guests
502 * so that they can flag allocated pages as unused. This allows the
503 * host to transparently reclaim unused pages. This function returns
504 * whether the pte's page is unused.
505 */
506static inline int pte_unused(pte_t pte)
507{
508 return 0;
509}
510#endif
511
512#ifndef pte_access_permitted
513#define pte_access_permitted(pte, write) \
514 (pte_present(pte) && (!(write) || pte_write(pte)))
515#endif
516
517#ifndef pmd_access_permitted
518#define pmd_access_permitted(pmd, write) \
519 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
520#endif
521
522#ifndef pud_access_permitted
523#define pud_access_permitted(pud, write) \
524 (pud_present(pud) && (!(write) || pud_write(pud)))
525#endif
526
527#ifndef p4d_access_permitted
528#define p4d_access_permitted(p4d, write) \
529 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
530#endif
531
532#ifndef pgd_access_permitted
533#define pgd_access_permitted(pgd, write) \
534 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
535#endif
536
537#ifndef __HAVE_ARCH_PMD_SAME
538static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
539{
540 return pmd_val(pmd_a) == pmd_val(pmd_b);
541}
542
543static inline int pud_same(pud_t pud_a, pud_t pud_b)
544{
545 return pud_val(pud_a) == pud_val(pud_b);
546}
547#endif
548
549#ifndef __HAVE_ARCH_P4D_SAME
550static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
551{
552 return p4d_val(p4d_a) == p4d_val(p4d_b);
553}
554#endif
555
556#ifndef __HAVE_ARCH_PGD_SAME
557static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
558{
559 return pgd_val(pgd_a) == pgd_val(pgd_b);
560}
561#endif
562
563/*
564 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
565 * TLB flush will be required as a result of the "set". For example, use
566 * in scenarios where it is known ahead of time that the routine is
567 * setting non-present entries, or re-setting an existing entry to the
568 * same value. Otherwise, use the typical "set" helpers and flush the
569 * TLB.
570 */
571#define set_pte_safe(ptep, pte) \
572({ \
573 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
574 set_pte(ptep, pte); \
575})
576
577#define set_pmd_safe(pmdp, pmd) \
578({ \
579 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
580 set_pmd(pmdp, pmd); \
581})
582
583#define set_pud_safe(pudp, pud) \
584({ \
585 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
586 set_pud(pudp, pud); \
587})
588
589#define set_p4d_safe(p4dp, p4d) \
590({ \
591 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
592 set_p4d(p4dp, p4d); \
593})
594
595#define set_pgd_safe(pgdp, pgd) \
596({ \
597 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
598 set_pgd(pgdp, pgd); \
599})
600
601#ifndef __HAVE_ARCH_DO_SWAP_PAGE
602/*
603 * Some architectures support metadata associated with a page. When a
604 * page is being swapped out, this metadata must be saved so it can be
605 * restored when the page is swapped back in. SPARC M7 and newer
606 * processors support an ADI (Application Data Integrity) tag for the
607 * page as metadata for the page. arch_do_swap_page() can restore this
608 * metadata when a page is swapped back in.
609 */
610static inline void arch_do_swap_page(struct mm_struct *mm,
611 struct vm_area_struct *vma,
612 unsigned long addr,
613 pte_t pte, pte_t oldpte)
614{
615
616}
617#endif
618
619#ifndef __HAVE_ARCH_UNMAP_ONE
620/*
621 * Some architectures support metadata associated with a page. When a
622 * page is being swapped out, this metadata must be saved so it can be
623 * restored when the page is swapped back in. SPARC M7 and newer
624 * processors support an ADI (Application Data Integrity) tag for the
625 * page as metadata for the page. arch_unmap_one() can save this
626 * metadata on a swap-out of a page.
627 */
628static inline int arch_unmap_one(struct mm_struct *mm,
629 struct vm_area_struct *vma,
630 unsigned long addr,
631 pte_t orig_pte)
632{
633 return 0;
634}
635#endif
636
637/*
638 * Allow architectures to preserve additional metadata associated with
639 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
640 * prototypes must be defined in the arch-specific asm/pgtable.h file.
641 */
642#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
643static inline int arch_prepare_to_swap(struct page *page)
644{
645 return 0;
646}
647#endif
648
649#ifndef __HAVE_ARCH_SWAP_INVALIDATE
650static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
651{
652}
653
654static inline void arch_swap_invalidate_area(int type)
655{
656}
657#endif
658
659#ifndef __HAVE_ARCH_SWAP_RESTORE
660static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
661{
662}
663#endif
664
665#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
666#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
667#endif
668
669#ifndef __HAVE_ARCH_MOVE_PTE
670#define move_pte(pte, prot, old_addr, new_addr) (pte)
671#endif
672
673#ifndef pte_accessible
674# define pte_accessible(mm, pte) ((void)(pte), 1)
675#endif
676
677#ifndef flush_tlb_fix_spurious_fault
678#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
679#endif
680
681/*
682 * When walking page tables, get the address of the next boundary,
683 * or the end address of the range if that comes earlier. Although no
684 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
685 */
686
687#define pgd_addr_end(addr, end) \
688({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
689 (__boundary - 1 < (end) - 1)? __boundary: (end); \
690})
691
692#ifndef p4d_addr_end
693#define p4d_addr_end(addr, end) \
694({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
695 (__boundary - 1 < (end) - 1)? __boundary: (end); \
696})
697#endif
698
699#ifndef pud_addr_end
700#define pud_addr_end(addr, end) \
701({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
702 (__boundary - 1 < (end) - 1)? __boundary: (end); \
703})
704#endif
705
706#ifndef pmd_addr_end
707#define pmd_addr_end(addr, end) \
708({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
709 (__boundary - 1 < (end) - 1)? __boundary: (end); \
710})
711#endif
712
713/*
714 * When walking page tables, we usually want to skip any p?d_none entries;
715 * and any p?d_bad entries - reporting the error before resetting to none.
716 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
717 */
718void pgd_clear_bad(pgd_t *);
719
720#ifndef __PAGETABLE_P4D_FOLDED
721void p4d_clear_bad(p4d_t *);
722#else
723#define p4d_clear_bad(p4d) do { } while (0)
724#endif
725
726#ifndef __PAGETABLE_PUD_FOLDED
727void pud_clear_bad(pud_t *);
728#else
729#define pud_clear_bad(p4d) do { } while (0)
730#endif
731
732void pmd_clear_bad(pmd_t *);
733
734static inline int pgd_none_or_clear_bad(pgd_t *pgd)
735{
736 if (pgd_none(*pgd))
737 return 1;
738 if (unlikely(pgd_bad(*pgd))) {
739 pgd_clear_bad(pgd);
740 return 1;
741 }
742 return 0;
743}
744
745static inline int p4d_none_or_clear_bad(p4d_t *p4d)
746{
747 if (p4d_none(*p4d))
748 return 1;
749 if (unlikely(p4d_bad(*p4d))) {
750 p4d_clear_bad(p4d);
751 return 1;
752 }
753 return 0;
754}
755
756static inline int pud_none_or_clear_bad(pud_t *pud)
757{
758 if (pud_none(*pud))
759 return 1;
760 if (unlikely(pud_bad(*pud))) {
761 pud_clear_bad(pud);
762 return 1;
763 }
764 return 0;
765}
766
767static inline int pmd_none_or_clear_bad(pmd_t *pmd)
768{
769 if (pmd_none(*pmd))
770 return 1;
771 if (unlikely(pmd_bad(*pmd))) {
772 pmd_clear_bad(pmd);
773 return 1;
774 }
775 return 0;
776}
777
778static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
779 unsigned long addr,
780 pte_t *ptep)
781{
782 /*
783 * Get the current pte state, but zero it out to make it
784 * non-present, preventing the hardware from asynchronously
785 * updating it.
786 */
787 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
788}
789
790static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
791 unsigned long addr,
792 pte_t *ptep, pte_t pte)
793{
794 /*
795 * The pte is non-present, so there's no hardware state to
796 * preserve.
797 */
798 set_pte_at(vma->vm_mm, addr, ptep, pte);
799}
800
801#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
802/*
803 * Start a pte protection read-modify-write transaction, which
804 * protects against asynchronous hardware modifications to the pte.
805 * The intention is not to prevent the hardware from making pte
806 * updates, but to prevent any updates it may make from being lost.
807 *
808 * This does not protect against other software modifications of the
809 * pte; the appropriate pte lock must be held over the transation.
810 *
811 * Note that this interface is intended to be batchable, meaning that
812 * ptep_modify_prot_commit may not actually update the pte, but merely
813 * queue the update to be done at some later time. The update must be
814 * actually committed before the pte lock is released, however.
815 */
816static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
817 unsigned long addr,
818 pte_t *ptep)
819{
820 return __ptep_modify_prot_start(vma, addr, ptep);
821}
822
823/*
824 * Commit an update to a pte, leaving any hardware-controlled bits in
825 * the PTE unmodified.
826 */
827static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
828 unsigned long addr,
829 pte_t *ptep, pte_t old_pte, pte_t pte)
830{
831 __ptep_modify_prot_commit(vma, addr, ptep, pte);
832}
833#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
834#endif /* CONFIG_MMU */
835
836/*
837 * No-op macros that just return the current protection value. Defined here
838 * because these macros can be used even if CONFIG_MMU is not defined.
839 */
840
841#ifndef pgprot_nx
842#define pgprot_nx(prot) (prot)
843#endif
844
845#ifndef pgprot_noncached
846#define pgprot_noncached(prot) (prot)
847#endif
848
849#ifndef pgprot_writecombine
850#define pgprot_writecombine pgprot_noncached
851#endif
852
853#ifndef pgprot_writethrough
854#define pgprot_writethrough pgprot_noncached
855#endif
856
857#ifndef pgprot_device
858#define pgprot_device pgprot_noncached
859#endif
860
861#ifndef pgprot_mhp
862#define pgprot_mhp(prot) (prot)
863#endif
864
865#ifdef CONFIG_MMU
866#ifndef pgprot_modify
867#define pgprot_modify pgprot_modify
868static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
869{
870 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
871 newprot = pgprot_noncached(newprot);
872 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
873 newprot = pgprot_writecombine(newprot);
874 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
875 newprot = pgprot_device(newprot);
876 return newprot;
877}
878#endif
879#endif /* CONFIG_MMU */
880
881#ifndef pgprot_encrypted
882#define pgprot_encrypted(prot) (prot)
883#endif
884
885#ifndef pgprot_decrypted
886#define pgprot_decrypted(prot) (prot)
887#endif
888
889/*
890 * A facility to provide lazy MMU batching. This allows PTE updates and
891 * page invalidations to be delayed until a call to leave lazy MMU mode
892 * is issued. Some architectures may benefit from doing this, and it is
893 * beneficial for both shadow and direct mode hypervisors, which may batch
894 * the PTE updates which happen during this window. Note that using this
895 * interface requires that read hazards be removed from the code. A read
896 * hazard could result in the direct mode hypervisor case, since the actual
897 * write to the page tables may not yet have taken place, so reads though
898 * a raw PTE pointer after it has been modified are not guaranteed to be
899 * up to date. This mode can only be entered and left under the protection of
900 * the page table locks for all page tables which may be modified. In the UP
901 * case, this is required so that preemption is disabled, and in the SMP case,
902 * it must synchronize the delayed page table writes properly on other CPUs.
903 */
904#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
905#define arch_enter_lazy_mmu_mode() do {} while (0)
906#define arch_leave_lazy_mmu_mode() do {} while (0)
907#define arch_flush_lazy_mmu_mode() do {} while (0)
908#endif
909
910/*
911 * A facility to provide batching of the reload of page tables and
912 * other process state with the actual context switch code for
913 * paravirtualized guests. By convention, only one of the batched
914 * update (lazy) modes (CPU, MMU) should be active at any given time,
915 * entry should never be nested, and entry and exits should always be
916 * paired. This is for sanity of maintaining and reasoning about the
917 * kernel code. In this case, the exit (end of the context switch) is
918 * in architecture-specific code, and so doesn't need a generic
919 * definition.
920 */
921#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
922#define arch_start_context_switch(prev) do {} while (0)
923#endif
924
925#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
926#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
927static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
928{
929 return pmd;
930}
931
932static inline int pmd_swp_soft_dirty(pmd_t pmd)
933{
934 return 0;
935}
936
937static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
938{
939 return pmd;
940}
941#endif
942#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
943static inline int pte_soft_dirty(pte_t pte)
944{
945 return 0;
946}
947
948static inline int pmd_soft_dirty(pmd_t pmd)
949{
950 return 0;
951}
952
953static inline pte_t pte_mksoft_dirty(pte_t pte)
954{
955 return pte;
956}
957
958static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
959{
960 return pmd;
961}
962
963static inline pte_t pte_clear_soft_dirty(pte_t pte)
964{
965 return pte;
966}
967
968static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
969{
970 return pmd;
971}
972
973static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
974{
975 return pte;
976}
977
978static inline int pte_swp_soft_dirty(pte_t pte)
979{
980 return 0;
981}
982
983static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
984{
985 return pte;
986}
987
988static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
989{
990 return pmd;
991}
992
993static inline int pmd_swp_soft_dirty(pmd_t pmd)
994{
995 return 0;
996}
997
998static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
999{
1000 return pmd;
1001}
1002#endif
1003
1004#ifndef __HAVE_PFNMAP_TRACKING
1005/*
1006 * Interfaces that can be used by architecture code to keep track of
1007 * memory type of pfn mappings specified by the remap_pfn_range,
1008 * vmf_insert_pfn.
1009 */
1010
1011/*
1012 * track_pfn_remap is called when a _new_ pfn mapping is being established
1013 * by remap_pfn_range() for physical range indicated by pfn and size.
1014 */
1015static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1016 unsigned long pfn, unsigned long addr,
1017 unsigned long size)
1018{
1019 return 0;
1020}
1021
1022/*
1023 * track_pfn_insert is called when a _new_ single pfn is established
1024 * by vmf_insert_pfn().
1025 */
1026static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1027 pfn_t pfn)
1028{
1029}
1030
1031/*
1032 * track_pfn_copy is called when vma that is covering the pfnmap gets
1033 * copied through copy_page_range().
1034 */
1035static inline int track_pfn_copy(struct vm_area_struct *vma)
1036{
1037 return 0;
1038}
1039
1040/*
1041 * untrack_pfn is called while unmapping a pfnmap for a region.
1042 * untrack can be called for a specific region indicated by pfn and size or
1043 * can be for the entire vma (in which case pfn, size are zero).
1044 */
1045static inline void untrack_pfn(struct vm_area_struct *vma,
1046 unsigned long pfn, unsigned long size)
1047{
1048}
1049
1050/*
1051 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1052 */
1053static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1054{
1055}
1056#else
1057extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1058 unsigned long pfn, unsigned long addr,
1059 unsigned long size);
1060extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1061 pfn_t pfn);
1062extern int track_pfn_copy(struct vm_area_struct *vma);
1063extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1064 unsigned long size);
1065extern void untrack_pfn_moved(struct vm_area_struct *vma);
1066#endif
1067
1068#ifdef __HAVE_COLOR_ZERO_PAGE
1069static inline int is_zero_pfn(unsigned long pfn)
1070{
1071 extern unsigned long zero_pfn;
1072 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1073 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1074}
1075
1076#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1077
1078#else
1079static inline int is_zero_pfn(unsigned long pfn)
1080{
1081 extern unsigned long zero_pfn;
1082 return pfn == zero_pfn;
1083}
1084
1085static inline unsigned long my_zero_pfn(unsigned long addr)
1086{
1087 extern unsigned long zero_pfn;
1088 return zero_pfn;
1089}
1090#endif
1091
1092#ifdef CONFIG_MMU
1093
1094#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1095static inline int pmd_trans_huge(pmd_t pmd)
1096{
1097 return 0;
1098}
1099#ifndef pmd_write
1100static inline int pmd_write(pmd_t pmd)
1101{
1102 BUG();
1103 return 0;
1104}
1105#endif /* pmd_write */
1106#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1107
1108#ifndef pud_write
1109static inline int pud_write(pud_t pud)
1110{
1111 BUG();
1112 return 0;
1113}
1114#endif /* pud_write */
1115
1116#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1117static inline int pmd_devmap(pmd_t pmd)
1118{
1119 return 0;
1120}
1121static inline int pud_devmap(pud_t pud)
1122{
1123 return 0;
1124}
1125static inline int pgd_devmap(pgd_t pgd)
1126{
1127 return 0;
1128}
1129#endif
1130
1131#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1132 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1133 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1134static inline int pud_trans_huge(pud_t pud)
1135{
1136 return 0;
1137}
1138#endif
1139
1140/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1141static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1142{
1143 pud_t pudval = READ_ONCE(*pud);
1144
1145 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1146 return 1;
1147 if (unlikely(pud_bad(pudval))) {
1148 pud_clear_bad(pud);
1149 return 1;
1150 }
1151 return 0;
1152}
1153
1154/* See pmd_trans_unstable for discussion. */
1155static inline int pud_trans_unstable(pud_t *pud)
1156{
1157#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1158 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1159 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1160#else
1161 return 0;
1162#endif
1163}
1164
1165#ifndef pmd_read_atomic
1166static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1167{
1168 /*
1169 * Depend on compiler for an atomic pmd read. NOTE: this is
1170 * only going to work, if the pmdval_t isn't larger than
1171 * an unsigned long.
1172 */
1173 return *pmdp;
1174}
1175#endif
1176
1177#ifndef arch_needs_pgtable_deposit
1178#define arch_needs_pgtable_deposit() (false)
1179#endif
1180/*
1181 * This function is meant to be used by sites walking pagetables with
1182 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1183 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1184 * into a null pmd and the transhuge page fault can convert a null pmd
1185 * into an hugepmd or into a regular pmd (if the hugepage allocation
1186 * fails). While holding the mmap_lock in read mode the pmd becomes
1187 * stable and stops changing under us only if it's not null and not a
1188 * transhuge pmd. When those races occurs and this function makes a
1189 * difference vs the standard pmd_none_or_clear_bad, the result is
1190 * undefined so behaving like if the pmd was none is safe (because it
1191 * can return none anyway). The compiler level barrier() is critically
1192 * important to compute the two checks atomically on the same pmdval.
1193 *
1194 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1195 * care of reading the pmd atomically to avoid SMP race conditions
1196 * against pmd_populate() when the mmap_lock is hold for reading by the
1197 * caller (a special atomic read not done by "gcc" as in the generic
1198 * version above, is also needed when THP is disabled because the page
1199 * fault can populate the pmd from under us).
1200 */
1201static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1202{
1203 pmd_t pmdval = pmd_read_atomic(pmd);
1204 /*
1205 * The barrier will stabilize the pmdval in a register or on
1206 * the stack so that it will stop changing under the code.
1207 *
1208 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1209 * pmd_read_atomic is allowed to return a not atomic pmdval
1210 * (for example pointing to an hugepage that has never been
1211 * mapped in the pmd). The below checks will only care about
1212 * the low part of the pmd with 32bit PAE x86 anyway, with the
1213 * exception of pmd_none(). So the important thing is that if
1214 * the low part of the pmd is found null, the high part will
1215 * be also null or the pmd_none() check below would be
1216 * confused.
1217 */
1218#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1219 barrier();
1220#endif
1221 /*
1222 * !pmd_present() checks for pmd migration entries
1223 *
1224 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1225 * But using that requires moving current function and pmd_trans_unstable()
1226 * to linux/swapops.h to resovle dependency, which is too much code move.
1227 *
1228 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1229 * because !pmd_present() pages can only be under migration not swapped
1230 * out.
1231 *
1232 * pmd_none() is preseved for future condition checks on pmd migration
1233 * entries and not confusing with this function name, although it is
1234 * redundant with !pmd_present().
1235 */
1236 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1237 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1238 return 1;
1239 if (unlikely(pmd_bad(pmdval))) {
1240 pmd_clear_bad(pmd);
1241 return 1;
1242 }
1243 return 0;
1244}
1245
1246/*
1247 * This is a noop if Transparent Hugepage Support is not built into
1248 * the kernel. Otherwise it is equivalent to
1249 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1250 * places that already verified the pmd is not none and they want to
1251 * walk ptes while holding the mmap sem in read mode (write mode don't
1252 * need this). If THP is not enabled, the pmd can't go away under the
1253 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1254 * run a pmd_trans_unstable before walking the ptes after
1255 * split_huge_pmd returns (because it may have run when the pmd become
1256 * null, but then a page fault can map in a THP and not a regular page).
1257 */
1258static inline int pmd_trans_unstable(pmd_t *pmd)
1259{
1260#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1261 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1262#else
1263 return 0;
1264#endif
1265}
1266
1267#ifndef CONFIG_NUMA_BALANCING
1268/*
1269 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1270 * the only case the kernel cares is for NUMA balancing and is only ever set
1271 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1272 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1273 * is the responsibility of the caller to distinguish between PROT_NONE
1274 * protections and NUMA hinting fault protections.
1275 */
1276static inline int pte_protnone(pte_t pte)
1277{
1278 return 0;
1279}
1280
1281static inline int pmd_protnone(pmd_t pmd)
1282{
1283 return 0;
1284}
1285#endif /* CONFIG_NUMA_BALANCING */
1286
1287#endif /* CONFIG_MMU */
1288
1289#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1290
1291#ifndef __PAGETABLE_P4D_FOLDED
1292int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1293int p4d_clear_huge(p4d_t *p4d);
1294#else
1295static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1296{
1297 return 0;
1298}
1299static inline int p4d_clear_huge(p4d_t *p4d)
1300{
1301 return 0;
1302}
1303#endif /* !__PAGETABLE_P4D_FOLDED */
1304
1305int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1306int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1307int pud_clear_huge(pud_t *pud);
1308int pmd_clear_huge(pmd_t *pmd);
1309int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1310int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1311int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1312#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1313static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1314{
1315 return 0;
1316}
1317static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1318{
1319 return 0;
1320}
1321static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1322{
1323 return 0;
1324}
1325static inline int p4d_clear_huge(p4d_t *p4d)
1326{
1327 return 0;
1328}
1329static inline int pud_clear_huge(pud_t *pud)
1330{
1331 return 0;
1332}
1333static inline int pmd_clear_huge(pmd_t *pmd)
1334{
1335 return 0;
1336}
1337static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1338{
1339 return 0;
1340}
1341static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1342{
1343 return 0;
1344}
1345static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1346{
1347 return 0;
1348}
1349#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1350
1351#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1352#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1353/*
1354 * ARCHes with special requirements for evicting THP backing TLB entries can
1355 * implement this. Otherwise also, it can help optimize normal TLB flush in
1356 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1357 * entire TLB if flush span is greater than a threshold, which will
1358 * likely be true for a single huge page. Thus a single THP flush will
1359 * invalidate the entire TLB which is not desirable.
1360 * e.g. see arch/arc: flush_pmd_tlb_range
1361 */
1362#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1363#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1364#else
1365#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1366#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1367#endif
1368#endif
1369
1370struct file;
1371int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1372 unsigned long size, pgprot_t *vma_prot);
1373
1374#ifndef CONFIG_X86_ESPFIX64
1375static inline void init_espfix_bsp(void) { }
1376#endif
1377
1378extern void __init pgtable_cache_init(void);
1379
1380#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1381static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1382{
1383 return true;
1384}
1385
1386static inline bool arch_has_pfn_modify_check(void)
1387{
1388 return false;
1389}
1390#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1391
1392/*
1393 * Architecture PAGE_KERNEL_* fallbacks
1394 *
1395 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1396 * because they really don't support them, or the port needs to be updated to
1397 * reflect the required functionality. Below are a set of relatively safe
1398 * fallbacks, as best effort, which we can count on in lieu of the architectures
1399 * not defining them on their own yet.
1400 */
1401
1402#ifndef PAGE_KERNEL_RO
1403# define PAGE_KERNEL_RO PAGE_KERNEL
1404#endif
1405
1406#ifndef PAGE_KERNEL_EXEC
1407# define PAGE_KERNEL_EXEC PAGE_KERNEL
1408#endif
1409
1410/*
1411 * Page Table Modification bits for pgtbl_mod_mask.
1412 *
1413 * These are used by the p?d_alloc_track*() set of functions an in the generic
1414 * vmalloc/ioremap code to track at which page-table levels entries have been
1415 * modified. Based on that the code can better decide when vmalloc and ioremap
1416 * mapping changes need to be synchronized to other page-tables in the system.
1417 */
1418#define __PGTBL_PGD_MODIFIED 0
1419#define __PGTBL_P4D_MODIFIED 1
1420#define __PGTBL_PUD_MODIFIED 2
1421#define __PGTBL_PMD_MODIFIED 3
1422#define __PGTBL_PTE_MODIFIED 4
1423
1424#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1425#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1426#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1427#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1428#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1429
1430/* Page-Table Modification Mask */
1431typedef unsigned int pgtbl_mod_mask;
1432
1433#endif /* !__ASSEMBLY__ */
1434
1435#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1436#ifdef CONFIG_PHYS_ADDR_T_64BIT
1437/*
1438 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1439 * with physical address space extension, but falls back to
1440 * BITS_PER_LONG otherwise.
1441 */
1442#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1443#else
1444#define MAX_POSSIBLE_PHYSMEM_BITS 32
1445#endif
1446#endif
1447
1448#ifndef has_transparent_hugepage
1449#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1450#define has_transparent_hugepage() 1
1451#else
1452#define has_transparent_hugepage() 0
1453#endif
1454#endif
1455
1456/*
1457 * On some architectures it depends on the mm if the p4d/pud or pmd
1458 * layer of the page table hierarchy is folded or not.
1459 */
1460#ifndef mm_p4d_folded
1461#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1462#endif
1463
1464#ifndef mm_pud_folded
1465#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1466#endif
1467
1468#ifndef mm_pmd_folded
1469#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1470#endif
1471
1472#ifndef p4d_offset_lockless
1473#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1474#endif
1475#ifndef pud_offset_lockless
1476#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1477#endif
1478#ifndef pmd_offset_lockless
1479#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1480#endif
1481
1482/*
1483 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1484 * This differs from p?d_huge() by the fact that they are always available (if
1485 * the architecture supports large pages at the appropriate level) even
1486 * if CONFIG_HUGETLB_PAGE is not defined.
1487 * Only meaningful when called on a valid entry.
1488 */
1489#ifndef pgd_leaf
1490#define pgd_leaf(x) 0
1491#endif
1492#ifndef p4d_leaf
1493#define p4d_leaf(x) 0
1494#endif
1495#ifndef pud_leaf
1496#define pud_leaf(x) 0
1497#endif
1498#ifndef pmd_leaf
1499#define pmd_leaf(x) 0
1500#endif
1501
1502#endif /* _LINUX_PGTABLE_H */